
Parallel Dynamic Spatial Indexes
Ziyang Men

ziyang.men@email.ucr.edu
UC Riverside

Bo Huang

bo.huang@email.ucr.edu
UC Riverside

Yan Gu

ygu@cs.ucr.edu
UC Riverside

Yihan Sun

yihans@cs.ucr.edu
UC Riverside

Abstract
Maintaining spatial data (points in two or three dimen-

sions) is crucial and has a wide range of applications, such as

graphics, GIS, and robotics. To handle spatial data, many data

structures, called spatial indexes, have been proposed, e.g.,

𝑘d-trees, oct/quadtrees (also called Orth-trees), R-trees, and

bounding volume hierarchies (BVHs). In real-world applica-

tions, spatial datasets tend to be highly dynamic, requiring

batch updates of points with low latency. This calls for effi-

cient parallel batch updates on spatial indexes. Unfortunately,

there is very little work that achieves this.

In this paper, we systematically study parallel spatial in-

dexes, with a special focus on achieving high-performance

update performance for highly dynamicworkloads.We select

two types of spatial indexes that are considered optimized for

low-latency updates: Orth-tree and R-tree/BVH. We propose

two data structures: the P-Orth tree, a parallel Orth-tree,

and the SPaC-tree family, a parallel R-tree/BVH. Both the

P-Orth tree and the SPaC-tree deliver superior performance

in batch updates compared to existing parallel 𝑘d-trees and

Orth-trees, while preserving better or competitive query

performance relative to their corresponding Orth-tree and

R-tree counterparts. We also present comprehensive experi-

ments comparing the performance of various parallel spatial

indexes and share our findings at the end of the paper.

1 Introduction
Spatial data widely appear in geographic information sys-

tems (GIS), spatial databases, computer graphics, robotics

and its planning, and many other domains. Efficiently pro-

cessing such geometric objects (usually points) in two or

three dimensions is of great importance, for both mainte-

nance (construction, insertion, deletion) and queries (range

queries, nearest-neighbor queries, etc.).

Given the wide applicability, many well-known data struc-

tures (usually called “spatial indexes”) have been proposed to

handle spatial data, such as 𝑘d-trees[12], oct/quadtrees[26]

(collectively referred to as orth-trees), range trees [13], R-

trees [33], and bounding volume hierarchies (BVHs) [4]. Spa-

tial indexes typically organize points as a tree, with each

subtree corresponding to a subspace (not necessarily non-

overlapping). The bounding boxes of the subspaces can be

used to prune subtrees during queries. For instance, consider

a nearest-neighbor search: when the search reaches a sub-

tree, if its sub-region is farther from the query point than the

current nearest neighbor, the subtree can be pruned. Despite

maintaining different invariants, all these trees share the

same high-level intuition: skip most of the objects in queries

by pruning, leading to efficient query performance.

Real-world applications can involve highly dynamic data,

and updatesmay be latency-sensitive or throughput-sensitive.

For example, in 3D games, moving objects must be reflected

quickly to affect lighting and collision detection, whereas

GIS applications often ingest high-volume sensor streams

where total update throughput is critical. In both scenarios,

updates frequently arrive in batches and must be incorpo-

rated into the index promptly. To handle both updates and

queries efficiently, different spatial indexes offer different

trade-offs. Traditionally, 𝑘d-trees are considered highly effi-

cient for queries due to their strongest invariant (splitting at

object medians), but updates are costly. Orth-trees offer com-

petitive query performance and faster updates due to their

simpler invariant (splitting at spatial medians). R-trees/BVHs

encompass a large family of solutions; they usually provide

the simplest and fastest updates but slower queries.

With the ever-growing data volume, parallelism becomes

essential in designing efficient data structures. Unfortunately,

little work is known on parallel spatial indexes with batch up-

dates. In the two famous libraries, CGAL [25] and Boost [51],

most spatial indexes are sequential. The only exception is

CGAL’s 𝑘d-tree, but it has known scalability issues [17, 43].

Parallel construction for range trees was described in [57],

but it does not support batch updates. In 2022, Blelloch and

Dobson [17] proposed Zd-tree, the first parallel quadtree.

The idea is to leverage the Morton curve, a space-filling

curve (SFC) that maps 2D or 3D points to 1D integers, and

use this information to facilitate construction and batch up-

dates. However, Zd-trees are slower than the parallel 𝑘d-

tree (the Pkd-tree), proposed later [43], despite better the-

oretical bounds for updates (𝑂 (log𝑛) vs. 𝑂 (log2 𝑛) per up-
dated point). We believe the main reason is the I/O (cache)

optimizations in Pkd-tree. More interestingly, despite R-

trees/BVHs having the simplest structure, we are aware

of little work on parallel batch updates for them. Indeed,

most existing approaches are either based on single inser-

tions/deletions [7, 15, 33, 51, 54], or fully rebuilding the tree

upon updates [31, 46, 59]. The only relevant work [49] uses

the logarithmic method, which can substantially slow down

the query time. Hence, it is natural to ask whether Orth-

trees and R-trees/BVHs can still leverage their strengths for

highly dynamic workloads in the parallel setting. In partic-

ular, we investigate whether they can achieve much faster

construction and batch updates (with better theoretical guar-

antees) than 𝑘d-trees in parallel, while preserving query

performance as in their sequential counterparts.

1

In this paper, we systematically study parallel spa-
tial indexes, with a special focus on achieving high-
performance updates in highly dynamic workloads.
We propose two new (families of) data structures: P-Orth
trees and the SPaC-tree family. We integrate these data

structures into a library called the Parallel Spatial Index Li-

brary [9], abbreviated as PSI-Lib or Ψ-Lib.
We first show our design for a parallel Orth-tree called the

P-Orth tree. Almost all existing Orth-trees [17, 39, 40, 46, 61]

use space-filling curves (SFCs) to accelerate construction

and updates. However, simply computing and sorting the

SFC codes of the points already requires several passes of

reading and moving all data, which is time-consuming. In

this paper, we present the design of P-Orth trees that does
not use SFCs. We borrow the idea of the sieving algorithm

from the Pkd-tree [43], which directly reorders the points

while constructing or inserting them into the tree, so that

achieving I/O-efficient construction and batch updates for

Orth-tree. Conceptually, our algorithms are equivalent to

integer-sorting SFC codes, but without generating, storing,

or using them. We believe the algorithmic idea is interesting,

and refer readers to Sec. 3 for algorithmic details and analysis.

Our next question, then, is whether SFCs are still useful

spatial indexes. As mentioned, SFCs have been used in both

Orth-tree and R-trees/BVHs [17, 31, 38–40, 46, 50, 58, 61].

However, we are unaware of any implementations with up-

date performance competitive with Pkd-tree and P-Orth
trees, mostly due to limited or no parallel support.

In this paper, we propose the SPaC-tree family, which

supports extremely fast updates (as R-trees are supposed to)

while maintaining query performance competitive with exist-

ing R-trees/BVHs. To achieve this, our backbone is the PaC-
tree[24], a parallel balanced binary search tree. The key in-

sight of PaC-trees is to use join-based algorithms[2, 3, 18, 57]

to efficiently rebalance during parallel updates, and to use

leaf blocking (maintaining 16–32 objects in each leaf in a flat

array) to improve cache locality. To support spatial queries,

a simple approach is to store points using their SFC codes as

keys in a PaC-tree and augment each tree node with bound-

ing boxes. However, this plain adaptation yields poor update

speed (up to 3.5× slower than Pkd-tree; see the columns

“CPAM-H” and “CPAM-Z” in Fig. 3). We observe that the

main bottleneck is maintaining the SFC-induced total order

over all points in PaC-trees. To address this challenge, we

carefully redesign the join-based algorithms in PaC-trees to
maintain spatial data under only a partial order. We provide

details in Sec. 4. We refer to our design as the Spatial PaC-
tree, or SPaC-tree for short. In Ψ-Lib, we adopt both Morton

curves (SPaC-Z-tree) and Hilbert curves (SPaC-H-tree).
Our P-Orth trees and SPaC-trees are backed by strong

theoretical support. We show that the update cost per object

is𝑂 (log𝑛) for a SPaC-tree and𝑂 (logΔ) for a P-Orth tree (Δ
is the aspect ratio, see Sec. 3.3), which is much stronger than

𝑂 (log2 𝑛) for a Pkd-tree. Our batch updates achieve polylog-

arithmic span, indicating strong and scalable parallelism.

We tested Ψ-Lib on workloads with various input distribu-

tions, query distributions, query types, and update patterns.

We compare Ψ-Lib with existing parallel and sequential base-
lines including Pkd-trees, Zd-trees, etc. Our experiments

simulates both a static setting and a highly dynamic set-

ting where updates are consecutively applied to an initial

tree. This setting better reflects the capability of each data

structure to handle highly dynamic workloads, especially

showcases whether and how the index quality are affected

under a progressively evolving dataset. With our new algo-

rithms, both P-Orth tree and SPaC-tree achieved superior

construction and update performance, while preserving com-

parable query performance to regular Orth-tree and R-trees.

P-Orth tree is almost always the fastest on uniformly dis-

tributed data in construction and queries, and is close to the

best on updates. SPaC-tree supports extremely fast parallel

batch updates—it can be 2-6 times faster than Pkd-trees, and
is especially good for skewed distribution of input points,

queries, or insertion/deletion orders. With comprehensive

experiments, we share our findings in Sec. 5.4, and visualize

the query-update tradeoff of each parallel spatial index in

Fig. 6. Our anonymous code is available at [9].

2 Preliminaries and Related Work
Throughout the paper, we use 𝑛 to denote the input size

or the tree size. We use the log𝑛 notation to denote the

log
2
(𝑛+1) logarithm. When representing arrays, we shorten

𝐴[𝑙], 𝐴[𝑙 + 1], ..., 𝐴[𝑟 − 1] as 𝐴[𝑙, 𝑟).
2.1 Computational Models
We consider the shared-memory multiprocessor setting

with the classical fork-join paradigm with binary forking [8,

19, 22]. Each computational thread is a sequential Random

Access Machine (RAM) augmented with a fork instruction

that spawns two child threads executing in parallel, with the

parent thread resuming upon completion of both children.

Parallel for-loops are efficiently simulated through logarith-

mic levels of forking. When analyzing algorithms, we use

the work-span model, where the work is the total number of

operations in the algorithm and the span is the longest depen-

dence chain in the parallel computation. Using randomized

work-stealing schedulers, a computation with work𝑊 and

span 𝑆 executes in𝑊 /𝜌 +𝑂 (𝑆) time with high probability

(in𝑊) on 𝜌 processors [8, 22, 32].

We use the ideal-cache model [27] to analyze the I/O cost

of our algorithms. In this model, memory is divided into two

levels: a fast memory (cache) of size 𝑀 and an arbitrarily

large slow memory. The CPU can only access data in the

fast memory (at no cost), and data is transferred between the

two levels in blocks of size 𝐵. Each block transfer incurs unit

cost. The cache is fully associative, and the optimal offline

cache replacement policy is used. The cache complexity of

an algorithm is measured by the number of block transfers

between the two levels of memory during its execution.

2

2.2 Spatial Data
In this paper, we study points in Euclidean space R𝐷

for

𝐷 = 2 or 3, although the proposed techniques can generalize

to shapes and any constant integer 𝐷 > 1.

Queries on Spatial Data. To benchmark the quality of

spatial indexes, we use standard 𝑘-NN queries and range

queries. A 𝑘-nearest neighbor (𝑘-NN) query takes a set of

points 𝑃 and a query point 𝑞 as input, and returns the 𝑘-

closest points to 𝑞 in 𝑃 . A range query takes a set of points 𝑃

and an axis-aligned rectangle subregion 𝑟 . The range-count

query returns the number of points in 𝑃 within 𝑟 , and the

range-list query returns all points within 𝑟 .

Spatial Filling Curves. A spatial filling curve (SFC) embeds

multidimensional points into a one-dimensional sequence. In

Ψ-Lib, we use Z-curve (Morton-curve) and Hilbert-curve, illus-

trated in Fig. 1. Both of them encode each point as an integer,

which determines the point’s order along the curve. For inte-

ger coordinates, both Hilbert- and Z-curve can be computed

in a constant time. SFCs are widely used to facilitate spatial

indexes [17, 31, 38, 40, 46, 50].

2.3 Existing Commonly-Used Spatial Indexes
Space-Partitioning Trees: Orth-trees and 𝒌d-trees. In
space-partitioning trees, each node represents a subspace.

