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Abstract

Maintaining spatial data (points in two or three dimen-
sions) is crucial and has a wide range of applications, such as
graphics, GIS, and robotics. To handle spatial data, many data
structures, called spatial indexes, have been proposed, e.g.,
kd-trees, oct/quadtrees (also called Orth-trees), R-trees, and
bounding volume hierarchies (BVHs). In real-world applica-
tions, spatial datasets tend to be highly dynamic, requiring
batch updates of points with low latency. This calls for effi-
cient parallel batch updates on spatial indexes. Unfortunately,
there is very little work that achieves this.

In this paper, we systematically study parallel spatial in-
dexes, with a special focus on achieving high-performance
update performance for highly dynamic workloads. We select
two types of spatial indexes that are considered optimized for
low-latency updates: Orth-tree and R-tree/BVH. We propose
two data structures: the P-Orth tree, a parallel Orth-tree,
and the SPaC-tree family, a parallel R-tree/BVH. Both the
P-Orth tree and the SPaC-tree deliver superior performance
in batch updates compared to existing parallel kd-trees and
Orth-trees, while preserving better or competitive query
performance relative to their corresponding Orth-tree and
R-tree counterparts. We also present comprehensive experi-
ments comparing the performance of various parallel spatial
indexes and share our findings at the end of the paper.

1 Introduction

Spatial data widely appear in geographic information sys-
tems (GIS), spatial databases, computer graphics, robotics
and its planning, and many other domains. Efficiently pro-
cessing such geometric objects (usually points) in two or
three dimensions is of great importance, for both mainte-
nance (construction, insertion, deletion) and queries (range
queries, nearest-neighbor queries, etc.).

Given the wide applicability, many well-known data struc-
tures (usually called “spatial indexes”) have been proposed to
handle spatial data, such as kd-trees[12], oct/quadtrees[26]
(collectively referred to as orth-trees), range trees [13], R-
trees [33], and bounding volume hierarchies (BVHs) [4]. Spa-
tial indexes typically organize points as a tree, with each
subtree corresponding to a subspace (not necessarily non-
overlapping). The bounding boxes of the subspaces can be
used to prune subtrees during queries. For instance, consider
a nearest-neighbor search: when the search reaches a sub-
tree, if its sub-region is farther from the query point than the
current nearest neighbor, the subtree can be pruned. Despite
maintaining different invariants, all these trees share the
same high-level intuition: skip most of the objects in queries
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by pruning, leading to efficient query performance.

Real-world applications can involve highly dynamic data,
and updates may be latency-sensitive or throughput-sensitive.
For example, in 3D games, moving objects must be reflected
quickly to affect lighting and collision detection, whereas
GIS applications often ingest high-volume sensor streams
where total update throughput is critical. In both scenarios,
updates frequently arrive in batches and must be incorpo-
rated into the index promptly. To handle both updates and
queries efficiently, different spatial indexes offer different
trade-offs. Traditionally, kd-trees are considered highly effi-
cient for queries due to their strongest invariant (splitting at
object medians), but updates are costly. Orth-trees offer com-
petitive query performance and faster updates due to their
simpler invariant (splitting at spatial medians). R-trees/BVHs
encompass a large family of solutions; they usually provide
the simplest and fastest updates but slower queries.

With the ever-growing data volume, parallelism becomes
essential in designing efficient data structures. Unfortunately,
little work is known on parallel spatial indexes with batch up-
dates. In the two famous libraries, CGAL [25] and Boost [51],
most spatial indexes are sequential. The only exception is
CGAL’s kd-tree, but it has known scalability issues [17, 43].
Parallel construction for range trees was described in [57],
but it does not support batch updates. In 2022, Blelloch and
Dobson [17] proposed Zd-tree, the first parallel quadtree.
The idea is to leverage the Morton curve, a space-filling
curve (SFC) that maps 2D or 3D points to 1D integers, and
use this information to facilitate construction and batch up-
dates. However, Zd-trees are slower than the parallel kd-
tree (the Pkd-tree), proposed later [43], despite better the-
oretical bounds for updates (O(log n) vs. O(log? n) per up-
dated point). We believe the main reason is the I/O (cache)
optimizations in Pkd-tree. More interestingly, despite R-
trees/BVHs having the simplest structure, we are aware
of little work on parallel batch updates for them. Indeed,
most existing approaches are either based on single inser-
tions/deletions [7, 15, 33, 51, 54], or fully rebuilding the tree
upon updates [31, 46, 59]. The only relevant work [49] uses
the logarithmic method, which can substantially slow down
the query time. Hence, it is natural to ask whether Orth-
trees and R-trees/BVHs can still leverage their strengths for
highly dynamic workloads in the parallel setting. In partic-
ular, we investigate whether they can achieve much faster
construction and batch updates (with better theoretical guar-
antees) than kd-trees in parallel, while preserving query
performance as in their sequential counterparts.



In this paper, we systematically study parallel spa-
tial indexes, with a special focus on achieving high-
performance updates in highly dynamic workloads.
We propose two new (families of) data structures: P-Orth
trees and the SPaC-tree family. We integrate these data
structures into a library called the Parallel Spatial Index Li-
brary [9], abbreviated as PSI-Lib or ¥-Lib.

We first show our design for a parallel Orth-tree called the
P-Orth tree. Almost all existing Orth-trees [17, 39, 40, 46, 61]
use space-filling curves (SFCs) to accelerate construction
and updates. However, simply computing and sorting the
SFC codes of the points already requires several passes of
reading and moving all data, which is time-consuming. In
this paper, we present the design of P-Orth trees that does
not use SFCs. We borrow the idea of the sieving algorithm
from the Pkd-tree [43], which directly reorders the points
while constructing or inserting them into the tree, so that
achieving I/O-efficient construction and batch updates for
Orth-tree. Conceptually, our algorithms are equivalent to
integer-sorting SFC codes, but without generating, storing,
or using them. We believe the algorithmic idea is interesting,
and refer readers to Sec. 3 for algorithmic details and analysis.

Our next question, then, is whether SFCs are still useful
spatial indexes. As mentioned, SFCs have been used in both
Orth-tree and R-trees/BVHs [17, 31, 38—-40, 46, 50, 58, 61].
However, we are unaware of any implementations with up-
date performance competitive with Pkd-tree and P-Orth
trees, mostly due to limited or no parallel support.

In this paper, we propose the SPaC-tree family, which
supports extremely fast updates (as R-trees are supposed to)
while maintaining query performance competitive with exist-
ing R-trees/BVHs. To achieve this, our backbone is the PaC-
tree[24], a parallel balanced binary search tree. The key in-
sight of PaC-trees is to use join-based algorithms[2, 3, 18, 57]
to efficiently rebalance during parallel updates, and to use
leaf blocking (maintaining 16-32 objects in each leaf in a flat
array) to improve cache locality. To support spatial queries,
a simple approach is to store points using their SFC codes as
keys in a PaC-tree and augment each tree node with bound-
ing boxes. However, this plain adaptation yields poor update
speed (up to 3.5% slower than Pkd-tree; see the columns
“CPAM-H” and “CPAM-Z” in Fig. 3). We observe that the
main bottleneck is maintaining the SFC-induced total order
over all points in PaC-trees. To address this challenge, we
carefully redesign the join-based algorithms in PaC-trees to
maintain spatial data under only a partial order. We provide
details in Sec. 4. We refer to our design as the Spatial PaC-
tree, or SPaC-tree for short. In ¥-Lib, we adopt both Morton
curves (SPaC-Z-tree) and Hilbert curves (SPaC-H-tree).

Our P-Orth trees and SPaC-trees are backed by strong
theoretical support. We show that the update cost per object
is O(log n) for a SPaC-tree and O(log A) for a P-Orth tree (A
is the aspect ratio, see Sec. 3.3), which is much stronger than
O(log® n) for a Pkd-tree. Our batch updates achieve polylog-

arithmic span, indicating strong and scalable parallelism.

We tested ¥-Lib on workloads with various input distribu-
tions, query distributions, query types, and update patterns.
We compare ¥-Lib with existing parallel and sequential base-
lines including Pkd-trees, Zd-trees, etc. Our experiments
simulates both a static setting and a highly dynamic set-
ting where updates are consecutively applied to an initial
tree. This setting better reflects the capability of each data
structure to handle highly dynamic workloads, especially
showcases whether and how the index quality are affected
under a progressively evolving dataset. With our new algo-
rithms, both P-Orth tree and SPaC-tree achieved superior
construction and update performance, while preserving com-
parable query performance to regular Orth-tree and R-trees.
P-Orth tree is almost always the fastest on uniformly dis-
tributed data in construction and queries, and is close to the
best on updates. SPaC-tree supports extremely fast parallel
batch updates—it can be 2-6 times faster than Pkd-trees, and
is especially good for skewed distribution of input points,
queries, or insertion/deletion orders. With comprehensive
experiments, we share our findings in Sec. 5.4, and visualize
the query-update tradeoff of each parallel spatial index in
Fig. 6. Our anonymous code is available at [9].

