
Investigation of the 2016 Linux TCP Stack Vulnerability at
Scale

Alan Quach†, Zhongjie Wang†, Zhiyun Qian
University of California, Riverside

{aquac005,zwang048}@ucr.edu, zhiyunq@cs.ucr.edu

ABSTRACT
To combat blind in-window attacks against TCP, changes
proposed in RFC 5961 have been implemented by Linux
since late 2012. While successfully eliminating the old vul-
nerabilities, the new TCP implementation was reported in
August 2016 to have introduced a subtle yet serious security
flaw. Assigned CVE-2016-5696, the flaw exploits the chal-
lenge ACK rate limiting feature that could allow an off-path
attacker to infer the presence/absence of a TCP connection
between two arbitrary hosts, terminate such a connection,
and even inject payload into an unsecured TCP connection.

In this work, we perform a comprehensive measurement
of the impact of the new vulnerability. This includes (1)
tracking the vulnerable Internet servers, (2) monitoring the
patch behavior over time, (3) picturing the overall security
status of TCP stacks at scale. Towards this goal, we design a
scalable measurement methodology to scan the Alexa top 1
million websites for almost 6 months. We also present how
notifications impact the patching behavior, and compare the
result with the Heartbleed and the Debian PRNG vulnera-
bility. The measurement represents a valuable data point in
understanding how Internet servers react to serious security
flaws in the operating system kernel.

1. INTRODUCTION
In July 2016, researchers reported a serious vulner-

ability in Linux TCP implementations that subject all
TCP connections to off-path/blind attacks [11], which
raised significant awareness [8, 17, 32]. This TCP flaw,
which we call the “challenge ACK vulnerability” [19],
is particularly dangerous not only because TCP is one
of the most widely used protocols, but also because it
is completely remotely exploitable. The fact that Linux
servers are dominating the server market makes matters
worse. Simply put, the vulnerability allows a blind off-
path attacker to infer if any two arbitrary hosts on the
Internet are communicating using a TCP connection.
Further, if the connection is present, such an off-path
attacker can also infer the TCP sequence numbers in
use, from both sides of the connection; this in turn al-

†Both authors contributed equally.

lows the attacker to cause connection termination and
perform data injection attacks. The last time a TCP
flaw as serious as this dates back to 1985 which was
discovered by Morris [28].

Despite being deployed since the inception of the In-
ternet, TCP has been evolving steadily over the years
to counteract various types of attacks [28, 29, 36, 38].
Interestingly and ironically, the recent TCP vulnerabil-
ity was introduced as a defense against blind in-window
attacks [36]. In particular, RFC 5961 [14] proposed in
2010 introduced the notion of challenge ACKs and how
they should be rate limited. Since late 2012, Linux has
fully implemented RFC 5961 and is the only operating
system that is “fully compliant” to the standard. Unfor-
tunately, Linux’s rate limit on the challenge ACKs was a
global one shared by all connections, effectively allow-
ing an attacker to deduce information about a target
connection by creating congestion on the shared chal-
lenge ACK counter and then measuring the changes by
probing packets [19].

In this work, we study the impact of the vulnerability
in the wild and the patching behaviors. Different from
a user-space application or library vulnerability that
is relatively easy to patch, e.g., OpenSSL and Heart-
bleed [20], our measurement presents a unique data
point on kernel vulnerability patching, which involves
additional steps such as waiting for Linux distributions
to backport the changes from upstream Linux.

Due to the nature of the vulnerability and the applied
patches, we are able to clearly differentiate the servers
that are vulnerable, non-vulnerable (those did not im-
plement RFC 5961), or patched, allowing us to picture
the community’s reaction to this security event. Also, to
facilitate large-scale scans, we present a highly efficient
parallel scanning methodology that operates on a fixed
period to accommodate the strict timing requirement.

Through extensive scanning on top Alexa 1 million
websites (primarily Linux servers) on a daily basis for
almost 6 months, we can picture a detailed and fine-
grained patching behavior at scale. We estimate about
half of the Alexa top 1 million websites were initially
vulnerable, We find that only 19% of the IPs for the

1



Alexa top 100 and 41% of top 10,000 websites are
patched 9 days after the vulnerability went fully public.
Interestingly the top 100 websites eventually caught up
with a higher patch rate (over two months after the dis-
closure). We also examine the various hosting services
that are behind the websites and show a surprisingly
diverse range of patching behaviors. For instance, some
CDN providers (e.g., CloudFlare) hosting the websites
we studied have a perfect 100% patch rate from the first
day of our measurement; while some other providers
(e.g., Amazon CloudFront) never patched their servers
even 6 months after disclosure.

Finally, we survey the impact of the TCP vulnerabil-
ity on other services, including Tor and telnet servers,
and conclude with an vulnerability notification study.

Drawing upon the observations, we map out a com-
prehensive picture of the TCP stack vulnerabilities. By
better understanding how Linux servers react to kernel
vulnerabilities, we hope to shed light on what can be im-
proved in the future in reacting to such Internet-wide
security events.