All of its children form a non-overlapping partition of that

subspace, usually by axis-aligned partition hyperplanes, i.e., a

splitting dimension 𝑑 and a coordinate 𝑥 . Space-partitioning

trees thus differ in how they select partition hyperplanes.

As typical examples, a 𝑘d-tree [12] chooses the median

coordinate in the splitting dimension across all points, and

thus always yields a balanced partition into two subtrees.

An orth-tree in 𝐷 dimensions partitions the space into 2
𝐷

subspaces evenly using the midpoint in each dimension (and

is therefore a 2
𝐷
-ary tree). Specifically, an orth-tree is called

a quadtree [26] in 2D and an octree in 3D [36].

There are parallel versions of both 𝑘d-trees and Orth-

trees. Blelloch et al. [17] proposed a parallel Orth-tree called

Zd-tree, which uses Morton curve to facilitate construction

and updates. Yesantharao et al. [62] proposed two parallel

𝑘d-trees, BHL-tree and Log-tree. Only Log-trees support ef-
ficient parallel batch updates, using the logarithmic method,

i.e., it maintains 𝑂 (log𝑛) trees with sizes 1, 2, ... 𝑛/2, such
that a batch update can be broken down into at most𝑂 (log𝑛)
tree reconstructions. However, this method can greatly slow

down queries [43]. A recent work proposed the Pkd-tree [43]
that avoids logarithmic method, and achieves optimal work

and cache complexity for parallel construction and batch

updates. The underlying idea is to use sampling to approxi-

mate the object median, together with the sieving algorithm

to partition points in an I/O-efficient manner. Our P-Orth
trees also borrow this idea; see Sec. 3 for details. However,

the Pkd-tree requires 𝑂 (𝑚 log
2 𝑛) work to update a batch of

size𝑚. We will show how Ψ-Lib achieves better bounds.

Object-Partitioning Trees: R-Trees/BVHs. In the object-

Hilbert curve a SPaC-H-tree with 15 pointsMorton curve / Z-curve

H

D L

ABC EFG IJK MNOA

B C D

E
F

G

H I

J

K L

M

N

O

Figure 1. Space-filling curves and an example of a SPaC-tree with
15 points and size-3 leaf wrapping. Each leaf in this case has 3

points and its bounding box marked in blue.

……

f
0

Input
points

Step1
Calculate
 skeleton

Step2
 Sieve
 points

Step 3
Recurse

… …

…

Input a b c d e f g
Bucket 0 3 1 3 3 0 3

Output a f c b d e g
Bucket 0 0 1 3 3 3 3

Sieve

1 2 3

… … …

a c

b
d

e g

… … ③③③ ③

①

2

1

3

𝝀 levels

0

②

Figure 2. Construction and batch insertion for P-Orth trees.

partitioning trees, the objects (points) in each (sub)tree are

partitioned into disjoint subsets, and each subset corresponds

to a child node and is built recursively. Each tree node typi-

cally stores a bounding box (or a bounding volume in 3D) that

is the smallest enclosing axis-aligned region of all objects in

its subtree. Though named differently—R-trees in databases

and usually in 2D (“R” for rectangle), and bounding volume

hierarchies (BVHs) in graphics and usually in 3D (“V” for

volume)—they share the same underlying concept. For sim-

plicity, we use the term “R-tree” to refer to the general idea

of object-partitioning trees. They can be either binary [15,

31, 60] or have a larger branching factor [30, 33, 38, 51], and

can be built either offline [31, 46, 51, 59] or incrementally

(thus supporting updates) [7, 15, 33, 38, 51, 54].

To our knowledge, the only parallel R-tree with batch up-

dates is by Qi et al. [50], which uses the logarithmic method.

However, as noted, the logarithmic method significantly

slows down queries and is therefore non-ideal. There also

exist lock-based concurrent R-trees [23, 44].

3 The Parallel Orth-tree (P-Orth Tree)
In this section, we introduce our design of the Parallel

Orth-tree (P-Orth tree), which partitions points into nested

regions recursively based on the spatial median.

Previous algorithms. The naïve approach to construct or

update an Orth-tree is to distribute the points to subtrees

level by level from the root until reaching the leaves [26,

36]. However, this approach is slow because the number of

rounds of global data movement is proportional to the tree

height, which can be large. Hence, almost all subsequent

Orth-trees [17, 39, 40, 46, 61] use SFCs, specifically the Mor-

ton curve (see Fig. 1), to speed up the algorithm. The high-

level idea is to sort all input points in Morton order, which

only requires 𝑂 (log𝑀 𝑛) rounds of global data movement,

where 𝑀 is the cache size. Then, since Orth-trees always

3

Algorithm 1: Parallel Orth-tree (P-Orth tree) construction
Input: A sequence of points 𝑃 , region box 𝐻 .

Output: A P-Orth tree 𝑇 on points in 𝑃 .
Parameter :𝜆: the height of a tree skeleton.

𝜙 : the leaf wrap of the 𝑘d-tree.

1 Function BuildOrth(𝑃, 𝐻)
2 if |𝑃 | < 𝜙 then
3 return A leaf node with points 𝑃 and its bounding box

4 Build the tree skeleton T by constructing the first

𝜆 = (log
2
𝑀)/2𝐷 levels based on 𝐻

5 𝐵 [] ← Split 𝐻 based on T // 𝐵 [𝑖]: the sub-region for bucket 𝑖

// Reorder points to make those in the same bucket consecutive

6 𝑅 [] ← Sieve(𝑃,T) // 𝑅 [𝑖]: the slice for all points in bucket 𝑖

7 parallel-foreach external node 𝑖 of T do
8 𝑡 ← BuildOrth(𝑅 [𝑖], 𝐵 [𝑖]) // Recursive build

9 Replace the external node 𝑖 with 𝑡

10 Compute the bounding boxes for all internal nodes in T , and
merge non-leaf subtrees with sizes no more than 𝜙

11 return The root of T

partition at the spatial median, a binary search on the sorted

values can identify the partition hyperplane, and all points in

one subtree also form a consecutive range in Morton order.

Blelloch and Dobson, in their Zd-tree paper [17], also use

this idea to achieve a parallel Orth-tree.

Issues on Existing Works. Although the long-standing

Morton-based approach achieves good work, span, and cache

bounds, a closer look reveals two major drawbacks.

• Performance. This approach must additionally compute

the Morton code for each point as preprocessing and sort

the ⟨code, point⟩ pairs. This increases memory footprint

and induces more rounds of reads and writes to all data,

which leads to significant overhead (see “Zd-tree” in Fig. 3).

• Applicability. While SFCs map higher-dimensional data

into one dimension, they suffer from precision limitations.

Most modern machines use 64-bit words, which suffices

for 2D data (32-bit precision per dimension). However,

3D support is constrained to 21 bits per dimension, and

handling higher dimensions (𝐷 > 3) is mostly infeasible.

Even in lower dimensions, a fallback to the naïve partition-

based solution is needed when precision is exhausted in

certain subregions, which is not elegant.

Our Solution. To overcome these issues, our P-Orth tree
design entirely avoids SFCs. We show that the sorting-based

idea can be implemented conceptually equivalently without

using SFC. Consequently, our P-Orth tree is fast and flexible

to any coordinate types and ranges (not necessary integers).

Theoretically, the P-Orth tree achieves strong bounds for

both construction and batch updates. Practically, P-Orth
trees outperform Pkd-trees and Zd-trees in almost all cases,

except for very skewed distributions; see Sec. 5 for details.

Below, we present our construction algorithm in Sec. 3.1,

update algorithm in Sec. 3.2, and cost analysis in Sec. 3.3.

3.1 P-Orth Tree Construction
Our idea for P-Orth tree construction is to coordinate the

“conceptual” sorting process together with the tree construc-

Algorithm 2: Batch insertion for P-Orth tree
Input: A sequence of points 𝑃 , a P-Orth tree 𝑇 with region 𝐻 .

Output: A P-Orth tree with 𝑃 inserted.

Parameter :𝜆: the maximum height of a fetched tree skeleton.

// The deletion is symmetric.

1 Function BatchInsertOrth(𝑇, 𝑃, 𝐻)
2 if 𝑃 = ∅ then return 𝑇

3 if 𝑇 is a leaf then // Insert into a leaf

4 return BuildOrth(𝑇 ∪ 𝑃, 𝐻)
5 T ← Retrive the skeleton at 𝑇

6 𝐵 [] ← Split 𝐻 based on T // 𝐵 [𝑖]: the sub-region for bucket 𝑖

7 𝑅 [] ← Sieve(𝑃,T) // 𝑅 [𝑖]: the slice for points in bucket 𝑖

8 parallel-foreach external node 𝑖 for T do
9 𝑡 ← BatchInsertOrth(𝑖, 𝑅 [𝑖], 𝐵 [𝑖])// Recursive insertion

10 Replace the external node of T with 𝑡

11 Update the bounding boxes of all affected nodes in T
12 return The root of T

tion. The goal is to build 𝜆 levels of the tree at once with

one round of data movement, and at the same time achieve

high parallelism. Here we adopt the Sieve(𝑃,T) function
from [43], which distributes the point set 𝑃 based on a 𝜆-level

tree skeleton T in parallel. At a high level, our algorithm is

equivalent to integer sort on Morton codes, on the 𝜆𝐷 most

significant bits in each round. However, no codes needed

to be computed, stored, or compared. Note that Sieve() is
also used in the update algorithms. We show our P-Orth tree
construction in Alg. 1 and illustrate it in Fig. 2.

Alg. 1 has three steps as shown in Fig. 2. The first step

(lines 4–5) builds a tree skeleton T with 𝜆 = (log
2
𝑀)/2𝐷

levels, where𝑀 is the cache size. This ensures that the num-

ber of leaves (external nodes) of T is 2
𝜆 ·𝐷

fits into the cache.

In theory, this step can be done in parallel, although given

the small amount of work, in practice this step is run sequen-

tially. Note that computing the T requires the bounding

region for the current subtree, so we also need to compute

the corresponding sub-regions for all T ’s leaves (line 5).

Once T is built, the second step is to sieve the points in 𝑃 to

T ’s leaves. This step is implemented by the Sieve() function
shown on line 6. The illustration of this step is shown in

Fig. 2, and after that, all points in the same leaf of T are

gathered together, conceptually stored in an array 𝑅 [].
Sieve() is implemented by dividing 𝑃 into chunks of size 𝑙 ,

then counting the number of points in each leaf in T in par-

allel. Then a matrix transpose is performed to compute the

offsets for each leaf in each chunk, and finally, all points are

distributed to the final destination in parallel. The final step

is to recursively build the Orth-tree for each leaf (subtree)

in parallel (line 8). Once finished, we update the bounding

boxes of all internal nodes in T (line 10) and return the root

of the skeleton (line 11).

3.2 Batch Updates for P-Orth Trees
Both batch insertion and deletion for P-Orth trees closely

resemble the construction algorithm. Here we first introduce

the batch insertion algorithm, given in Alg. 2, and discuss

the deletion algorithm later.

4

The batch insertion algorithm takes a batch of points 𝑃 ,

and adds them to an existing P-Orth tree 𝑇 . To do so, we

sieve the points also for 𝜆 levels, and then recursively insert

points to each bucket in parallel. One can almost see a one-

to-one mapping for these three steps in Fig. 2 and Alg. 2,

except for some minor differences in handling base cases.

For deletions, an additional step is needed: for all affected

leaves, we flatten their ancestors if the total subtree sizes are

smaller than the leaf wrap threshold. Our update algorithms

remain simple since no rebalancing is needed for Orth-trees.

3.3 Theoretical Analysis
Due to page limit, we defer the analysis to the Appendix A,

and only list the theorems here.

Theorem 3.1. Alg. 1 constructs a P-Orth tree of size 𝑛 us-

ing𝑂 (𝑛 logΔ) work,𝑂 (log𝑛 logΔ) span, and𝑂 (𝑛/𝐵 log𝑀 Δ)
cache complexity. A batch update of size𝑚 = 𝑂 (𝑛) on a P-Orth
tree of size 𝑛 uses 𝑂 (𝑚 logΔ) work, 𝑂 (log𝑚 logΔ) span, and
𝑂 (𝑚/𝐵 log𝑀 Δ) cache complexity.

Here, Δ denotes the aspect ratio, defined as
max𝑑 (𝑥,𝑦)
min𝑑 (𝑥,𝑦) for

all points 𝑥 and 𝑦. Note that logΔ ≥ logΘ(𝑛1/𝐷) = Ω(log𝑛)
when the point set contains no duplicates in R𝐷

.