2 Preliminaries and Related Work

Throughout the paper, we use n to denote the input size
or the tree size. We use the logn notation to denote the
log,(n+1) logarithm. When representing arrays, we shorten
Alll, A[l+1], ..., A[r — 1] as A[l,r).

2.1 Computational Models

We consider the shared-memory multiprocessor setting
with the classical fork-join paradigm with binary forking [8,
19, 22]. Each computational thread is a sequential Random
Access Machine (RAM) augmented with a fork instruction
that spawns two child threads executing in parallel, with the
parent thread resuming upon completion of both children.
Parallel for-loops are efficiently simulated through logarith-
mic levels of forking. When analyzing algorithms, we use
the work-span model, where the work is the total number of
operations in the algorithm and the span is the longest depen-
dence chain in the parallel computation. Using randomized
work-stealing schedulers, a computation with work W and
span S executes in W/p + O(S) time with high probability
(in W) on p processors [8, 22, 32].

We use the ideal-cache model [27] to analyze the I/O cost
of our algorithms. In this model, memory is divided into two
levels: a fast memory (cache) of size M and an arbitrarily
large slow memory. The CPU can only access data in the
fast memory (at no cost), and data is transferred between the
two levels in blocks of size B. Each block transfer incurs unit
cost. The cache is fully associative, and the optimal offline
cache replacement policy is used. The cache complexity of
an algorithm is measured by the number of block transfers
between the two levels of memory during its execution.



2.2 Spatial Data

In this paper, we study points in Euclidean space R for
D = 2 or 3, although the proposed techniques can generalize
to shapes and any constant integer D > 1.

Queries on Spatial Data. To benchmark the quality of
spatial indexes, we use standard k-NN queries and range
queries. A k-nearest neighbor (k-NN) query takes a set of
points P and a query point q as input, and returns the k-
closest points to g in P. A range query takes a set of points P
and an axis-aligned rectangle subregion r. The range-count
query returns the number of points in P within r, and the
range-list query returns all points within r.

Spatial Filling Curves. A spatial filling curve (SFC) embeds
multidimensional points into a one-dimensional sequence. In
Y-Lib, we use Z-curve (Morton-curve) and Hilbert-curve, illus-
trated in Fig. 1. Both of them encode each point as an integer,
which determines the point’s order along the curve. For inte-
ger coordinates, both Hilbert- and Z-curve can be computed
in a constant time. SFCs are widely used to facilitate spatial
indexes [17, 31, 38, 40, 46, 50].

2.3 Existing Commonly-Used Spatial Indexes

Space-Partitioning Trees: Orth-trees and kd-trees. In
space-partitioning trees, each node represents a subspace.
All of its children form a non-overlapping partition of that
subspace, usually by axis-aligned partition hyperplanes, ie., a
splitting dimension d and a coordinate x. Space-partitioning
trees thus differ in how they select partition hyperplanes.

As typical examples, a kd-tree [12] chooses the median
coordinate in the splitting dimension across all points, and
thus always yields a balanced partition into two subtrees.
An orth-tree in D dimensions partitions the space into 2P
subspaces evenly using the midpoint in each dimension (and
is therefore a 2P-ary tree). Specifically, an orth-tree is called
a quadtree [26] in 2D and an octree in 3D [36].

There are parallel versions of both kd-trees and Orth-
trees. Blelloch et al. [17] proposed a parallel Orth-tree called
Zd-tree, which uses Morton curve to facilitate construction
and updates. Yesantharao et al. [62] proposed two parallel
kd-trees, BHL-tree and Log-tree. Only Log-trees support ef-
ficient parallel batch updates, using the logarithmic method,
i.e., it maintains O(log n) trees with sizes 1, 2, ... n/2, such
that a batch update can be broken down into at most O(log n)
tree reconstructions. However, this method can greatly slow
down queries [43]. A recent work proposed the Pkd-tree [43]
that avoids logarithmic method, and achieves optimal work
and cache complexity for parallel construction and batch
updates. The underlying idea is to use sampling to approxi-
mate the object median, together with the sieving algorithm
to partition points in an I/O-efficient manner. Our P-Orth
trees also borrow this idea; see Sec. 3 for details. However,
the Pkd-tree requires O(mlog? n) work to update a batch of
size m. We will show how ¥-Lib achieves better bounds.

Object-Partitioning Trees: R-Trees/BVHs. In the object-

Hilbert curve a SPaC-H-tree with 15 pt?ints
Figure 1. Space-filling curves and an example of a SPaC-tree with
15 points and size-3 leaf wrapping. Each leaf in this case has 3
points and its bounding box marked in blue.
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Figure 2. Construction and batch insertion for P-Orth trees.
partitioning trees, the objects (points) in each (sub)tree are
partitioned into disjoint subsets, and each subset corresponds
to a child node and is built recursively. Each tree node typi-
cally stores a bounding box (or a bounding volume in 3D) that
is the smallest enclosing axis-aligned region of all objects in
its subtree. Though named differently—R-trees in databases
and usually in 2D (“R” for rectangle), and bounding volume
hierarchies (BVHs) in graphics and usually in 3D (“V” for
volume)—they share the same underlying concept. For sim-
plicity, we use the term “R-tree” to refer to the general idea
of object-partitioning trees. They can be either binary [15,
31, 60] or have a larger branching factor [30, 33, 38, 51], and
can be built either offline [31, 46, 51, 59] or incrementally
(thus supporting updates) [7, 15, 33, 38, 51, 54].

To our knowledge, the only parallel R-tree with batch up-
dates is by Qi et al. [50], which uses the logarithmic method.
However, as noted, the logarithmic method significantly
slows down queries and is therefore non-ideal. There also
exist lock-based concurrent R-trees [23, 44].

3 The Parallel Orth-tree (P-Orth Tree)

In this section, we introduce our design of the Parallel
Orth-tree (P-Orth tree), which partitions points into nested
regions recursively based on the spatial median.

Previous algorithms. The naive approach to construct or
update an Orth-tree is to distribute the points to subtrees
level by level from the root until reaching the leaves [26,
36]. However, this approach is slow because the number of
rounds of global data movement is proportional to the tree
height, which can be large. Hence, almost all subsequent
Orth-trees [17, 39, 40, 46, 61] use SFCs, specifically the Mor-
ton curve (see Fig. 1), to speed up the algorithm. The high-
level idea is to sort all input points in Morton order, which
only requires O(log,, n) rounds of global data movement,
where M is the cache size. Then, since Orth-trees always
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Algorithm 1: Parallel Orth-tree (P-Orth tree) construction

Algorithm 2: Batch insertion for P-Orth tree

Input: A sequence of points P, region box H.

Output: A P-Orth tree T on points in P.

Parameter: A: the height of a tree skeleton.
¢: the leaf wrap of the kd-tree.

Function BuiLpOrTH(P, H)
if |P| < ¢ then
| return A leaf node with points P and its bounding box
Build the tree skeleton 7~ by constructing the first
A = (logy M) /2D levels based on H
B[] < Split H based on 7~ // B[i]: the sub-region for bucket i
// Reorder points to make those in the same bucket consecutive
R[] « S1eVE(P,T)  //R[i]: the slice for all points in bucket i
parallel-foreach external node i of 7~ do
t « BuipOrTH(R([i], B[i])
Replace the external node i with ¢
Compute the bounding boxes for all internal nodes in 7, and
merge non-leaf subtrees with sizes no more than ¢
return The root of 7~

// Recursive build

partition at the spatial median, a binary search on the sorted
values can identify the partition hyperplane, and all points in
one subtree also form a consecutive range in Morton order.
Blelloch and Dobson, in their Zd-tree paper [17], also use
this idea to achieve a parallel Orth-tree.

Issues on Existing Works. Although the long-standing
Morton-based approach achieves good work, span, and cache
bounds, a closer look reveals two major drawbacks.

e Performance. This approach must additionally compute
the Morton code for each point as preprocessing and sort
the (code, point) pairs. This increases memory footprint
and induces more rounds of reads and writes to all data,
which leads to significant overhead (see “Zd-tree” in Fig. 3).

o Applicability. While SFCs map higher-dimensional data
into one dimension, they suffer from precision limitations.
Most modern machines use 64-bit words, which suffices
for 2D data (32-bit precision per dimension). However,
3D support is constrained to 21 bits per dimension, and
handling higher dimensions (D > 3) is mostly infeasible.
Even in lower dimensions, a fallback to the naive partition-
based solution is needed when precision is exhausted in
certain subregions, which is not elegant.

