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A B S T R A C T

Given an undirected graph 𝐺 with a cost function on vertices, a collection of subgraphs of 𝐺 such that in each
subgraph, there are some distinguished vertices called terminals, the Partitioned Steiner Tree Problem (PSTP)
asks for a minimum cost vertex set such that, in each of the given subgraph 𝐺𝑖, the graph induced by the
vertex set spans the terminal set in 𝐺𝑖. The PSTP generalizes the well-known Steiner tree problem and has
important applications in computational sustainability, network design, and social network analysis. However,
for solving the PSTP, conventional integer programming approaches based on single-commodity flow, multi-
commodity flow and subtour elimination integer linear programs, suffer from low computational efficiency due
to a substantial number of variables. In this paper, we propose a compact vertex-separator-based integer linear
programming formulation with much fewer variables. Enhancing inequalities are also studied for tightening
the formulation. We further investigate a branch-and-cut algorithm, a local-branching heuristic algorithm, and
a hybrid algorithm combining them. In experiments where both public real-world and synthetic graphs are
used, our hybrid algorithm outperforms all conventional approaches, especially for large graphs with more than
ten thousand vertices. Further tests also validate the effectiveness of the proposed formulation and enhancing
inequalities.
1. Introduction

Steiner problems, which require an optimal interconnection of a
given set of objects with a predefined objective, are well-known in the
operations research community. For example, the classic Steiner Tree
Problem (STP) in graphs (Dreyfus and Wagner, 1971), which asks for a
minimum cost tree spanning given terminals from a graph with edge
costs, has been studied for decades (Klein and Ravi, 1995; Gouveia
and Telhada, 2008; Buchanan et al., 2018). Applications of Steiner
problems can be widely found in areas like network design (Held et al.,
2011; Fischetti et al., 2017), databases (Ding et al., 2007) and social
networks (Lappas et al., 2009). For readers who are interested in the
recent developments on the STP, we refer to the comprehensive review
in Ljubić (2021).

In this paper, we address a specific Steiner problem that arises in the
field of computational sustainability in recent years (Lai et al., 2011;
Brás et al., 2013; Brás and Cerdeira, 2015), namely, the Partitioned
Steiner Tree Problem (PSTP). The input of the PSTP consists of an
undirected graph 𝐺 = (𝑉 ,𝐸) with vertex set 𝑉 and edge set 𝐸, a vertex
cost vector 𝒄 ∈ R|𝑉 |

+ where 𝑐𝑣 is the cost of 𝑣 ∈ 𝑉 , a collection of
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vertex subsets  = {𝑉1,… , 𝑉𝑝} where 𝑝 is the number of subsets, and a
collection of terminal sets  = {𝑇1,… , 𝑇𝑝} such that 𝑇𝑘 ⊆ 𝑉𝑘 ⊆ 𝑉 for all
𝑘 ∈ {1,… , 𝑝}. The objective of the PSTP is to find a subset of vertices
𝑊 ⊆ 𝑉 such that for each 𝑘 ∈ {1,… , 𝑝}, and for each pair of terminals
𝑡 and 𝑡′ in 𝑇𝑘, there is a path between 𝑡 and 𝑡′ in the subgraph induced
by 𝑊 ∩ 𝑉𝑘, i.e. 𝐺[𝑊 ∩ 𝑉𝑘], while the total cost of 𝑊 , i.e. ∑

𝑣∈𝑊 𝑐𝑣,
is minimized. Clearly, if any two subsets in  are disjoint, then the
PSTP is equivalent to solving 𝑝 independent instances of the vertex-
cost STP. However, if one vertex subset in  intersects with another, we
cannot solve the given problem by simply solving these 𝑝 STP instances
independently. An example of such a case is shown in Fig. 1, where two
overlapping vertex subsets exist.

As far as we know, the PSTP stems from the real-world corridor
design problem (Dilkina and Gomes, 2009) in the burgeoning com-
putational sustainability area. The general purpose of corridor design
is to establish wildlife corridors to connect fragmented habitats of
different endangered species (Lai et al., 2011; Brás et al., 2013; Brás
and Cerdeira, 2015). Specifically, a land parcel is a habitat where one
or multiple species can reside and is represented by a vertex of the
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Fig. 1. In this example, all vertices have unit cost. Terminals in 𝑇1 ⧵ 𝑇2 and 𝑇2 ⧵ 𝑇1 are represented by white squares and white circles, respectively. Non-terminal vertices are
hose small black dots. Vertex 3, denoted by a white circle inside a white square, is the terminal in 𝑇1 ∩ 𝑇2. The unique optimal solution for this PSTP instance is {4, 5, 6}∪𝑇1 ∪ 𝑇2.
or each 𝑖 ∈ {1, 2}, if we independently solve the vertex-cost STP instance with respect to induced graph 𝐺[𝑉𝑖] and terminal set 𝑇𝑖, the unique optimal solutions are {1, 2}∪𝑇1 and
9, 11}∪𝑇2, respectively.
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nput graph. If two land parcels share a border, then there is an edge
onnecting the corresponding vertices. The cost of protecting a land
arcel such that animals can pass through it is indicated by its cor-
esponding vertex cost. Different species may have different preferred
and parcels due to the individual characteristics of the species. Also,
wo species may have overlapped preferred land parcels. Therefore, the
erminal sets can be non-disjoint in the PSTP. Because the preferred
and parcels may be fragmented due to human activities, we hope
o (re)establish connectivity among land parcels for each endangered
pecies. For economic purposes, we also hope to achieve this at the
inimum cost.

Aside from computational sustainability, the PSTP also finds its
pplications in network protection, to protect communication network
rom geographical failures (Zhang et al., 2017; Pašić et al., 2021). Other
pplications exist in wireless sensor network design (Salhieh et al.,
001; Ali et al., 2016) and social network analysis (Faloutsos et al.,
004; Ahn et al., 2010; Fu et al., 2020).

In terms of complexity, the PSTP is NP-hard because it generalizes
he well-known vertex-cost Steiner tree problem. In Lai et al. (2011),
he PSTP is shown to be NP-hard even for planar graphs with only
wo terminal sets of size two. For practical purposes, some simple
euristics have been developed for solving the PSTP (Alagador et al.,
012; Brás et al., 2013; Brás and Cerdeira, 2015). These algorithms
re fast but give no guarantee of optimality. As for exact algorithms
hat ensure optimality, to the best of our knowledge, there are only
wo exact approaches in the literature. These two approaches either
odel the PSTP into a Single-Commodity Flow (SCF) Integer Linear
rogram (ILP) or a Multi-Commodity Flow (MCF) ILP, and then solve
he corresponding ILP by an integer programming solver (see Lai
t al., 2011 for details of the encoding). Empirical evaluation of these
LP-based approaches disclosed that SCF and MCF can hardly solve
eal-world geometric graphs (typically, 2D grid graphs) with only a
ew hundred vertices in one hour, even when a state-of-the-art integer
rogramming solver is used. Both formulations’ performance is even
nknown for social and communication network graphs. As a matter of
act, the existing formulations for the PSTP suffer from a vast number
f variables, mainly due to the use of flow and edge cut constraints
n these formulations. Hence, it is believed that the study of efficient
lgorithms to solve the PSTP is still in a rudimentary stage.

In this work, we focus on better ILP formulations and practical algo-
ithms for the PSTP. Our contributions can be summarized as follows.
e propose a more compact vertex-separator-based ILP formulation

or the PSTP, in which only vertex variables are used. Connectiv-
ty is enforced by vertex-separator-based valid inequalities that can
asily be separated. We optimally solve the ILP using a branch-and-
ut algorithm. On top of this exact algorithm, we develop a local-
ranching-based heuristic. In addition, we also devise a hybrid algo-
ithm that exploits the feasible solutions and useful cuts generated by
he local-branching heuristic and solves the problem in the branch-and-
ut framework. We conduct extensive experiments on public datasets
2

nd synthetic graphs, including general graphs instead of only grid
raphs. The comparative results show that our vertex-separator-based
lgorithms outperform existing methods in the literature and can solve
arge instances of more than ten thousand vertices in less than one hour.
n particular, to address instances of grid graph, we propose three new
ertex-separators to enrich the polyhedral description of the problem,
hich may be relevant in a broader set of problems involving grids and

onnectivity constraints.
The remainder of the paper is organized as follows. Section 2 shows

ecessary notations and some preliminary observations. In Section 3,
e present the vertex-separator-based ILP and two types of enhancing

nequalities, the neighbor inequalities and the 2D grid inequalities. Then,
e give an exact branch-and-cut algorithm, a local-branching heuristic
lgorithm, and a hybrid algorithm, all based on our novel ILP, in Sec-
ion 4. The computational results are presented in Section 5, including
he comparative test and the parameter tuning procedures. In the last
ection, we draw the concluding remarks and highlight some directions
or future works.

. Notations and backgrounds

.1. Notations

The input instance of the PSTP is denoted by 𝐼 = (𝐺, 𝒄, 𝑝, ,  ).

• 𝐺 = (𝑉 ,𝐸) is an undirected graph with vertex set 𝑉 and edge set
𝐸. For any 𝑆 ⊆ 𝑉 , denote by 𝐺[𝑆] the subgraph of 𝐺 induced by
𝑆. The vertices in 𝑉 are labeled as {1, 2,… , |𝑉 |}.

• 𝒄 ∈ R|𝑉 |

+ is a vertex cost vector where 𝑐𝑣 is the cost of 𝑣 ∈ 𝑉 .
• 𝑝 is a positive integer. We use [𝑝] to denote the index set {1, 2,
… , 𝑝}.

•  = {𝑉1,… , 𝑉𝑝} is a collection of 𝑝 vertex sets. For each 𝑘 ∈ [𝑝],
𝑉𝑘 ⊆ 𝑉 and ⋃

𝑘∈[𝑝] 𝑉𝑘 = 𝑉 . Thus,  partitions 𝐺 into 𝑝 (possibly
overlapping) subgraphs 𝐺[𝑉1], . . . , 𝐺[𝑉𝑝]. 𝑉𝑘 is also called the 𝑘th
partition. For convenience, we also use 𝐺𝑘 to refer to 𝐺[𝑉𝑘]. We
denote by 𝐸𝑘 the edge set of 𝐺𝑘. For any vertex 𝑢 ∈ 𝑉𝑘, we denote
by 𝑁𝑘(𝑢) the (open) neighborhood of 𝑢 in 𝐺𝑘, that is, 𝑁𝑘(𝑢) = {𝑣 ∈
𝑉𝑘|(𝑢, 𝑣) ∈ 𝐸𝑘}. The closed neighborhood of 𝑢 in 𝐺𝑘 is defined by
𝑁𝑘[𝑢] = 𝑁𝑘(𝑢)∪{𝑢}. Let 𝐶 ⊆ 𝑉𝑘 be a vertex subset of 𝑉𝑘, we define
the (open) neighborhood of 𝐶 as 𝑁𝑘(𝐶) =

⋃

𝑢∈𝐶 (𝑁𝑘(𝑢) ⧵ 𝐶).
•  = {𝑇1,… , 𝑇𝑝} is a collection of 𝑝 terminal sets where 𝑇𝑘 ⊆ 𝑉𝑘

and |𝑇𝑘| ≥ 2 for 𝑘 ∈ [𝑝]. Let 𝑇 =
⋃

𝑘∈[𝑝] 𝑇𝑘.

The objective of the PSTP is to find a subset of vertices 𝑊 ⊆ 𝑉 such
hat for each 𝑘 ∈ [𝑝] and each pair of terminals 𝑡 and 𝑡′ in 𝑇𝑘, there exists
path between 𝑡 and 𝑡′ in the induced subgraph 𝐺[𝑊 ∩ 𝑉𝑘], while the

otal cost of 𝑊 , i.e. ∑𝑣∈𝑊 𝑐𝑣, is minimized.
By a simple preprocessing procedure, we can merge adjacent ter-

inals of the same partition. Thus we can assume without loss of
enerality that no two terminals in the same partition are adjacent.
hen we have the following simple observations.
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Observation 1. If 𝑉𝑘 = 𝑉 for all 𝑘 ∈ [𝑝], then the PSTP is equivalent to
he classical Steiner Tree Problem on 𝑉 , with 𝑇 =

⋃𝑝
𝑘=1 𝑇𝑘.

Observation 2. If 𝑉𝑝 ⊆ 𝑉𝑝−1 and 𝑇𝑝 ⊆ 𝑇𝑝−1, then any solution spanning
𝑇𝑝−1 also spans 𝑇𝑝, thus partition 𝑉𝑝 and 𝑇𝑝 can be removed from the
roblem input without impacting optimal solutions.

bservation 3. If ⋃𝑝
𝑘=1 𝑉𝑘 = 𝑉 , 𝑉𝑘 ∩ 𝑉𝑘′ = ∅ for all 𝑘, 𝑘′ ∈ [𝑝] with

𝑘 ≠ 𝑘′, then the PSTP is equivalent to 𝑝 independent vertex-cost Steiner
Tree Problems.

Observation 4. For a certain integer 𝑝′ ∈ [𝑝 − 1], if ⋃𝑝′
𝑘=1 𝑉𝑘 does not

intersect with⋃𝑝
𝑝′+1 𝑉𝑘, then the original PSTP is equivalent to 2 independent

PSTPs.

2.2. Vertex separators

In this subsection, we introduce the notions of vertex-separator and
terminal-separator which are basics of our ILP formulation.

• connected component. A connected component (see in West
et al., 2001) of an undirected graph 𝐺 = (𝑉 ,𝐸) is a vertex
set 𝐶 ⊆ 𝑉 such that the induced graph 𝐺[𝐶] is connected and
𝐺[𝐶 ∪ {𝑣}] is not connected for any 𝑣 ∈ 𝑉 ⧵ 𝐶.

• (𝑢, 𝑣)-separator. For two distinct 𝑢 and 𝑣 in 𝑉𝑘, the set 𝑆 ⊆
𝑉𝑘 ⧵ {𝑢, 𝑣} is called a (𝑢, 𝑣)-separator in 𝐺𝑘 if the removal of 𝑆
from 𝐺𝑘 separates 𝑢 and 𝑣 into distinct connected components. A
(𝑢, 𝑣)-separator 𝑆 is minimal if any proper subset of 𝑆 is no longer
a (𝑢, 𝑣)-separator. For any 𝑢, 𝑣 ∈ 𝑉𝑘, let 𝑘

𝑢𝑣 be the family of all
(𝑢, 𝑣)-separators in 𝐺𝑘.