With stronger assumptions—for instance, a bounded as-

pect ratio (Δ ≤ 𝑛𝑐 for some constant 𝑐 > 0) and a con-

stant expansion rate (full definition in the Appendix A)—

we may obtain tighter bounds. With bounded aspect ratio,

we can show that the construction with 𝑂 (𝑛 log𝑛) work,
𝑂 (log2 𝑛) span, and𝑂 (𝑛/𝐵 log𝑀 𝑛) = 𝑂 (Sort(𝑛)) cache com-

plexity. Updates have 𝑂 (𝑚 log𝑛) work, 𝑂 (log𝑚 log𝑛) span,
and 𝑂 (𝑚/𝐵 log𝑀 𝑛) cache complexity. With both assump-

tions, a 𝑘-NN query can be answered in𝑂 (𝑘 log𝑛) work [17].
4 The Spatial PaC-Tree (SPaC-Tree)
This section presents the design of the Spatial PaC-tree

(SPaC-tree), a highly parallel R-tree with extremely fast con-

struction and updates while maintaining good query speed.

Existing R-trees. As introduced in Sec. 2, R-trees are object-

partitioning trees, leaving flexibility in the heuristics used to

build them. The original and early designs [11, 14, 33, 45, 55]

are incremental: points are inserted one by one; a greedy

strategy iteratively selects a subtree for this point. When a

subtree is much heavier than its siblings, a split is applied by

a heuristic (e.g., “linear” [5, 33], “quadratic” [33], or “R
∗
” [11,

33]). While simple and highly dynamic, this approach is hard

to generalize to parallel batch updates. Consequently, prior

work on parallel R-trees has primarily focused on parallel

queries [37, 42, 48, 63] or static construction (bulk loading) [1,

6, 29, 41, 47, 52, 56]. However, for purely static scenarios, 𝑘d-

trees and Orth-trees are often preferable choices.

A promising approach to parallelize R-trees is via space-

filling curves (SFCs). SFCs map points in higher dimen-

sions to 1D (see Fig. 1), enabling all points to be organized

in this 1D order using a binary search tree (BST) or a B-

tree—equivalently yielding an R-tree if each node maintains

its bounding box. This idea was first noted by Tropf and

Herzog [58], and later realized in the Hilbert R-tree [35, 38],

which is built atop a B-tree. Unfortunately, parallel batch

update on B-trees can be challenging. Qi et al. [50] showed

that the logarithmic method can sidestep parallel updates for

B-trees, but it introduces substantial query overhead [43].

The PaC-tree. The PaC-tree [24] is a parallel binary search

tree (BST) with the leaf-wrapping technique to enable better

space- and I/O-efficiency, where a subtree of size under a

threshold 𝜙 (typically 32) is flattened into a compressed leaf

stored as an array. It uses a “Join-based framework” in a

divide-and-conquer manner for high parallelism, and sup-

ports the full BST interface, including construction, single

and batch updates, and various 1D queries.

Our SPaC-Tree. At first glance, PaC-trees appear to pro-

vide a straightforward solution for parallelizing R-trees: they

can be directly adopted to support an SFC-based approach,

achieving both efficiency and high parallelism. We imple-

mented this straightforward design and, somewhat unexpect-

edly, found it much slower than P-Orth trees and Pkd-trees
(see CPAM-H and CPAM-Z in Fig. 3). The bottleneck is that

a PaC-tree enforces a total order on points according to an

SFC, which is overly costly. In contrast, P-Orth trees and
Pkd-trees leave points in the leaves unsorted.

To reduce update costs, we introduce the Spatial-PaC-
tree (SPaC-tree). The primary goal is to keep leaf points un-

sorted, which requires redesigning and disentangling parts

of the underlying PaC-tree algorithms. The remainder of

this section presents the new design and its analysis.

4.1 SPaC-Tree Construction
We first show the construction algorithm for SPaC-trees

in Alg. 3. To use PaC-tree for construction, a simple idea

is to first compute the SFC code for each point, sort the

points accordingly, and then build a balanced BST tree on

the sorted points. Despite theoretical efficiency, directly call-

ing the PaC-tree in CPAM in this way is up to 3× slower

than Pkd-tree construction. To improve performance, our

main effort is to avoid unnecessary memory reads/writes

by redesigning the sorting algorithm, shown in function

“HybridSort” Alg. 3, with two major improvements. First,

instead of pre-calculating SFC values before sorting, we com-

pute themwhen the points are first touched in sorting, which

saves one round of reads and writes to associated arrays. Sec-

ond, we only sort the ⟨𝑐𝑜𝑑𝑒, 𝑖𝑑⟩ pairs (line 13), without the
coordinates. This reduces the memory footprint of the recur-

sive sorting process (thus faster speed), at the cost of more

cache misses when fetching points to the leaves. Overall this

reduces the running time. Combining the two techniques

together, Alg. 1 can achieve a consistent speedup over the

plain implementation (3.1–3.5× on 2D data; see Fig. 3).

4.2 Batch Updates on SPaC-Trees
Our SPaC-tree builds upon PaC-tree [24], a parallel BST

using the join-based algorithmic framework [18]. The high-

level idea is to use and only use the Join operation for tree

5

Algorithm 3: Parallel SPaC-tree construction
Input: A sequence of points 𝑃 .
Output: A SPaC-tree 𝑇 on points in 𝑃 .

1 Function BuildSPaCTree(𝑃)
2 𝐴← Auxiliary sequence of empty pairs ⟨𝑐𝑜𝑑𝑒, 𝑖𝑑⟩ with size |𝑃 |
3 𝐴′ ← HybridSort(𝑃,𝐴)
4 return BuildSorted(𝑃,𝐴′)

// Modify the sample-sort to compute the SFC code with sorting

5 Function HybridSort(𝑃,𝐴)
6 Sample points from 𝑃 and compute their SFC codes

7 Sort samples and sub-sample them to get the pivots

8 Partition 𝑃 into blocks, and compute offsets of blocks as 𝐹 []
9 parallel-for 𝑖-th block 𝐵 do
10 parallel-for 𝑗-th point 𝑝 in 𝐵 do
11 𝑘 ← The SFC code of 𝑝

12 𝑖𝑑 ← The id of 𝑝

13 𝐴[𝐹 [𝑖] + 𝑗] ← ⟨𝑘, 𝑖𝑑⟩ // Store the code and id in 𝐴

14 Sort the slice 𝐴[𝐹 [𝑖], 𝐴[𝐹 [𝑖 + 1])
15 Merge with samples to get counts for each block

16 Redistribute 𝐴 to buckets 𝐴′ using the matrix

transpose [10, 20], where the 𝑖-th bucket has offset 𝐹 ′ [𝑖]
17 parallel-for the 𝑖-th bucket do // Recursive sorting

18 Sort the slice 𝐴′ [𝐹 ′ [𝑖], 𝐴′ [𝐹 ′ [𝑖 + 1])
19 return The sorted sequence 𝐴′

// Recursively construct the tree.

20 Function BuildSorted(𝑃,𝐴)
21 𝑛 ← |𝑃 |
22 if 𝑛 ≤ 𝜙 then // Input size is below the leaf wrapping

23 Retrieve points 𝑆 ⊆ 𝑃 using the ids in 𝐴

24 return A leaf node with points 𝑆 and its bounding box

25 else
26 𝑚 ← 𝑛/2
27 In Parallel:
28 𝐿 ← BuildSorted(𝑃 [0,𝑚), 𝐴[0,𝑚))
29 𝑅 ← BuildSorted(𝑃 [𝑚 + 1, 𝑛), 𝐴[𝑚 + 1, 𝑛))
30 𝑘 ← the point in 𝑃 with id in 𝐴[𝑚] // The pivot point

31 return An interior node with left child 𝐿, right child 𝑅, pivot

𝑘 , and computing the bounding box from children

rebalancing, which takes two subtrees 𝐿, 𝑅, and a key 𝑘 in

the middle, and returns a new, balanced tree with 𝐿 ∪ {𝑘} ∪
𝑅. Our key observation here is that, as a spatial index, the

order of the points in a leaf, which in this case is based

on Hilbert- or Z-Code, does not facilitate spatial queries—

queries on a leaf must scan all points anyway. Therefore,

our goal is to carefully redesign the Join-based algorithms,

such that we can maintain theoretical efficiency, and adapt

them best to the spatial index setting by relaxing the key

order in the leaves. In our experiments, such an improvement

significantly speeds up the updates without sacrificing query

performance.

We show the detailed batch insertion algorithm in the

Alg. 4. The algorithm begins with computing the SFC code

and sorting the inputs. After sieving points to the leaves, the

algorithm either appends points to the leaf and marks it as

unsorted or rebuilds the leaf if its size exceeds the threshold

(line 11 and line 12). Next, the standard Join operation com-

bines two subtrees 𝐿 and 𝑅, and performs the rebalancing

(line 19). Without loss of generality, we assume 𝐿 is heavier

than 𝑅, and the RightJoin operation is called (line 21). The

Algorithm 4: Parallel Batch Insertion on SPaC-trees
Input: A sequence of points 𝑃 and a SPaC-tree𝑇 .
Output: A SPaC-tree with 𝑃 inserted.

1 Function PtreeBatchInsert(𝑇, 𝑃)
2 Compute SFC codes for points in 𝑃 , and sort 𝑃 accordingly.

// In practice we use the HybridSort() from Alg. 3

3 return InsertSorted(𝑇, 𝑃)
4 Function InsertSorted(𝑇, 𝑃)
5 𝑛 ← |𝑃 |
6 if 𝑛 = 0 then return𝑇

7 if 𝑇 is a leaf then
8 if |𝑇 | + 𝑛 ≤ 𝜙 then
9 Append 𝑃 to𝑇 , and mark𝑇 as unsorted

10 Update the bounding box of𝑇
11 return𝑇

12 else return BuildSPaCTree(𝑃 ∪𝑇)
13 𝑘 ← the SFC code associated with the pivot in (root of)𝑇

14 𝑡 ← binary search 𝑘 in 𝑃 (based on the code)

15 In Parallel:
16 𝐿 ← InsertSorted(𝑇ℓ , 𝑃 [0, 𝑡))
17 𝑅 ← InsertSorted(𝑇𝑟 , 𝑃 [𝑡, 𝑛))
18 Update the bounding box of𝑇 based on those of 𝐿 and 𝑅

19 return Join(𝐿,𝑇𝑝 , 𝑅)

// Return a balanced tree joining 𝐿 and 𝑅 with pivot 𝑘 .

20 Function Join(𝐿, 𝑘, 𝑅) // this function remains the same as in [18, 24]

21 if 𝐿 is heavier then return RightJoin(𝐿,𝑘, 𝑅)

22 if 𝑅 is heavier then return LeftJoin(𝐿, 𝑘, 𝑅)

23 return Node(𝐿, 𝑘 , 𝑅)

// Recursively check 𝐿’s right spine until the sub-tree size balances with

𝑅. Create a new tree node 𝑅′ with children the two balanced sub-trees,

attach 𝑅′ to 𝐿, and re-balance 𝐿.
24 Function RightJoin(𝐿,𝑘, 𝑅) // LeftJoin is symmetric

25 ⟨𝐿ℓ , 𝑘 ′, 𝐿𝑟 ⟩ ← Expose(𝐿) // Expand 𝐿 into a tree if it is a leaf

26 if 𝐿 and 𝑅 is balanced then // The split terminates here

27 return Node(𝐿, 𝑘, 𝑅) // Return a balanced tree

28 𝑅′ ← RightJoin(𝐿𝑟 , 𝑘, 𝑅)// Recursively split the right sub-tree of 𝐿
29 𝐿′ ← Node(𝐿ℓ , 𝑘 ′, 𝑅′) // Attach the newly balanced tree 𝑅′ to 𝐿
30 Re-balance 𝐿′ by rotation

31 return 𝐿′

// Expand𝑇 into a tree if it is a leaf, and reorder the points if necessary.

32 Function Expose(𝑇)
33 if 𝑇 is a leaf then
34 Re-order the points if𝑇 is marked as unsorted

35 Build a perfect balanced tree𝑇 ′ from the sorted points in𝑇

36 return {𝑇 ′ℓ ,𝑇 ′𝑝 ,𝑇 ′𝑟 }
37 else return {𝑇ℓ ,𝑇𝑝 ,𝑇𝑟 } // Return the tree as is

38 Function Node(𝑇ℓ , 𝑘,𝑇𝑟) // Maintain the leaf wrapping invariant.

39 Create a node𝑇 with pivot 𝑘 , left sub-tree𝑇ℓ and right sub-tree𝑇𝑟 .

40 𝑛 ← |𝑇 |
41 if 𝑛 > 2𝜙 then return𝑇 // Leaf wrapping does not apply

42 else if 𝑛 > 𝜙 then // Redistribute points in leaves𝑇ℓ and𝑇𝑟
43 Sort points in𝑇ℓ and𝑇𝑟 if they are marked as un-sorted.