2. BACKGROUND
A TCP connection is identified by a four-tuple:

<source IP, source port, destination IP, destination
port>. In addition, sequence numbers and acknowl-
edgment numbers (32 bits each) are key TCP states.
As a blind attacker who is not able to eavesdrop on the
communication (off-path), it is necessary to guess or in-
fer the four-tuple as well as the sequence/acknowledg-
ment numbers to be able to launch any attacks against
the connection. Once the 6 key states are known, an
attacker can inject any malicious traffic to either the
client or server by spoofing the IP of the server or client.
The threat model is illustrated in Fig. 1. To resist sim-
ple attacks that attempt to predict these values (i.e.,
source port and initial sequence number), modern TCP
standards already produce randomized values [13, 15].
Unfortunately, it is proven that this is not sufficient
against persistent attackers [19,36].

2.1 Blind in-window attacks
A blind in-window attack is a blind TCP packet

spoofing attack where an off-path attacker targets a par-
ticular client and server pair (running known services)
to cause disruption on their ongoing connection [36]. In
particular, RFC 5961 outlines three such types of blind
in-window attacks:

• Spoofed RST, attempting to forcefully terminate a
target connection.

• Spoofed SYN, attempting to fool the server into be-
lieving that the client restarted and thus close the
current connection.

• Spoofed Data, attempting to corrupt data on either

end of the transmission.

Before RFC 5961, all such spoofed packets will be ac-
cepted by the client and server as long as the packets
satisfy the following criteria: (1) comes with the correct
four-tuple; (2) has a sequence number that falls in the
receive window. To target a connection between a par-
ticular client and server running known services (known
destination port), an attacker only needs to guess the
source port (or ephemeral port) and the sequence num-
ber. The source port is only 16-bit and not the entire
range is utilized by default [19]. Even though the se-
quence number is 32-bit, it is only necessary to send one
packet per receive window to exhaust the entire space
(and ensure that at least one packet has an in-window
sequence number). An attacker with sufficient network
bandwidth can therefore bruteforce both the source port
and the sequence number and perform the above blind
in-window attacks [36].

Interestingly, in addition to end hosts being vulnera-
ble to blind in-window attacks, TCP-aware middleboxes
can introduce the same vulnerability as well. A stateful
middlebox, such as the NAT of a firewall, may termi-
nate a connection upon seeing an in-window RST, SYN,
or even FIN packet [29].

2.2 Off-path attacks utilizing challenge ACK
rate limit as a side-channel

RFC 5961 was proposed to set much more stringent
rules on when incoming packets are considered valid.
In particular, the high-level philosophy is that instead
of blindly trusting an incoming packet, when in doubt,
a challenge ACK packet can be sent to confirm its va-
lidity. Unfortunately, part of this proposal was demon-
strated to result in a side-channel vulnerability in Au-
gust 2016 [19]. We outline the key changes in RFC
5961 below. In addition to a matching four-tuple, the
following changes are made for dealing with different
incoming packets:

• Incoming RST - If the sequence number is outside
the valid receive window, the receiver simply drops
the packet (same as before). Only if the sequence
number exactly matches the next expected sequence
number (RCV.NXT), is the connection reset. If the
sequence number is in-window but does not exactly
match RCV.NXT, the receiver must send a challenge
ACK to the sender, and drop the RST packet.

• Incoming SYN - Regardless of the sequence number,
a challenge ACK is sent back to the sender to confirm
the loss of the previous connection.

• Incoming Data - If the sequence number is in win-
dow, the ACK number of the incoming packet needs
to be within a much smaller range: [SND.UNA-
MAX.SND.WND, SND.NXT]. If the ACK number is
smaller than the lower bound: [SND.UNA-(231-1),

2



Figure 1: Threat model of an off-
path attacker.

Off-path 
attacker

Server1 Client1

SYN-ACK

Server2Client2

Active connection No connection

Challenge
ACK

100 RSTs

ACK 
count 
= 100

ACK 
count
= 99

ACK 
count

= 0

ACK 
count 
= 100

SYN-ACK

RST

100 RSTs

ACK 
count

= 0
99 

Challenge
ACKs

100 
Challenge

ACKs

Figure 2: Connection (four-
tuple) inference.

Off-path 
attacker

Server1 Client1

RST

Server2Client2

In-window seq Out-of-window seq

Challenge
ACK

100 RSTs

ACK 
count
= 100

ACK 
count 
= 99

ACK 
count

= 0

ACK 
count 
= 100

RST

100 RSTs

ACK 
count

= 0

Drop

100 
Challenge

ACKs

99 
Challenge

ACKs

Figure 3: Sequence number in-
ference.

SND.UNA-MAX.SND.WND], it is considered too old and
a challenge ACK is sent back to the sender.

Besides the way packets are handled, a new subtle
change is proposed in RFC 5961: in order to reduce
the number of challenge ACK packets that waste CPU
and bandwidth resources, an ACK throttling mecha-
nism is introduced (only on the challenge ACK pack-
ets). Specifically, a counter is introduced to limit the
maximum number of challenge ACKs (by default 100 on
Linux) that can be sent out in a given interval (1 sec-
ond on Linux). This counter is shared across all TCP
connections, leading to a subtle side-channel as demon-
strated in the recent research paper [19].