• terminal-separator. We call a (𝑢, 𝑣)-separator in 𝐺𝑘 a terminal-
separator if it separates two distinct terminals 𝑡, 𝑡′ ∈ 𝑇𝑘.

3. Integer linear programming formulations of the PSTP

In this section, we first introduce our vertex-separator-based ILP
formulation, the VS. Then we briefly compare the VS formulation and
the other three existing ILP formulations in terms of their variables and
constraints numbers. Finally, we study more inequalities for tightening
the VS model in the branch-and-cut method.

3.1. The vertex-separator-based ILP

In recent years, compact vertex-separator-based ILP formulations
have gained popularity in modeling some connectivity problems. For
example, this type of model plays an essential role in the state-of-the-art
methods of solving the Steiner tree problem in Fischetti et al. (2017).
Also, in Bley et al. (2017), the vertex-separator model is used to solve
the node-weighted dominating Steiner problem. Our ILP model for the
PSTP generally follows this scheme. Let us show the VS model in the
followings.

minimize
∑

𝑢∈𝑉
𝑐𝑢𝑥𝑢 (1)

𝑥𝑡 = 1 ∀𝑡 ∈ 𝑇 (2)
∑

𝑢∈𝑆
𝑥𝑢 ≥ 1 ∀𝑘 ∈ [𝑝],∀𝑡, 𝑡′ ∈ 𝑇𝑘 and 𝑡 < 𝑡′,∀𝑆 ∈ 𝑘

𝑡𝑡′ (3)

𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (4)

In the VS, each vertex 𝑢 ∈ 𝑉 is associated with a binary variable 𝑥𝑢
such that 𝑥𝑢 is set to 1 if 𝑢 is part of the solution, and 0 otherwise. Con-
straint (2) enforces that each terminal must be selected in the solution.
Constraint (3) is the connectivity constraint which requires that terminals
in each 𝐺𝑘 must be pairwise connected. The connectivity constraint is
based on the important property that, to connect two terminals 𝑡 and 𝑡′

in 𝑇𝑘, at least one vertex from every minimal (𝑡, 𝑡′)-separator in 𝐺𝑘 must
3

be selected in the solution.
Table 1
The sizes of different ILPs.

Formulation No. Var. No. Cons.

Single-Commodity Flow
(Lai et al., 2011)

𝑂(𝑝(|𝑉 | + 2|𝐸|)) 𝑂(𝑝(|𝑉 | + 2|𝐸|))

Multi-Commodity Flow
(Lai et al., 2011)

𝑂(𝑝|𝑇 |(|𝑉 | + 2|𝐸|)) 𝑂(𝑝|𝑇 ||𝑉 |)

Steiner Tree (Dilkina
and Gomes, 2010)

𝑂(2𝑝|𝐸| + |𝑉 |) 𝑂(𝑝|𝑉 |2|𝑉 |)

Vertex-Separator-Based
Model (This paper)

𝑂(|𝑉 |) 𝑂(𝑝|𝑇 |22|𝑉 |)

3.2. Comparing the VS with existing ILPs

Existing ILPs for the PSTP include Single-Commodity Flow (Lai
et al., 2011), Multi-Commodity Flow (Lai et al., 2011) and Steiner
Tree (Dilkina and Gomes, 2010) formulations. For completeness, we
leave the detailed description of these three formulations to Appendix B
in Appendix A. It is worth noticing that, in order to build up these for-
mulations, the input undirected graph is first converted into a directed
graph by replacing each edge with two reverse directed arcs. Then each
directed arc is associated with a binary variable. As a consequence,
the number of variables of these formulations is proportional to |𝐸|.
However, |𝐸| ≫ |𝑉 | in many graphs. Thus, it is natural to think about
more compact formulations in which each variable is associated with
a vertex. It turns out that our Vertex-Separator (VS) based formulation
meets such an expectation. In Table 1, we summarize the number of
variables and constraints for all these formulations. It can be seen
that the VS formulation has much fewer variables than existing ones.
Note that, though the VS formulation has an exponential number of
constraints, they can be separated by fast polynomial algorithms, as
will be seen later.

3.3. Enhancing the VS formulation

Due to the exponential number of inequalities in the connectivity
constraint, the VS model is solved by a branch-and-cut approach. The
root node of the branch-and-cut only contains a partial VS formula-
tion without the connectivity constraint, i.e., objective function (1),
constraints (2) and (4). To tighten the initial VS formulation, we can
supplement it with additional inequalities. This section is dedicated to
these additional inequalities.

3.3.1. Neighbor inequalities
We first introduce the neighbor inequalities to enhance the partial

VS model on the root node. Given a subgraph 𝐺𝑘, for any terminal
𝑡 ∈ 𝑇𝑘, it is obvious that 𝑡’s neighborhood 𝑁𝑘(𝑡) is a terminal-separator.
Constraint (5) ensures that at least one of 𝑡’s neighbors is selected
in the solution. Obviously, constraint (5) is just a special case of the
connectivity constraint (3), but it can be used in the branch-and-cut as
a part of the initial constraints.
∑

𝑣∈𝑁𝑘(𝑡)
𝑥𝑣 ≥ 1 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 (5)

For a non-terminal vertex 𝑢 ∈ 𝑉𝑘, if 𝑢 is selected, then at least two
vertices in 𝑁𝑘(𝑢) have to be selected since otherwise we can delete 𝑢 and
obtain an improved solution due to the fact that 𝑐𝑢 ≥ 0. Therefore, we
obtain constraint (6) for each non-terminal vertex in 𝑉𝑘. Constraint (6)
is not contained in the connectivity constraint (3) and can strengthen
the VS model.
∑

𝑣∈𝑁𝑘(𝑢)
𝑥𝑣 ≥ 2𝑥𝑢 ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉𝑘 ⧵ 𝑇𝑘 (6)

Constraint (6) can be further tightened. For a non-terminal vertex
𝑢 ∈ 𝑉𝑘, let us consider the set of non-terminals in 𝑁𝑘(𝑢) which are only
adjacent to 𝑁 [𝑢], i.e., 𝑆 = {𝑣 ∈ 𝑁 (𝑢) ⧵ 𝑇 ∣ 𝑁(𝑣) ⊆ 𝑁[𝑢]}. It can
𝑘 𝑘 𝑘 𝑘
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be observed that if 𝑢 is selected, then no vertex of 𝑆𝑘 is selected for
panning 𝑇𝑘 in an optimal solution. Therefore, we can replace 𝑁𝑘(𝑢)

by 𝑁∗
𝑘 (𝑢) = 𝑁𝑘(𝑢) ⧵ 𝑆𝑘 in constraint (6) and obtain constraint (7), as

llustrated in Fig. 2(a).
∑

𝑣∈𝑁∗
𝑘 (𝑢)

𝑥𝑣 ≥ 2𝑥𝑢 ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉𝑘 ⧵ 𝑇𝑘 (7)

We can observe that constraints (5) and (6) are similar to the
node-degree inequalities in Fischetti et al. (2017), and constraint (7)
is similar to strengthened node-degree inequality in Fischetti et al.
(2017). Next we show that constraint (7) can be further strengthened
by considering the particular case where 𝑢 ∈ 𝑉𝑘 ⧵ 𝑇𝑘 is adjacent to a
terminal 𝑡 ∈ 𝑇𝑘. If 𝑢 is in the solution, then at least one vertex in 𝑁∗

𝑘 (𝑢)
should also be selected in order to connect 𝑢 to another vertex out of
the neighborhood of 𝑡. This property is enforced by constraint (8), and
is illustrated in Fig. 2(b).

∑

𝑣∈𝑁∗
𝑘 (𝑢)⧵𝑁𝑘[𝑡]

𝑥𝑣 ≥ 𝑥𝑢 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘,∀𝑢 ∈ 𝑁𝑘(𝑡) (8)

Constraint (8), which does not appear in Fischetti et al. (2017)
is now shown to dominate constraint (7) for all 𝑡 ∈ 𝑇𝑘, and for all
𝑢 ∈ 𝑁𝑘(𝑡). First, we observe that 𝑡 does not belong to 𝑆𝑘, hence 𝑡 is
in 𝑁∗

𝑘 (𝑢). Consequently, (𝑁∗
𝑘 (𝑢) ⧵ 𝑁𝑘[𝑡]) ∪ {𝑡} = 𝑁∗

𝑘 (𝑢) ⧵ 𝑁𝑘(𝑡). We also
have 𝑥𝑡 ≥ 𝑥𝑢, because 𝑥𝑡 = 1 for all 𝑡 ∈ 𝑇𝑘. Adding this inequality to
constraint (8) yields:

∑

𝑣∈𝑁∗
𝑘 (𝑢)⧵𝑁𝑘(𝑡)

𝑥𝑣 ≥ 2𝑥𝑢 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘,∀𝑢 ∈ 𝑁𝑘(𝑡)

Since 𝑁∗
𝑘 (𝑢)⧵𝑁𝑘(𝑡) ⊆ 𝑁∗

𝑘 (𝑢), constraint (8) implies constraint (7). We
now use the example of Fig. 2(b) to show that these constraints can be
different. Indeed constraint (7) is 𝑥1+𝑥2+𝑥4 ≥ 2𝑥𝑢, whereas constraint
(8) is 𝑥1 ≥ 𝑥𝑢.

If 𝑢 is not adjacent to any terminal, we rewrite constraint (7) as
constraint (9) for completeness.
∑

𝑣∈𝑁∗
𝑘 (𝑢)

𝑥𝑣 ≥ 2𝑥𝑢 ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉𝑘 ⧵
⋃

𝑡∈𝑇𝑘

𝑁𝑘[𝑡] (9)

In our implementation, we enforce constraints (5), (8) and (9) in
the partial VS model at the root node.

3.3.2. 2D grid inequalities
Since the PSTP is particularly useful in wildlife conservation where

the given graphs are often 2-dimensional (2D) grid graphs, also known
as mesh graphs (Lai et al., 2011; Dilkina et al., 2013), we investigate
inequalities which are specifically helpful for such graphs.

First, it is known that a 2D grid graph 𝐺 = (𝑉 ,𝐸) can be represented
in the plane, where each vertex is indexed by two-dimensional coordi-
4

nates. Fig. 3 shows an example of three 8 × 8 2D grid graphs. Assuming a
that the graph fits into a 𝑛 × 𝑛 square, we use ⟨𝑖, 𝑗⟩ (𝑖, 𝑗 ∈ [𝑛]) to index
the vertex located at the 𝑖th row and 𝑗th column.

Given a PSTP instance, let us assume that for each 𝑘 ∈ [𝑝], 𝐺𝑘 =
𝑉𝑘, 𝐸𝑘) is a 2D grid graph, then we can define the following new
eparators for 𝐺𝑘.

• Row and column separators A row is a set of vertices that share
the same first coordinate. In 𝐺𝑘, a row separator 𝑅 is a row and
also a terminal-separator that contains no vertex in 𝑇𝑘. Likewise, a
column is a set of vertices which have the same second coordinate
and a column separator 𝐶 is a column and a terminal-separator
that contains no vertex in 𝑇𝑘. According to the given definitions,
the first and last rows are not row separators. Likewise, the
first and last columns are not column separators. Fig. 3(a) is an
example of 𝐺𝑘 where black vertices represent terminals, and the
gray strips highlight row and column separators.

• Diagonal and anti-diagonal separators A diagonal is a set of
diagonal vertices in 𝐺𝑘. Formally, 𝐷 = {⟨𝑖, 1⟩, ⟨𝑖 + 1, 2⟩,… , ⟨𝑛, 𝑛 −
𝑖+ 1⟩} for any 𝑖 ∈ [𝑛] or 𝐷 = {⟨1, 𝑗⟩, ⟨2, 𝑗 + 1⟩,… , ⟨𝑛− 𝑗 + 1, 𝑛⟩} for
any 𝑗 ∈ [𝑛] is a diagonal. A diagonal separator 𝐷 is a diagonal and
also a terminal-separator that contains no vertex in 𝑇𝑘. An anti-
diagonal is a set of anti-diagonal vertices in 𝐺𝑘, defined as 𝐴 =
{⟨𝑖, 𝑗⟩ ∈ 𝑉𝑘|𝑖, 𝑗 ∈ [𝑝] and 𝑖 + 𝑗 = 𝑠} for any 𝑠 ∈ {2,… , 2𝑛}. Again,
we define the anti-diagonal separator as an anti-diagonal which is
a terminal-separator and contains no vertex in 𝑇𝑘. In Fig. 3(b),
the gray strips show diagonal and anti-diagonal separators.

• 𝑑-neighborhood separator Let ⟨𝑖, 𝑗⟩ and ⟨𝑖′, 𝑗′⟩ be the indices of
two vertices in a 2D grid graph, we define the shortest distance
between them as |𝑖 − 𝑖′| + |𝑗 − 𝑗′|. Given a positive integer 𝑑, the
𝑑-neighborhood of a terminal 𝑡 ∈ 𝑇𝑘 is then the set of vertices
in 𝑉𝑘 whose shortest distance to 𝑡 is 𝑑. A 𝑑-neighborhood of 𝑡
is a 𝑑-neighborhood separator if it contains no terminal vertices
and separates 𝑡 and another terminal in 𝑇𝑘. In Fig. 3(c), the gray
circles show a 1-neighborhood separator and a 2-neighborhood
separator.

For a 2D graph, it is easy to list all the row, column, diagonal,
nti-diagonal, 1-neighborhood, and 2-neighborhood separators. Given
ubgraph 𝐺𝑘 and terminal set 𝑇𝑘 in a PSTP instance, denote by 𝑘

𝑔𝑟𝑖𝑑
he collection of all these separators. Then we have the following grid
nequalities:
∑

𝑢∈𝑆
𝑥𝑢 ≥ 1 ∀𝑘 ∈ [𝑝],∀𝑆 ∈ 𝑘

𝑔𝑟𝑖𝑑 (10)

It is worth mentioning that inequalities (10) cannot tighten the VS
odel. Row separators, column separators and diagonal separators are

lso vertex separators in 2D graphs. However, grid inequalities are
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elpful to speed up the branch-and-cut with the VS model. Specifi-
ally, when the given graph is a 2D grid graph, we produce all grid
nequalities and add them to the root node (where a partial VS model
ithout connectivity constraints is solved). The number of row and

olumn separators is at most 2𝑝|𝑉 |, the number of diagonal and anti-
iagonal separators is at most 4𝑝|𝑉 |, and the number of 1-neighborhood

and 2-neighborhood separators is at most 2𝑝|𝑇 |.