44 Redistribute sub-trees of𝑇 into two leaf nodes with size 𝑛/2.
45 return𝑇

46 else // Tree size is below the leaf wrapping, embed it into one leaf

47 Flatten𝑇 and create a leaf node wrapping it.

48 return this new leaf node

RightJoin recursively splits the right subtree of 𝐿 until it is

possible to return a balanced tree using 𝑅 (line 26). When

the split reaches a leaf, we expand the leaf into a tree as in

PaC-trees using the Expose operation (line 32). The differ-

ence is if the leaf is marked as unsorted, we will sort the

points first (line 43). When the split subtree is balanced with

𝑅 (line 26), we create a new tree node 𝑅′ with children the

two balanced subtrees (line 28), and attach 𝑅′ to 𝐿 (line 29).

6

Note that the previous leaf expansion may break the leaf

wrapping for affected leaves. In this case, we restore the leaf

wrapping by checking the tree size: either directly flatten it

into one leaf if the size fits within (line 46), or redistribute

the points into two leaves if necessary (line 42). We will sort

the points first if leaves are marked as unsorted (line: 43).

Despite Alg. 4 appearing complicated, we can prove its

correctness by showing its equivalence to a PaC-tree. For
page limit, we defer the analysis to Appendix B.

The batch deletion algorithm is similar to the insertion.

The only difference is that when it reaches a leaf, it removes

the points there, marks the leaf as unsorted if necessary, and

updates the bounding box. The invariant of leaf wrapping is

maintained the same way as in insertion, i.e., line 23 and 29.

4.3 Theoretical Analysis
Due to the page limit, we defer the full analysis to Appen-

dix B, and present only the results here.

Theorem 4.1. For 𝑛 points with integer coordinates, a SPaC-
tree with Hilbert- or Z-curve can be constructed in 𝑂 (𝑛 log𝑛)
work,𝑂 (log𝑛) span, and𝑂 (Sort(𝑛)) cache complexity. A batch

update (insertion or deletion) of size𝑚 on a SPaC-tree of size
𝑛 uses 𝑂 (𝑚 log𝑛) work and 𝑂 (log2 𝑛) span.

5 Experiments
We conduct in-depth experiments to understand the per-

formance of Ψ-Lib and other spatial indexes on both syn-

thetic and real-world datasets. We show that both P-Orth
trees and SPaC-trees achieve superior construction and up-

date performance, outperforming Pkd-tree in most cases, and

are much faster than existing Orth-tree and R-tree baselines.

Both P-Orth trees and SPaC-trees also exhibit comparable

or better query performance to their corresponding counter-

parts in prior work. In addition to showing the effectiveness

of our new algorithms, we believe our experiments also pro-

vide the first systematic study of various parallel spatial

indexes, including 𝑘d-trees, Orth-trees, and R-trees.

Setup. We use a machine with 112 cores (224 hyperthreads)

with four Intel Xeon Platinum 8176 CPUs and 1.47 TB RAM.

Ψ-Lib is in C++ and compiled using GCC 14.2.1 with -O3. We

use the ParLaylib [16] for fork-join parallelism. Our anony-

mous code is available at [9]. We report numbers as the

average of 3 runs after a warm-up run. More details about

parameter choosing are shown in Appendix C.

Baselines.We compare to the following baselines.

• Pkd-trees [43]: The state-of-the-art parallel 𝑘d-tree.
• Zd-trees [17]: The state-of-the-art parallel Orth-tree. Zd-
tree uses Morton code to presort the data to aid the con-

struction and update algorithm in a standard Orth-tree.

The original code from [17] has known bugs in the update

algorithms (confirmed by the authors). We use our own

implementation based on their paper. We have carefully

verified that our construction time is similar to their code.

• CPAM [24]: As a baseline, we use PaC-trees from the

CPAM library (as a black box) to store each point’s SFC

code as the key. It preserves a total order of all points

based on the Morton curve (CPAM-Z) or the Hilbert curve
(CPAM-H). This baseline highlights how our new design

by maintaining only a partial order improves performance.

• Boost R-trees [51]: The R-tree from the Boost library.

Boost R-tree is sequential, and only supports point updates

(no batch updates). We mainly use it as a baseline to verify

the query performance for our SPaC-trees. Hence, among

all the variants, we use the quadratic version, which gives
the best tree quality in the dynamic setting.

Within Ψ-Lib, we tested the parallel Orth-tree—the P-Orth
tree—as introduced in Sec. 3, and two R-trees—SPaC-H-tree
and SPaC-Z-tree—which use Hilbert and Morton curve, re-

spectively, on the SPaC-tree detailed in Sec. 4. We maintain

bounding boxes for all tested indexes. We refer readers to

the Appendix C for more implementation details.

5.1 Overall Evaluation under Synthetic Datasets
Setup. We test different distributions for points, queries,

and update patterns of synthetic data. All coordinates are

64-bit integers in [0, 109]. We use three workloads: Uniform,
Sweepline and Varden. Uniform draws each point uniformly

random from the space. Sweepline also uses uniform data,

but sorts all points along the first dimension. This is used to

simulate a skewed update pattern, where the updated points

exhibit spatial locality. Varden [28] is generated by randomly

walking in the space with a low probability to restart at a ran-

dom position. Points are clustered and different clusters are

far from each other, simulating a skewed point distribution.

We test both static and dynamic cases. Besides directly

measuring the tree construction time, we also use the incre-

mental insertion/deletion workload with various batch sizes

to simulate a highly dynamic scenario. For batch size 𝑏, an

incremental insertion workload means to construct the in-

dex by 𝑛/𝑏 batch insertions progressively, and vice versa for

deletions (deleting the index in 𝑛/𝑏 batches). We report the

total running time of all operations. This reflects how the

update efficiency of each index is affected under a constantly

evolving dataset. Under this workload, we further time the

queries after half of the batches. The query performance re-

flects how the quality of each index is affected after massive

updates. For the static setting, we also provide query times

after building a tree with half of the data for easy comparison

with the dynamic setting. We also test the update time for a

single batch, and show the results in the Appendix D.

We tested 𝑘-NN and range queries (introduced in Sec. 2).

We run 10
7
10-NN queries for both in-distribution (InD) and

out-of-distribution (OOD) queries. For range queries, we test
5 × 104 range-count and range-list queries, with range sizes

10
4
–10

6
. Different queries run in parallel. Besides Fig. 3, we

further study how 𝑘-NN and range-list performance changes

with their output sizes and show results in Fig. 4 and 5.

We summarize in Fig. 3 the performance of all tested in-

7

Build
time

Query after Build (50%) Incremental Insert Query after Inc. Ins. (50%) Incremental Delete Query after Inc. Del. (50%)
10NN Range Batch Size 10NN Range Batch Size 10NN Range

InD OOD Count List 10% 1% 0.1% 0.01% InD OOD Count List 10% 1% 0.1% 0.01% InD OOD Count List

U
ni

fo
rm

★P-Orth 3.23 .362 .363 .078 1.15 4.27 10.3 19.7 29.7 .381 .382 .080 1.04 4.32 10.2 19.6 29.9 .394 .397 .089 1.18
Zd-Tree 4.83 .490 .485 .142 1.59 7.80 13.2 24.9 48 .482 .486 .145 1.53 9.30 18.3 32.5 52 .510 .508 .137 1.50

★SPaC-H 3.34 1.93 1.93 .157 1.17 3.90 6.00 13.0 26.8 1.96 1.96 .163 1.25 4.69 14.4 27.7 42.2 1.95 1.96 .161 1.24
★SPaC-Z 3.10 9.13 9.20 .229 1.22 3.68 5.75 12.6 26.2 9.21 9.29 .237 1.31 4.78 14.2 27.4 42.0 9.12 9.20 .237 1.30
CPAM-H 11.3 2.52 2.50 .216 1.39 15.3 38.2 108 159 2.44 2.44 .225 1.46 17.2 39.0 107 157 2.43 2.43 .225 1.46
CPAM-Z 10.8 11.9 11.9 .311 1.46 14.7 37.6 108 158 11.6 11.7 .326 1.54 16.7 38.4 106 157 11.5 11.5 .325 1.52

Boost-R† N/A N/A N/A N/A N/A N/A N/A N/A N/A 11.1 11.1 1.49 7.81 N/A N/A N/A N/A .775 .783 .653 4.60
Pkd-Tree 3.66 .398 .397 .097 1.08 4.52 10.64 20.9 48.9 .433 .416 .103 1.05 4.37 11.2 23.0 59.8 .411 .412 .104 1.07

Sw
ee

pl
in

e

★P-Orth 4.63 .220 .373 .098 1.22 5.29 5.67 5.72 9.40 .227 .333 .074 1.01 1.92 3.08 4.25 8.74 .222 .322 .073 1.02
Zd-Tree 5.37 .284 .388 .140 1.64 6.00 4.08 6.1 12.5 .285 .408 .127 1.47 6.00 4.73 11.9 29.0 .293 .415 .121 1.45

★SPaC-H 3.32 .855 .661 .156 1.19 2.99 3.09 4.12 8.85 1.05 .797 .162 1.29 2.32 2.50 3.23 8.37 .941 .766 .159 1.26
★SPaC-Z 3.04 1.94 .874 .214 1.23 2.77 2.83 3.83 8.74 1.74 1.16 .217 1.32 2.16 2.27 3.01 9.09 2.00 1.05 .215 1.30
CPAM-H 10.3 1.16 .765 .216 1.43 13.5 10.2 8.29 19.4 1.19 .812 .227 1.48 15.0 11.1 8.67 21.2 1.19 .853 .222 1.48
CPAM-Z 9.81 2.62 1.04 .292 1.47 13.1 9.96 8.04 20.4 2.50 1.21 .309 1.53 14.4 10.7 8.52 22.7 2.71 1.18 .300 1.54

Boost-R† N/A N/A N/A N/A N/A N/A N/A N/A N/A .921 .931 3.18 6.10 N/A N/A N/A N/A .653 .651 .455 4.14
Pkd-Tree 5.16 .243 .435 .093 1.11 13.7 24.0 35.8 39.9 .331 1.61 .108 1.09 10.0 24.3 36.8 62.8 .263 .337 .098 1.07

V
ar

de
n

★P-Orth 12.2 .155 .279 .054 1.12 13.7 11.5 12.6 26.2 .160 .247 .050 1.01 6.79 8.48 12.5 28.3 .160 .239 .050 1.01
Zd-Tree 5.6 .192 .156 .086 1.57 5.95 4.24 6.1 14.6 .196 .158 .073 1.40 6.08 5.25 15.9 36.1 .198 .157 .072 1.39

★SPaC-H 3.09 2.24 .565 .103 1.15 2.71 2.95 4.18 9.23 2.26 .494 .107 1.23 2.22 2.54 3.54 8.21 2.25 .578 .106 1.22
★SPaC-Z 2.94 3.92 1.02 .165 1.19 2.52 2.68 3.77 8.74 3.61 .855 .171 1.27 2.03 2.27 3.26 7.80 4.30 2.29 .168 1.26
CPAM-H 10.0 2.52 .663 .146 1.38 13.3 10.2 8.59 19.0 2.48 .592 .152 1.45 14.9 11.2 9.12 19.7 2.55 .680 .152 1.43
CPAM-Z 9.66 4.62 1.22 .229 1.42 13.0 9.94 8.24 18.5 3.32 1.08 .239 1.49 14.0 10.8 8.75 20.2 5.08 2.86 .237 1.49

Boost-R† N/A N/A N/A N/A N/A N/A N/A N/A N/A .922 .924 .521 4.45 N/A N/A N/A N/A .617 .624 .429 4.20
Pkd-Tree 6.10 .110 .632 .060 1.07 12.8 25.2 32.9 53.6 .109 .725 .064 1.03 9.36 18.9 28.8 51.6 .112 .804 .063 1.04

: within 1.1x the fastestThe fastest time is in bold and underlined : within 2x the fastest : within 5x the fastest : > 5x the fastest
Figure 3. Running time (in seconds) on synthetic data. Lower is better. The fastest time in each test is in bold and underlined. We use

colors to mark results within 1.1×, 2×, 5×, and > 5× the fastest time. Detailed settings for build, queries, and incremental insertion/deletion

are introduced at the beginning of Sec. 5.1. InD/OOD: in-/out-of-distribution. †: Boost R-tree is sequential and only support point updates.