The key observation is that an attacker can estab-
lish a regular TCP connection to measure the remain-
ing challenge ACK counter. This gives an attacker a
reliable feedback channel on whether a spoofed packet
has managed to trigger a challenge ACK. This side-
channel allows an attacker to conduct three attacks in
sequence: (1) Connection (four-tuple) inference; (2) Se-
quence number inference; (3) ACK number inference.
In effect, instead of guessing all these unknowns simulta-
neously, this new attack can “divide and conquer” them
and substantially reduce the difficulty of the guesswork.

We illustrate the idea of the first attack, connection
(four-tuple) inference, in Fig. 2. The figure illustrates
the sequence of packets that an off-path attacker can
send to infer the presence or absence of an ongoing con-
nection between the client and server. The first SYN-
ACK packet, spoofing the source IP of the client, is
represented by dashed line. The counter tracking the
number of challenge ACKs that can be issued (100 ini-
tially) is shown on the timeline of the server. If the
spoofed SYN-ACK hits the four-tuple of an ongoing
connection between the client and server (correspond-
ing to the left half of the figure), it will trigger a chal-
lenge ACK from the server (according to RFC 5961),
and reduce the global rate limit counter from 100 to
99. Otherwise, the counter stays at 100. Next, the off-
path attacker simply sends 100 non-spoofed RST pack-
ets to exhaust and measure the remaining challenge
ACK counter (again leveraging the new behaviors of

RFC 5961). As shown in Fig. 2, the attacker can suc-
cessfully differentiate the “active connection” versus “no
connection” cases by counting the number of observed
challenge ACKs.

Once the four-tuple is known, an attacker can con-
tinue to launch the sequence number inference attack.
A similar process is outlined in Fig. 3. Finally, an ACK
number inference attack can be launched once the se-
quence number is known. We omit the details and refer
the readers to the paper describing the attack [19].

2.3 Defenses to off-path attacks and timeline
As soon as the challenge ACK vulnerability is re-

ported, defenses are immediately recommended. We
list them below:

• Temporary fix [18] - Without upgrading the kernel,
one can simply change the configurable rate limit
from 100 to an extremely large value, disallowing the
attacker to exhaust the limit in one second, making
the attack practically impossible to launch.

• Randomize the global rate limit (version-1 patch) [11]
- An initial patch to the Linux kernel is to randomize
the limit every 1 second (from 500 to 1500 by default),
making the attack much harder to execute.

• Enforcing a per-connection rate limit (version-2
patch) [9] - Later versions of Linux reflect the decision
to completely eliminate the global rate limit and in-
stead only enforce the rate limit per connection. The
patch allows only 1 challenge ACKs by default per
1/2 second per connection.

We present the timeline of events related to the vul-
nerability and the patch process in Table 1. The vul-
nerability was originally reported to Linux security by
researchers at UCR on July 5th. The issue received im-
mediate attention and was publicly discussed on July
8th on the kernel netdev mailing list [10]. The re-
searchers together with kernel developers iterated on an
initial patch that was committed within five days (July
10th) [11]. Another patch was proposed five days later
to further improve the security [9].

At this point, most of the technical details are al-

3



Date Event
07/05 Researchers at UCR reports the vulnerability
07/08 The issue is publicly discussed on kernel mailing list
07/10 Linux fixes the problem with an initial patch
07/14 Linux fixes the problem with a newer patch
08/10 The vulnerability along with the temp fix goes public
08/10 Major vendors e.g., Akamai applied temporary fix
08/18 Red Hat releases patch for v7
08/19 We begin our scanning

Table 1: Timeline of events since July 2016 for
the new side-channel vulnerability.

ready made publicly available, and certain vendors such
as Red Hat had already started to prepare patches, al-
though many vendors were likely not fully aware of this.
Later on Aug 10th, the research paper was presented at
USENIX Security and received significant press cover-
age, which prompted many more vendors to look into
the matter. According to the information collected from
the public sources on the same day, Cloud.gov and Aka-
mai have patched the vulnerability. On Aug 16th, Ver-
izon Edgecast claims to have patched it as well, using
the temporary fix.

3. MEASUREMENT METHODOLOGY
AND GROUND TRUTH

Our basic approach is to initiate a regular TCP con-
nection with a server and then test whether the vulner-
ability is present by sending a series of probing packets.
As will be shown later, since the signature of the vulner-
ability is distinctive, we are able to make an accurate
determination on its vulnerability.

For each scanned server, we aim to find the following:
(1) whether it has the challenge ACK vulnerability,
(2) whether it is patched and how,
(3) whether it is not vulnerable due to other reasons,
e.g., server not compliant to RFC 5961.

To test the vulnerability on a high level, we need to
confirm that there are indeed challenge ACKs in re-
sponse to packets containing either the SYN, ACK, and
RST flags. The absence of them would indicate that a
server is not compliant to RFC 5961 and therefore not
vulnerable. Second, we need to check if it has a default
limit of 100 challenge ACKs per one second interval.
The presence of the limit is indicative that it is a vul-
nerable and unpatched Linux kernel. The absence of
any observed rate limit (higher than what we can mea-
sure) would indicate that the server is likely patched.
Challenges. There are three challenges we need to
overcome: First, there exist a variety of operating sys-
tems and versions running on the Internet [33], we need
to be able to reliably identify the vulnerable Linux hosts
and exclude others. Second, we must also consider the
possibility that middleboxes such as firewalls that may
interfere or distort any measurements that we perform
(e.g., as described in [29]). Third, due to the nature of
the vulnerability, a relatively large number of packets