Our Solution. To overcome these issues, our P-Orth tree
design entirely avoids SFCs. We show that the sorting-based
idea can be implemented conceptually equivalently without
using SFC. Consequently, our P-Orth tree is fast and flexible
to any coordinate types and ranges (not necessary integers).
Theoretically, the P-Orth tree achieves strong bounds for
both construction and batch updates. Practically, P-Orth
trees outperform Pkd-trees and Zd-trees in almost all cases,
except for very skewed distributions; see Sec. 5 for details.
Below, we present our construction algorithm in Sec. 3.1,
update algorithm in Sec. 3.2, and cost analysis in Sec. 3.3.

3.1 P-Orth Tree Construction

Our idea for P-Orth tree construction is to coordinate the
“conceptual” sorting process together with the tree construc-
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Input: A sequence of points P, a P-Orth tree T with region H.
Output: A P-Orth tree with P inserted.
Parameter : A: the maximum height of a fetched tree skeleton.

// The deletion is symmetric.
Function BATCHINSERTORTH(T, P, H)
if P = 0 then return T
if T is a leaf then
| return BurLpOrTH(T U P, H)
T~ « Retrive the skeleton at T
B[] « Split H based on 7~ // B[i]: the sub-region for bucket i
R[] « S1EVE(P,T) // R|i]: the slice for points in bucket i
parallel-foreach external node i for 7~ do
t <« BaTcHINSERTORTH(i, R[i], B[i])// Recursive insertion
Replace the external node of 7~ with ¢
Update the bounding boxes of all affected nodes in 7~
return The root of 7~

// Insert into a leaf

tion. The goal is to build A levels of the tree at once with
one round of data movement, and at the same time achieve
high parallelism. Here we adopt the SIEVE(P, 7") function
from [43], which distributes the point set P based on a A-level
tree skeleton 7 in parallel. At a high level, our algorithm is
equivalent to integer sort on Morton codes, on the AD most
significant bits in each round. However, no codes needed
to be computed, stored, or compared. Note that SIEVE() is
also used in the update algorithms. We show our P-Orth tree
construction in Alg. 1 and illustrate it in Fig. 2.

Alg. 1 has three steps as shown in Fig. 2. The first step
(lines 4-5) builds a tree skeleton 7~ with A = (log, M)/2D
levels, where M is the cache size. This ensures that the num-
ber of leaves (external nodes) of 7 is 24P fits into the cache.
In theory, this step can be done in parallel, although given
the small amount of work, in practice this step is run sequen-
tially. Note that computing the 7~ requires the bounding
region for the current subtree, so we also need to compute
the corresponding sub-regions for all 7”s leaves (line 5).
Once 7 is built, the second step is to sieve the points in P to
Ts leaves. This step is implemented by the S1EvE() function
shown on line 6. The illustration of this step is shown in
Fig. 2, and after that, all points in the same leaf of 7 are
gathered together, conceptually stored in an array R[].

S1EVE() is implemented by dividing P into chunks of size I,
then counting the number of points in each leaf in 7~ in par-
allel. Then a matrix transpose is performed to compute the
offsets for each leaf in each chunk, and finally, all points are
distributed to the final destination in parallel. The final step
is to recursively build the Orth-tree for each leaf (subtree)
in parallel (line 8). Once finished, we update the bounding
boxes of all internal nodes in 7~ (line 10) and return the root
of the skeleton (line 11).

3.2 Batch Updates for P-Orth Trees

Both batch insertion and deletion for P-Orth trees closely
resemble the construction algorithm. Here we first introduce
the batch insertion algorithm, given in Alg. 2, and discuss
the deletion algorithm later.



The batch insertion algorithm takes a batch of points P,
and adds them to an existing P-Orth tree T. To do so, we
sieve the points also for A levels, and then recursively insert
points to each bucket in parallel. One can almost see a one-
to-one mapping for these three steps in Fig. 2 and Alg. 2,
except for some minor differences in handling base cases.
For deletions, an additional step is needed: for all affected
leaves, we flatten their ancestors if the total subtree sizes are
smaller than the leaf wrap threshold. Our update algorithms
remain simple since no rebalancing is needed for Orth-trees.

3.3 Theoretical Analysis

Due to page limit, we defer the analysis to the Appendix A,
and only list the theorems here.
Theorem 3.1. Alg. I constructs a P-Orth tree of size n us-
ing O(nlog A) work, O(log nlog A) span, and O(n/Blog,, A)
cache complexity. A batch update of sizem = O(n) on a P-Orth
tree of size n uses O(mlog A) work, O(log mlog A) span, and
O(m/Blogy, A) cache complexity.

max d(x,y)
mind (x,y)

all points x and y. Note that log A > log ©(n'/P) = Q(log n)
when the point set contains no duplicates in RP.

With stronger assumptions—for instance, a bounded as-
pect ratio (A < n€ for some constant ¢ > 0) and a con-
stant expansion rate (full definition in the Appendix A)—
we may obtain tighter bounds. With bounded aspect ratio,
we can show that the construction with O(nlogn) work,
O(log® n) span, and O(n/Blog,, n) = O(Sort(n)) cache com-
plexity. Updates have O(mlog n) work, O(log mlogn) span,
and O(m/Blog,, n) cache complexity. With both assump-
tions, a k-NN query can be answered in O(k log n) work [17].

4 The Spatial PaC-Tree (SPaC-Tree)

This section presents the design of the Spatial PaC-tree
(SPaC-tree), a highly parallel R-tree with extremely fast con-
struction and updates while maintaining good query speed.

Here, A denotes the aspect ratio, defined as for

Existing R-trees. As introduced in Sec. 2, R-trees are object-
partitioning trees, leaving flexibility in the heuristics used to
build them. The original and early designs [11, 14, 33, 45, 55]
are incremental: points are inserted one by one; a greedy
strategy iteratively selects a subtree for this point. When a
subtree is much heavier than its siblings, a split is applied by
a heuristic (e.g., “linear” [5, 33], “quadratic” [33], or “R*” [11,
33]). While simple and highly dynamic, this approach is hard
to generalize to parallel batch updates. Consequently, prior
work on parallel R-trees has primarily focused on parallel
queries [37, 42, 48, 63] or static construction (bulk loading) [1,
6, 29, 41, 47, 52, 56]. However, for purely static scenarios, kd-
trees and Orth-trees are often preferable choices.

A promising approach to parallelize R-trees is via space-
filling curves (SFCs). SFCs map points in higher dimen-
sions to 1D (see Fig. 1), enabling all points to be organized
in this 1D order using a binary search tree (BST) or a B-
tree—equivalently yielding an R-tree if each node maintains
its bounding box. This idea was first noted by Tropf and

Herzog [58], and later realized in the Hilbert R-tree [35, 38],
which is built atop a B-tree. Unfortunately, parallel batch
update on B-trees can be challenging. Qi et al. [50] showed
that the logarithmic method can sidestep parallel updates for
B-trees, but it introduces substantial query overhead [43].

The PaC-tree. The PaC-tree [24] is a parallel binary search
tree (BST) with the leaf-wrapping technique to enable better
space- and I/O-efficiency, where a subtree of size under a
threshold ¢ (typically 32) is flattened into a compressed leaf
stored as an array. It uses a “JoiN-based framework” in a
divide-and-conquer manner for high parallelism, and sup-
ports the full BST interface, including construction, single
and batch updates, and various 1D queries.

Our SPaC-Tree. At first glance, PaC-trees appear to pro-
vide a straightforward solution for parallelizing R-trees: they
can be directly adopted to support an SFC-based approach,
achieving both efficiency and high parallelism. We imple-
mented this straightforward design and, somewhat unexpect-
edly, found it much slower than P-Orth trees and Pkd-trees
(see CPAM-H and CPAM-Z in Fig. 3). The bottleneck is that
a PaC-tree enforces a total order on points according to an
SFC, which is overly costly. In contrast, P-Orth trees and
Pkd-trees leave points in the leaves unsorted.

To reduce update costs, we introduce the Spatial-PaC-
tree (SPaC-tree). The primary goal is to keep leaf points un-
sorted, which requires redesigning and disentangling parts
of the underlying PaC-tree algorithms. The remainder of
this section presents the new design and its analysis.

4.1 SPaC-Tree Construction

We first show the construction algorithm for SPaC-trees
in Alg. 3. To use PaC-tree for construction, a simple idea
is to first compute the SFC code for each point, sort the
points accordingly, and then build a balanced BST tree on
the sorted points. Despite theoretical efficiency, directly call-
ing the PaC-tree in CPAM in this way is up to 3x slower
than Pkd-tree construction. To improve performance, our
main effort is to avoid unnecessary memory reads/writes
by redesigning the sorting algorithm, shown in function
“HyBRIDSORT” Alg. 3, with two major improvements. First,
instead of pre-calculating SFC values before sorting, we com-
pute them when the points are first touched in sorting, which
saves one round of reads and writes to associated arrays. Sec-
ond, we only sort the (code, id) pairs (line 13), without the
coordinates. This reduces the memory footprint of the recur-
sive sorting process (thus faster speed), at the cost of more
cache misses when fetching points to the leaves. Overall this
reduces the running time. Combining the two techniques
together, Alg. 1 can achieve a consistent speedup over the
plain implementation (3.1-3.5X on 2D data; see Fig. 3).