Therefore, we omit the construction/update times, and report query times after incremental inserting/deleting points one by one.

dexes on synthetic datasets with 10
9
2D points. We provide

the results on 3D points in Appendix F. Next we analyze the

performance in detail.

5.1.1 Construction. For tree construction, our SPaC-tree
is the fastest among all indexes across all workloads. The

advantage comes from embedding 2D data into 1D that sim-

plifies the computation, and various optimizations in Ψ-Lib
introduced in Sec. 4. SPaC-Z-tree is slightly faster than SPaC-
H-tree, since Morton code has simpler computation than

Hilbert code. The baselines CPAM-H and CPAM-Z are about

3× slower than our SPaC-trees, due to the overhead in main-

taining the ordering in leaves. This effect is even more signifi-

cant in batch updates and queries. This justifies the necessity

of our technique of relaxing the ordering in leaves.

For Orth-trees, on Uniform and Sweepline, the P-Orth
tree also achieves good performance (within 52% slower than

the fastest SPaC-Z-tree), and is faster than all other baselines.
The advantage of P-Orth trees over Pkd-trees come from two

aspects: 1) as a Quad-tree, P-Orth tree allows for shallower
tree height and better locality than the binary 𝑘d-tree, and

2) determining the splitter at each node in a P-Orth tree
(computing the middle of the coordinate range) is simpler

than 𝑘d-tree (estimating the median among all points).

On Varden, P-Orth tree becomes slower than others. Since

Orth-trees split the space using the coordinate median, it is

naturally not resistant to skewed data, and is most affected

by the skewed distribution. Although Zd-tree is also a Orth-

tree, it achieves reasonable performance— the main cost for

Zd-tree construction is to sort all points in Morton order,

and this is done by a comparison sort in our implementation.

All other indexes are comparison-based, and the effect of

skewed data on them is minimal in construction time.

In summary, SPaC-trees have consistently better perfor-

mance than all other baselines in construction. P-Orth tree
is also competitive on non-skewed data, but exhibits a disad-

vantage on skewed data.

5.1.2 Incremental Batch Updates. The conclusions for

batch updates are very similar to those of construction. SPaC-
trees has the best overall performance, and SPaC-Z-tree has
a slight advantage over SPaC-H-tree. SPaC-Z-tree is the

fastest in all incremental insertions, and most cases in incre-

mental deletions. For the same reason analyzed in Sec. 5.1.1,

P-Orth trees are less ideal for Varden data. In all other cases,

P-Orth trees are either the best or close to the best.

For all indexes, the incremental update time increases

when the batch size decreases. On the one hand, smaller

batches result in less potential for parallelism.On the other

hand, having more batches also means more modifications

to the tree, requiring more effort to rebalance the tree and

leaving the tree further from being perfectly balanced. The

only index that avoids rebalancing is the Orth-tree, and its

performance with continuous updates is the least affected

by the batch size.

On highly dynamic data, Pkd-trees are less competitive in

update time compared to P-Orth trees and SPaC-trees. One
essential reason is that Pkd-tree has 𝑂 (log2 𝑛) amortized

cost per updated point, while P-Orth tree and SPaC-tree
have cost of 𝑂 (logΔ) and 𝑂 (log𝑛), respectively, where Δ is

8

Figure 4. Running time (in seconds) of 𝑘-NN queries for 𝑘 ∈
{1, 10, 100}. Lower is better. The dataset contains 500M points in 2

dimensions. The tree is constructed by incremental insertion with

batch ratio 0.01%. The test contains 𝑘-NN queries from 10
7
points

from both InD and OOD distribution. Plots are in log-log scale.

Figure 5. Running time (in seconds) of range report queries
for w.r.t output sizes. Lower is better. The dataset contains 500M
points in 2 dimensions. The tree is constructed by incremental

insertion with batch ratio 0.01%. Plots are in log-log scale.

the aspect ratio. Hence, both P-Orth trees and SPaC-trees
are faster than Pkd-trees in updates. In particular, P-Orth
trees are up to 7.18× faster than Pkd-tree in incremental

updates, and SPaC-tree can be up to 7.5× faster. Even for

Varden where Δ is relatively large, P-Orth trees are almost

always faster than Pkd-trees in incremental updates.

5.1.3 Queries. We run queries in three settings: 1) after

constructing a tree of size 5×108, 2) after applying 50% of the

insertion batches, and 3) after applying 50% of the deletion

batches. Most indexes are nearly perfectly balanced after

construction, and thus the first setting reflects their best-case

(static) query performance. The other two settings reflect

how the index quality is affected by updates. In Fig. 3, we only

select results for 10-NN query and a relatively large range

query. To give more details, in Fig. 4 and Fig. 5, we further

show how query performance changes with the output size,

i.e., 𝑘 in 𝑘-NN, and the range size in range-list queries.

𝒌-NN Queries. As shown in Fig. 4, space-partitioning trees

are evidently faster than R-trees in 𝑘-NN queries. This is

natural due to overlapping bounding boxes in R-trees. For

SPaC-trees, while the SPaC-H-tree is slightly slower than

SPaC-Z-tree in construction and updates, it is much more

efficient in queries. This is because the Hilbert curve has

better locality than the Morton curve (adjacent codes are

always geometrically close to each other). Among the R-

trees, SPaC-trees achieve similar or better performance than

Boost R-tree—in all queries, SPaC-H-tree is between 3.7×
slower to 5.66× faster, with a geometric mean of 2.5× faster.

Among the space-partitioning trees, Orth-trees has the

best overall performance. This is because when visiting a

subtree, the P-Orth tree can select 1 out of 4 quadrants,

which is more effective than Pkd-trees and Zd-trees that
select 1 out of 2 half spaces. Hence, Pkd-trees and Zd-trees
are competitive but usually slower than P-Orth trees. The
only exception is on Varden data. For InD queries, due to

the skewed distribution of Varden, Orth-trees may be un-

balanced, and thus the comparison-based Pkd-trees perform
better. Interestingly, on the contrary, both Orth-trees exhibit

an advantage on OOD queries on Varden. The reason is still

in imbalance—for Varden, points are highly clustered, mak-

ing these regions in the tree deep and other regions shallow.

Since the OOD queries distribute differently from the input,

they likely hit the shallow regions and thus are much faster.

Range Queries. As shown in Fig. 3 and 5, Pkd-trees show a

small but consistent advantage on range queries. This is be-

cause a range query visits all subtrees overlapping the query

box. In this case, P-Orth trees have to explicitly check the

bounding boxes for four subtrees, while every non-overlapping

check on a Pkd-tree node can prune half of the points in

this subtree. For other indexes, the relative performance on

range queries is similar to 𝑘-NN queries. Interestingly, while

SPaC-trees are still slower than 𝑘d-trees and P-Orth trees in
range-list queries, the difference is much smaller, especially

on large ranges— in this case, the query time is mostly spent

emitting the result list, hiding the difference in pruning ef-

fectiveness across indexes. Therefore, range queries are less

sensitive to the index type than 𝑘-NN queries.

Impact of Updates to Queries. In the dynamic setting, the

Orth-trees (P-Orth tree andZd-tree) are history-independent
(modulo leaf-wrapping), namely, the final state of the tree is

not affected by the operation order. Therefore, their query

performance is least affected by batch updates, and is the

best in the dynamic setting.

For all other indexes, the tree may get less balanced after

updates. Indeed, they all get slower to some extend compared

to the static setting. This impact is moderate for most indexes

(mostly within 20%). The exceptions all appear inOOD 𝑘-NN

queries, where Pkd-tree gets 3.7× slower after incremental

insertion on Sweepline, and CPAM-Z and SPaC-Z-tree get
about 2.5× slower after incremental deletion on Varden.

In summary, for queries, Orth-trees and 𝑘d-trees are natu-

rally better than R-trees. 𝑘d-trees are better in dealing with

InD queries on non-uniform data, but may be worse in OOD
queries. P-Orth tree has the best or close to the best query

performance in almost all queries and workloads.

9

P-Orth tree [this paper]

Zd-tree [BD’22]

SPaC-H
[this paper]

SPaC-Z
[this paper]

CPAM-H [baseline]

CPAM-Z [baseline]

Pkd-tree [MSGS’25]

Q
ue

ry
 P

er
fo

rm
an

ce

Construction/Update Performance

☺



P-Orth tree [this paper]

Zd-tree [BD’22] SPaC-H
[this paper]

SPaC-Z
[this paper]

CPAM-H [baseline]
CPAM-Z [baseline]

Pkd-tree
[MSGS’25]

P-Orth tree [this paper]
Zd-tree [BD’22]

SPaC-H
[this paper]

SPaC-Z
[this paper]

CPAM-H [baseline]
CPAM-Z [baseline]

Pkd-tree [MSGS’25]
BHL-tree [WYDGS’22]

VardenSweepline

Log-tree
[WYDGS’22]

BHL-tree [WYDGS’22]

Uniform

☺

Log-tree
[WYDGS’22]

Figure 6. Summary of tested index in update and query performance. Results are summarized from numbers in Fig. 3. In particular,

the data points are based on the geometric mean of all relevant operations (updates or queries) in Fig. 3. Data points for Log-tree and
BHL-tree [62] are estimated from the Pkd-tree paper [43]. Our new algorithms are marked in blue. We note that this figure only gives the

average of the tested benchmarks in this paper. More comprehensive conclusions can be found in Table 1.

Build Update Query Build Update Query
Ins. Del. 10NN RG Ins. Del. 10NN RG

Cosmo (3D), n=317M OSM (2D), n=776M
★P-Orth 1.90 16.2 17.9 .120 .566 4.96 14.5 14.9 .083 .050
Zd-Tree 1.65 13.8 20.7 .146 .862 5.88 16.5 23.9 .182 .055

★SPaC-H 1.02 6.59 9.40 .393 .764 2.26 8.19 7.98 .981 .085
★SPaC-Z .837 5.63 8.46 2.58 .980 2.12 7.91 7.37 2.91 .132
CPAM-H 5.48 19.6 19.8 .509 1.04 7.26 15.6 16.7 1.10 .118
CPAM-Z 5.38 19.0 19.2 4.39 1.30 7.01 15.4 16.6 3.47 .182
Boost-R N/A N/A N/A .274 .977 N/A N/A N/A .484 .435

Pkd-Tree 1.89 101 800 .107 .602 4.32 29.3 26.3 .071 .049
: <1.1x fastestfastest time : <2x fastest <5x fastest : > 5x fastest

Figure 7. Running time (in seconds) on real-world datasets.
Lower is better. Insert/Delete: incremental insertion/deletion/

with batch size 0.01%. “RG”: Range-list queries.

5.2 Operations on Real-World Datasets
For real-world datasets, we test a highly clustered dataset

COSMO [53] and the OpenStreetMap (OSM [34]) for Northern

America. We test 10
7 InD 10-NN quiries, and 5 × 104 range-

list queries with range size 10
4
–10

6
. Coordinates are rounded

down to 64-bit integers. We remove duplicates and shift all

points to positive coordinates. To ensure the SFC works prop-

erly in 3D, we scale the coordinates to [0, 106]. We evaluate

construction, incremental updates with batch ratio 0.01% and

queries after construction, and show results in Fig. 7.

SPaC-trees are much faster than others in construction

and updates. On real-world data, this advantage is more

significant than synthetic data. In particular, they are about

2× faster than Pkd-trees in construction, and 3.5–94× faster

in updates. P-Orth trees have similar construction times to

Pkd-trees, but are much faster in updates (1.8–44.7× faster).

On queries, R-trees still performworse than space-partitioning

trees. In most of the cases, Pkd-tree achieves the best query
performance, but P-Orth trees are always competitive—in all

cases, the difference in within 20%. Considering that P-Orth
trees are 1.8–44.7× faster in updates, P-Orth trees offer a
much better query/update tradeoff than Pkd-trees.

5.3 Scalability
We evaluate the scalability of tested indexes in construc-

tion, insertion, and deletion. Since most of them achieve

high parallelism, we only list the conclusions here, and refer

readers to Appendix E for details).

In general, all indexes scale well to 224 hyperthreads,

which means the performance difference mainly comes from

the work (i.e., one-core performance). Among them, SPaC-H-

tree has the best self-relative speedup, which is up to 82.9×
in build and 80× in insertion. This is likely due to its simple

structure as a 1D search tree. Combining both low work and

good scalability, SPaC-H-tree has the best overall construc-
tion and update performance. The P-Orth tree have good
scalability on Uniform, but is slightly worse on Sweepline
and Varden due to the imbalanced tree.