4. Algorithms for the PSTP

In this section, we introduce algorithms based on the VS formu-
lation. As mentioned, a branch-and-cut algorithm is first designed to
obtain an optimal solution of the PSTP. Then, we develop a local-
branching-based heuristic algorithm, and a hybrid algorithm which
combines local-branching heuristic and the branch-and-cut algorithm.

4.1. An exact branch-and-cut algorithm

The VS model includes an exponential number of connectivity
inequalities, i.e., inequalities in constraint (3). However, these connec-
tivity inequalities can be separated in polynomial time. Therefore, we
resort to the branch-and-cut framework (Wolsey, 2020) for addressing
a relaxed model that is enriched by violated constraints on the fly.

Let us introduce the general procedure of the branch-and-cut frame-
work for the VS model. In what follows, a partial VS model is made
up of objective function (1), constraints (2), (4), and the neighbor
inequalities constraints (5), (8) and (9), with only a few inequalities of
constraint (3). Initially, the root node of the branch-and-cut contains
a partial VS model that excludes other inequalities of constraint (3),
that is, objective function (1) and constraints (2), (4), (5), (8) and (9).
When a 2D grid graph is given, constraint (10) in Section 3.3.2 is also
included. We call this model the initial partial VS model.

Then, the branch-and-cut algorithm solves the initial partial VS
model at the root node and adds the violated connectivity inequalities
and other cuts on the fly at each branch node. Specifically, when an
integer or even a fractional solution is found for a partial VS model, the
algorithm addresses the following problem using a separation oracle:

Given a current solution 𝒙 of a partial VS model, either find out at least
one minimal terminal-separator 𝑆 in 𝐺𝑘 for a certain 𝑘 ∈ [𝑝] such that
∑

𝑢∈𝑆 𝑥𝑢 < 1, or return ‘‘satisfied’’ if there is no such vertex separator for
any 𝑘 ∈ [𝑝].

Because a solution 𝒙 of a partial VS model can be either integral
or fractional, we introduce separation methods for integer solutions
and fractional solutions in Section 4.1.1 and Section 4.1.2, respectively.
Then in Section 4.1.3, we combine these two methods in our integrated
separation oracles.
5

1

Algorithm 1: The separation method for integer solutions
Input: A restricted solution 𝒙𝑘, graph 𝐺𝑘, parameters 𝜖 and 𝛼
Output: A queue of inequalities that violate constraint (3)

1 Let 𝑄 be the set of violated inequalities, 𝑄 ← ∅ initially.
2 Build the support graph 𝐺𝒙

𝑘 from 𝒙𝑘
3 Apply Depth-First Search (DFS, see Tarjan (1972)) to 𝐺𝒙

𝑘 to
find out the connected component(s)
/* Since each connected component contains at

least one terminal, we denote a connected
component by 𝐶𝑡, where 𝑡 is an arbitrary
terminal in the connected component */

4 if there is more than one connected component then
5 foreach distinct pair of connected components 𝐶𝑡 and 𝐶𝑡′

such that 𝑡 < 𝑡′ do
6 Delete all edges in 𝐺[𝐶𝑡 ∪𝑁𝑘(𝐶𝑡)] from 𝐺𝑘
7 Find the set 𝑅𝑡′ of vertices that are reachable from 𝑡′

in 𝐺𝑘 via DFS
8 𝑆 ← 𝑁𝑘(𝐶𝑡) ∩ 𝑅𝑡′

9 Add ∑

𝑢∈𝑆 𝑥𝑢 ≥ 1 to 𝑄
10 Recover all deleted edges in line 6
11 end
12 end
13 Remove inequalities in 𝑄 with a violation less than 𝜖
14 𝑄 ← the first 𝛼 most violated inequalities in 𝑄
15 return 𝑄

4.1.1. Separation by connected components
Assume that the current solution 𝒙 is integral, that is, all the

elements of 𝒙 are integers. We use a similar separation procedure for
integer solutions as in Fischetti et al. (2017) but run it separately for
each subgraph. We define 𝒙𝑘 as the restricted solution on 𝐺𝑘, that is, 𝒙𝑘
is obtained from 𝒙 by removing all 𝑥𝑢 if 𝑢 ∉ 𝑉𝑘. For all 𝑘 ∈ [𝑝], we
uild the support graph 𝐺𝒙

𝑘 = (𝑉 𝒙
𝑘 , 𝐸𝒙

𝑘 ) where 𝑉 𝒙
𝑘 = {𝑢 ∈ 𝑉𝑘|𝑥𝑢 = 1} and

𝒙
𝑘 = {(𝑢, 𝑣) ∈ 𝐸𝑘|𝑥𝑢 = 𝑥𝑣 = 1}. Then by Algorithm 1 (Tarjan, 1972), we
se the restricted solution 𝒙𝑘 to separate the connectivity inequalities.
t has been proved in Fischetti et al. (2017) that 𝑆 in line 8 of Algorithm
is a minimal (𝑡, 𝑡′)-separator.

Moreover, as mentioned in Taccari (2016), Algorithm 1 can be used
o separate the connectivity inequalities at a fractional node of the
ranch-and-bound tree search: given a fractional restricted solution 𝒙𝑘,
or each fractional 𝑥𝑢 ∈ 𝒙𝑘, we set 𝑥𝑢 to 1 if 𝑥𝑢 is greater than 0.01 and

otherwise. Through this, we convert a fractional 𝒙𝑘 to an integral
ne and then we can build a support graph from it. When Algorithm 1
erminates, we only return the first 𝛼 most violated inequalities with a
iolation at least 𝜖. We note that the separation procedure of Algorithm

is not guaranteed to find all the violated inequalities on fractional
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solutions, but the correctness is preserved by the fact that the procedure
is exact for integer solutions. Without much effort, one can check that
time complexity of Algorithm 1 is bounded by 𝑂(|𝑉𝑘| + |𝐸𝑘|).

4.1.2. Separation by minimum cuts
When the solution 𝒙 is fractional, the connectivity constraint can

also be separated by a network flow algorithm, as stated in Fischetti
et al. (2017). We present such a separation algorithm for the PSTP
in Algorithm 2. First a support flow network, i.e., a digraph with edge
capacity, is built based on 𝒙𝑘. Then, we find the minimum cuts for all
distinct pairs of terminals in the support flow network. The parameters
𝜖 and 𝛼 are also used to filter the violated inequalities, as in Algorithm
1.
Algorithm 2: The separation method for fractional solutions

Input: A fractional 𝒙𝑘, graph 𝐺𝑘, parameters 𝜖 and 𝛼
Output: A queue of inequalities that violate constraint (3)

1 Let 𝑄 be the set of violated inequalities, 𝑄 ← ∅ initially.
2 Replace each edge (𝑢, 𝑣) in 𝐸𝑘 by two arcs (𝑢, 𝑣) and (𝑣, 𝑢)
3 Replace each 𝑢 ∈ 𝑉𝑘 by a vertex-arc (𝑢𝑖𝑛, 𝑢𝑜𝑢𝑡), with capacity 𝑥𝑢
4 For each 𝑢 ∈ 𝑉𝑘, all arcs entering 𝑢 are now directed into 𝑢𝑖𝑛,

and all arcs leaving 𝑢 are now directed out of 𝑢𝑜𝑢𝑡, capacity
of these arcs are set to ∞
/* Denote by 𝐹 𝒙

𝑘 the constructed flow network.
*/

5 foreach distinct terminal pair (𝑡, 𝑡′) in 𝑇𝑘 do
6 Find a minimum (𝑡𝑜𝑢𝑡, 𝑡′𝑖𝑛)-cut 𝐶𝑚𝑖𝑛 in 𝐹 𝒙

𝑘
7 Replace the vertex-arcs in 𝐶𝑚𝑖𝑛 by their corresponding

vertices
8 if ∑𝑢∈𝐶𝑚𝑖𝑛

𝑥𝑢 < (1 − 𝜖) then
9 Add ∑

𝑢∈𝐶𝑚𝑖𝑛
𝑥𝑢 ≥ 1 to 𝑄

10 end
11 end
12 𝑄 ← the first 𝛼 most violated inequalities in 𝑄
13 return 𝑄

We use the well-known Goldberg-Tarjan’s highest-label preflow-
ush algorithm (Goldberg and Tarjan, 1988) to solve the minimum cut
roblem. Thus the running time of Algorithm 2 is 𝑂(|𝑇𝑘|

2
|𝑉𝑘|

2√
|𝐸𝑘|).

e note that given a fractional solution, this separation procedure
ractically finds more violated connectivity inequalities than Algorithm
, but with a higher computational cost.

.1.3. The integrated separation oracle
As mentioned before, Algorithm 1 can separate both integer and

ractional solutions, while Algorithm 2 only separates fractional solu-
ions. We observe that even in a fractional solution 𝒙, there may exist
n 𝒙𝑘 containing only integers for a certain 𝑘 ∈ [𝑝], which can be
eparated by the faster Algorithm 1. To fully exploit both algorithms
nd achieve the best performance over all different types of PSTP
nstances, we design our separation oracle by combining the two algo-
ithms in different manners, as shown in Algorithm 3. Algorithms 1,2
re denoted by ConnectedSeparation and FlowSeparation, respectively.
ee Appendix A for a basic framework of our branch-and-cut method.

.2. A local-branching-based heuristic algorithm

The local-branching (LB) based algorithm, proposed by Fischetti and
odi (2003), is a powerful heuristic search algorithm. LB follows the
arge-neighborhood search scheme and uses the ILP solver to drive the
ocal search.

Our LB-based heuristic for the PSTP is detailed in Algorithm 4.
irst, an initial solution 𝒙 is built by a fast constructive heuristic.
pecifically, for each 𝐺𝑘, the constructive heuristic iteratively builds
shortest path between two randomly selected terminals until all

he terminals are connected. Then, all the vertices on these shortest
6

Algorithm 3: The integrated separation oracle
Input: A PSTP instance 𝐼 = (𝐺, 𝒄, 𝑝, ,  ), a current solution

𝒙, parameter sets (𝜖1, 𝛼1) and (𝜖2, 𝛼2)
Output: A queue of inequalities that violate constraint (3)

1 Let 𝑄 be the set of violated inequalities, 𝑄 ← ∅ initially.
2 if 𝒙 is integral then
3 foreach 𝑘 ∈ [𝑝] do 𝑄 ← 𝑄 ∪

ConnectedSeparation(𝒙𝑘, 𝐺𝑘, 𝜖1, 𝛼1) ;
4 end
5 if 𝒙 is fractional then
6 foreach 𝑘 ∈ [𝑝] do
7 if 𝒙𝑘 is integral then
8 𝑄 ← 𝑄 ∪ ConnectedSeparation(𝒙𝑘, 𝐺𝑘, 𝜖1, 𝛼1)
9 else
10 if ConnectedSeparation(𝒙𝑘, 𝐺𝑘, 𝜖1, 𝛼1) is not empty

then
11 𝑄 ← 𝑄 ∪ ConnectedSeparation(𝒙𝑘, 𝐺𝑘, 𝜖1, 𝛼1)
12 else
13 𝑄 ← 𝑄 ∪ FlowSeparation(𝒙𝑘, 𝐺𝑘, 𝜖2, 𝛼2)
14 end
15 end
16 end
17 end
18 return 𝑄

Algorithm 4: The local branching algorithm for the PSTP
Input: A PSTP instance 𝐼 = (𝐺, 𝒄, ,  , 𝑝), lower and upper

bound for radius 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥, radius step 𝑟𝛿 ,
maximum number of iteration 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟, time limit
𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚

Output: A high-quality solution and an enlarged 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙
1 𝑖𝑡𝑟 ← 1, 𝑟 ← 𝑟𝑚𝑖𝑛, 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙 ← ∅
2 Build an integer solution 𝒙 by the constructive heuristic
3 while (𝑖𝑡𝑟 ≤ 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟) and (𝑟 ≤ 𝑟𝑚𝑎𝑥) do
4 Add all the inequalities of constraint (11) to the initial VS

model
5 (𝒙′, 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙) ← B&C(𝐼 , 𝒙, 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙, 𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚,

𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟) /* All the newly generated
connectivity inequalities are stored in
𝐶𝑢𝑡𝑃 𝑜𝑜𝑙 */

6 if ∑𝑢∈𝑉 𝑐𝑢𝑥′𝑢 <
∑

𝑢∈𝑉 𝑐𝑢𝑥𝑢 then
7 𝒙 ← 𝒙′
8 𝑟 = 𝑟𝑚𝑖𝑛
9 else
10 𝑟 ← 𝑟 + 𝑟𝛿
11 end
12 𝑖𝑡𝑟 ← 𝑖𝑡𝑟 + 1
13 end
14 return (𝒙, 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙)

paths are selected in the solution. It is known that Lai et al. (2011)
designed a more complex Iterative Dynamic Programming heuristic
for the PSTP, which is based on the exact Dreyfus–Wagner Dynamic
Programming algorithm (Dreyfus and Wagner, 1971). The running time
of the Iterative Dynamic Programming is exponential in |𝑇 |. Thus we
choose to use the simpler and faster constructive heuristic.