4.2 Batch Updates on SPaC-Trees

Our SPaC-tree builds upon PaC-tree [24], a parallel BST
using the join-based algorithmic framework [18]. The high-
level idea is to use and only use the JoIN operation for tree
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Algorithm 3: Parallel SPaC-tree construction

Algorithm 4: Parallel Batch Insertion on SPaC-trees

Input: A sequence of points P.
Output: A SPaC-tree T on points in P.

1 Function BurLDSPACTREE(P)

F

A « Auxiliary sequence of empty pairs (code, id) with size |P|
A’ « HyYBRIDSORT(P, A)
return BurLpSorTED(P, A”)

// Modify the sample-sort to compute the SFC code with sorting
Function HYBRIDSORT(P, A)

Sample points from P and compute their SFC codes
Sort samples and sub-sample them to get the pivots
Partition P into blocks, and compute offsets of blocks as F[]
parallel-for i-th block B do
parallel-for j-th point p in B do
k <« The SFC code of p
id < Theid of p
A[F[i] + j] « (k,id) // Store the code and id in A
Sort the slice A[F[i], A[F[i+1])
Merge with samples to get counts for each block
Redistribute A to buckets A’ using the matrix
transpose [10, 20], where the i-th bucket has offset F’[i]
parallel-for the i-th bucket do // Recursive sorting
| Sort the slice A’ [F[i], A’ [F"[i + 1])
return The sorted sequence A’

// Recursively construct the tree.
unction BUILDSORTED(P, A)

n <« |P|
if n < ¢ then // Input size is below the leaf wrapping
Retrieve points S C P using the ids in A
‘ return A leaf node with points S and its bounding box
else
m e n/2
In Parallel:
L « BUILDSORTED(P[0, m), A[0, m))
‘ R < BUILDSORTED(P[m + 1,n), A[m + 1,n))
k « the point in P with id in A[m] // The pivot point
return An interior node with left child L, right child R, pivot
k, and computing the bounding box from children

rebalancing, which takes two subtrees L, R, and a key k in
the middle, and returns a new, balanced tree with L U {k} U
R. Our key observation here is that, as a spatial index, the
order of the points in a leaf, which in this case is based
on Hilbert- or Z-Code, does not facilitate spatial queries—
queries on a leaf must scan all points anyway. Therefore,
our goal is to carefully redesign the Join-based algorithms,
such that we can maintain theoretical efficiency, and adapt
them best to the spatial index setting by relaxing the key
order in the leaves. In our experiments, such an improvement
significantly speeds up the updates without sacrificing query
performance.

We show the detailed batch insertion algorithm in the

Alg. 4. The algorithm begins with computing the SFC code
and sorting the inputs. After sieving points to the leaves, the
algorithm either appends points to the leaf and marks it as
unsorted or rebuilds the leaf if its size exceeds the threshold
(line 11 and line 12). Next, the standard JoiN operation com-
bines two subtrees L and R, and performs the rebalancing
(line 19). Without loss of generality, we assume L is heavier
than R, and the RiGHTJOIN operation is called (line 21). The

Input: A sequence of points P and a SPaC-tree T.
Output: A SPaC-tree with P inserted.

1 Function PTREEBATCHINSERT (T, P)

2
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Function RicaTJOIN(L, k, R)

Function NopE(Ty, k, T,.)

Compute SFC codes for points in P, and sort P accordingly.
// In practice we use the HYBRIDSORT() from Alg. 3
return INSERTSORTED(T, P)

Function INSERTSORTED (T, P)

n « |P|
if n = 0 then return T
if T is a leaf then
if [T|+n < ¢ then
Append P to T, and mark T as unsorted
Update the bounding box of T
return T
else return BuiLpSPACTREE(P U T)
k « the SFC code associated with the pivot in (root of) T
« binary search k in P (based on the code)
In Parallel:
L « INSErTSORTED(Ty, P[0, 1))
R « INSERTSORTED(T,, P[t,n))
Update the bounding box of T based on those of L and R
return JoIin(L, T, R)

~

// Return a balanced tree joining L and R with pivot k.
Function JoIiN(L, k, R) // this function remains the same as in [18, 24]

if L is heavier then return RiguTtJoIN(L, k, R)
if R is heavier then return LErTJOIN(L, k, R)
return Nopg(L, k, R)

// Recursively check L’s right spine until the sub-tree size balances with

R. Create a new tree node R’ with children the two balanced sub-trees,
attach R’ to L, and re-balance L.
// LEFTJOIN is symmetric

// Expand L into a tree if it is a leaf
if L and R is balanced then // The split terminates here

| return Nopk(L, k, R) // Return a balanced tree
R’ < RiGHTJOIN(L,, k, R)// Recursively split the right sub-tree of L
L’ « Nopke(L,, k', R") // Attach the newly balanced tree R’ to L
Re-balance L’ by rotation
return L’

(L, k', L) < Expose(L)

// Expand T into a tree if it is a leaf, and reorder the points if necessary.
Function Exrose(T)

if T is a leaf then
Re-order the points if T is marked as unsorted

Build a perfect balanced tree T’ from the sorted points in T
return {T;, T, T}'}
else return {T,,T,, T, }

// Return the tree as is

// Maintain the leaf wrapping invariant.
Create a node T with pivot k, left sub-tree T, and right sub-tree T,.
n« |T|
if n > 2¢ then return T // Leaf wrapping does not apply
else if n > ¢ then // Redistribute points in leaves T, and T,
Sort points in T, and T, if they are marked as un-sorted.
Redistribute sub-trees of T into two leaf nodes with size n/2.
return T
else // Tree size is below the leaf wrapping, embed it into one leaf
Flatten T and create a leaf node wrapping it.
‘ return this new leaf node

RiGHTJOIN recursively splits the right subtree of L until it is
possible to return a balanced tree using R (line 26). When
the split reaches a leaf, we expand the leaf into a tree as in
PaC-trees using the Exposk operation (line 32). The differ-
ence is if the leaf is marked as unsorted, we will sort the
points first (line 43). When the split subtree is balanced with
R (line 26), we create a new tree node R’ with children the
two balanced subtrees (line 28), and attach R’ to L (line 29).



Note that the previous leaf expansion may break the leaf
wrapping for affected leaves. In this case, we restore the leaf
wrapping by checking the tree size: either directly flatten it
into one leaf if the size fits within (line 46), or redistribute
the points into two leaves if necessary (line 42). We will sort
the points first if leaves are marked as unsorted (line: 43).

Despite Alg. 4 appearing complicated, we can prove its
correctness by showing its equivalence to a PaC-tree. For
page limit, we defer the analysis to Appendix B.

The batch deletion algorithm is similar to the insertion.
The only difference is that when it reaches a leaf, it removes
the points there, marks the leaf as unsorted if necessary, and
updates the bounding box. The invariant of leaf wrapping is
maintained the same way as in insertion, i.e., line 23 and 29.

4.3 Theoretical Analysis

Due to the page limit, we defer the full analysis to Appen-
dix B, and present only the results here.

Theorem 4.1. For n points with integer coordinates, a SPaC-
tree with Hilbert- or Z-curve can be constructed in O(nlogn)
work, O(log n) span, and O(Sort(n)) cache complexity. A batch
update (insertion or deletion) of size m on a SPaC-tree of size
n uses O(mlogn) work and O(log? n) span.

5 Experiments

We conduct in-depth experiments to understand the per-
formance of ¥-Lib and other spatial indexes on both syn-
thetic and real-world datasets. We show that both P-Orth
trees and SPaC-trees achieve superior construction and up-
date performance, outperforming Pkd-tree in most cases, and
are much faster than existing Orth-tree and R-tree baselines.
Both P-Orth trees and SPaC-trees also exhibit comparable
or better query performance to their corresponding counter-
parts in prior work. In addition to showing the effectiveness
of our new algorithms, we believe our experiments also pro-
vide the first systematic study of various parallel spatial
indexes, including kd-trees, Orth-trees, and R-trees.

Setup. We use a machine with 112 cores (224 hyperthreads)
with four Intel Xeon Platinum 8176 CPUs and 1.47 TB RAM.
Y-Lib is in C++ and compiled using GCC 14.2.1 with -03. We
use the ParLaylib [16] for fork-join parallelism. Our anony-
mous code is available at [9]. We report numbers as the
average of 3 runs after a warm-up run. More details about
parameter choosing are shown in Appendix C.