need to be sent, in order to test the rate limit behavior.
If not managed carefully, packet losses can occur and
servers can timeout.
Ethical Considerations. First of all, it is important
to note that our scan merely tests for the presence of
challenge ACK vulnerability without actually conduct-
ing a full-fledged attack, which has many more steps
(e.g., IP spoofing) and packets exchanged [19]. Sec-
ondly, to minimize the impact on the scanned server,
we choose a very low scan intensity so as to not over-
whelm the server or its network. Finally, for the vulner-
able servers, the scan does require interacting with the
challenge ACK rate limit mechanism, which may pre-
vent challenge ACKs (pertaining to other connections
on the server) from being sent out. However, consider-
ing that challenge ACKs are rarely triggered in regular
connections and the fact that challenge ACKs are ex-
pected to not always be delivered (due to rate limit and
packet loss), the negative impact on other connections
is limited.

3.1 The Basic Scan
We start by describing a basic scan that can answer

only the first question: whether a server has the chal-
lenge ACK vulnerability. Later we will expand the scan
method to be able to answer other questions.

Scan Components. There are in total five compo-
nents. Besides the handshake and termination, a scan
consists of ACK test, SYN/ACK test, and RST test.
Each test attempts to trigger and exhaust the challenge
ACK rate limit (if any) by crafting packets according
to RFC 5961.

Interleaved between all five components are data
packets comprised of three packets (for redundancy)
that use in-order sequence numbers, checking whether
the connection is still alive. In the case of the data check
after the handshake, it fulfills the additional goal of ad-
vancing the connection to the ESTABLISHED state in the
event that the server uses TCP deferred accept [1].

Figure 4: An overview of a single full scan.

Each of the three tests is comprised of three rounds of
packet exchanges. Every round has 210 packets of the
corresponding packet type to solicit challenge ACKs.

For ACK test, three rounds of 210 packets are sent
with an in-window sequence number (RCV.NXT+10) and
ACK number acknowledging old data (SND.NXT−230).

For SYN/ACK test, three rounds of 210 pack-
ets are sent with an out-of-window sequence num-
ber (RCV.NXT+230) and out-of-window ACK number

4



(SND.NXT−230).
For RST test, three rounds of 210 packets are sent

with an in-window sequence number (RCV.NXT+10).
210 packets are chosen as it is a high enough num-

ber to distinctly differentiate whether a server responds
with 100 challenge ACKs. If all tests return 100 chal-
lenge ACKs, we can safely assert that it contains the
challenge ACK vulnerability, as Linux is the only oper-
ating system that has implemented the rate limit fea-
ture.

Figure 5: Timing of a specific type of test.

Scan Timing Instead of synchronizing the clock
with the server (and wasting three seconds [19]) to en-
sure that all 210 packets fall in the one second interval,
we arrange the packets such that it can avoid the syn-
chronization delay while still providing reliable results.
To do so, each round of 210 packets are sent over a 1/3-
second interval with a 1 second delay before the next
round 210 packets are sent.

The 1/3-second interval ensures that we are able to
send all our packets fast enough within a 1 second time
interval, yet is long enough to not cause congestion and
packet losses. The 1 second delay ensures that we have
enough time to collect all response packets from the
server; it also allows us to skip over any “dirtied” 1 sec-
ond intervals where the round of probing lands on the
border of two 1 second intervals. With 3 rounds of tests,
if a server is vulnerable, 2 out of 3 rounds are expected
to receive 100 challenge ACKs, and the remaining round
may have a number in between 100 and 200 if it happens
to be crossing the two 1 second intervals. For brevity, we
only illustrate this (instead of offering proofs) in Fig. 5.

3.2 Complete Scan
Building on the basic scan, we now expand it to

a complete scan to be able to answer the two addi-
tional questions: (1) whether it is patched and how, (2)
whether it is not vulnerable due to other reasons. The
complete scan has branches and effectively translates to
a decision tree as depicted in Fig. 6.

3.2.1 Patch and baseline behaviors
To understand how we can differentiate the patching

behavior from non-patched/other operating systems, we
profile a set of major operating systems offline in a lab
environment to obtain a baseline. Fortunately, during
our study, we find responses to be distinct from operat-
ing system to operating system. Based on this, we can
identify patched cases reliably as shown in Fig. 6.

Note that we are less interested in the specific OS

Type OS ACKSYN/ACK RST

RFC5961
compliant

Unpatched Linux (early∗) 100 100 100
Unpatched Linux (late∗) 100 1 100

Patched Linux (Temp fix) 210 210/1 210
Patched Linux (V1) 210 210/1 210
Patched Linux (V2) 1 1 1

Non-RFC5961
compliant

FreeBSD (Mac†) 210‡ 210 0
Windows 0 210 1
Solaris 210‡ 210 0

OpenBSD 0 0 0
Others, old Linux/Windows 0 0 0

∗: Early = Prior to 4.0. Late = 4.0 and above.
†: The TCP stack of Mac OS is based on FreeBSD.
‡: These OS’s can be differentiated through a forward ACK test.