When an initial feasible solution is obtained, an iterative local
search procedure is used to improve the quality of the solution. The
local search is depicted in the 𝑤ℎ𝑖𝑙𝑒 loop of Algorithm 4. Given a
feasible solution 𝒙, for each 𝑘 ∈ [𝑝], let 𝑊𝑘 = {𝑢 ∈ 𝑉𝑘|𝑥𝑢 = 1} be the set
of selected vertices in 𝑉𝑘. An 𝑟-distance neighbor solution of 𝒙 is defined
as a new feasible solution such that for each 𝑘 ∈ [𝑝], the vertices in
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𝑉𝑘 that are selected by the new solution differ from 𝑊𝑘 by at most 𝑟
ertices. In order to get an 𝑟-distance neighbor solution, in line 4 we
dd the following constraint (11) to the initial VS model.
∑

𝑢∈𝑊𝑘

(1 − 𝑥𝑢) ≤ 𝑟 ∀𝑘 ∈ [𝑝] (11)

esides constraint (11), Fischetti et al. introduced another notion of
-distance neighbor solution in Fischetti et al. (2017) and formalized
onstraint (12). For a fixed radius 𝑟, constraint (11) dominates con-
traint (12). After some preliminary tests, we use constraint (11) in our
lgorithm as it leads to better overall performance.
∑

𝑢∈𝑉𝑘⧵𝑊𝑘

𝑥𝑢 +
∑

𝑢∈𝑊𝑘

(1 − 𝑥𝑢) ≤ 𝑟 ∀𝑘 ∈ [𝑝] (12)

In line 5, we reuse the branch-and-cut algorithm (denoted by B&C)
n Section 4.1 to search for an 𝑟-distance neighbor solution of smaller
bjective value. The initial solution 𝒙 is given to the branch-and-cut
s a warm-start solution. A cutting-off time of 𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚 is also
iven in case the branch-and-cut search does not stop in a reasonable
ime. Besides, inequalities of the connectivity constraint found by the
eparation oracle are stored in a global 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙. The inequalities in the
𝑢𝑡𝑃 𝑜𝑜𝑙 are reused in the subsequent branch-and-cut.

From line 6 to line 12, we update the current solution and the
urrent radius 𝑟. The radius 𝑟, initialized to 𝑟𝑚𝑖𝑛, is increased by 𝑟𝛿

if no improved solution is found by the branch-and-cut in the current
iteration. If a better neighbor solution 𝒙′ is obtained, 𝑟 is reset to 𝑟𝑚𝑖𝑛
and the current solution is updated to 𝒙′.

The algorithm stops when a given number of iterations, LBMaxIter,
is reached, or 𝑟 exceeds the maximum radius 𝑟𝑚𝑎𝑥. Note that the final
𝐶𝑢𝑡𝑃 𝑜𝑜𝑙 will be reused for our hybrid algorithm in the next subsection.

4.3. A hybrid algorithm

In this section, we introduce a hybrid algorithm that combines
our branch-and-cut and LB-based heuristic. The overall algorithmic
framework of our hybrid algorithm is detailed in Algorithm 5. In
general, the hybrid algorithm consists of two phases. In the first phase,
the LB-based heuristic algorithm is called multiple times to obtain a
high-quality solution. Meanwhile, the LB-based heuristic also collects a
set of valid connectivity inequalities and keeps them in the 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙. In
the second phase, the branch-and-cut is started with the initial partial
VS model enriched with the inequalities in the 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙 that is obtained
in the first phase, with the purpose to obtain an optimal solution.

In Algorithm 5, we use 𝒙 to store the best solution found so far.
From line 2 to 8, the LB-based heuristic (denoted by LB) in Section 4.2
is called repeatedly until the time or the number of iterations exceeds
the limit. The LB-based heuristic produces not only a high-quality
solution 𝒙, but also a set of valid inequalities in 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙. Because
these inequalities are globally valid, they are added to the VS model
iteratively each time the LB-based heuristic is called (line 3). If the LB-
based heuristic finds an improved solution, we update the best solution
and proceed to the next iterative call of the LB-based heuristic (line
4 to 7). After the iterative calls of the local branching heuristic, we
obtain a solution 𝒙 and a set of connectivity inequalities in CutPool.
They are again given to the branch-and-cut algorithm as a warm-start
and a set of additional inequalities to be added to the initial partial VS
model. Then in line 9, the branch-and-cut algorithm is executed until
an optimal solution is reached or 𝐿𝐵𝑇 𝑖𝑚𝐿𝑖𝑚 seconds have elapsed.

5. Experiments

5.1. Settings

All the algorithms are implemented in C++ on a PC with an Intel
i5 processor at 3.20 GHz and 16 GB RAM1. The operating system is

1 The code is available at https://github.com/Mark-htmlgogogo/Steiner-
ultigraph-Problem
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Algorithm 5: The hybrid algorithm
Data: A PSTP instance 𝐼 = (𝐺, 𝒄, ,  , 𝑝), restart limit

𝐿𝐵𝑀𝑎𝑥𝑅𝑒𝑠𝑡𝑎𝑟𝑡𝑠, time limit 𝑇 𝑖𝑚𝑒𝐿𝑖𝑚, local branching
parameters (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, 𝑟𝛿 , 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟, 𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚)

Result: A (sub)-optimal solution 𝒙.
1 𝑖𝑡𝑟 ← 1,𝒙 ← (1,… , 1), 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙 ← ∅
2 while 𝑖𝑡𝑟 ≤ 𝐿𝐵𝑀𝑎𝑥𝑅𝑒𝑠𝑡𝑎𝑟𝑡𝑠 and the running time is within

𝑇 𝑖𝑚𝑒𝐿𝑖𝑚 do
3 (𝒙′, 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙) ← LB(𝐼 , 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙, 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥, 𝑟𝛿 , 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟)
4 if ∑𝑢∈𝑉 𝑐𝑢𝑥′𝑢 <

∑

𝑢∈𝑉 𝑐𝑢𝑥𝑢 then
5 𝒙 ← 𝒙′

6 end
7 𝑖𝑡𝑟 ← 𝑖𝑡𝑟 + 1
8 end
9 𝒙 ← B&C(𝐼 ,𝒙, 𝐶𝑢𝑡𝑃 𝑜𝑜𝑙, 𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚)
10 return 𝒙

Microsoft Windows 10, 64 bits. We use IBM ILOG CPLEX 12.71 as our
underlying ILP solver. The settings by default of CPLEX are used unless
otherwise specified.

We use the Multi-Commodity Flow (MCF) formulation (Lai et al.,
2011) and the Steiner tree formulation (See Appendix B.3 for de-
tails of both formulations) as existing benchmark algorithms. Precisely
speaking, the tested algorithm is the CPLEX solver that uses a specific
formulation. Note that the Single-Commodity Flow (SCF) formulation
is not compared because it is dominated by the MCF, as shown in Lai
et al. (2011). For the MCF, we use the entire model to solve the PSTP
since the MCF is of polynomial-size and in Lai et al. (2011) the entire
model is also used. For the Steiner tree formulation, considering that
it contains exponentially many inequalities, we also use a branch-and-
cut algorithm to solve it, with the min-cut separation approach stated
in Dilkina and Gomes (2010) and Taccari (2016).

5.1.1. Parameter settings
In the experiments, we set 𝜖 = 0.001 and 𝛼 to ∞ (namely, we add

all the inequalities with a violation at least 0.001) for Algorithm 1. As
for Algorithm 2, we set 𝜖 = 0.4 and 𝛼 = 20. We also set 𝑟𝑚𝑖𝑛 = 10,
𝑟𝑚𝑎𝑥 = 30, 𝑟𝛿 = 2, 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 10 and 𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚 = 10 seconds. The
parameter tuning procedure is summarized in Appendices C.1 and C.2
in Appendix A.

5.1.2. Benchmark instances
We use five benchmark sets from different sources.

• SNAP Instances. We collect 12 graphs from the Stanford Network
Analysis Platform(SNAP)2. For each graph, the required inputs of
a PSTP instance 𝐼 = (𝐺, 𝒄, ,  , 𝑝) are built as follows. Parameter
𝑝 is |𝑉 |

1000 . Each |𝑉𝑘| is generated randomly according to a uniform
distribution over the closed interval [0.3|𝑉 |, 0.7|𝑉 |] and |𝑇𝑘| is
⌈

|𝑉𝑘|
100 ⌉. To obtain each partition set 𝑉𝑘, we collect all the visited

vertices in a Breath-First Search on 𝐺, starting from a randomly
chosen vertex in 𝑉 until the number of required vertices in that
partition is reached. Terminal set 𝑇𝑘 is then generated randomly
according to a uniform distribution over 𝑉𝑘.

• SteinLib Instances. In total, 53 graphs are collected from the
SteinLib Testdata Library (SteinLib)3. These are all small-sized
STP instances, from sparse to very dense. An original graph 𝐺 =
(𝑉 ,𝐸, 𝑇 ) is turned into a PSTP instance as follows: 𝑝 is generated
randomly according to a uniform distribution over {2, 3, 4}, each
|𝑉𝑘| is generated randomly according to a uniform distribution

2 https://snap.stanford.edu/data/
3 http://steinlib.zib.de/steinlib.php

https://github.com/Mark-htmlgogogo/Steiner-Multigraph-Problem
https://github.com/Mark-htmlgogogo/Steiner-Multigraph-Problem
https://snap.stanford.edu/data/
http://steinlib.zib.de/steinlib.php
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Table 2
Results for instances from SNAP.

Ins.(12) |𝑉 | |𝐸| |𝑃 | |𝑉𝑘| |𝑇𝑘| MCF(6) Steiner(5) VS-BC(9) VS-LB(9) VS-Hybrid(12)

Time Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time Obj

email-Eu-core 986 16064 3 493 5 12.5 54573∗ 0.00 27.3 54573∗ 0.00 1.2 54573∗ 0.00 0.6 𝟓𝟒𝟓𝟕𝟑∗ 0.00 0.9 54573∗

CollegeMsg 1899 13838 2 950 9 232.4 87859∗ 0.00 432.4 87859∗ 0.00 1.8 87859∗ 0.00 1.1 𝟖𝟕𝟖𝟓𝟗∗ 0.00 0.9 87859∗

soc-sign-
bitcoinalpha

3783 14124 4 1890 19 OT 179063 7.46 OT 264454 58.71 OT 166750 0.07 0.4 𝟏𝟔𝟔𝟔𝟐𝟗∗ 0.00 1.0 166629∗

ego-Facebook 4039 88234 4 2020 20 1.8 𝟑𝟕𝟖𝟐𝟖𝟑∗ 0.00 186.4 378283∗ 0.00 23.6 378283∗ 0.00 16.3 378283∗ 0.00 19.9 378283∗

ca-GrQc 5241 14484 5 2615 26 OT N/A INF OT N/A INF 73.6 234121∗ 0.00 13.8 𝟐𝟑𝟒𝟏𝟐𝟏∗ 0.00 15.8 234121∗

soc-sign-
bitcoinotc

5881 21492 6 2941 29 82.8 378283∗ 0.00 1384.4 378283∗ 0.00 0.9 𝟑𝟕𝟖𝟐𝟖𝟑∗ 0.00 33.5 378283∗ 0.00 45.3 378283∗

wiki-Vote 7115 100762 7 3558 36 3.7 𝟓𝟎𝟐𝟓𝟕𝟔∗ 0.00 OT 632286 25.81 16.4 502576∗ 0.00 11.7 502576∗ 0.00 13.4 502576∗

lasftm-asia 7624 27806 8 3812 38 OT N/A INF OT N/A INF 1.5 𝟏𝟓𝟑𝟓𝟏𝟐∗ 0.00 13.4 153512∗ 0.00 20.7 153512∗

ca-HepTh 9875 25973 10 4938 49 OT N/A INF OT N/A INF OT 696761 0.33 59.4 𝟓𝟐𝟓𝟏𝟕𝟗∗ 0.00 82.6 525179∗

wiki-RfA 11380 181906 11 5690 57 7.3 789235∗ 0.00 683.8 789235∗ 0.00 1.2 𝟕𝟖𝟗𝟐𝟑𝟓∗ 0.00 1.1 789923 0.09 1.3 789235∗

ca-HepPh 12006 118489 12 6003 60 OT 447319 83.53 OT 489379 100.78 2.4 𝟐𝟒𝟑𝟕𝟑𝟔∗ 0.00 1.2 243861 0.05 7.8 243736∗

cit-HepTh 27769 352285 27 13885 139 OT 912209 97.56 OT 974319 111.01 OT 496698 0.08 243.6 478891 3.71 1343.4 𝟒𝟔𝟏𝟕𝟒𝟒∗
d
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over [0.3|𝑉 |, 0.7|𝑉 |]. The partition is generated in the same way as
in the SNAP instances. Terminals are inherited from the original
graph, i.e., 𝑇𝑘 = 𝑇 ∩ 𝑉𝑘.

• DIMACS11 Instances. We collect 28 graphs from the 11th DI-
MACS Implementation Challenge (DIMACS11)4. It contains small-
sized and large-sized graphs, from sparse to dense. These graphs
are converted into PSTP instances in the same way as in the
SteinLib instances.

• RANDOM Instances The random instances are synthetic SMP
instances with a number of vertices ranging from 1000 to 10000.
Let 𝑚 be an integer, we denote by ran𝑚 the instance of 1000 × 𝑚
vertices. The RANDOM instances are generated as follows: The
density |𝐸|∕|𝑉 | of ran𝑚 is set to 5 and 𝑝 is set to 3. The cardinality
of 𝑉𝑘 is 600 m, and each |𝑇𝑘| is fixed to 30. We first build
a connected graph with 1000 m vertices and 5000 m edges by
randomly traversing a complete graph until the required number
of vertices and edges are visited and then drop the unvisited
edges. Then all the sets 𝑉𝑘 and 𝑇𝑘 are generated in the same way
as in SNAP. We create 100 instances for each ran𝑚, with 𝑚 ranging
from 1 to 10, thus there are 1000 instances in RANDOM.

• Wildlife Preservation Instances. This benchmark instance orig-
inates from the real-world wildlife corridor design problem in Lai
et al. (2011). All the graphs are grids representing the real maps.
We generate these grid graphs in the same way as in Lai et al.
(2011). We denote by grid𝑛 the instance of a 𝑛×𝑛 grid graph, and
𝑝 is set to 2 as in Lai et al. (2011). Each |𝑉𝑘| is generated randomly
according to a uniform distribution over [0.7|𝑉 |, 0.9|𝑉 |]. Each |𝑇𝑘|
is fixed at 9. Similar to the generation of RANDOM instances, we
first build a complete 𝑛 × 𝑛 grid graph and then obtain the sets
𝑉𝑘 and 𝑇𝑘 in the same way as in SNAP. We create 100 instances
for each grid𝑛, with 𝑛 ranging from 10 to 40 with a step of 5, thus
there are 700 PSTP instances in this dataset.

Furthermore, for all instances, the vertex cost for each 𝑢 ∈ 𝑉 is
an integer generated randomly according to a uniform distribution
over [50, 1000]. We also generate the vertex costs according to an
asymmetric distribution. Based on preliminary tests, we observe that
the distribution does not have a significant impact on solution times.
Thus in the following experiments, all the tests are carried out on
instances with vertex costs uniformly generated.