5.4 Summary
Combining all the experimental results, we visualize the

tradeoff between update and query performance for all tested

indexes in Fig. 6 and provide a brief summary here. We also

summarize the conclusions in a table, which we put in the

appendix due to page limit. We recommend readers to read

the table as well to see more detailed analysis.

Pkd-trees. Pkd-trees offer solid performance in queries, but

can degrade on OOD queries. Its update performance is

reasonable but less competitive than P-Orth trees and SPaC-
trees. Our results suggest they are best suited to scenarios

with light to moderate update rates, high query throughput

requirements, and predominantly in-distribution queries.

P-Orth trees (this paper). P-Orth trees generally give the

best overall performance and trade-off between query and

updates, especially non-skewed data. It is best suited to sce-

narios with less skewed data, with any update-query ratio.

It is also friendly to queries after high-volumes of updates,

since the tree quality does not degrade with frequent updates.

SPaC-trees (this paper). SPaC-H-tree performs slightly

worse in updates than SPaC-Z-tree, but significantly bet-

ter in queries. We would recommend SPaC-H-tree as the

default setting for SPaC-trees. Compared to Pkd-trees and
P-Orth trees, SPaC-H-trees are less effective in queries, but

significantly faster in construction and updates. In general,

SPaC-H-trees are best suited to highly dynamic scenarios

where either updates requires very high throughput/low

latency, or updates are much more frequent than queries.

6 Conclusion
In this paper, we systematically study parallel spatial in-

dexes, with a special focus on achieving high-performance

updates in highly dynamic workloads. We proposed two

new data structures: a parallel Orth-tree, the P-Orth tree,

10

and a parallel R-tree, the SPaC-tree family. Both achieve

superior update performance compared to existing parallel

spatial indexes, while remaining competitive with or better

than their counterparts in the literature for queries. We also

highlight our comprehensive experiments to understand the

performance of existing and our new parallel spatial indexes,

and share our findings in Sec. 5.4 and Fig. 6.

References
[1] Daniar Achakeev, Marc Seidemann, Markus Schmidt, and Bernhard

Seeger. 2012. Sort-based parallel loading of R-trees. In BigSpatial@ACM

Special Interest Group on Spatial Information (SIGSPATIAL). 62–70.

[2] Stephen Adams. 1992. Implementing Sets Effciently in a Functional

Language. Technical Report CSTR 92-10. University of Southampton.

[3] Stephen Adams. 1993. Efficient sets—a balancing act. J. Functional

Programming 3, 04 (1993), 553–561.

[4] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. 2019. Real-

time rendering. Crc Press.

[5] Chuan-Heng Ang and Tuck-Choy Tan. 1997. New linear node splitting

algorithm for R-trees. In International Symposium on Spatial Databases

(SSD). Springer, 337–349.

[6] Lars Arge, Mark De Berg, Herman Haverkort, and Ke Yi. 2008. The

priority R-tree: A practically efficient and worst-case optimal R-tree.

ACM Transactions on Algorithms (TALG) 4, 1 (2008), 1–30.

[7] Lars Arge, Klaus H Hinrichs, Jan Vahrenhold, and Jeffrey Scott Vitter.

2002. Efficient bulk operations on dynamic R-trees. Algorithmica 33, 1

(2002), 104–128.

[8] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. 2001. Thread

scheduling for multiprogrammed multiprocessors. Theory of Comput-

ing Systems (TOCS) 34, 2 (2001), 115–144.

[9] Anonymous authors. 2025. Code for PSI-Lib. https://anonymous.
4open.science/r/SpaceTreeLib-422B/.

[10] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders.

2017. In-place parallel super scalar samplesort (ipsssso). In European

Symposium on Algorithms (ESA).

[11] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. 1990. The R*-tree: An efficient and robust access method for

points and rectangles. In ACM SIGMOD International Conference on

Management of Data (SIGMOD). 322–331.

[12] Jon Louis Bentley. 1975. Multidimensional binary search trees used

for associative searching. Commun. ACM 18, 9 (1975), 509–517.

[13] Jon Louis Bentley. 1978. Decomposable searching problems. Technical

Report. Carnegie Mellon University.

[14] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. 1996. The

X-tree : An Index Structure for High-Dimensional Data. In Proceedings

of the VLDB Endowment (PVLDB). Morgan Kaufmann, 28–39.

[15] Jiři Bittner, Michal Hapala, and Vlastimil Havran. 2015. Incremental

BVH construction for ray tracing. Computers & Graphics 47 (2015),

135–144.

[16] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Par-

layLib — a toolkit for parallel algorithms on shared-memory multicore

machines. In ACM Symposium on Parallelism in Algorithms and Archi-

tectures (SPAA). 507–509.

[17] Guy E Blelloch andMagdalenDobson. 2022. Parallel Nearest Neighbors

in Low Dimensions with Batch Updates. In Algorithm Engineering and

Experiments (ALENEX). SIAM, 195–208.

[18] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for

Parallel Ordered Sets. In ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA).

[19] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020.

Optimal parallel algorithms in the binary-forking model. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA). 89–

102.

[20] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri.

2010. Low depth cache-oblivious algorithms. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA).

[21] Guy E. Blelloch and Yan Gu. 2020. Improved Parallel Cache-Oblivious

Algorithms for Dynamic Programming. In SIAM Symposium on Algo-

rithmic Principles of Computer Systems (APOCS).

[22] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient

Scheduling of Multithreaded Computations. SIAM J. on Computing 27,

1 (1998).

[23] J. K. Chen, Yin-Fu Huang, and Yeh-Hao Chin. 1997. A Study of Con-

current Operations on R-Trees. Inf. Sci. 98, 1-4 (1997), 263–300.

[24] Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022.

PaC-trees: Supporting Parallel and Compressed Purely-Functional

Collections. In ACM Conference on Programming Language Design and

Implementation (PLDI).

[25] Andreas Fabri and Sylvain Pion. 2009. CGAL: The computational geom-

etry algorithms library. In ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems. 538–539.

[26] Raphael A Finkel and Jon Louis Bentley. 1974. Quad trees a data

structure for retrieval on composite keys. Acta informatica 4 (1974),

1–9.

[27] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ra-

machandran. 1999. Cache-Oblivious Algorithms. In IEEE Symposium

on Foundations of Computer Science (FOCS).

[28] Junhao Gan and Yufei Tao. 2017. On the hardness and approximation

of Euclidean DBSCAN. ACM Transactions on Database Systems (TODS)

42, 3 (2017), 1–45.

[29] Yván J García R, Mario A López, and Scott T Leutenegger. 1998. A

greedy algorithm for bulk loading R-trees. In ACM International Sym-

posium on Advances in Geographic Information System (SIGSPATIAL

GIS). 163–164.

[30] Yan Gu, YongHe, and Guy E Blelloch. 2015. Ray specialized contraction

on bounding volume hierarchies. In Computer Graphics Forum, Vol. 34.

309–318.

[31] Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch. 2013. Efficient

BVH construction via approximate agglomerative clustering. In High-

Performance Graphics (HPG).

[32] Yan Gu, Zachary Napier, and Yihan Sun. 2022. Analysis of Work-

Stealing and Parallel Cache Complexity. In SIAM Symposium on Algo-

rithmic Principles of Computer Systems (APOCS). SIAM, 46–60.

[33] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial

searching. In ACM SIGMOD International Conference on Management

of Data (SIGMOD). 47–57.

[34] Mordechai Haklay and Patrick Weber. 2008. Openstreetmap: User-

generated street maps. IEEE Pervasive computing 7, 4 (2008), 12–18.

[35] Herman Haverkort and Freek V Walderveen. 2008. Four-dimensional

Hilbert curves for R-trees. Journal of Experimental Algorithmics (JEA)

16 (2008), 3–1.

[36] Chris L Jackins and Steven L Tanimoto. 1980. Oct-trees and their use

in representing three-dimensional objects. Computer Graphics and

Image Processing (CGIP) 14, 3 (1980), 249–270.

[37] Ibrahim Kamel and Christos Faloutsos. 1992. Parallel R-trees. ACM

SIGMOD International Conference on Management of Data (SIGMOD)

21, 2 (1992), 195–204.

[38] Ibrahim Kamel and Christos Faloutsos. 1993. On packing R-trees. In

International conference on Information and Knowledge Management

(CIKM). 490–499.

[39] Jinha Kim, Seung-Keol Kim, and Hwanjo Yu. 2013. Scalable and paral-

lelizable processing of influence maximization for large-scale social

networks?. In 2013 IEEE 29th international conference on data engineer-

ing (ICDE). IEEE, 266–277.

[40] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David

Luebke, and Dinesh Manocha. 2009. Fast BVH construction on GPUs.

In Computer Graphics Forum, Vol. 28. Wiley Online Library, 375–384.

[41] Scott T Leutenegger, Mario A Lopez, and Jeffrey Edgington. 1997.

STR: A simple and efficient algorithm for R-tree packing. In IEEE

International Conference on Data Engineering (ICDE). IEEE, 497–506.

11

https://anonymous.4open.science/r/SpaceTreeLib-422B/
https://anonymous.4open.science/r/SpaceTreeLib-422B/

[42] Lijuan Luo, Martin DF Wong, and Lance Leong. 2012. Parallel imple-

mentation of R-trees on the GPU. In 17th Asia and South Pacific Design

Automation Conference. IEEE, 353–358.

[43] Ziyang Men, Zheqi Shen, Yan Gu, and Yihan Sun. 2025. Parallel kd-

tree with Batch Updates. ACM SIGMOD International Conference on

Management of Data (SIGMOD) 3, 1 (2025), 1–26.

[44] Vincent Ng and Tiko Kameda. 1994. The R-Link Tree: A Recover-

able Index Structure for Spatial Data. In Database and Expert Systems

Applications (DEXA), Vol. 856. Springer, 163–172.

[45] Yutaka Ohsawa and Masao Sakauchi. 1990. A new tree type data

structure with homogeneous nodes suitable for a very large spatial

database. In IEEE International Conference on Data Engineering (ICDE).

IEEE Computer Society, 296–297.

[46] Jacopo Pantaleoni and David Luebke. 2010. HLBVH: Hierarchical

LBVH construction for real-time ray tracing of dynamic geometry. In

High Performance Graphics (HPG). 87–95.

[47] Apostolos Papadopoulos and Yannis Manolopoulos. 2003. Parallel

bulk-loading of spatial data. Parallel Comput. 29, 10 (2003), 1419–1444.

[48] Sushil K Prasad,MichaelMcDermott, Xi He, and Satish Puri. 2015. GPU-

based Parallel R-tree Construction and Querying. In IEEE International

Parallel and Distributed Processing Symposium (IPDPS) Workshop. IEEE,

618–627.

[49] Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. 2018. The-

oretically Optimal and Empirically Efficient R-trees with Strong Paral-

lelizability. Proceedings of the VLDB Endowment (PVLDB) 11, 5 (2018),

621–634.

[50] Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. 2020. Pack-

ing R-trees with space-filling curves: Theoretical optimality, empirical

efficiency, and bulk-loading parallelizability. ACM Transactions on

Database Systems (TODS) 45, 3 (2020), 1–47.

[51] Boris Schäling. 2011. The boost C++ libraries. Boris Schäling.

[52] Bernd Schnitzer and Scott T. Leutenegger. 1999. Master-Client R-Trees:

A New Parallel R-Tree Architecture. In SSDBM. IEEE Computer Society,

68–77.

[53] Nick Scoville, H Aussel, Marcella Brusa, Peter Capak, C Marcella Car-

ollo, M Elvis, M Giavalisco, L Guzzo, G Hasinger, C Impey, et al. 2007.

The cosmic evolution survey (COSMOS): overview. The Astrophysical

Journal Supplement Series 172, 1 (2007), 1.

[54] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The

R+-Tree: A Dynamic Index for Multi-Dimensional Objects. In Proceed-

ings of the VLDB Endowment (PVLDB). Morgan Kaufmann, 507–518.

[55] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The

R+-Tree: A Dynamic Index for Multi-Dimensional Objects. In Proceed-

ings of the VLDB Endowment (PVLDB). Morgan Kaufmann, 507–518.

[56] Lai Shuhua, Zhu Fenghua, and Sun Yongqiang. 2000. A Design of

Parallel R-tree on Cluster of Workstations. In International Workshop

on Databases in Networked Information Systems. Springer, 119–133.

[57] Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. 2018. PAM: Parallel

Augmented Maps. In ACM Symposium on Principles and Practice of

Parallel Programming (PPOPP).

[58] Herbert Tropf and Helmut Herzog. 1981. Multidimensional Range

Search in Dynamically Balanced Trees. Angewandte Info. 2 (1981),

71–77.