Table 2: Operating system responses.

versions. Instead, we classify the OSes based on their
challenge ACK behaviors (whether RFC 5961 is imple-
mented), and list them in Table 2. For instance, upon
inspecting the Linux kernel source code, we are able to
distill two types of vulnerable challenge ACK behav-
iors (before patching): (1) old vulnerable Linux which
does not have a per-socket challenge ACK rate limit.
(2) new vulnerable Linux which does have a per-socket
rate limit. Note that the per-socket rate limit does not
eliminate the vulnerability as it can be bypassed as long
as there is at least one byte in the payload (and it does
not carry the SYN flag). This means that only SYN/ACK

test is affected and will receive 1 challenge ACK while
the other two will still see 210. These behaviors are
verified through a range of Linux distributions includ-
ing the default Ubuntu 12.04, 14.04, 16.04, Red Hat 7.1,
SUSE Linux 12, and CentOS 6,7 released prior to the
patch date.

For patched hosts, as we discussed, there are in to-
tal three types of patching behaviors; two derived from
the kernel patches [9, 11] and the temporary fix recom-
mended by the researchers and the industry [18, 35].
They can all be clearly differentiated from non-patched
cases. As the temporary fix and V1 patch yield the same
results to our tests (both appearing to be raising the
rate limit to higher than 210), we always see 210 chal-
lenge ACKs during ACK test. For SYN/ACK test how-
ever, it is possible that we see 210 or 1 challenge ACKs,
depending on whether the kernel prior to patch already
had the per-socket rate limit. The only case that comes
close is the recent FreeBSD versions that have partially
implemented RFC 5961 (tested on FreeBSD 10.3). On
the surface, it behaves identically to that of a patched
Linux server. However, we are able to differentiate them
from Linux servers due to how they respond to ACK
packets that are acknowledging data in the future (i.e.,
ACK number too advanced). In Linux servers, such
ACK packets are silently dropped while FreeBSD will
send a regular ACK packet in response. Exploiting this
unique behavior, we follow up cases during the initial
ACK test (shown in Fig. 6) where we see a potentially
patched server with a second round of Forward ACK

5



Figure 6: The decision tree of the expanded scan.

test. FreeBSD will return 210 responses while Linux-
based servers always return 0. Interestingly, Solaris is
similar to FreeBSD except it will only respond with 5
ACK packets. For Windows, we tested Windows 7, 8,
10, and Windows Server 2003 R2, 2008 R2, 2012 R2,
and 2016 DataCenter (all are fresh installs) and the re-
sults are consistent. They can be easily differentiated
from the unpatched and patched Linux cases.

In addition, it is evident that V2 patched Linux is
unique enough by looking at just ACK test result, as
only 1 challenge ACK can be observed. The reason
is that V2 patch has a per-connection rate limit which
allows only 1 challenge ACK to be sent every 0.5 second.
This is because our ACK test sends 210 packets in 1/3
of a second (less than 0.5 second).

Finally, in some cases during the RST test as shown
in Fig. 6, we may encounter two interesting corner cases
that are likely caused by firewalls. By the time we reach
the RST test, it is already evident that it is a vulnerable
Linux host (no other major OS fingerprints match it).
However, we note that the in-window RST packets ei-
ther are discarded (after which the connection with the
server is still alive), or terminate the connection directly
(a classic stateful firewall behavior [29]). In both cases,
they are still considered vulnerable cases according to
the alternative attack strategy designed in [19] which
can replace the RST-based probing with ACK-based.

3.2.2 Other Non-Vulnerable Cases
As we see in Table 2, if a host is not even RFC 5961

compliant, it is definitely not vulnerable. This includes
Windows, FreeBSD, Solaris, and OpenBSD. In the deci-
sion tree (Fig. 6), we can see that FreeBSD cases can be
uniquely captured and other non-RFC5961-compliant
cases will be discovered after the initial ACK test as 0
challenge ACKs are received.

In addition, there is a partially vulnerable case caused
by firewall interference. As briefly discussed in §3.1, a
certain type of stateful firewalls check TCP sequence
numbers [29] and drop TCP packets that have out-of-
window TCP sequence numbers. In this case, if the
server is behind such a firewall, the probing SYN/ACK
packets (with out-of-window sequence numbers) will be
dropped by the firewall, resulting in 0 challenge ACKs.

This defeats the connection (four-tuple) inference at-
tack (discussed in §2.2) as it is now impossible to craft
SYN or SYN/ACK packets soliciting challenge ACKs
without knowing a valid in-window sequence number.
However, an attacker already knowing the four-tuple
can still perform sequence number inference using the
SYN/ACK packets where only those with in-window se-
quence numbers can solicit challenge ACKs (exactly the
requirement of sequence number inference §2.2); ACK
number inference is also possible as ACK test still sees
100 challenge ACKs; hence this case is labeled as par-
tially vulnerable.

3.3 Parallelizing the Scan
Even though the complete scan based on the decision

tree can correctly classify a TCP stack, we need some-
thing more efficient than probing a single IP at a time
to carry out a large-scale scan. A parallel scanner aims
at maximizing network utilization by scheduling prob-
ing packets for multiple targets at appropriate times
and recording/maintaining the state for each scanned
target. In the past, scanners such as ZMap [22] are
able to achieve this by simply scheduling the probing
packets for different targets without any constraint (ex-
cept not to saturate the bandwidth). However, in our
scan, we need to not only maintain the state for each
probed target IP address, but also enforce the strong
timing requirement as described in § 3.1, i.e., sending
210 packets spread out in one third of a second in each
round of test, and one full second of delay in between
rounds. This unique timing constraint makes it difficult
to schedule the probing packets for multiple targets and
achieve high bandwidth utilization.