5.2. Experimental results

5.2.1. Results on snap, SteinLib and DIMACS11 instances
In what follows, we use MCF (Steiner) to denote the method by

which we get a solution using CPLEX with the MCF (Steiner tree)

4 http://dimacs11.zib.de/home.html
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formulation. We denote by VS-BC, VS-LB and VS-Hybrid the exact
branch-and-cut algorithm, the local-branching-based heuristic, and the
hybrid algorithm based on the VS formulation, respectively. We first
test all five methods, i.e., MCF, Steiner, VS-BC, VS-LB and VS-Hybrid,
on non-random benchmark sets, i.e., SNAP, DIMACS11 and SteinLib. In
Table 2, 3 and 4, we show results for these instance sets, respectively.

In these tables, the first five columns show basic information about
input instances. Specifically, columns |𝑉𝑘| and |𝑇𝑘| show the average
size of all partitions and terminal sets, respectively. The column time
reports running times measured in seconds, OT in the time column
enotes that the corresponding exact algorithm fails to reach the op-
imality within the time limit. The obj column reports the objective
alues obtained by the corresponding method. An asterisk is added
o the objective value if it is optimal. 𝑁∕𝐴 indicates that no feasible
olution is found. The gap column reports the relative gap between
bj and the optimal solution value opt, i.e., 𝑔𝑎𝑝 = 𝑜𝑏𝑗−𝑜𝑝𝑡

𝑜𝑝𝑡 × 100. In
ase an optimal solution is not achieved by all the tested algorithms
ithin the time limit, we resort to VS-Hybrid without time limit until

he optimality is reached. However, gap can be 𝐼𝑁𝐹 if no feasible
olution is returned. In the first line of each table, we show next to Ins.
he number of instances in the corresponding set. Furthermore, next
o each method’s designation, we also show the number of instances
or which an optimal solution is found. Easy instances that are solved
y all algorithms in less than 1 second and difficult ones for which all
lgorithms fail to obtain a feasible solution within 1 hour are omitted.
n bold are the best results with respect to the time used to reach
ptimality or the solution quality if the time limit is reached. In Table 2,
he gap column for VS-Hybrid is omitted since this algorithm reaches
ptimality for every instance. In Table 4, the gap columns for VS-BC,
S-LB and VS-Hybrid are also omitted for the same reason.

From Tables 2 to 4, we can conclude that VS-Hybrid is the most
fficient algorithm. It solves all the instances to optimality except
c7-3n and s5 from DIMAC11. Even for cc7-3n and s5, VS-Hybrid still
its the lowest objective values over all other algorithms. Notably, VS-
ybrid finds the optimal solution for cit-HepTh from SNAP, while none
f the other algorithms can solve this instance.

If we only compare the exact algorithms MCF, Steiner and VS-BC,
ur VS-BC shows the best performances in terms of solution quality
nd running time. VS-BC can often optimally solve instances that MCF
nd Steiner cannot solve and the gaps obtained by VS-BC in solutions
here that model does not reach optimality within the time limit
ominate those of MCF and Steiner. VS-BC also runs up to two orders
f magnitude faster than the other two algorithms. It is worth noting
hat VS-BC is particularly powerful on instances with a small number
f vertices, e.g., see Table 4, possibly owing to the fact that VS model
as fewer vertex variables.

The heuristic algorithm VS-LB has higher possibilities of finding
ptimal solutions than MCF and Steiner, even if it cannot prove opti-
ality. Indeed, it always outputs a solution of a small gap in hundreds

http://dimacs11.zib.de/home.html
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Table 3
Results for instances from DIMACS 11.

Ins.(22) |𝑉 | |𝐸| |𝑃 | |𝑉𝑘| |𝑇𝑘| MCF(9) Steiner(6) VS-BC(16) VS-LB(12) VS-Hybrid(20)

Time Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap

rc04 121 197 2 72 44 0.6 33041∗ 0.00 12.8 33041∗ 0.00 0.0 𝟑𝟑𝟎𝟒𝟏∗ 0.00 23.2 33041∗ 0.00 23.2 33041∗ 0.00
cc5-3n 243 1215 3 93 12 3.2 16696∗ 0.00 9.0 16696∗ 0.00 0.8 𝟏𝟔𝟔𝟗𝟔∗ 0.00 1.5 16696∗ 0.00 1.8 16696∗ 0.00
rc05 247 486 4 148 51 5.7 49495∗ 0.00 213.9 49495∗ 0.00 0.0 𝟒𝟗𝟒𝟗𝟓∗ 0.00 0.3 49495∗ 0.00 0.4 49495∗ 0.00
rt01 262 740 3 157 5 0.5 7563∗ 0.00 15.3 7563∗ 0.00 0.0 𝟕𝟓𝟔𝟑∗ 0.00 1.3 7563∗ 0.00 1.6 7563∗ 0.00
cc9-2n 512 2304 2 264 32 OT 45225 0.34 OT 52891 17.35 10.3 𝟒𝟓𝟎𝟕𝟑∗ 0.00 19.4 45078 0.01 23.8 45073∗ 0.00
cc6-3n 729 4368 2 280 33 1972.8 38782∗ 0.00 OT 408391 953.04 3.5 𝟑𝟖𝟕𝟖𝟐∗ 0.00 53.8 38782∗ 0.00 89.3 38782∗ 0.00
s3 743 2947 4 240 50 45.3 64867∗ 0.00 532.3 64867∗ 0.00 0.0 𝟔𝟒𝟖𝟔𝟕∗ 0.00 0.4 64867∗ 0.00 0.8 64867∗ 0.00
rt02 788 1938 4 472 22 7.1 16560∗ 0.00 33.7 16560∗ 0.00 0.1 𝟏𝟔𝟓𝟔𝟎∗ 0.00 1.8 16559 0.00 2.6 16560∗ 0.00
cc3-10n 1000 13500 2 523 23 OT 27783 0.29 OT 31392 13.03 12.3 𝟐𝟕𝟕𝟎𝟐∗ 0.00 86.9 27702∗ 0.00 103.6 27702∗ 0.00
cc10-2n 1024 5120 2 401 55 OT 67167 1.44 OT 69437 3.43 48.8 66214∗ 0.00 36.8 𝟔𝟔𝟐𝟏𝟒∗ 0.00 50.3 66214∗ 0.00
cc3-11n 1331 19965 2 870 42 OT 63663 92.87 OT 82192 56.13 OT 33039 0.09 23.5 33137 0.39 53.5 𝟑𝟑𝟎𝟎𝟖∗ 0.00
rc10 1572 3245 4 943 299 539.0 279592∗ 0.00 OT 283910 1.54 0.1 𝟐𝟕𝟗𝟓𝟗𝟐∗ 0.00 1.7 279592∗ 0.00 1.8 279592∗ 0.00
rt03 1725 4092 2 1035 78 636.4 63088∗ 0.00 OT 82913 31.42 82.5 63088∗ 0.00 4.9 63153 0.10 6.3 𝟔𝟑𝟎𝟖𝟖∗ 0.00
cc3-12n 1728 28512 2 1130 49 OT 709034 1967.03 OT 59234 72.68 OT 34643 0.99 53.4 35089 2.29 103.6 𝟑𝟒𝟑𝟎𝟐∗ 0.00
cc11-2n 2048 11263 4 802 97 OT 216996 82.34 OT 382194 221.15 1205.0 119008∗ 0.00 23.5 119071 0.05 348.5 𝟏𝟏𝟗𝟎𝟎𝟖∗ 0.00
cc7-3na 2187 15308 2 842 82 OT 213969 97.68 OT 213969 97.68 OT 108264 0.02 229.3 109232 0.01 OT 109232 0.01
rc06 2502 6244 3 1501 59 OT 54079 0.06 OT 64231 18.84 14.3 𝟓𝟒𝟎𝟒𝟕∗ 0.00 24.5 54047∗ 0.00 39.3 54047∗ 0.00
rc07 2740 6578 4 1644 106 OT 97172 0.09 OT 108283 11.53 18.5 𝟗𝟕𝟎𝟖𝟓∗ 0.00 104.0 97085∗ 0.00 107.3 97085∗ 0.00
cc12-2n 4096 24574 2 2142 247 OT N/A INF OT N/A INF OT 284390 0.10 318.2 284701 0.25 1489.4 𝟐𝟖𝟑𝟗𝟖𝟓∗ 0.00
s4 5202 20783 4 1682 344 OT N/A INF OT N/A INF 1.7 447301∗ 0.00 14.5 𝟒𝟒𝟕𝟑𝟎𝟏∗ 0.00 16.9 447301∗ 0.00
rt04 9469 22743 3 5681 12 OT 23942 5.27 OT 64981 185.72 OT 22745 0.01 592.3 24819 9.13 1834.3 𝟐𝟐𝟕𝟒𝟑∗ 0.00
s5b 36415 145635 4 16554 2402 OT N/A INF OT N/A INF OT 13112345 80.01 425.7 7294831 0.14 OT 7284814 0.01

aThe optimal value for cc7-3n is 108242, obtained by VS-Hybrid after 6 h.
bThe optimal value for s5 is 7284323, obtained by VS-Hybrid after 8 h.
Table 4
Results for instances from SteinLib.

Ins.(50) |𝑉 | |𝐸| |𝑃 | |𝑉𝑘| |𝑇𝑘| MCF(44) Steiner(34) VS-BC(50) VS-LB(50) VS-Hybrid(50)

Time Obj Gap Time Obj Gap Time Obj Time Obj Time Obj

i320–211 320 1845 4 152 16 5.6 21454∗ 0.00 25.0 21454∗ 0.00 0.1 𝟐𝟏𝟒𝟓𝟒∗ 0.9 21454∗ 1.5 21454∗

i320–212 320 1845 4 152 16 2.3 22393∗ 0.00 15.8 22393∗ 0.00 0.1 𝟐𝟐𝟑𝟗𝟑∗ 0.5 22393∗ 0.5 22393∗

i320–213 320 1845 4 152 16 5.4 22088∗ 0.00 34.5 22088∗ 0.00 0.2 𝟐𝟐𝟎𝟖𝟖∗ 0.6 22088∗ 0.8 22088∗

i320–214 320 1845 4 152 15 7.9 23282∗ 0.00 72.8 23282∗ 0.00 0.4 𝟐𝟑𝟐𝟖𝟐∗ 4.4 23282∗ 5.0 23282∗

i320–215 320 1845 4 152 15 2.2 20667∗ 0.00 14.0 20667∗ 0.00 0.0 𝟐𝟎𝟔𝟔𝟕∗ 0.5 20667∗ 0.4 20667∗

i320–311 320 1845 2 191 48 2.9 38153∗ 0.00 30.2 38153∗ 0.00 0.0 𝟑𝟖𝟏𝟓𝟑∗ 0.3 38153∗ 0.2 38153∗

i320–312 320 1845 2 191 51 3.0 36422∗ 0.00 49.8 36422∗ 0.00 0.0 𝟑𝟔𝟒𝟐𝟐∗ 0.1 36422∗ 0.2 36422∗

i320–313 320 1845 2 191 53 2.7 38019∗ 0.00 17.8 38019∗ 0.00 0.0 𝟑𝟖𝟎𝟏𝟗∗ 0.3 38019∗ 0.2 38019∗

i320–314 320 1845 2 191 50 3.0 38688∗ 0.00 52.8 38688∗ 0.00 0.0 𝟑𝟖𝟔𝟖𝟖∗ 0.2 38688∗ 0.1 38688∗

i320–315 320 1845 2 191 45 3.4 31644∗ 0.00 13.5 31644∗ 0.00 0.0 𝟑𝟏𝟔𝟒𝟒∗ 0.2 31644∗ 0.2 31644∗

mc11 400 760 3 208 114 50.9 107576∗ 0.00 321.3 107576∗ 0.00 0.1 𝟏𝟎𝟕𝟓𝟕𝟔∗ 0.5 107576∗ 0.6 107576∗

mc7 400 760 3 208 90 558.0 98192∗ 0.00 OT 108347 10.34 1.4 𝟗𝟖𝟏𝟗𝟐∗ 17.2 98192∗ 18.8 98192∗

mc8 400 760 3 164 79 27.0 92442∗ 0.00 OT 99324 7.44 0.1 𝟗𝟐𝟒𝟒𝟐∗ 1.1 92442∗ 1.0 92442∗

i640–101 640 960 3 386 17 153.5 28847∗ 0.00 OT 39245 36.05 1.6 𝟐𝟖𝟖𝟒𝟕∗ 30.8 28847∗ 27.2 28847∗

i640–102 640 960 3 386 14 3.1 25255∗ 0.00 23.7 25255∗ 0.00 0.8 𝟐𝟓𝟐𝟓𝟓∗ 4.3 25255∗ 5.2 25255∗

i640–103 640 960 3 386 16 5.4 33472∗ 0.00 129.7 33472∗ 0.00 0.8 𝟑𝟑𝟒𝟕𝟐∗ 10.1 33472∗ 11.3 33472∗

i640–104 640 960 3 386 15 3.3 25170∗ 0.00 23.0 25170∗ 0.00 0.0 𝟐𝟓𝟏𝟕𝟎∗ 1.1 25170∗ 1.1 25170∗

i640–105 640 960 3 386 16 103.4 29097∗ 0.00 643.3 29097∗ 0.00 4.3 𝟐𝟗𝟎𝟗𝟕∗ 5.1 29097∗ 6.5 29097∗

i640–203 640 960 3 247 22 20.3 36842∗ 0.00 126.1 36842∗ 0.00 0.4 𝟑𝟔𝟖𝟒𝟐∗ 10.5 36842∗ 11.9 36842∗

i640–204 640 960 3 247 20 13.8 41521∗ 0.00 136.3 41521∗ 0.00 0.7 𝟒𝟏𝟓𝟐𝟏∗ 13.4 41521∗ 12.6 41521∗

i640–205 640 960 3 247 19 1.0 33706∗ 0.00 8.9 33706∗ 0.00 0.0 𝟑𝟑𝟕𝟎𝟔∗ 0.7 33706∗ 0.6 33706∗

i640–303 640 960 4 337 84 21.7 120396∗ 0.00 185.4 120396∗ 0.00 0.1 𝟏𝟐𝟎𝟑𝟗𝟔∗ 1.6 120396∗ 1.7 120396∗

i640–304 640 960 4 337 90 18.4 122067∗ 0.00 185.6 122067∗ 0.00 0.0 𝟏𝟐𝟐𝟎𝟔𝟕∗ 2.0 122067∗ 2.2 122067∗