Baselines. We compare to the following baselines.
e Pkd-trees [43]: The state-of-the-art parallel kd-tree.

o Zd-trees [17]: The state-of-the-art parallel Orth-tree. Zd-
tree uses Morton code to presort the data to aid the con-
struction and update algorithm in a standard Orth-tree.
The original code from [17] has known bugs in the update
algorithms (confirmed by the authors). We use our own
implementation based on their paper. We have carefully
verified that our construction time is similar to their code.

e CPAM [24]: As a baseline, we use PaC-trees from the

CPAM library (as a black box) to store each point’s SFC
code as the key. It preserves a total order of all points
based on the Morton curve (CPAM-Z) or the Hilbert curve
(CPAM-H). This baseline highlights how our new design
by maintaining only a partial order improves performance.

e Boost R-trees [51]: The R-tree from the Boost library.
Boost R-tree is sequential, and only supports point updates
(no batch updates). We mainly use it as a baseline to verify
the query performance for our SPaC-trees. Hence, among
all the variants, we use the quadratic version, which gives
the best tree quality in the dynamic setting.

Within ¥-Lib, we tested the parallel Orth-tree—the P-Orth
tree—as introduced in Sec. 3, and two R-trees—SPaC-H-tree
and SPaC-Z-tree—which use Hilbert and Morton curve, re-
spectively, on the SPaC-tree detailed in Sec. 4. We maintain
bounding boxes for all tested indexes. We refer readers to
the Appendix C for more implementation details.

5.1 Overall Evaluation under Synthetic Datasets

Setup. We test different distributions for points, queries,
and update patterns of synthetic data. All coordinates are
64-bit integers in [0, 10°]. We use three workloads: Uniform,
Sweepline and Varden.Uniformdraws each point uniformly
random from the space. Sweepline also uses uniform data,
but sorts all points along the first dimension. This is used to
simulate a skewed update pattern, where the updated points
exhibit spatial locality. Varden [28] is generated by randomly
walking in the space with a low probability to restart at a ran-
dom position. Points are clustered and different clusters are
far from each other, simulating a skewed point distribution.

We test both static and dynamic cases. Besides directly
measuring the tree construction time, we also use the incre-
mental insertion/deletion workload with various batch sizes
to simulate a highly dynamic scenario. For batch size b, an
incremental insertion workload means to construct the in-
dex by n/b batch insertions progressively, and vice versa for
deletions (deleting the index in n/b batches). We report the
total running time of all operations. This reflects how the
update efficiency of each index is affected under a constantly
evolving dataset. Under this workload, we further time the
queries after half of the batches. The query performance re-
flects how the quality of each index is affected after massive
updates. For the static setting, we also provide query times
after building a tree with half of the data for easy comparison
with the dynamic setting. We also test the update time for a
single batch, and show the results in the Appendix D.

We tested k-NN and range queries (introduced in Sec. 2).
We run 107 10-NN queries for both in-distribution (InD) and
out-of-distribution (OOD) queries. For range queries, we test
5 X 10* range-count and range-list queries, with range sizes
10*-10°. Different queries run in parallel. Besides Fig. 3, we
further study how k-NN and range-list performance changes
with their output sizes and show results in Fig. 4 and 5.

We summarize in Fig. 3 the performance of all tested in-



Build Query after Build (50%) Incremental Insert Query after Inc. Ins. (50%) Incremental Delete Query after Inc. Del. (50%)
time 10NN Range Batch Size 10NN Range Batch Size 10NN Range

InD OOD Count List 10% 1% 0.1% 0.01% InD OOD Count List 10% 1% 0.1% 0.01% InD OOD Count List
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Pkd-Tree 3.66: .398 .397 .097 1.08] 4.52 10.64 20.9 48.9; .433 .416 .103| 1.05] 437 11.2 23.0 59.8: .411 .412 .104 1.07
*P-Orth 4.63{ ,220 .373 .098 1.22| 529 5.67 5.72 9.40; .227 .333 .074 1.01] 1.92 3.08 4.25 8.74; .222 .322 .073 1.02
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% CPAM-Z 9.81; 2.62 1.04 .292 1.47| 18.1 9.96 8.04 20.4; 250 1.21 .309 1.53] 14.4 10.7 8.52 22.7{ 2.71 1.18 .300 1.54
Boost-RT N/Ai N/A N/A N/A N/A] N/A N/A N/A N/Ai 921 .931 3.18 6.10] N/A N/A N/A N/Ai .653 .651 .455 4.14
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Zd-Tree 5.6 .192 .156 .086 1.57| 5.95 4.24 6.1 14.6; .196 .158 .073 1.40] 6.08 5.25 15.9 36.1i .198 .157 .072 1.39
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J|kSPaC-Z  2.94: 3.92 1.02 .165 1.19] 2.52 2.68 3.77 8.74; 3.61 .855 .171 1.27| 203 2.27 3.26 7.80: 4.30 2.29 .168 1.26
| CPAM-H 10.0{ 2.52 .663 .146 1.38] 13.3 10.2 8.59 19.0{ 2.48 .592 .152 1.45| 14.9 11.2 9.12 19.7{ 2.55 .680 .152 1.43
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Boost-R*  N/Ai N/A  N/A N/A  N/A] N/A  N/A N/A N/Ai 922 924 521 4.45] N/A N/A N/A N/AI 617 .624 429 4.20
Pkd-Tree 6.10¢ .110 .632 .060 1.07] 12.8 25.2 32.9 53.6i{ .109 .725 .064 1.03|] 9.36 18.9 28.8 51.6i .112 .804 .063 1.04

The fastest time is in bold and underlined [l : within 1.1x the fastest

: within 2x the fastest

: within 5x the fastest : > 5x the fastest

Figure 3. Running time (in seconds) on synthetic data. Lower is better. The fastest time in each test is in bold and underlined. We use
colors to mark results within 1.1X, 2X, 5%, and > 5X the fastest time. Detailed settings for build, queries, and incremental insertion/deletion
are introduced at the beginning of Sec. 5.1. InD/OOD: in-/out-of-distribution. {: Boost R-tree is sequential and only support point updates.
Therefore, we omit the construction/update times, and report query times after incremental inserting/deleting points one by one.

dexes on synthetic datasets with 10° 2D points. We provide
the results on 3D points in Appendix F. Next we analyze the
performance in detail.

5.1.1 Construction. For tree construction, our SPaC-tree
is the fastest among all indexes across all workloads. The
advantage comes from embedding 2D data into 1D that sim-
plifies the computation, and various optimizations in ¥-Lib
introduced in Sec. 4. SPaC-Z-tree is slightly faster than SPaC-
H-tree, since Morton code has simpler computation than
Hilbert code. The baselines CPAM-H and CPAM-Z are about
3% slower than our SPaC-trees, due to the overhead in main-
taining the ordering in leaves. This effect is even more signifi-
cant in batch updates and queries. This justifies the necessity
of our technique of relaxing the ordering in leaves.

For Orth-trees, on Uniform and Sweepline, the P-Orth
tree also achieves good performance (within 52% slower than
the fastest SPaC-Z-tree), and is faster than all other baselines.
The advantage of P-Orth trees over Pkd-trees come from two
aspects: 1) as a Quad-tree, P-Orth tree allows for shallower
tree height and better locality than the binary kd-tree, and
2) determining the splitter at each node in a P-Orth tree
(computing the middle of the coordinate range) is simpler
than kd-tree (estimating the median among all points).

On Varden, P-Orth tree becomes slower than others. Since
Orth-trees split the space using the coordinate median, it is
naturally not resistant to skewed data, and is most affected
by the skewed distribution. Although Zd-tree is also a Orth-
tree, it achieves reasonable performance— the main cost for
Zd-tree construction is to sort all points in Morton order,

and this is done by a comparison sort in our implementation.
All other indexes are comparison-based, and the effect of
skewed data on them is minimal in construction time.

In summary, SPaC-trees have consistently better perfor-

mance than all other baselines in construction. P-Orth tree
is also competitive on non-skewed data, but exhibits a disad-
vantage on skewed data.
5.1.2 Incremental Batch Updates.
batch updates are very similar to those of construction. SPaC-
trees has the best overall performance, and SPaC-Z-tree has
a slight advantage over SPaC-H-tree. SPaC-Z-tree is the
fastest in all incremental insertions, and most cases in incre-
mental deletions. For the same reason analyzed in Sec. 5.1.1,
P-Orth trees are less ideal for Varden data. In all other cases,
P-Orth trees are either the best or close to the best.

For all indexes, the incremental update time increases
when the batch size decreases. On the one hand, smaller
batches result in less potential for parallelism.On the other
hand, having more batches also means more modifications
to the tree, requiring more effort to rebalance the tree and
leaving the tree further from being perfectly balanced. The
only index that avoids rebalancing is the Orth-tree, and its
performance with continuous updates is the least affected
by the batch size.