[59] Timo Viitanen, Matias Koskela, Pekka Jääskeläinen, Aleksi Tervo, and

Jarmo Takala. 2018. PLOCTree: A fast, high-quality hardware BVH

builder. ACM on Computer Graphics and Interactive Techniques 1, 2

(2018), 1–19.

[60] Ingo Wald, Thiago Ize, and Steven G Parker. 2008. Fast, parallel, and

asynchronous construction of BVHs for ray tracing animated scenes.

Computers & Graphics 32, 1 (2008), 3–13.

[61] Michael S Warren and John K Salmon. 1993. A parallel hashed oct-tree

n-body algorithm. In Proceedings of the 1993 ACM/IEEE conference on

Supercomputing. 12–21.

[62] Rahul Yesantharao, Yiqiu Wang, Laxman Dhulipala, and Julian

Shun. 2021. Parallel Batch-Dynamic k d-Trees. arXiv preprint

arXiv:2112.06188 (2021).

[63] Simin You, Jianting Zhang, and Le Gruenwald. 2013. Parallel spatial

query processing on gpus using r-trees. In ACM SIGSPATIAL interna-

tional workshop on analytics for big geospatial data. 23–31.

12

General Features Existing Solutions and Their Features

𝑘
d-
tr
ee

+ Linear space

+ Flexible for most queries (e.g., k-NN, range)

+ Non-overlapping bounding boxes (thus

effective pruning in queries)

+ Generally fast queries across distributions

+ Comparison-based, resistant to skewed data

+ Easily generalizable beyond three

dimensions

− Slow/complicated updates

Pkd-tree [43]
+ I/O optimizations for construction and updates

+ Fast construction: 𝑂 (𝑛 log𝑛) work and polylogarithmic span

+ Among the fastest for queries in most tests, except for OOD queries on

skewed distributions

− 𝑂 (𝑚 log
2 𝑛) work for batch update of batch size𝑚, unfriendly to workloads

with frequent updates

BHL-tree and Log-tree [62]
+ Can leverage vEB layouts for query optimization (due to their static nature)

+ Construction with 𝑂 (𝑛 log𝑛) work and polylogarithmic span

− Large batch-update cost: 𝑂 (𝑚 log
2 𝑛) (Log-tree) or 𝑂 ((𝑛 +𝑚) log(𝑛 +𝑚))

(BHL-tree, due to fully rebuild)

− Log-tree uses logarithmic method, leading to inefficient queries

O
rt
h-
tr
ee

+ Linear space

+ Flexible for most queries (e.g., k-NN, range)

+ Non-overlapping bounding boxes (thus

effective pruning in queries)

+ Fast queries, especially on non-skewed data

+ History-independent (modulo leaf wraps)

+ Simple/fast construction and updates,

especially on non-skewed data

− Sensitive to skewed data

− Usually not generalizable beyond three

dimensions

P-Orth tree (this paper)
+ I/O optimizations for construction and updates

★ Fastest query performance on non-skewed data

★ Usually faster updates than Pkd-trees, even on reasonably skewed data;

slower than SPaC-trees
+ Fast construction: 𝑂 (𝑛 logΔ) work and polylogarithmic span

★ Fast batch updates: 𝑂 (𝑚 logΔ) work and polylogarithmic span

− Most affected by skewed data in construction, updates and queries; less

efficient for InD queries on skewed data

Zd-tree [17]
+ Relatively skew-resistant due to comparison sorting

+ Fast construction: 𝑂 (𝑛 log𝑛) work and polylogarithmic span

+ 𝑂 (𝑚 logΔ) work for batch update, where Δ is the aspect ratio

− Generally slower updates/construction than the P-Orth tree
− Integer coordinates and Morton curve only

R
-t
re
e/
B
V
H

+ Linear Space

+ Flexible rules due to object-partitioning

+ Simple/fast construction and updates

+ Applicable to common queries (e.g., k-NN,

range)

+ Easily generalizable beyond three

dimensions

− Overlapping bounding boxes (thus

ineffective pruning in queries); usually

slower queries than space-partitioning trees

SPaC-tree (this paper)
★ Compatible with Hilbert, Morton or other space-filling curves

★ Embeds multi-dimensional data to 1D, enabling simple algorithm design and

high parallelism (best self-speedup among tested indexes)

+ Fast construction: 𝑂 (𝑛 log𝑛) work and polylogarithmic span

★ Super fast batch updates: 𝑂 (𝑚 log𝑛) work and polylogarithmic span

+ Comparison-based; robust to skewed data

★ Fastest construction and update time among all baselines; significant

advantage on updates

− Integer coordinates only

− Slow queries than space-partitioning trees due to overlapping bounding

boxes

Boost R-tree [51]
+ Supports multiple heuristics

− No parallel construction or batch updates

− Slow queries than space-partitioning trees due to overlapping bounding

boxes

R
an

ge
tr
ee + Worst-case work bound for range queries

− 𝑂 (𝑛 log𝑛) space
− Only supports range queries

− Inefficient in more than two dimensions

CPAM/PAM range tree [24, 57]
+ Parallel construction with 𝑂 (𝑛 log𝑛) work and polylogarithmic span

− No simple support for parallel batch updates

Table 1. Summary of the main features of different spatial trees and existing solutions for parallel construction, updates, and queries. The

symbol “★”marks our key technical contributions. In the bounds,𝑚 is the batch size, 𝑛 is the index size, and Δ is the aspect ratio.

13

A Analysis on P-Orth Trees
We now analyze the theoretical guarantees for our P-Orth

tree construction and batch update algorithms. Let 𝑆 ⊆ 𝑀 a

finite point set in the bounded Euclidean space𝑀 and denote

𝐵𝑝 (𝑟) ⊆ 𝑆 the set of points enclosed by a ball with radius

𝑟 centered at 𝑝 . Then 𝑆 has (𝜌, 𝑐)−expansion if and only if

∀𝑝 ∈ 𝑀 and 𝑟 > 0:

|𝐵𝑝 (𝑟) | ≥ 𝜌 =⇒ |𝐵𝑝 (2𝑟) | ≤ 𝑐 · |𝐵𝑝 (𝑟) | (1)

The constant 𝑐 is referred to expansion rate and 𝜌 is usually

set to be 𝑂 (log |𝑆 |). We say the expansion rate is low if 𝑐 =

𝑂 (1). Intuitively, the low expansion property ensures the

points distributed uniformly in the space.

Similarly, the aspect ratio Δ is defined as:

Δ =
max𝑑 (𝑥,𝑦)
min𝑑 (𝑥,𝑦) ∀𝑥,𝑦 ∈ 𝑆 (2)

and is said to be bounded if Δ < 𝑛𝑐 holds for some constant

𝑐 > 0.

We will now show that P-Orth tree with the assumption

of bounded aspect ratio. Without the assumptions, the tree

height becomes𝑂 (logΔ). We can replace the tree heights in

the following analysis to get Thm. 3.1.

Lemma A.1. The height for P-Orth tree on points 𝑃 with

size 𝑛 is 𝑂 (log𝑛), assuming the low expansion rate and the

bounded aspect ratio for 𝑃 .

Proof. By the low expansion rate, the 𝐻 has side length at

most a constant fraction of 𝑑𝑚𝑎𝑥 , and the recursion stops

when two points with distance 𝑑𝑚𝑖𝑛 are separated. Since

𝑑𝑚𝑎𝑥/𝑑𝑚𝑖𝑛 = 𝑛𝑐 by the bounded aspect ratio, and the splitters

cut the 𝐻 in the spatial median, it takes 𝑂 (log𝑛) levels of
splitters to reduce the side length of 𝐻 to 𝑑𝑚𝑖𝑛 . The proof

follows then. □
With the above lemma, we now show our Orth-tree con-

struction algorithmhas𝑂 (𝑛 log𝑛)work, polylogarithmic span

and 𝑂 (Sort(𝑛)) cache complexity on 𝑛 points. Here wssume

the cache size 𝑀 = Ω(polylog(𝑛)) as in [20, 21], by set-

ting the skeleton height 𝜆 = 𝜖 log(𝑀) for 𝜖 < 1/(2𝐷),
and chunk size 𝑙 = 2

𝐷 ·𝜆
in the sieving algorithm. Denote

𝑂 (Sort(𝑛)) = 𝑂 (𝑛/𝐵 · log𝑀 𝑛) the optimal cache complexity

for sorting [20].

TheoremA.2. With parameters specified above, a P-Orth tree
can be constructed on points 𝑃 with size 𝑛 in 𝑂 (𝑛 log𝑛) work,
𝑂 (log2 𝑛) span and 𝑂 (Sort(𝑛)) cache complexity, assuming

the low expansion rate and the bounded aspect ratio for 𝑃 .

Proof. Every point is processed at most once in each round,

except for the points sieving, where finding the bucket for

one point takes 𝑂 (𝜆 · 𝐷) work. The algorithm terminates

after 𝑂 (log𝑛)/𝜆 rounds of recursion, which implies 𝑂 (𝜆 ·
𝐷) ·𝑂 (log𝑛)/𝜆 = 𝑂 (log𝑛) total work per point. Therefore,

the total work is 𝑂 (𝑛 log𝑛).
For the span, practically the tree skeleton construction and

processing each block is done sequentially. However, theo-

retically, they can be parallelized in 𝑂 (𝜆 log𝑛) and 𝑂 (log𝑛)

span, respectively [20]. All other operations takes 𝑂 (log𝑛)
span. In total, the span in each round is 𝑂 (𝜆 log𝑛). The al-
gorithm has 𝑂 (log𝑛)/𝜆 rounds of recursion, so the overall

span is 𝑂 (log2 𝑛).
Now consider the cache complexity. Both building the

tree skeleton and sub-regions computation fully fit in cache.

The chunk size 𝑙 = 2
𝜆 ·𝐷 = 𝑀𝜖 ·𝐷 ≤

√
𝑀 , which implies

that each chunk fully fits in cache. Therefore, the sieving

algorithm takes 𝑂 (𝑛/𝐵) block transfers. All other opera-

tions take𝑂 (𝑛/𝐵) block transfers, in total𝑂 (𝑛/𝐵 · log𝑛/𝜆) =
𝑂 (𝑛/𝐵 · log𝑀 𝑛) I/Os. □

For batch updates, we assumes the batch size𝑚 = 𝑂 (𝑛),
and if𝑚 = 𝜔 (𝑛), we simply replace 𝑛 with𝑚 + 𝑛 in below

bounds for insertions, and there is no change for deletions.

TheoremA.3. The Update (insertion or deletion) of a batch of

size𝑚 = 𝑂 (𝑛) on a P-Orth tree of size𝑛 can be performed in op-

timal𝑂 (𝑚 log𝑛) work,𝑂 (log2 𝑛) span, and𝑂 (𝑚(log(𝑛/𝑚) +
(1 + log𝑀𝑚)/𝐵)) cache complexity, assuming the low expan-

sion rate and the bounded aspect ratio for the updated points.

Proof. We take the insertion as an example, the deletion is

similar. For the work, note the tree after updates is same as

the one built from scratch on all points, which has height

𝑂 (log(𝑚+𝑛)) by Lem. A.1. The height difference is𝑂 (log(𝑚+
𝑛)) − 𝑂 (log𝑛) = 𝑂 (1). Since each leaf wraps 𝑂 (1) points,
and every point needs 𝑂 (log𝑛) work to reach the leaf, the

total work is 𝑂 (𝑚 log𝑛).
The analysis for span is the same as for construction in

Thm. A.2.

The cache bound for updates has two parts. The first is

sorting within the batch. This part has 𝑂 (𝑚(1 + log𝑀𝑚)/𝐵)
cache complexity. The second part is accessing the tree nodes

in the original P-Orth tree. Finding𝑚 leaves in a tree of size

𝑛 will touch 𝑂 (𝑚 log(𝑛/𝑚)) tree nodes [18]. Putting both

cost together gives the stated cache complexity. □
Replacing all the tree height𝑂 (log𝑛) with𝑂 (logΔ) gives

Thm. 3.1, without the assumption of bounded aspect ratio.

B Analysis on SPaC-Trees
B.1 Correctness
We prove the correctness of the update algorithms for

SPaC-trees by showing its equivalence to that of the PaC-
tree. Here we discuss the insertion algorithm, and deletion

can be shown similarly. First, the Alg. 3 constructs the same

tree as the PaC-tree, so the tree returned in line 6 and line 12

remains the same. The split key in line 13 is same for both

trees, therefore the SPaC-tree will insert same points in

leaves as the PaC-tree in line 9, but keep the points unsorted.