To this end, we develop a general probing methodol-
ogy to overcome the challenge. Similar to ZMap, we op-
erate with only two dedicated threads: one for sending
and one for receiving. A single sender thread allows us
to precisely schedule the timing of each outgoing packet.
Now the challenge is that we need to manage a timer
for each IP somehow. Our solution is as follows: (1)
instead of managing a timer for each IP, we can group
IPs into fixed-size batches and manage a timer for each
batch; (2) each batch will have a one-second idle pe-

6



Figure 7: Scheduling of parallel scanning. The figure is simplified with each test (e.g., ACK test) done once
instead of three times. The connection establishment and teardown phases are omitted.

riod in between tests which can be time-multiplexed for
scheduling N other batches (N=3).

Specifically, we scan different IP batches in a time-
multiplexed fashion as shown in Fig. 7. Each time slot
is 1/3 second, allocated one IP batch (210 probing pack-
ets will be sent per IP). The scan has a 4/3-second
period that allows 4 different IP batches to be time-
multiplexed, where probing packets for each batch will
receive a gap of a full second (as intended). The time
slots are assigned to different batches in rotation This
ensures that we always have some IPs to scan in each
time slot.

The batch in its assigned time slot is managed to-
gether where 210× k packets are sent in total; here k is
the number of IPs in each batch. To avoid congestion,
these packets are scheduled evenly (one IP after an-
other) over the 1/3-second duration. Besides the timer
state maintained for each batch, a more fine-grained
state for each IP in the batch is maintained indicating
where it is on the decision tree; this allows the sender
to know what packets to send for a specific IP (or if it
is already done).

With this strategy, the scanning speed is roughly 4×k
times the speed of a sequential scanning (one IP after
another). In practice, on our network, k = 40 (there-
fore 160X speedup) is the maximum number we can go
without experiencing significant packet losses.

Our parallel scanning tool can also be easily applied
to measurement scans sharing similar characteristics:
(1) Packet-intense scan that requires sending multiple
packets in a short period of time for each IP. If the
scanner has a poor scheduling decision, packet losses
may occur, e.g., bursty packets scheduled sent to the
same destination at once. Our batch design allows us
to pace packets for each IP while still fully utilizing the
bandwidth resource by rotating among different IPs.
(2) Stateful scan that consists of multiple rounds of
tests, and the scan state changes according to the re-
sponse of each round of test. To track the scan state,
we maintain a fine-grained per-IP state using a finite
state machine.
(3) Fixed-time-period scan that has strict require-
ment on when packets need to be delivered. This allows
us to perform the time-multiplexed scan with multiple

time slots designed to accommodate the time require-
ment. Otherwise, we have to seek suboptimal solutions
such as per-IP time management, which is difficult to
administer.

In theory, any large-scale scans that have strong tim-
ing requirements and fixed time period may leverage a
similar design.

3.4 Data Cleaning
Due to the sheer volume of traffic sent at a relatively

high rate, we are bound to experience losses which make
it challenging to interpret and classify the results. To do
so, we cross-validate results across days to correct mis-
classified data when possible. Specifically, we conduct
two types of data cleaning: (1) forward cleaning and
(2) backward cleaning. In forward cleaning, whenever
we classify an IP as patched reliably, it cannot go back
to vulnerable in the future (we argue that the chances
that it does go back are extremely small). Similarly,
in backward cleaning, whenever we classify an IP as
vulnerable reliably, it cannot be possibly patched in the
earlier days. Through our manual analysis, we discover
that these rules are effective in eliminating mis-classified
results due to packet losses.

4. IMPACT ON TOP 10K WEBSITES
Since the vulnerability was introduced in all Linux

kernels since late 2012, we expect a large percentage
of the Internet servers to be vulnerable, as it was esti-
mated that more than 96.6% of the top 1 million Alexa
websites use Linux servers [6].

4.1 First day of scan
We conducted our first scan on the IPs that host the

top 10,000 websites of Alexa’s top sites on Aug 19th, 9
days after the vulnerability went public. We excluded
the duplicate IPs and those that timeout before we
can finish our scan, which leaves us to 7,484 unique
IPs. Since the vulnerability received significant atten-
tion and is quite severe, it is likely that many of the
websites would have patched their Linux servers by the
time we started our scan. For instance, as we noted,
popular CDN services like Akamai have even patched
their servers before the vulnerability went public.

7



Dataset
RFC 5961 RFC 5961

Non-RFC 5961 Unknown
Vulnerable Patched

Top 100 32.91% 18.99% 37.97% 10.13%
Top 10K 26.39% 41.09% 30.85% 1.67%

Table 3: Results of the first day of scan on top
100/10K sites

.