On highly dynamic data, Pkd-trees are less competitive in
update time compared to P-Orth trees and SPaC-trees. One
essential reason is that Pkd-tree has O(log” n) amortized
cost per updated point, while P-Orth tree and SPaC-tree
have cost of O(log A) and O(log n), respectively, where A is

The conclusions for
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the aspect ratio. Hence, both P-Orth trees and SPaC-trees
are faster than Pkd-trees in updates. In particular, P-Orth
trees are up to 7.18% faster than Pkd-tree in incremental
updates, and SPaC-tree can be up to 7.5 faster. Even for
Varden where A is relatively large, P-Orth trees are almost
always faster than Pkd-trees in incremental updates.

5.1.3 Queries. We run queries in three settings: 1) after
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constructing a tree of size 5x 102, 2) after applying 50% of the
insertion batches, and 3) after applying 50% of the deletion
batches. Most indexes are nearly perfectly balanced after
construction, and thus the first setting reflects their best-case
(static) query performance. The other two settings reflect
how the index quality is affected by updates. In Fig. 3, we only
select results for 10-NN query and a relatively large range
query. To give more details, in Fig. 4 and Fig. 5, we further
show how query performance changes with the output size,
i.e., k in k-NN, and the range size in range-list queries.

k-NN Queries. As shown in Fig. 4, space-partitioning trees
are evidently faster than R-trees in k-NN queries. This is
natural due to overlapping bounding boxes in R-trees. For
SPaC-trees, while the SPaC-H-tree is slightly slower than
SPaC-Z-tree in construction and updates, it is much more
efficient in queries. This is because the Hilbert curve has

better locality than the Morton curve (adjacent codes are
always geometrically close to each other). Among the R-
trees, SPaC-trees achieve similar or better performance than
Boost R-tree—in all queries, SPaC-H-tree is between 3.7X
slower to 5.66X faster, with a geometric mean of 2.5x faster.

Among the space-partitioning trees, Orth-trees has the
best overall performance. This is because when visiting a
subtree, the P-Orth tree can select 1 out of 4 quadrants,
which is more effective than Pkd-trees and Zd-trees that
select 1 out of 2 half spaces. Hence, Pkd-trees and Zd-trees
are competitive but usually slower than P-Orth trees. The
only exception is on Varden data. For InD queries, due to
the skewed distribution of Varden, Orth-trees may be un-
balanced, and thus the comparison-based Pkd-trees perform
better. Interestingly, on the contrary, both Orth-trees exhibit
an advantage on OOD queries on Varden. The reason is still
in imbalance—for Varden, points are highly clustered, mak-
ing these regions in the tree deep and other regions shallow.
Since the OOD queries distribute differently from the input,
they likely hit the shallow regions and thus are much faster.

Range Queries. As shown in Fig. 3 and 5, Pkd-trees show a
small but consistent advantage on range queries. This is be-
cause a range query visits all subtrees overlapping the query
box. In this case, P-Orth trees have to explicitly check the
bounding boxes for four subtrees, while every non-overlapping
check on a Pkd-tree node can prune half of the points in
this subtree. For other indexes, the relative performance on
range queries is similar to k-NN queries. Interestingly, while
SPaC-trees are still slower than kd-trees and P-Orth trees in
range-list queries, the difference is much smaller, especially
on large ranges— in this case, the query time is mostly spent
emitting the result list, hiding the difference in pruning ef-
fectiveness across indexes. Therefore, range queries are less
sensitive to the index type than k-NN queries.

Impact of Updates to Queries. In the dynamic setting, the
Orth-trees (P-Orth tree and Zd-tree) are history-independent
(modulo leaf-wrapping), namely, the final state of the tree is
not affected by the operation order. Therefore, their query
performance is least affected by batch updates, and is the
best in the dynamic setting.

For all other indexes, the tree may get less balanced after
updates. Indeed, they all get slower to some extend compared
to the static setting. This impact is moderate for most indexes
(mostly within 20%). The exceptions all appear in OOD k-NN
queries, where Pkd-tree gets 3.7x slower after incremental
insertion on Sweepline, and CPAM-Z and SPaC-Z-tree get
about 2.5x slower after incremental deletion on Varden.

In summary, for queries, Orth-trees and kd-trees are natu-
rally better than R-trees. kd-trees are better in dealing with
InD queries on non-uniform data, but may be worse in OOD
queries. P-Orth tree has the best or close to the best query
performance in almost all queries and workloads.
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Figure 6. Summary of tested index in update and query performance. Results are summarized from numbers in Fig. 3. In particular,
the data points are based on the geometric mean of all relevant operations (updates or queries) in Fig. 3. Data points for Log-tree and
BHL-tree [62] are estimated from the Pkd-tree paper [43]. Our new algorithms are marked in blue. We note that this figure only gives the
average of the tested benchmarks in this paper. More comprehensive conclusions can be found in Table 1.

Update Query
Ins. Del. 10NN RG
Cosmo (3D), n=317M
16.2 17.9 .120
13.8 20.7 .146
6.59 9.40 .393
5.63 8.46 2.58
19.6 19.8 .509
19.0 19.2 4.39
Boost-R| N/A  N/A  N/A .274 .977
Pkd-Tree|] 1.89 101 800 .107 .602| 4.32 29.3 26.3 .071 .049
fastest time [ :<1.1x fastest : <2x fastest <5x fastest : > bx fastest
Figure 7. Running time (in seconds) on real-world datasets.

Lower is better. Insert/Delete: incremental insertion/deletion/
with batch size 0.01%. “RG”: Range-list queries.
5.2 Operations on Real-World Datasets

For real-world datasets, we test a highly clustered dataset
COSMO [53] and the OpenStreetMap (OSM [34]) for Northern
America. We test 107 InD 10-NN quiries, and 5 X 10* range-
list queries with range size 10*~10°. Coordinates are rounded
down to 64-bit integers. We remove duplicates and shift all
points to positive coordinates. To ensure the SFC works prop-
erly in 3D, we scale the coordinates to [0, 10°]. We evaluate
construction, incremental updates with batch ratio 0.01% and
queries after construction, and show results in Fig. 7.

SPaC-trees are much faster than others in construction
and updates. On real-world data, this advantage is more
significant than synthetic data. In particular, they are about
2X faster than Pkd-trees in construction, and 3.5-94x faster
in updates. P-Orth trees have similar construction times to
Pkd-trees, but are much faster in updates (1.8—-44.7X faster).

Update Query
Ins. Del. 10NN RG
OSM (2D), n=776M
14.5 14.9 .083
16.5 23.9 .182
8.19 7.98 .981
791 7.37 291
15.6 16.7 1.10
15.4 16.6 3.47 .182
N/A_ N/A N/A .484 .435

Build Build

*P-Orth
Zd-Tree
*SPaC-H
*SPaC-Z
CPAM-H
CPAM-Z

1.90
1.65
1.02
.837
5.48
5.38

.566
.862
.764
.980
1.04
1.30

4.96
5.88
2.26
212
7.26
7.01

.050
.055
.085
1132
118

On queries, R-trees still perform worse than space-partitioning

trees. In most of the cases, Pkd-tree achieves the best query
performance, but P-Orth trees are always competitive—in all
cases, the difference in within 20%. Considering that P-Orth
trees are 1.8—44.7X faster in updates, P-Orth trees offer a
much better query/update tradeoff than Pkd-trees.

5.3 Scalability

We evaluate the scalability of tested indexes in construc-
tion, insertion, and deletion. Since most of them achieve
high parallelism, we only list the conclusions here, and refer
readers to Appendix E for details).

In general, all indexes scale well to 224 hyperthreads,
which means the performance difference mainly comes from
the work (i.e., one-core performance). Among them, SPaC-H-
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tree has the best self-relative speedup, which is up to 82.9x
in build and 80X in insertion. This is likely due to its simple
structure as a 1D search tree. Combining both low work and
good scalability, SPaC-H-tree has the best overall construc-
tion and update performance. The P-Orth tree have good
scalability on Uniform, but is slightly worse on Sweepline
and Varden due to the imbalanced tree.

5.4 Summary

Combining all the experimental results, we visualize the
tradeoff between update and query performance for all tested
indexes in Fig. 6 and provide a brief summary here. We also
summarize the conclusions in a table, which we put in the
appendix due to page limit. We recommend readers to read
the table as well to see more detailed analysis.

Pkd-trees. Pkd-trees offer solid performance in queries, but
can degrade on OOD queries. Its update performance is
reasonable but less competitive than P-Orth trees and SPaC-
trees. Our results suggest they are best suited to scenarios
with light to moderate update rates, high query throughput
requirements, and predominantly in-distribution queries.

P-Orth trees (this paper). P-Orth trees generally give the
best overall performance and trade-off between query and
updates, especially non-skewed data. It is best suited to sce-
narios with less skewed data, with any update-query ratio.
It is also friendly to queries after high-volumes of updates,
since the tree quality does not degrade with frequent updates.