i640–305 640 960 4 337 84 12.5 112200∗ 0.00 69.4 112200∗ 0.00 0.0 𝟏𝟏𝟐𝟐𝟎𝟎∗ 0.8 112200∗ 0.9 112200∗

i640–031 640 1280 2 382 6 10.9 9072∗ 0.00 105.4 9072∗ 0.00 1.9 𝟗𝟎𝟕𝟐∗ 25.3 9072∗ 29.3 9072∗

i640–231 640 1280 3 317 27 601.8 43930∗ 0.00 OT 53948 22.80 18.7 𝟒𝟑𝟗𝟑𝟎∗ 52.3 43930∗ 66.1 43930∗

i640–232 640 1280 3 317 26 106.5 35821∗ 0.00 OT 38234 6.74 1.4 𝟑𝟓𝟖𝟐𝟏∗ 23.2 35821∗ 22.8 35821∗

i640–233 640 1280 3 317 26 15.5 42034∗ 0.00 91.4 42034∗ 0.00 0.4 𝟒𝟐𝟎𝟑𝟒∗ 2.5 42034∗ 2.2 42034∗

i640–234 640 1280 3 317 22 323.3 38844∗ 0.00 2658.1 38844∗ 0.00 1.5 𝟑𝟖𝟖𝟒𝟒∗ 24.7 38844∗ 27.1 38844∗

i640–235 640 1280 3 317 27 395.2 44730∗ 0.00 OT 49372 10.38 2.4 𝟒𝟒𝟕𝟑𝟎∗ 66.5 44730∗ 65.5 44730∗

i640–111 640 4135 3 386 14 263.3 16342∗ 0.00 OT 21348 30.63 1.3 𝟏𝟔𝟑𝟒𝟐∗ 34.3 16342∗ 29.2 16342∗

i640–112 640 4135 3 386 14 61.8 19063∗ 0.00 583.3 19063∗ 0.00 0.7 𝟏𝟗𝟎𝟔𝟑∗ 16.1 19063∗ 17.1 19063∗

i640–113 640 4135 3 386 16 79.3 16766∗ 0.00 2743.3 16766∗ 0.00 1.5 𝟏𝟔𝟕𝟔𝟔∗ 18.4 16766∗ 22.7 16766∗

i640–114 640 4135 3 386 14 651.3 19129∗ 0.00 OT 21341 11.56 1.8 𝟏𝟗𝟏𝟐𝟗∗ 64.5 19129∗ 47.3 19129∗

i640–115 640 4135 3 386 15 64.4 15184∗ 0.00 1345.3 15184∗ 0.00 0.8 𝟏𝟓𝟏𝟖𝟒∗ 19.8 15184∗ 16.4 15184∗

i640–211 640 4135 3 247 17 9.0 24344∗ 0.00 76.9 24344∗ 0.00 0.2 𝟐𝟒𝟑𝟒𝟒∗ 4.6 24344∗ 5.2 24344∗

i640–212 640 4135 3 247 20 531.7 28350∗ 0.00 OT 32834 15.82 3.3 𝟐𝟖𝟑𝟓𝟎∗ 44.0 28350∗ 48.9 28350∗

i640–213 640 4135 3 247 20 17.3 27758∗ 0.00 107.5 27758∗ 0.00 0.3 𝟐𝟕𝟕𝟓𝟖∗ 2.7 27758∗ 4.2 27758∗

(continued on next page)
9



Computers and Operations Research 153 (2023) 106151M. Ma et al.

a

5

s
t
t
a
t
a
c
b

i
s
I
i
t
H
v
a

a
r
|

r
i

Table 4 (continued).
Ins.(50) |𝑉 | |𝐸| |𝑃 | |𝑉𝑘| |𝑇𝑘| MCF(44) Steiner(34) VS-BC(50) VS-LB(50) VS-Hybrid(50)

Time Obj Gap Time Obj Gap Time Obj Time Obj Time Obj

i640–311 640 4135 4 337 84 26.4 87240∗ 0.00 381.4 87240∗ 0.00 0.1 𝟖𝟕𝟐𝟒𝟎∗ 0.8 87240∗ 0.8 87240∗

i640–312 640 4135 4 337 88 25.2 87073∗ 0.00 639.8 87073∗ 0.00 0.0 𝟖𝟕𝟎𝟕𝟑∗ 0.6 87073∗ 0.6 87073∗

i640–313 640 4135 4 337 85 22.7 86523∗ 0.00 217.4 86523∗ 0.00 0.0 𝟖𝟔𝟓𝟐𝟑∗ 0.5 86523∗ 0.6 86523∗

i640–321 640 204480 4 337 160 OT N/A INF OT N/A INF 0.1 𝟖𝟐𝟒𝟖𝟕∗ 1.2 82487∗ 2.0 82487∗

i640–322 640 204480 4 285 160 OT N/A INF OT N/A INF 0.1 𝟖𝟑𝟏𝟗𝟏∗ 1.7 83191∗ 1.2 83191∗

i640–323 640 204480 2 389 160 OT N/A INF OT N/A INF 0.0 𝟖𝟔𝟔𝟑𝟏∗ 0.9 86631∗ 0.8 86631∗

i640–324 640 204480 2 277 160 OT N/A INF OT N/A INF 0.0 𝟖𝟐𝟖𝟒𝟒∗ 0.5 82844∗ 0.7 82844∗

i640–325 640 204480 3 402 160 OT N/A INF OT N/A INF 0.1 𝟖𝟖𝟑𝟐𝟏∗ 1.6 88321∗ 1.2 88321∗

world666 666 221445 3 359 100 5.5 66456∗ 0 30.8 66456∗ 0.00 0.1 𝟔𝟔𝟒𝟓𝟔∗ 1.0 66456∗ 1.0 66456∗

w13c29 783 2262 3 384 196 249.7 200816∗ 0.00 2348.3 200816∗ 0.00 0.0 𝟐𝟎𝟎𝟖𝟏𝟔∗ 0.8 200816∗ 0.9 200816∗

w23c23 1081 3174 3 531 272 246.8 331285∗ 0.00 OT 374132 12.93 0.0 𝟑𝟑𝟏𝟐𝟖𝟓∗ 0.8 331285∗ 0.8 331285∗

w3c571 3997 10278 3 1964 1122 OT N/A INF OT N/A INF 0.8 𝟏𝟐𝟖𝟗𝟏𝟑𝟏∗ 4.6 1289131∗ 6.5 1289131∗
Table 5
Results for random graphs.

Ins. MCF Steiner VS-BC VS-LB VS-Hybrid

Slv. Time a-gap m-gap Slv. Time a-gap m-gap Slv. Time a-gap m-gap Slv. Time a-gap m-gap Slv. Time a-gap m-gap

ran1 95 20.4 0.24 1.94 84 132.5 3.23 8.83 100 6.1 N/A N/A 100 53.7 N/A N/A 100 86.5 N/A N/A
ran2 98 38.2 0.45 1.34 89 183.7 5.38 13.82 100 8.9 N/A N/A 99 71.1 0.05 0.05 100 133.0 N/A N/A
ran3 88 104.9 0.09 0.45 67 583.7 1.82 7.73 100 25.6 N/A N/A 100 110.3 N/A N/A 100 207.2 N/A N/A
ran4 76 284.9 0.72 2.35 49 892.8 12.72 37.82 95 47.3 0.06 0.12 91 128.3 N/A N/A 100 265.7 N/A N/A
ran5 70 418.0 1.58 16.72 38 1739.8 8.82 21.73 96 84.0 0.05 0.25 97 194.1 0.01 0.05 100 345.9 N/A N/A
ran6 70 829.7 2.73 9.65 23 2138.8 29.28 119.82 94 154.2 0.24 1.45 98 257.9 0.05 1.30 98 438.0 0.02 0.04
ran7 62 1642.5 4.09 19.81 12 1782.8 283.82 882.82 86 304.9 0.53 4.83 77 237.3 0.39 4.45 100 532.2 N/A N/A
ran8 45 2045.1 10.72 30.71 17 1642.3 192.83 1137.7 72 757.8 0.94 5.96 73 298.2 1.53 5.92 96 919.5 0.05 1.40
ran9 30 2552.6 12.52 192.63 8 2523.7 478.62 3373.8 47 1479.3 0.9 13.71 41 435.0 2.09 9.30 90 1514.3 0.04 0.43
ran10 15 3205.8 37.7 387.45 3 2384.7 899.83 7392.83 70 2190.2 1.58 24.58 57 505.6 8.52 15.51 91 1891.2 0.02 0.90
r
f
o

of seconds, even for hard instances. For ca-HepTh from SNAP, it spends
less than 60 seconds to find the optimal solution, while MCF, Steiner
nd VS-BC fail in even one hour.

.2.2. Results on random graph
In Table 5, we report results on RANDOM dataset, using 100 in-

tances for each ran𝑚. Column Slv. reports the number of instances
hat are solved to optimality within one hour. Column time indicates
he average running time of the algorithm on those instances for which
n optimal solution is obtained within one hour. Column a-gap reports
he average gap for those instances where the optimal solution is not
chieved and m-gap reports the maximum gap among them. If for a
ertain ran𝑚, all 100 instances are optimally solved, gaps are indicated
y N/A.

Results in Table 5 confirm that VS-Hybrid performs better than
ts competitors, with respect to the number of solved instances and
olution quality of instances where the optimal solution is not obtained.
t optimally solved more than 95% of all the 1,000 samples. For
nstances where the optimal solution is not achieved, VS-Hybrid obtains
he smallest gaps. Specifically, for ran10 which has 10,000 vertices, VS-
ybrid successfully solves 91 out of 100 large instances with 10,000
ertices. As for the other algorithms, VS-BC performs better than MCF
nd Steiner, in terms of solution quality and running time.

We further investigate the performance of VS with different |𝑇𝑘|
nd 𝑝. In Fig. 4(a), we show the average running time of VS-BC with
espect to different |𝑇𝑘| on 100 RANDOM instances where |𝑉 | = 1000,
𝐸| = 5000, |𝑉𝑘| = 600 and 𝑝 = 3. In Fig. 4(b), we show the average
unning time of VS-BC with respect to different 𝑝, also, on 100 RANDOM
nstances with |𝑉 | = 1000, |𝐸| = 5000, |𝑉𝑘| = 600 and |𝑇𝑘| = 30. Clearly,

the running time of VS-BC reaches a maximum when |𝑇𝑘| is around 120,
but drops when |𝑇𝑘| is far from 120. Also, the running time of VS-BC
grows exponentially as the number of partitions increases.

5.2.3. Results on wildlife preservation instances
In Table 6, we report the results obtained on grid graphs. In Lai et al.

(2011), Lai et al. solve the PSTP in grid graphs with 25 × 25 vertices.
10

B

Following their work, we also test grid graphs of vertex numbers within
40 × 40. In Table 6, we show the same information as in Table 5.

As we can see, VS-Hybrid still performs very well in terms of the
number of solved instances and optimality gap for the instances where
no proven optimum is known. However, it is surprising that MCF
is another strong solver for these instances. Indeed, only MCF and
VS-Hybrid can solve more than half of the grid35 and grid40 instances.

5.2.4. Evaluating the strength of additional inequalities
In Section 3.3, we introduce additional inequalities to tighten the

initial VS model. In this section, we investigate the impact of these
additional inequalities by comparing the performance of our VS model
initialized with and without these inequalities. We first conduct com-
parison experiments for the neighbor inequalities, then the 2D grid
inequalities.

To evaluate the impact of the neighbor inequalities on our VS
model, we select one instance from each of the five data sets: wiki-RfA
from SNAP, cc10-2n from DIMACS11, i640-231 from SteinerLib, one
instance of ran3 from RANDOM, one instance of grid20 from wildlife
preservation. For each instance, we first compute and store all the
neighbor inequalities, i.e., inequalities of constraints (5), (8) and (9).
Inequalities of constraint (5) are first generated, then constraint (8),
and finally constraint (9). These inequalities are arranged according
to the order of their generation. Then we run the branch-and-cut
algorithm initialized with objective function (1), constraints (2), (4),
and the first 10𝑛 percentage of the ordered neighbor inequalities, where
𝑛 = 0, 1,… , 10. If the graph is a 2D grid graph, the 2D grid inequalities
are also included.

To quantify the level of relaxation, a new indicator lp-gap is in-
troduced. Recall that 𝑜𝑝𝑡 is the optimal objective value of the ILP.
Let 𝑙𝑜𝑝𝑡 be the optimal objective value of the linear relaxation of the
ILP. The quality of the lower bound obtained by the ILP relaxation
can be evaluated by the relative gap between 𝑜𝑝𝑡 and 𝑙𝑜𝑝𝑡, that is,
lp-gap= 𝑜𝑝𝑡−𝑙𝑜𝑝𝑡

𝑜𝑝𝑡 × 100. In Fig. 5, we report the lp-gap of VS-BC with
espect to different percentages of total neighbor inequalities on the
ive instances. We show below the caption of each instance the number
f total neighbor inequalities. In Fig. 6, we report the time used by VS-
C to achieve an optimal solution, with respect to different percentages
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Fig. 4. Average running time of VS-BC.
Table 6
Results for grid graphs.

Ins. MCF Steiner VS-BC VS-LB VS-Hybrid

Slv. Time a-gap m-gap Slv. Time a-gap m-gap Slv. Time a-gap m-gap Slv. Time a-gap m-gap Slv. Time a-gap m-gap

grid10 100 0.5 N/A N/A 100 3.3 N/A N/A 100 0.8 N/A N/A 100 2.3 N/A N/A 100 4.5 N/A N/A
grid15 100 3.0 N/A N/A 99 29.9 0.32 0.32 100 2.3 N/A N/A 81 9.5 0.01 0.39 100 34.5 N/A N/A
grid20 98 40.7 0.04 0.23 74 372.5 1.38 7.29 97 12.3 0.44 2.45 92 18.3 0.35 0.96 100 50.3 N/A N/A
grid25 91 231.4 0.42 1.94 58 1734.8 23.42 134.92 90 90.0 2.34 6.43 68 82.4 0.84 2.34 93 183.5 0.73 1.9
grid30 86 658.7 1.23 3.45 34 2633.3 82.45 573.72 60 669.4 3.56 23.34 35 294.5 1.53 4.82 86 582.8 1.92 2.75
grid35 73 1123.5 0.94 4.38 15 2924.0 282.65 921.82 52 1342.0 11.39 39.38 20 523.7 2.34 7.48 73 1504.7 1.04 3.82
grid40 59 2703.4 2.34 8.92 11 2722.7 273.31 1382.73 30 2543.0 13.44 93.48 14 594.4 3.57 17.34 61 2742.9 0.22 5.43
Fig. 5. The linear relaxation gaps of VS-BC for different percentages of neighbor inequalities added to the initial VS model.
f total neighbor inequalities. As we can see in Fig. 5, for each instance,
here is a clear decrease in the lp-gap when more than 90% of the

neighbor inequalities are added to the initial VS model. Before the clear
decrease, the lp-gap tends to remain unaffected by the number of added
neighbor inequalities. The time to reach optimality, as shown in Fig. 6,
also demonstrates an observable decrease when more than 30% of the
neighbor inequalities are added. A prominent example is the running
time of ran3, which drops from 217 seconds to 40 second when 30% of
the neighbor inequalities are added.