1-15 Stat. Note 16-30 Stat. Note
google.com V msn.com N Non-RFC

youtube.com V yahoo.co.jp V
facebook.com N Non-RFC weibo.com V

baidu.com N Non-RFC linkedin.com V
yahoo.com Unk Unk vk.com V

amazon.com N Non-RFC yandex.ru N Non-RFC
wikipedia.com N Patched hao123.com N Patched

qq.com N Patched instagram.com N Non-RFC
google.in V ebay.com N Non-RFC

twitter.com N Non-RFC google.ru V
taobao.com N Patched amazon.co.jp N Non-RFC

live.com N Non-RFC reddit.com N Patched
sina.com.cn N Non-RFC 360.cn N Patched
google.co.jp V t.co N Non-RFC

bing.com N Non-RFC pinterest.com V

Table 4: Top 30 vulnerable URLs with unique
IPs. V for Vulnerable, N for Non-Vulnerable and Unk
for Unknown.

Top 10K vs. Top 100. In Table 3, we see that
26.39% of the 7,484 unique IPs for the top 10K websites
were vulnerable, and 41.09% were patched already, in-
dicating significant patching has indeed been performed
prior to our first day of scan. Note that a large fraction
(30.85%) of IPs are running extremely old TCP stacks
(at least 4 years old), indicating that they may have
other kernel vulnerabilities.

We were surprised to find that the Alexa top 100 web-
sites actually have a much smaller fraction of patched
servers than the top 10,000. As shown in Table 3, only
18.99% of the 79 unique IPs corresponding to the top
100 were patched and 32.91% were vulnerable. As the
top 100 websites all belong to large Internet companies,
it is extremely unlikely that they were unaware of the
vulnerability. Instead, we hypothesize that it is because
they have a larger share of global traffic which makes it
more challenging to find time to apply patches to the
kernel and reboot the server. In Table 4, we list the vul-
nerability status of the top 30 websites on the first day
of scan. It is apparent that Google servers are all vul-
nerable even though the developer who submitted the
initial Linux patch was from Google [11]. In addition,
yahoo.co.jp, weibo.com, linkedin.com, vk.com, and pin-
terest.com were found to be vulnerable. Upon further
inspection, Google servers are patched finally between
Oct 26th and Nov 3rd gradually.

4.2 Patching
Linux distribution patch timeline. Unlike Win-

dows or Mac OS, upstream Linux kernel patches often
need to be backported and tested on various Linux dis-

Date Distribution patch Kernel base Patch version
07/19 Fedora 23, 24 server 4.6.4 V1
08/17 Red Hat 6 server 2.6.32 V1
08/18 Red Hat 7 server 3.10 V2
08/23 CentOS 6, 7 server 3.18 V1
08/29 Ubuntu Xenial 16.04 4.4 V1
08/29 Ubuntu Trusty 14.04 3.13 V1
08/29 Ubuntu Precise 12.04 3.13 V1
08/31 Debian Wheezy 7 3.2 V1
09/03 Debian Jessie 8 3.18 V1

Table 5: Timeline of Linux distribution patch
releases.

tributions (e.g., Red Hat) who then finally push the up-
date to their users. This can be a relatively long delay
as most Linux distributions are operating on old base
kernel versions. We list the timeline of Linux distribu-
tion patch releases in Table 5 (some are still operating
on Linux kernel 2.6.X).

Coincidentally, Fedora 23 and 24 running kernel 4.6.4
are the fastest to push out patches, only 9 days after
the initial patch (V1) was proposed by the Linux kernel
developers. It is likely because the kernel is so new that
it is the easiest to incorporate the patch from upstream
Linux (which fixed the vulnerability in 4.7). They are
ahead of the next fastest distribution – Red Hat (patch
released on 08/17) – by almost a month, even though
Red Hat was involved in the patching process early on
(publicizing the CVE [31]). Overall, the fastest release
(Fedora) and the slowest release (Debian) are 47 days
apart, leaving some Linux servers vulnerable for much
longer than others.

In addition, as described earlier, there are two differ-
ent upstream Linux patches (V1 and V2) which were
committed on 07/10 and 07/14 respectively. Interest-
ingly, almost all Linux distributions except Red Hat 7
picked up the first patch instead of the second even
though the second is more secure, indicating that they
were eager to pick up the earliest possible patch.

Finally, to mitigate the vulnerability, even though
Linux distributions can be slow in releasing patches,
system administrators do have the option to apply a
temporary fix which will look similar to V1 patch (in
our scan results, they both look like raising the global
rate limit) [18].

Patching behaviors. We continued our scan for al-
most six months, ending on Feb 10th, 2017. The scans
were conducted mostly daily in the beginning and ev-
ery two days towards the end. We end up with a set of
6994 unique IPs, all of which are successfully scanned
on all days. When we look at the beginning few days
in Fig. 8, it is evident that the fraction of vulnerable
IPs for the top 10K dataset reduced dramatically, likely
representing the tail end of the initial burst in patching.
The spike in patch rate also correlates roughly with the
patch releases of several popular Linux distributions, in-
cluding Red Hat and CentOS (shown in Table 5). How-

8



08-19 09-19 10-19 11-19 12-19 01-19
5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%
P
e
rc

e
n
ta

g
e
 o

f 
v
u
ln

e
ra

b
le

 I
P
s

Top 100

Top 1K

Top 10K

Top 1M

Figure 8: Percentage of vulnerable IPs over time

08-19
09-19

10-19
11-19

12-19
01-19

0%

10%

20%

30%

40%

50%

60%

P
e
rc

e
n
ta

g
e
 o

f 
p
a
tc

h
e
d
 I
P
s

V1 Patched

V2 Patched

09-08
10-08

11-08
12-08

01-08
02-08

0%

5%

10%

15%

20%

25%

30%

P
e
rc

e
n
ta

g
e
 o

f 
p
a
tc

h
e
d
 I
P
s

V1 Patched

V2 Patched

Figure 9: Percentage of V1 patched/V2 patched
IPs over time (Left: Top 10K. Right: Top 1M)

ever, since some distributions pushed out updates late,
it is likely that a significant portion of vulnerable IPs
applied the temporary patch, e.g., Akamai claimed that
they did so [18].