SPaC-trees (this paper). SPaC-H-tree performs slightly
worse in updates than SPaC-Z-tree, but significantly bet-
ter in queries. We would recommend SPaC-H-tree as the
default setting for SPaC-trees. Compared to Pkd-trees and
P-Orth trees, SPaC-H-trees are less effective in queries, but
significantly faster in construction and updates. In general,
SPaC-H-trees are best suited to highly dynamic scenarios
where either updates requires very high throughput/low
latency, or updates are much more frequent than queries.

6 Conclusion

In this paper, we systematically study parallel spatial in-
dexes, with a special focus on achieving high-performance
updates in highly dynamic workloads. We proposed two
new data structures: a parallel Orth-tree, the P-Orth tree,



and a parallel R-tree, the SPaC-tree family. Both achieve
superior update performance compared to existing parallel
spatial indexes, while remaining competitive with or better
than their counterparts in the literature for queries. We also
highlight our comprehensive experiments to understand the
performance of existing and our new parallel spatial indexes,
and share our findings in Sec. 5.4 and Fig. 6.
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General Features ‘ Existing Solutions and Their Features

Pkd-tree [43]

+ I/O optimizations for construction and updates

+ Fast construction: O(nlog n) work and polylogarithmic span

+ Among the fastest for queries in most tests, except for OOD queries on
skewed distributions

+ Linear space

+ Flexible for most queries (e.g., k-NN, range)

+ Non-overlapping bounding boxes (thus
effective pruning in queries)

8 ) o — O(mlog? n) work for batch update of batch size m, unfriendly to workloads
8 + Generally fast queries across distributions with frequent updates
3 + Comparison-based, resistant to skewed data BHL-t d Loe-t 62
+ Easily generalizable beyond three ree and Log-tree [62]
dimensions + Can leverage vEB layouts for query optimization (due to their static nature)
— Slow/complicated updates + Construction with O(nlog n) work and polylogarithmic span
— Large batch-update cost: O(mlog? n) (Log-tree) or O((n + m) log(n + m))
(BHL-tree, due to fully rebuild)
— Log-tree uses logarithmic method, leading to inefficient queries
P-Orth tree (this paper)
) + I/O optimizations for construction and updates
+ Linear space * Fastest query performance on non-skewed data
+ Flexible for most queries (e.g., k-NN, range) | Usually faster updates than Pkd-trees, even on reasonably skewed data;
+ Non-overlapping bounding boxes (thus slower than SPaC-trees
effective Prunmg m queries) + Fast construction: O(nlog A) work and polylogarithmic span
§ + Fa.st queries, especially on non-skewed data | , pagt batch updates: O(mlog A) work and polylogarithmic span
; + Hlstory-lndependent .(modulo leaf wraps) — Most affected by skewed data in construction, updates and queries; less
g + Simple/fast construction and updates, efficient for InD queries on skewed data

especially on non-skewed data
— Sensitive to skewed data Zd-tree [17]

— Usually not generalizable beyond three + Relatively skew-resistant due to comparison sorting
dimensions + Fast construction: O(nlog n) work and polylogarithmic span

+ O(mlog A) work for batch update, where A is the aspect ratio
— Generally slower updates/construction than the P-Orth tree
— Integer coordinates and Morton curve only

SPaC-tree (this paper)
* Compatible with Hilbert, Morton or other space-filling curves
* Embeds multi-dimensional data to 1D, enabling simple algorithm design and

+ Linear Space high parallelism (best self-speedup among tested indexes)

+ Flexible rules due to object-partitioning + Fast construction: O(nlog n) work and polylogarithmic span

+ Simple/fast construction and updates * Super fast batch updates: O(mlog n) work and polylogarithmic span
+ Applicable to common queries (e.g., k-NN, + Comparison-based; robust to skewed data

range) * Fastest construction and update time among all baselines; significant
Easily generalizable beyond three advantage on updates

dimensions — Integer coordinates only

— Overlapping bounding boxes (thus — Slow queries than space-partitioning trees due to overlapping bounding

R-tree/BVH
+

ineffective pruning in queries); usually boxes
slower queries than space-partitioning trees | Boost R-tree [51]

+ Supports multiple heuristics
— No parallel construction or batch updates
— Slow queries than space-partitioning trees due to overlapping bounding

boxes
§ + Worst-case work bound for range queries CPAM/PAM range tree [24, 57]
Eo — O(nlogn) space ) + Parallel construction with O(nlogn) work and polylogarithmic span
s |7 Only supports range queries — No simple support for parallel batch updates
<4

— Inefficient in more than two dimensions

Table 1. Summary of the main features of different spatial trees and existing solutions for parallel construction, updates, and queries. The
symbol “x”marks our key technical contributions. In the bounds, m is the batch size, n is the index size, and A is the aspect ratio.
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A Analysis on P-Orth Trees

We now analyze the theoretical guarantees for our P-Orth
tree construction and batch update algorithms. Let S € M a
finite point set in the bounded Euclidean space M and denote
B,(r) € S the set of points enclosed by a ball with radius
r centered at p. Then S has (p, c)—expansion if and only if
VpeMandr > 0:

IBp(r)| =z p = |Byp(2r)| < c¢-|By(r)| 1)

The constant c is referred to expansion rate and p is usually
set to be O(log |S|). We say the expansion rate is low if ¢ =
O(1). Intuitively, the low expansion property ensures the
points distributed uniformly in the space.

Similarly, the aspect ratio A is defined as:

d s
A= —méx (x.y) Vx,y €S
mind(x,y)

@)
and is said to be bounded if A < n° holds for some constant
c>0.

We will now show that P-Orth tree with the assumption
of bounded aspect ratio. Without the assumptions, the tree
height becomes O(log A). We can replace the tree heights in

the following analysis to get Thm. 3.1.

Lemma A.1. The height for P-Orth tree on points P with
size n is O(log n), assuming the low expansion rate and the
bounded aspect ratio for P.
Proof. By the low expansion rate, the H has side length at
most a constant fraction of d,4y, and the recursion stops
when two points with distance d,,;, are separated. Since
Amax/Amin = n° by the bounded aspect ratio, and the splitters
cut the H in the spatial median, it takes O(log n) levels of
splitters to reduce the side length of H to d,;i,. The proof
follows then. O
With the above lemma, we now show our Orth-tree con-
struction algorithm has O (nlog n)work, polylogarithmic span
and O(Sort(n)) cache complexity on n points. Here wssume
the cache size M = Q(polylog(n)) as in [20, 21], by set-
ting the skeleton height A = elog(M) for ¢ < 1/(2D),
and chunk size [ = 2P in the sieving algorithm. Denote
O(Sort(n)) = O(n/B - log,, n) the optimal cache complexity
for sorting [20].

Theorem A.2. With parameters specified above, a P-Orth tree
can be constructed on points P with size n in O(nlogn) work,
O(log® n) span and O(Sort(n)) cache complexity, assuming
the low expansion rate and the bounded aspect ratio for P.
Proof. Every point is processed at most once in each round,
except for the points sieving, where finding the bucket for
one point takes O(A - D) work. The algorithm terminates
after O(logn)/A rounds of recursion, which implies O(A -
D) - O(logn)/A = O(log n) total work per point. Therefore,
the total work is O(nlog n).

For the span, practically the tree skeleton construction and
processing each block is done sequentially. However, theo-
retically, they can be parallelized in O(Alogn) and O(log n)
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span, respectively [20]. All other operations takes O(log n)
span. In total, the span in each round is O(Alog n). The al-
gorithm has O(log n)/A rounds of recursion, so the overall
span is O(log® n).

Now consider the cache complexity. Both building the
tree skeleton and sub-regions computation fully fit in cache.
The chunk size | = 24P = M¢DP < +/M, which implies
that each chunk fully fits in cache. Therefore, the sieving
algorithm takes O(n/B) block transfers. All other opera-
tions take O(n/B) block transfers, in total O(n/B-logn/A) =
O(n/B - logy, n) 1/Os. O

For batch updates, we assumes the batch size m = O(n),
and if m = w(n), we simply replace n with m + n in below
bounds for insertions, and there is no change for deletions.

Theorem A.3. The Update (insertion or deletion) of a batch of
sizem = O(n) on a P-Orth tree of size n can be performed in op-
timal O(mlog n) work, O(log® n) span, and O(m(log(n/m) +
(1+log,, m)/B)) cache complexity, assuming the low expan-
sion rate and the bounded aspect ratio for the updated points.
Proof. We take the insertion as an example, the deletion is
similar. For the work, note the tree after updates is same as
the one built from scratch on all points, which has height
O(log(m+n)) by Lem. A.1. The height difference is O (log(m+
n)) — O(logn) = O(1). Since each leaf wraps O(1) points,
and every point needs O(log n) work to reach the leaf, the
total work is O(mlogn).

The analysis for span is the same as for construction in
Thm. A.2.