Next, we evaluate the strength of 2D grid inequalities. In Table 7 we
compare the results of VS-Hybrid for all instances in wildlife preserva-
tion data set in two settings: the initial VS model (objective function
(1), constraints (2), (4), and neighbor inequalities (5), (8) and (9))
of the underlying branch-and-cut algorithm incorporates the 2D grid
inequalities and that does not incorporate the 2D grid inequalities.
11
Note that the solution of the linear relaxation of the ILP is sometimes
an integer solution, which is, of course, an optimal solution of the
ILP. Thus the number of the linear relaxations that obtain an integer
solution can also reflect the strength of the ILP relaxation and the
column lp-slv reports this number in Table 7. The columns nodes and
cuts report the average number of explored nodes and the average
number of generated cuts, respectively. As we can see in Table 7, after
adding the 2D grid inequalities, both computational times and gaps are
improved. Notably, a speedup factor of 4 is often observed regarding
the time to reach optimality. From the last two lines of Table 7, we
can see that the times get larger with 2D grid inequalities than without
them. We should mention that this is due to the fact that more instances
are solved with 2D grid inequalities, and those that cannot be optimally
solved without 2D grid inequalities are difficult, so the average time
with 2D grid inequalities gets larger.
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Fig. 6. The time to reach optimality of VS-BC for different percentages of neighbor inequalities added to the initial VS model.
Table 7
Comparison results for 2D grid inequalities.

Ins. VS-Hybrid with 2D grid inequalities VS-Hybrid without 2D grid inequalities

LPgap lp-slv Slv. Time a-gap m-gap Nodes Cuts lp-gap lp-slv Slv. Time a-gap m-gap Nodes Cuts

grid10 8.99 50 100 4.5 N/A N/A 21 264 33.38 30 100 21.9 N/A N/A 46 814
grid15 8.40 31 100 34.5 N/A N/A 38 373 29.14 16 100 256.9 N/A N/A 197 2352
grid20 7.66 26 100 50.3 N/A N/A 114 771 30.74 10 99 234.9 0.52 0.52 309 1877
grid25 12.66 14 93 183.5 0.73 1.9 323 2234 35.14 4 83 767.6 2.86 8.40 1139 3726
grid30 15.48 11 86 582.8 1.92 2.75 852 4028 34.40 3 58 1156.7 9.58 15.26 7081 30532
grid35 19.58 8 73 1504.7 1.04 3.82 1741 13629 46.46 1 59 1129.8 7.29 15.27 4543 25536
grid40 25.23 4 61 2742.9 0.22 5.43 3393 21128 74.25 0 34 2005.5 2.97 18.80 6881 65075
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6. Conclusions and future work

The PSTP is an important network design problem in computational
sustainability, network protection and social networks. In general, this
problem is computationally challenging, even under quite restrictive
assumptions. In the paper, we mainly investigated practically efficient
integer programming models and algorithms for the problem.

We first discussed existing Integer Linear Program (ILP) formula-
tions for the PSTP. Then we suggested a novel vertex-separator (VS)
based ILP model with much fewer variables than existing ILPs. We
also showed additional valid neighbor inequalities and new vertex-
separators inequalities in 2D grid graphs to tighten the VS
model.

Afterward, we developed three algorithms based on the VS model
for solving the PSTP in general graphs. The first one is an exact
branch-and-cut algorithm. Due to the exponential number of inequal-
ities in VS model, an effective separation oracle is given to find vi-
olated inequalities in the branch-and-cut. The second algorithm is a
fast local-branching-based heuristic, which utilizes the VS model for
searching neighbor solutions. The last algorithm, which combines exact
branch-and-cut and local-branching heuristics, mixes advantages of
both methods.

By thorough experiments, we showed that our algorithms based on
the VS model outperform existing methods of the literature in terms of
solution quality and running time. Our methods can solve large-sized
instances of more than ten thousand vertices. Computational results
also indicate that our hybrid algorithm is very efficient in solving
different types of instances.

Future work can be conducted from both application and algorith-
mic perspectives. On the one hand, the PSTP has a wide range of
existing and potential applications, so it would be interesting to explore
the algorithms in different domains. On the other hand, it is worth
considering new algorithmic techniques like machine learning aided
search or parallelization in the algorithms.
12
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ppendix A. The framework of our branch-and-cut method

The algorithmic framework of our branch-and-cut method for the
STP is depicted in Algorithm 6.

ppendix B. Other ILPs for the PSTP

.1. Single-commodity flow model

In the SCF formulation for the PSTP, we use a single-commodity
etwork flow to encode the connectivity ( Conrad et al., 2007, Dilkina
nd Gomes, 2010). The formulation is proposed in Conrad et al. (2007)
o model another problem in graphs. First, we introduce a source vertex
. Then for each 𝑘 ∈ [𝑝], we convert 𝐺𝑘 = (𝑉𝑘, 𝐸𝑘) into a flow network
y the following operations:
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Algorithm 6: Branch-and-cut framework
Input: A PSTP instance 𝐼 = (𝐺, 𝒄, ,  , 𝑝), time limit

𝐵𝐶𝑇 𝑖𝑚𝑒𝐿𝑖𝑚, parameters (𝜖1, 𝛼1) and (𝜖2, 𝛼2)
Output: A solution for instance 𝐼
Initialize: upper bound 𝑧 = +∞, incumbent solution

𝒙∗ ← (1,⋯ , 1), set of active subproblems 𝐿 ← ∅, add to 𝐿
the initial partial VS model, denoted by ILP0 /* the
initial partial VS model consists of
objective function (1), constraints, (2),
(4), and the neighbor inequalities
constraints (5), (8) and (9). When 𝐺 is a 2D
grid graph, constraint (10) is also
included. */

1 while (𝐿 ≠ ∅) and (𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ≤ 𝐵𝐶𝑇 𝑖𝑚𝑒𝐿𝑖𝑚) do
2 Select and remove ILP𝑖 from 𝐿
3 Solve the LP relaxation of ILP𝑖, denoted by LP𝑖

/* let 𝒙 be the solution of LP𝑖 */
4 if ( IP𝑖 is infeasible) or (

∑

𝑢∈𝑉 𝑐𝑢𝑥𝑢 > 𝑧) then
5 continue
6 else

/* let IntegratedSeparation be Algorithm
3 */

7 𝑄 ←IntegratedSeparation(𝐼,𝒙, (𝜖1, 𝛼1), (𝜖2, 𝛼2))
8 if 𝑄 ≠ ∅ then
9 Add 𝑄 to LPi and go to line 3
10 else
11 if (∑𝑢∈𝑉 𝑐𝑢𝑥𝑢 ≤ 𝑧) and (𝒙 is an integer solution)

then
12 𝑧 ←

∑

𝑢∈𝑉 𝑐𝑢𝑥𝑢, 𝒙∗ ← 𝒙
13 Split LP𝑖 into subproblems and add them to 𝐿
14 end
15 end
16 end
17 end
18 return 𝒙∗

• Each undirected edge (𝑢, 𝑣) in 𝐺𝑘 is replaced by two directed edges
(𝑢, 𝑣) and (𝑣, 𝑢), called the directed edge set 𝐴𝑘

• Inject a flow of size |𝑉𝑘| into 𝑠, call the flow the k-th flow.
• An arbitrary terminal vertex 𝑟𝑘 ∈ 𝑇𝑘 is chosen as root 𝑟𝑘, and a

directed edge (𝑠, 𝑟𝑘) is defined to insert the flow into 𝐺𝑘.

For each 𝑘 ∈ [𝑝], the source vertex 𝑠 is associated with variable 𝑦𝑘𝑠 to
represent the eventual residual 𝑘th flow in 𝑠. Two types of variables are
associated with each vertex. For each 𝑘 ∈ [𝑝] and each vertex 𝑢 ∈ 𝑉𝑘,
a binary variable 𝑦𝑘𝑢 is introduced to indicate whether or not the 𝑘th
flow traverses vertex 𝑢. For each 𝑢 ∈ 𝑉 , the other binary variable 𝑥𝑢
indicates whether 𝑢 ∈ 𝑉 is in the final solution.

Besides, for each 𝑘 ∈ [𝑝] and for each directed edge (𝑢, 𝑣) ∈ (𝑢, 𝑣) ∈
𝐴𝑘 ∪ {(𝑠, 𝑟𝑘)}, there is a non-negative flow variable 𝑓𝑘

𝑢𝑣 to indicate the
amount of the 𝑘th flow from 𝑢 to 𝑣. The whole SCF formulation is shown
as follows:

minimize
∑

𝑢∈𝑉
𝑐𝑢𝑥𝑢 (B.1)

𝑦𝑘𝑡 = 1 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 (B.2)

𝑥𝑢 ≥ 𝑦𝑘𝑢 ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉𝑘 (B.3)

𝑓𝑘
𝑠𝑟𝑘

+ 𝑦𝑘𝑠 = |𝑉𝑘| ∀𝑘 ∈ [𝑝] (B.4)

𝑓𝑘
𝑢𝑣 ≤ |𝑉𝑘|𝑦

𝑘
𝑣 ∀𝑘 ∈ [𝑝],∀(𝑢, 𝑣) ∈ 𝐴𝑘 (B.5)

∑

𝑓𝑘
𝑣𝑢 = 𝑦𝑘𝑢 +

∑

𝑓𝑘
𝑢𝑣 ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉𝑘 (B.6)
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𝑣∶(𝑣,𝑢)∈𝐺𝑘 𝑣∶(𝑢,𝑣)∈𝐺𝑘
∑

𝑢∈𝑉𝑘

𝑦𝑘𝑢 = 𝑓𝑘
𝑠𝑟𝑘

∀𝑘 ∈ [𝑝] (B.7)

𝑦𝑘𝑢 ∈ {0, 1} ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉𝑘 (B.8)

𝑦𝑘𝑠 ∈ [0, |𝑉𝑘|] ∀𝑘 ∈ [𝑝] (B.9)

𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (B.10)

𝑓𝑘
𝑢𝑣 ≥ 0 ∀𝑘 ∈ [𝑝],∀(𝑢, 𝑣) ∈ 𝐴𝑘 ∪ {(𝑠, 𝑟𝑘)} (B.11)

Constraint (B.2) ensures that for each 𝑘 ∈ [𝑝], each terminal in
𝑉𝑘 must act as a sink for the 𝑘th flow. Constraint (B.3) establishs the
relationship between 𝑥𝑢 and 𝑦𝑘𝑢 , i.e., 𝑥𝑢 = 1 if there exists 𝑘 ∈ [𝑝]
such that 𝑦𝑘𝑢 = 1. Constraint (B.4) states, for each 𝑘th flow, that the
residual flow in 𝑠 plus the flow injected into the network of 𝐺𝑘 is equal
to the amount of flow injected into 𝑠. For the 𝑘th flow, it is enforced by
constraint (B.5) that each of the vertices with a positive incoming flow
retains one unit of flow, i.e., (𝑓𝑘

𝑢𝑣 > 0) ⇒ (𝑦𝑘𝑣 = 1), ∀(𝑢, 𝑣) ∈ 𝐴. The flow
conservation is modeled in constraint (B.6). Finally, constraint (B.7)
enforces that the 𝑘th flow absorbed by vertices in 𝑉𝑘 equals to the flow
injected into the 𝐺𝑘. This encoding requires 𝑂(𝑝(|𝑉 |+ 2|𝐸|)) variables,
including 𝑂(𝑝|𝑉 |) binary variables and 𝑂(𝑝(|𝐸|)) continuous variables.
The number constraints is also 𝑂(𝑝(|𝑉 | + 2|𝐸|)).

B.2. Multi-commodity flow model

With the SCF, connectivity within 𝑇𝑘 is enforced through a single
flow in each 𝐺𝑘. Lai et al. (2011) propose a Multi-Commodity Flow
formulation(MCF), where the key difference is that they enforce the
connectivity of 𝑇𝑘 in 𝐺𝑘 by associating a separate commodity with each
vertex in 𝑇𝑘. For each 𝑘 ∈ [𝑝], one arbitrary terminal vertex 𝑟𝑘 ∈ 𝑇𝑘 is
chosen as root, then the problem can be modeled as finding |𝑇𝑘|−1 paths
from 𝑟𝑘 to each of the other terminals in 𝑇𝑘 ⧵ {𝑟𝑘}. There is one unit
of flow from the root to each other terminals in 𝑉𝑘. We call the flow
from 𝑟𝑘 to some other terminal 𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘} the (𝑘, 𝑡)-flow. For each
(𝑘, 𝑡)-flow and each (𝑢, 𝑣) ∈ 𝐴𝑘, a continuous variable 𝑓𝑘𝑡

𝑢𝑣 is introduced
to represent the (𝑘, 𝑡)-flow from 𝑢 to 𝑣.