The Join and RightJoin operations (line 19 and line 21) are

identical for both tree. In this case, the tree split will reach the

same leaves in both trees, and line 34 and line 43 ensure the

points order in SPaC-tree to be identical to those in PaC-tree
before further proceeding. The other operations in Expose

and Node remains the same, and the correctness follows.

14

B.2 Cost Analysis
Theorem B.1. A SPaC-tree with 𝑛 points can be constructed

in𝑂 (𝑛 log𝑛) work,𝑂 (log𝑛) span, and𝑂 (Sort(𝑛)) cache com-

plexity.

Proof. The HybridSort inAlg. 3 is a simple modification of

the sample-sort algorithm [10, 20]—all extra operations (i.e.,

computing the SFC code and storing the point id) take no

additional asymptotic cost. The BuildSorted in Alg. 3 is a

parallel divide-and-conquer algorithm that takes𝑂 (𝑛) work,
𝑂 (log𝑛) span and𝑂 (𝑛/𝐵) cache complexity. The proof then

follows. □
In the following proof we assume the batch size𝑚 = 𝑂 (𝑛).

Note that the following proof depends on the analysis of

PaC-tree, which can be found at [24].

TheoremB.2. A batch update (insertion or deletion) of size𝑚

on a SPaC-tree of size 𝑛 uses 𝑂 (𝑚 log𝑛) work and 𝑂 (log2 𝑛)
span.

Proof. Wefirst show the span bound. The sorting takes𝑂 (log𝑚)
span, and the following points insertion/deletion takes𝑂 (log𝑛)
rounds to reach leaves. Expanding the leaf and restore the

points order take constant time. Both the Join and RightJoin

take 𝑂 (log𝑚) span [24] in each round. In total, the entire

process has 𝑂 (log𝑚 log𝑛) span.
We now show the work bound. Sorting 𝑚 points takes

𝑂 (𝑚 log𝑚) work, and each point takes 𝑂 (1) operation in

each round. The leaf expansion takes constant time. The

work by Join is asymptotically bounded by the work of

RightJoin [24], and the total work of RightJoin is𝑂 (𝑚 log
𝑛
𝑚
).

The total work therefore is 𝑂 (𝑚 log𝑛). □
Combining both lemmas gives Thm. 4.1.

C Implementation Details
P-Orth tree.We choose to build 𝜆 = 3 levels for 2D points

and 𝜆 = 2 levels for 3D points in the P-Orth tree skeleton,
which provides generally good performance on our machine.

For each bounding box, we store only the point coordinates

(with no extra metadata) of the lower-left and upper-right

corners to save memory. A single 𝑘-NN query traverse sub-

trees in increasing order of their minimum distance to the

query point, computed by comparing the query point with

the bounding box associated with each subtree.

SPaC-tree. The implementation of SPaC-tree builds on the

code of PaC-tree [24], but with a careful redesign to opti-

mize performance. Simply treating PaC-tree as a black box

introduces overhead from transforming input points into

key-value pairs—using the SFC code as the key and the en-

tire point as the value—as suggested in its user manual. We

avoid this by redesigning the interface so that SPaC-tree
automatically parses the SFC code in each point as the key

and treats the remaining attributes as the value. This allows

it to operate directly on the input sequence, reducing pre-

processing time and memory usage.

We also introduce a heuristic to optimize batch updates

when a leaf node overflows. The original approach in Alg. 4

unconditionally rebuilds the parent subtree by invoking

Alg. 3. This can be inefficient when many points are af-

fected, because the insertion batch must be merged with

the points in the leaves prior to recursive node allocation,

even when the batch is already sorted. Hence, it incurs sig-

nificant overhead. An alternative is to explicitly expose the

leaf as a balanced tree with empty leaves and then perform

the batch insertion on that subtree. Our method chooses

between these strategies via a threshold. If the combined

size of the overflowing leaf and the new batch is below a

threshold (in our case, 4𝜙), we perform a standard, localized

rebuild. Otherwise, we expose the leaf and perform batch

insertion on the exposed subtree.

Parameter Choosing.We empirically set the parameters

to achieve the best performance on our machine for all im-

plementations. We set the leaf wrap to 40 for both SPaC-tree
and CPAM, and 32 for all other baselines. Both SPaC-tree
and CPAM use the weight-balanced scheme with balancing

parameter 𝛼 = 0.2, i.e., the weights of left and right sub-tree

can be differ by at most 20%. For Pkd-tree, we adopt 𝛼 = 0.3

as suggested in their paper.

D Batch Updates
We now provide more experimental results for single

batch updates. We evaluate the performance of batch up-

dates by varying the batch size from 10
5
to 10

9
points, with

results presented in Fig. 8. The experimental setup consists

of an initial tree constructed with 10
9
points. We then per-

form two separate operations: a batch insertion, which adds

new points drawn from the same distribution, and a batch

deletion, which removes an equivalent number of existing

points from the tree. Smaller batch sizes were omitted from

this analysis, as their low computational cost diminishes the

practical benefits of parallelism.

All baselines scale well on both single batch insertions and

deletions. The SPaC-H-tree is faster than others on all bench-
marks, except for the batch deletion on Uniform, where it is
slightly slower than the P-Orth tree due to the handling of

imbalance. The P-Orth tree is slower than the SPaC-H-tree
on batch insertions on Varden, since it is skewed on highly

clustering data, and the tree traversal time incurs more over-

head. The Pkd-tree is generally slower than SPaC-H-tree
on skewed datasets such as Sweepline and Varden, since its
reconstruction-based balancing scheme is more expensive

when the rebuilt sub-tree is large, which is typical on skewed

datasets.

E Scalability Test
We evaluate the scalability of tested indexes in construc-

tion, insertion, and deletions, which is illustrated in Fig. 9.

We use 10
9
2D points. A batch insertion uses a single batch

of size 10
7
. The data points in Fig. 9 show the speedup over

the 1-core performance of SPaC-H-tree, and therefore Fig. 9

also reflects the true efficiency comparison of each index

(higher is better). In general, all indexes scale well to 224 hy-

perthreads, and the difference mainly comes from the work

15

Figure 8. Running time for batch updates on points from
synthetic datasets on a tree with 1000M points in 2 dimen-
sions. Lower is better. The batch insertion is to insert another

batch from same distribution, and the batch deletion is to delete

a batch from the existing points. The batch size is the number of

points in the batch (× 1M). Plots are in log-log scale.

Figure 9. Normalized parallel speedup of tree construction,
batch insertion and batch deletion on different number of
processors. Higher is better. The speedup is normalized to the

running time on the SPaC-tree on 1 thread respectively. The dataset
contains 1000M points in 2 dimensions. "Batch insert" is to insert

another 1% points into a tree containing 1000M points, and "Batch

delete" is to delete 1% points from the tree. Both in a single batch.

"112h" means using all 112 cores (224 hyper-threads). There is no

result for Boost since it is sequential.

(i.e., one-core performance). Among them, SPaC-H-tree has
the best self-relative speedup, which is up to 82.9× in build

and 80× in insertion. This is likely due to its simple structure

as a 1D search tree. Combining both low work and good

scalability, SPaC-H-tree has the best overall construction

and update performance. The scalability on batch deletion is

similar to that of batch insertion, where the SPaC-H-tree has
the best scalability on 112 cores, which is 67× on Sweepline,
37.4× on Varden and 68.4× on Uniform. The P-Orth tree
have good scalability on Uniform, but is slightly worse on

Sweepline and Varden due to the imbalanced tree.

F Performance on 3D Synthetic Datasets
We now provide more experimental results on 3D syn-

thetic datasets. We generate 3D synthetic datasets with the

same method as in 2D, but limit the coordinates range within

[0, 106] to make it compatible to the SPaC-H-tree. The ex-
periments set up is the same as in 2D Sec. 5. The results are

shown in Fig. 10. We omit other baselines since they have

been shown to be slower as in 2D case Fig. 3 .

For tree construction, SPaC-H-trees remain the fastest

ones, and the time is more close to the 2D case compared

with P-Orth trees and Pkd-trees, since the SFC-based indexes
are less sensitive to the dimensionality. As a result, SPaC-
H-trees are 1.3–2.2× faster than P-Orth trees and 1.2–2.1×
faster than Pkd-trees.

Regarding the batch updates, the SPaC-H-tree remains the

fastest one on most of the benchmarks, except on Uniform
where it is slightly slower than the P-Orth tree due to han-

dling of imbalance. P-Orth trees are faster than Pkd-trees
on all benchmarks. The reasons are 1) the P-Orth tree does
not need to handle the imbalance, and 2) the range of coordi-

nates is limited to [0, 106], which enables the tree height of

P-Orth trees become much smaller than it in 2D cases (the

data range is [0, 109]), so that the tree traversal time is much

reduced in the skewed data such as Sweepline and Varden.
However, Pkd-trees still keep the advantage on queries—the

fastest one on most of the benchmarks, and competitive on

the rest.

16

: within 1.1x the fastestThe fastest time is in bold and underlined : within 2x the fastest : within 5x the fastest : > 5x the fastest

Build
time

Query after Build (100%) Incremental Insert Query after Inc. Ins. (50%) Incremental Delete Query after Inc. Del. (50%)

10NN Range Batch Size 10NN Range Batch Size 10NN Range
InD OOD Cnt List 10% 1% 0.1% .01% InD OOD Cnt List 10% 1% 0.1% .01% InD OOD Cnt List

U
ni

fo
rm ★P-OrthTree 5.18 .924 .904 .701 1.93 5.69 12.6 24.1 35.2 .988 .967 .715 1.80 5.93 12.5 23.8 35.4 1.07 1.06 .964 2.25

★SPaC-H 4.08 7.34 7.29 .968 1.93 4.70 7.09 14.7 28.8 7.02 7.04 1.00 2.08 5.78 17.6 33.4 49.9 7.06 7.09 .993 2.05

PkdTree 4.70 .916 .894 .758 1.80 5.74 13.41 24.5 36.9 .983 .935 .772 1.77 5.41 13.0 25.9 61.3 .916 .893 .772 1.79

Sw
ee

pl
in

e

★P-OrthTree 6.41 .637 1.373 .877 2.03 6.44 6.33 6.58 19.62 .666 1.97 .830 1.80 4.30 5.15 5.93 21.1 .666 1.98 .831 1.80

★SPaC-H 3.90 3.84 1.04 1.13 2.02 3.76 4.03 5.81 13.0 4.66 1.57 1.15 2.18 3.01 3.30 6.13 20.5 3.86 1.26 1.14 2.16

PkdTree 5.57 .603 1.83 .854 1.87 16.4 21.1 28.5 69.0 1.010 6.71 1.039 1.98 14.6 28.5 38.0 65.8 .647 .346 .867 1.83

V
ar

de
n ★P-OrthTree 7.5 .257 .214 .552 1.83 6.7 8.9 11.5 19.0 .263 .224 .593 1.71 6.04 7.78 9.7 17.3 .264 .238 .640 1.82

★SPaC-H 3.37 2.33 1.59 .833 1.84 3.81 4.40 5.66 10.8 2.52 1.59 .847 1.98 4.05 5.32 6.66 11.3 1.87 1.30 .836 1.98

PkdTree 7.04 .152 .159 .599 1.72 11.8 16.3 19.6 33.8 .157 .167 .628 1.70 6.20 8.9 12.0 23.7 .160 .164 .613 1.69

Figure 10. Running time (in seconds) on 3-dimensional synthetic data. Lower is better. The fastest time in each test is in bold and

underlined. We use colors to mark results within 1.1×, 2×, 5×, and > 5× the fastest time. Detailed settings for build, queries, and incremental

insertion/deletion are introduced at the beginning of Sec. 5.1. InD/OOD: in-/out-of-distribution.

17

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Computational Models
	2.2 Spatial Data
	2.3 Existing Commonly-Used Spatial Indexes

	3 The Parallel Orth-tree (P-Orth Tree)
	3.1 P-Orth Tree Construction
	3.2 Batch Updates for P-Orth Trees
	3.3 Theoretical Analysis

	4 The Spatial PaC-tree (SPaC-tree)
	4.1 SPaC-tree Construction
	4.2 Batch Updates on SPaC-trees
	4.3 Theoretical Analysis

	5 Experiments
	5.1 Overall Evaluation under Synthetic Datasets
	5.2 Operations on Real-World Datasets
	5.3 Scalability
	5.4 Summary

	6 Conclusion
	References
	A Analysis on P-Orth trees
	B Analysis on SPaC-trees
	B.1 Correctness
	B.2 Cost Analysis

	C Implementation Details
	D Batch Updates
	E Scalability Test
	F Performance on 3D Synthetic Datasets