The cache bound for updates has two parts. The first is
sorting within the batch. This part has O(m(1 +log,, m)/B)
cache complexity. The second part is accessing the tree nodes
in the original P-Orth tree. Finding m leaves in a tree of size
n will touch O(mlog(n/m)) tree nodes [18]. Putting both
cost together gives the stated cache complexity. O

Replacing all the tree height O(log n) with O(log A) gives
Thm. 3.1, without the assumption of bounded aspect ratio.

B Analysis on SPaC-Trees

B.1 Correctness

We prove the correctness of the update algorithms for
SPaC-trees by showing its equivalence to that of the PaC-
tree. Here we discuss the insertion algorithm, and deletion
can be shown similarly. First, the Alg. 3 constructs the same
tree as the PaC-tree, so the tree returned in line 6 and line 12
remains the same. The split key in line 13 is same for both
trees, therefore the SPaC-tree will insert same points in
leaves as the PaC-tree in line 9, but keep the points unsorted.
The Join and RiGHTJOIN operations (line 19 and line 21) are
identical for both tree. In this case, the tree split will reach the
same leaves in both trees, and line 34 and line 43 ensure the
points order in SPaC-tree to be identical to those in PaC-tree
before further proceeding. The other operations in EXPosg
and NoODE remains the same, and the correctness follows.



B.2 Cost Analysis
Theorem B.1. A SPaC-tree with n points can be constructed
in O(nlogn) work, O(log n) span, and O(Sort(n)) cache com-
plexity.
Proof. The HYBRIDSORT inAlg. 3 is a simple modification of
the sample-sort algorithm [10, 20]—all extra operations (i.e.,
computing the SFC code and storing the point id) take no
additional asymptotic cost. The BUILDSORTED in Alg. 3 is a
parallel divide-and-conquer algorithm that takes O(n) work,
O(log n) span and O(n/B) cache complexity. The proof then
follows. O
In the following proof we assume the batch size m = O(n).
Note that the following proof depends on the analysis of
PaC-tree, which can be found at [24].

Theorem B.2. A batch update (insertion or deletion) of size m
on a SPaC-tree of size n uses O(mlog n) work and O(log® n)
span.

Proof. We first show the span bound. The sorting takes O (log m)

span, and the following points insertion/deletion takes O (log n)
rounds to reach leaves. Expanding the leaf and restore the
points order take constant time. Both the Join and RicHTJOIN
take O(log m) span [24] in each round. In total, the entire
process has O(log mlog n) span.

We now show the work bound. Sorting m points takes
O(mlog m) work, and each point takes O(1) operation in
each round. The leaf expansion takes constant time. The
work by JoIn is asymptotically bounded by the work of
RiGHTJOIN [24], and the total work of RiguTJOIN is O(m log 7).
The total work therefore is O(mlog n). O

Combining both lemmas gives Thm. 4.1.

C Implementation Details

P-Orth tree. We choose to build A = 3 levels for 2D points
and A = 2 levels for 3D points in the P-Orth tree skeleton,
which provides generally good performance on our machine.
For each bounding box, we store only the point coordinates
(with no extra metadata) of the lower-left and upper-right
corners to save memory. A single k-NN query traverse sub-
trees in increasing order of their minimum distance to the
query point, computed by comparing the query point with
the bounding box associated with each subtree.

SPaC-tree. The implementation of SPaC-tree builds on the
code of PaC-tree [24], but with a careful redesign to opti-
mize performance. Simply treating PaC-tree as a black box
introduces overhead from transforming input points into
key-value pairs—using the SFC code as the key and the en-
tire point as the value—as suggested in its user manual. We
avoid this by redesigning the interface so that SPaC-tree
automatically parses the SFC code in each point as the key
and treats the remaining attributes as the value. This allows
it to operate directly on the input sequence, reducing pre-
processing time and memory usage.

We also introduce a heuristic to optimize batch updates

when a leaf node overflows. The original approach in Alg. 4
unconditionally rebuilds the parent subtree by invoking
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Alg. 3. This can be inefficient when many points are af-
fected, because the insertion batch must be merged with
the points in the leaves prior to recursive node allocation,
even when the batch is already sorted. Hence, it incurs sig-
nificant overhead. An alternative is to explicitly expose the
leaf as a balanced tree with empty leaves and then perform
the batch insertion on that subtree. Our method chooses
between these strategies via a threshold. If the combined
size of the overflowing leaf and the new batch is below a
threshold (in our case, 4¢), we perform a standard, localized
rebuild. Otherwise, we expose the leaf and perform batch
insertion on the exposed subtree.

Parameter Choosing. We empirically set the parameters
to achieve the best performance on our machine for all im-
plementations. We set the leaf wrap to 40 for both SPaC-tree
and CPAM, and 32 for all other baselines. Both SPaC-tree
and CPAM use the weight-balanced scheme with balancing
parameter « = 0.2, i.e., the weights of left and right sub-tree
can be differ by at most 20%. For Pkd-tree, we adopt @ = 0.3
as suggested in their paper.

D Batch Updates

We now provide more experimental results for single
batch updates. We evaluate the performance of batch up-
dates by varying the batch size from 10° to 10° points, with
results presented in Fig. 8. The experimental setup consists
of an initial tree constructed with 10° points. We then per-
form two separate operations: a batch insertion, which adds
new points drawn from the same distribution, and a batch
deletion, which removes an equivalent number of existing
points from the tree. Smaller batch sizes were omitted from
this analysis, as their low computational cost diminishes the
practical benefits of parallelism.

All baselines scale well on both single batch insertions and
deletions. The SPaC-H-tree is faster than others on all bench-
marks, except for the batch deletion on Uniform, where it is
slightly slower than the P-Orth tree due to the handling of
imbalance. The P-Orth tree is slower than the SPaC-H-tree
on batch insertions on Varden, since it is skewed on highly
clustering data, and the tree traversal time incurs more over-
head. The Pkd-tree is generally slower than SPaC-H-tree
on skewed datasets such as Sweepline and Varden, since its
reconstruction-based balancing scheme is more expensive
when the rebuilt sub-tree is large, which is typical on skewed
datasets.

E Scalability Test

We evaluate the scalability of tested indexes in construc-
tion, insertion, and deletions, which is illustrated in Fig. 9.
We use 10° 2D points. A batch insertion uses a single batch
of size 107. The data points in Fig. 9 show the speedup over
the 1-core performance of SPaC-H-tree, and therefore Fig. 9
also reflects the true efficiency comparison of each index
(higher is better). In general, all indexes scale well to 224 hy-
perthreads, and the difference mainly comes from the work
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(i.e., one-core performance). Among them, SPaC-H-tree has
the best self-relative speedup, which is up to 82.9% in build
and 80X in insertion. This is likely due to its simple structure

as a 1D search tree. Combining both low work and good
scalability, SPaC-H-tree has the best overall construction

and update performance. The scalability on batch deletion is
similar to that of batch insertion, where the SPaC-H-tree has
the best scalability on 112 cores, which is 67X on Sweepline,
37.4X on Varden and 68.4X on Uniform. The P-Orth tree
have good scalability on Uniform, but is slightly worse on
Sweepline and Varden due to the imbalanced tree.

F Performance on 3D Synthetic Datasets

We now provide more experimental results on 3D syn-
thetic datasets. We generate 3D synthetic datasets with the
same method as in 2D, but limit the coordinates range within
[0,10°] to make it compatible to the SPaC-H-tree. The ex-
periments set up is the same as in 2D Sec. 5. The results are
shown in Fig. 10. We omit other baselines since they have
been shown to be slower as in 2D case Fig. 3 .

For tree construction, SPaC-H-trees remain the fastest
ones, and the time is more close to the 2D case compared
with P-Orth trees and Pkd-trees, since the SFC-based indexes
are less sensitive to the dimensionality. As a result, SPaC-
H-trees are 1.3-2.2X faster than P-Orth trees and 1.2-2.1x
faster than Pkd-trees.

Regarding the batch updates, the SPaC-H-tree remains the
fastest one on most of the benchmarks, except on Uniform
where it is slightly slower than the P-Orth tree due to han-
dling of imbalance. P-Orth trees are faster than Pkd-trees
on all benchmarks. The reasons are 1) the P-Orth tree does
not need to handle the imbalance, and 2) the range of coordi-
nates is limited to [0, 10°], which enables the tree height of
P-Orth trees become much smaller than it in 2D cases (the
data range is [0, 10?]), so that the tree traversal time is much
reduced in the skewed data such as Sweepline and Varden.
However, Pkd-trees still keep the advantage on queries—the
fastest one on most of the benchmarks, and competitive on
the rest.
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Figure 10. Running time (in seconds) on 3-dimensional synthetic data. Lower is better. The fastest time in each test is in bold and
underlined. We use colors to mark results within 1.1X, 2X, 5%, and > 5X the fastest time. Detailed settings for build, queries, and incremental
insertion/deletion are introduced at the beginning of Sec. 5.1. InD/OOD: in-/out-of-distribution.
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