Two types of variables are associated with each vertex in 𝑉𝑘. For
each (𝑘, 𝑡)-flow, and each 𝑢 ∈ 𝑉𝑘, a continuous variable 𝑦𝑘𝑡𝑢 is associated
with 𝑢 to indicate the amount of incoming (𝑘, 𝑡)-flow into 𝑢, as shown in
constraint (B.20); for each 𝑢 ∈ 𝑉 , a binary variable 𝑥𝑢 indicates whether
𝑢 ∈ 𝑉 is in the final solution. Although continuous, 𝑦𝑘𝑡𝑢 can be seen as an
indicator for whether the (𝑘, 𝑡)-flow traverses vertex 𝑢: 𝑦𝑘𝑡𝑢 > 0 indicates
that 𝑢 is traversed by the (𝑘, 𝑡)-flow, otherwise not. 𝑥𝑢 = 1 indicates that
𝑢 is in the final solution set, i.e., 𝑢 is traversed by at least one (𝑘, 𝑡)-flow.
The MCF model is shown as follows:

minimize
∑

𝑢∈𝑉
𝑐𝑢𝑦𝑢 (B.12)

𝑥𝑢 ≥ 𝑦𝑘𝑡𝑢 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘},∀𝑢 ∈ 𝑉𝑘 (B.13)
∑

𝑢∶(𝑢,𝑟𝑘)∈𝐴𝑘

𝑓𝑘𝑡
𝑢𝑟𝑘

= 0 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘} (B.14)

∑

𝑢∈𝑉𝑘∶(𝑟𝑘 ,𝑢)∈𝐴
𝑓𝑘𝑡
𝑟𝑘𝑢

= 1 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘} (B.15)

𝑦𝑘𝑡𝑟𝑘 = 1 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘} (B.16)
∑

𝑢∶(𝑢,𝑡)∈𝐴𝑘

𝑓𝑘𝑡
𝑢𝑡 = 1 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘} (B.17)

∑

𝑢∶(𝑡,𝑢)∈𝐴𝑘

𝑓𝑘𝑡
𝑡𝑢 = 0 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘} (B.18)

𝑦𝑘𝑡𝑡 = 1 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘} (B.19)
∑

𝑣∶(𝑣,𝑢)∈𝐴𝑘

𝑓𝑘𝑡
𝑣𝑢 = 𝑦𝑘𝑡𝑢 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘},∀𝑢 ∈ 𝑉𝑘 (B.20)

∑

𝑣∶(𝑢,𝑣)∈𝐴𝑘

𝑓𝑘𝑡
𝑢𝑣 = 𝑦𝑘𝑡𝑢 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘},∀𝑢 ∈ 𝑉𝑘 (B.21)

𝑦𝑘𝑡 ≥ 0 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇 ⧵ {𝑟 },∀𝑢 ∈ 𝑉 (B.22)
𝑢 𝑘 𝑘 𝑘



Computers and Operations Research 153 (2023) 106151M. Ma et al.
Table C.1
Tuning of 𝜖 and 𝛼 for Algorithm 1.
𝜖 0.001 0.1 0.2 0.4 0.8
𝛼 Time/Nodes/Cuts Time/Nodes/Cuts Time/Nodes/Cuts Time/Nodes/Cuts Time/Nodes/Cuts

1 1.00/1.00/1.00 1.29/1.16/1.03 1.23/1.23/0.95 1.42/2.92/0.99 1.21/3.99/1.01
5 0.91/0.93/1.28 0.94/0.98/1.37 0.91/0.92/1.37 1.03/2.5/1.35 1.14/3.93/1.45
10 0.83/0.75/1.58 0.87/1.08/1.65 0.89/0.96/1.34 0.74/2.18/1.33 0.92/3.33/1.56
20 0.72/0.78/1.78 0.95/0.82/1.58 0.8/0.98/1.72 1.07/1.95/1.65 1.20/3.62/1.72
∞ 0.59/0.78/1.73 0.71/0.93/1.75 0.8/0.93/1.66 1.02/2.4/1.67 1.51/4.86/1.82
w
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𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (B.23)

𝑓𝑘𝑡
𝑢𝑣 ≥ 0 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 ⧵ {𝑟𝑘},∀(𝑢, 𝑣) ∈ 𝐺𝑘 (B.24)

Constraint (B.13) states that vertex 𝑢 will be selected in the solution
if it is traversed by at least one (𝑘, 𝑡)-flow. Constraint (B.14) and (B.15)
force 𝑟𝑘 to be the source of each (𝑘, 𝑡)-flow. Correspondingly, constraints
(B.17) and (B.18) enforce 𝑡 to be the sink of each (𝑘, 𝑡)-flow. The flow
conservation of intermediate vertices in each (𝑘, 𝑡)-flow is given by
constraints (B.20) and (B.21). Together with constraints (B.16) and
(B.19), the fact that 𝑟𝑘 and each other terminal in 𝑇𝑘 must be chosen is
captured.

MCF formulation requires 𝑂(𝑝|𝑇 |(|𝑉 | + 2|𝐸|)) variables, including
𝑂(𝑝|𝑇 |(|𝑉 | + 2|𝐸|)) continuous variables and 𝑂(|𝑉 |) binary variables.
The number of constraints is 𝑂(𝑝|𝑇 ∥𝑉 |). The number of variables and
constraints in MCF is considerably more than in SCF. But as shown
in Lai et al. (2011), MCF experimentally outperforms SCF. Theoreti-
cally, Taccari showed that for the longest path problem, MCF is tighter
than SCF in Taccari (2016).

B.3. Steiner tree model

As suggested by the MCF formulation, to ensure connectivity within
𝑇𝑘 in each 𝐺𝑘 one may enforce that there exists a path from a root
𝑟𝑘 ∈ 𝑇𝑘 to each other terminals in 𝐺𝑘(Dilkina and Gomes, 2010). The
Steiner-tree ILP formulation for the PSTP is stated as:

minimize
∑

𝑢∈𝑉
𝑐𝑢𝑥𝑢 (B.25)

𝑥𝑢 ≥
∑

𝑣∶(𝑣,𝑢)∈𝐺𝑘

𝑧𝑘𝑣𝑢 ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉 ⧵{𝑟𝑘} (B.26)

∑

𝑣∶(𝑣,𝑢)∈𝐺𝑘

𝑧𝑘𝑣𝑢 ≤ 1 ∀𝑘 ∈ [𝑝],∀𝑢 ∈ 𝑉𝑘 (B.27)

∑

𝑢∶(𝑢,𝑡)∈𝐺𝑘

𝑧𝑘𝑢𝑡 = 1 ∀𝑘 ∈ [𝑝],∀𝑡 ∈ 𝑇𝑘 (B.28)

∑

(𝑢,𝑣)∈𝐴𝑘∶𝑣∈𝑆,𝑢∈𝑉𝑘⧵𝑆
𝑧𝑘𝑢𝑣 ≥

∑

𝑢∶(𝑢,𝑤)∈𝐴𝑘

𝑧𝑘𝑢𝑤 ∀𝑘 ∈ [𝑝],∀𝑆 ⊆ 𝑉𝑘 ⧵ {𝑟𝑘},∀𝑤 ∈ 𝑆

(B.29)

𝑧𝑘𝑢𝑣 + 𝑧𝑘𝑣𝑢 ≤ 1 ∀𝑘 ∈ [𝑝],∀(𝑢, 𝑣) ∈ 𝐴𝑘, 𝑢 ≠ 𝑟𝑘, 𝑣 ≠ 𝑟𝑘 (B.30)

𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (B.31)

𝑧𝑘𝑢𝑣 ∈ {0, 1} ∀𝑘 ∈ [𝑝],∀(𝑢, 𝑣) ∈ 𝐴𝑘 (B.32)

In this formulation, we explicitly model the selection of edges in
each 𝐺𝑘 as binary variables. We insist that we select a set of vertices
and edges in 𝐺𝑘 such that there is a single path from the root to each
selected vertex in 𝐺𝑘. In other words, we impose stronger constraints
than necessary while preserving all feasible solutions in terms of subset
for vertices that induce a connected subgraph in 𝐺𝑘. In effect, we
enforce the connectivity constraints by adding constraints that ensure
that we select edges that form a (Steiner) tree for each 𝑇𝑘 in 𝐺𝑘, thus,
a Steiner forest considering there are multiple partitions. This can be
done by the generalized cut constraints. Several studies on Steiner tree
problem variants have shown that often directed edge models are better
than undirected ones in solving Steiner Tree problems (e.g., Ljubic
et al., 2005 and Leggieri et al., 2012). Thus for each 𝑘 ∈ [𝑝], we again
replace each undirected edge (𝑢, 𝑣) ∈ 𝐸 with two directed edges (𝑢, 𝑣)
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and (𝑣, 𝑢), call the directed edge set 𝐴𝑘. For each vertex 𝑢 ∈ 𝑉 , a
binary variable 𝑥𝑢 is introduced to indicate whether 𝑢 is selected in the
solution. For each 𝑘 ∈ [𝑝] and each (𝑢, 𝑣) ∈ 𝐴𝑘, a binary arc variable 𝑧𝑘𝑢𝑣
is introduced to indicate whether arc (𝑢, 𝑣) is used for the connectivity
of 𝑇𝑘 in 𝐺𝑘.

We may also need a binary variable 𝑥𝑘𝑢 as in SCF, to indicate whether
vertex 𝑢 is used for the connectivity of 𝑇𝑘 in 𝐺𝑘. However, we can
avoid explicitly including such variables, as these decisions can be
inferred from the values of the arc variables 𝑦𝑘𝑢𝑣: Each vertex used for
the connectivity of 𝑇𝑘 in 𝐺𝑘 has exactly one incoming edge of the
same use. That is, we have 𝑥𝑘𝑢 =

∑

𝑣∶(𝑣,𝑢)∈𝐴𝑘
𝑦𝑘𝑣𝑢. The relationship the

binary variable 𝑥𝑢 and 𝑦𝑘𝑣𝑢 is stated by constraint (B.26). To enforce
the directed tree property, each non-root vertex is allowed have at
most one incoming edge in the Steiner tree of 𝐺𝑘 (constraint (B.27)).
Constraint (B.28) enforces that each terminal vertex should be selected
in Steiner tree of 𝐺𝑘. Connectivity of 𝑇𝑘 in each 𝐺𝑘 is enforced through
generalized cut constraints over each 𝐺𝑘 (constraint (B.29)). We also
include constraint (B.30), which strengths the formulation by enforcing
that each edge is used at most one direction for the Steiner tree in 𝐺𝑘.

The number of variables in the Steiner-tree model is 𝑂(𝑝|𝐸| + |𝑉 |),
hich are all binary variables. The number of constraints is 𝑂(𝑝|𝑉 |2|𝑉 |).
iven the exponential number of generalized cut constraint (B.29),
e also solve the model in a branch-and-cut framework and separate

he generalized cut constraint by a minimum cut algorithm, as stated
n Dilkina and Gomes (2010) and Taccari (2016).

ppendix C. Tuning parameters

In this section, we conduct parameter tuning procedures for our
eparation oracle and our local-branching-based heuristic algorithm.

.1. Tuning parameters of separation oracle

In Section 4.1.3, we use 𝜖 and 𝛼 in the separation algorithm. 𝜖
ndicates the minimum violation of the separated inequalities, and

indicates the maximum number of violated inequalities that are
eparated.

In Table C.1 to C.2, we summarize a tuning procedure that is carried
ut on a subset of 100 random graphs with 2000 vertices to identify
he best 𝜖 and 𝛼 for Algorithm 1 and 2, respectively. We report the
eometric mean of the time to optimality, the number of nodes, and
he number of added cuts. The values are normalized, for each instance,
ith respect to the results with 𝜖 = 0.001 and 𝛼 = 1. In bold is the fastest

ime for each algorithm.

.2. Tuning parameters in local branching

We now tune parameters in the local-branching heuristic algorithm,
.e., Algorithm 4. Table C.3 summarizes these parameters, where LB
nd UB are the lower bound and upper bound for the parameters,
espectively.

To simplify the tuning procedure, we let 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = (𝑟𝑚𝑎𝑥 −
𝑚𝑖𝑛)∕𝑟𝛿 . Thus total time is upper bounded by 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟×𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚.
t is suggested in Fischetti et al. (2017), Fischetti and Monaci (2014)
hat a small radius is preferred for local-branching algorithm. We thus

et radius 𝑟𝑚𝑖𝑛 = 10 and 𝑟𝑚𝑎𝑥 = 30.



Computers and Operations Research 153 (2023) 106151M. Ma et al.

u
t
a
o
r
m

R

A

A

A

B

B

B

B

C

Table C.2
Tuning of 𝜖 and 𝛼 for Algorithm 2.
𝜖 0.001 0.1 0.2 0.4 0.8
𝛼 Time/Nodes/Cuts Time/Nodes/Cuts Time/Nodes/Cuts Time/Nodes/Cuts Time/Nodes/Cuts

1 1.00/1.00/1.00 1.1/1.22/1.05 1.04/1.41/0.97 1.18/3.33/1.01 1.08/4.56/1.03
5 0.81/1.07/1.36 0.84/1.11/1.40 0.82/1.05/1.40 0.92/2.86/1.38 1.02/4.49/1.48
10 0.74/1.17/1.56 0.78/1.30/1.61 0.62/1.10/1.37 1.04/2.49/1.36 0.96/3.89/1.46
20 0.65/0.89/1.76 0.65/0.93/1.62 0.72/1.14/1.72 0.61/3.06/1.68 0.69/4.13/1.76
∞ 0.97/0.95/1.74 1.03/1.06/1.74 1.04/0.98/1.70 0.93/2.74/1.70 1.35/5.55/1.86
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L
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Table C.3
Ranges of parameters in VS-LB.

Parameter LB UB Description

𝑟𝑚𝑖𝑛 1 𝑟𝑚𝑎𝑥 minimum radius
𝑟𝑚𝑎𝑥 𝑟𝑚𝑎𝑥 |𝑉 | maximum radius
𝑟𝛿 1 𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛 radius step
𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟 1 𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛

𝑟𝛿
maximum iteration

𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚 0 ∞ time limit

Table C.4
Local branching parameter tuning.
LBTimeLim LBMaxIter Time

5

1 1.00
5 2.10
10 1.14

10
1 0.63
5 1.74
10 0.08

20
1 0.30
5 1.67
10 2.03

50
1 2.18
5 1.06
10 0.37

In Table C.4, we show the tuning results on the same set of instances
sed in the tuning for separation oracles in Appendix C.1. For separa-
ion oracle, we use 𝜖 = 0.001 and 𝛼 = ∞ for Algorithm 1, and 𝜖 = 0.4
nd 𝛼 = 20 as shown in Appendix C.1 We report the geometric mean
f the running times of Algorithm 4. The values are normalized with
espect to the results with 𝐿𝐵𝑇 𝑖𝑚𝑒𝐿𝑖𝑚 = 5 and 𝐿𝐵𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 1. The
inimum time is in bold.
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