Interestingly, after the initially burst, the number of
vulnerable hosts is mostly steady, except three notable
drops starting mid October, early November, and early
December respectively (e.g., including Google server
patches).

Finally, in Fig. 9, we show that V2 patches are catch-
ing up extremely slowly until a surge from Dec 12 to
Dec 14 caused by CloudFlare upgrading their already
V1 patched servers. Besides CloudFlare, however, most
V1 patches never turned into V2 patches during the
6-month period. This indicates that either these com-
panies are aware of the fact that the 2nd patch is non-
critical and intentionally delayed it, or their patching
cycle is simply very slow in general (on the order of
several months). We can thus infer that patching ker-
nel vulnerabilities is indeed a painful process and the
frequency of patching is being minimized by most.

Top 100 vs. Top 1K vs. Top 10K. Fig. 8 provides
a clear view on how the patching behaviors differ for top
websites at various ranks. As mentioned earlier, top 100
websites generally patch more slowly compared to top
10K. We suspect that it is because many top 100 web-
sites maintain their own infrastructure (e.g., Google)
that is not only large in scale but also customized to tai-
lor for their own service needs. In contrast, the top 10K

Figure 10: Percentage of vulnerable IPs of top
hosting companies. Derived from the result of top
10k. U for Unmanaged, M for Managed and B for
Both. The numbers in the legend indicate unique IPs
belonged to the company in the dataset.

are mostly hosted by third-party hosting services such
as Amazon EC2 (more detailed on this later). How-
ever, if we look at the patching behavior over time, top
100 websites eventually catch up from late Oct to mid
Nov (more than 2 months after disclosure). During the
catch-up period, the list of patched IPs in top 100 in-
cludes 8 google IPs, and 1 IP each for stackoverflow,
github, ok.ru, pinterest, yahoo.co.jp, adobe, imgur etc.

Between top 1K and 10K, a similar (although not as
obvious) trend shows that top 1K websites initially have
lower patch rate, but eventually catch up from a similar
time frame. As expected, as will be described in more
details in the next section, top 1M websites ultimately
have the lowest patch rate.

Managed vs. Unmanaged hosting. Besides In-
ternet giants such as Google that have dedicated infras-
tructure to host their own websites, most top websites
are hosted on infrastructures managed by professional
hosting companies such as Amazon EC2 and various
CDNs. We divide the hosting services into two types
(managed and unmanaged) according to whether the
operating systems are managed by a particular host-
ing company. For instance, Amazon EC2 and OVH al-
low users to run guest operating systems of their choice
inside virtual machines, which means tenants are re-
sponsible for managing and patching their own operat-
ing systems (and hence we call them unmanaged host-
ing). In contrast, CDNs such as Cloudflare never ex-
pose the operating system details to tenants, which im-
plies that CDNs themselves are responsible for manag-
ing the underlying operating system. Besides CDNs,
some hosting services also offer managed hosting, e.g.,
Rackspace [12], which takes care of patching.

We are interested in the patching behaviors among
the managed and unmanaged hosting services. For each
scanned IP address, we map it to their corresponding
corporation using the Whois database, which usually al-
lows us to determine whether it is a managed or unman-

9



aged hosting (or both). To further distinguish Ama-
zon EC2 and Cloudfront CDN (both of which belong to
Amazon), we consult the published IP ranges provided
by Amazon [2]. As shown in Fig. 10, we show the top 8
companies in the top 10K dataset; all of them are host-
ing companies (Google did not have enough unique IPs).
It is interesting to see that the patch rate of different
hosting services varies significantly (even among CDN
providers). CDNs such as CloudFlare and Akamai are
fully patched (0% vulnerable) from the very first day of
our measurement. Surprisingly, the Amazon Cloudfront
CDN have never patched any of their servers even six
months after disclosure. The Fastly CDN is somewhere
in between where initially all their servers are vulner-
able and they get fully patched over a period of about
20 days, starting early Nov. This shows that applying
kernel patches to a large set of servers is very challeng-
ing, as only a subset of servers can afford to have their
services shutdown and reboot.

On the other hand, unmanaged hosting such as Ama-
zon EC2 has significantly less patching. This is under-
standable as it is completely up to tenants on Amazon
EC2 to decide their patch schedule. Note that many
unmanaged hosting companies sometimes do optionally
provide managed hosting at an extra cost (e.g., AWS
Managed Services [3]). For Amazon EC2, we observe a
significant drop in the first few days in the number of
vulnerable IPs, and it is likely because either a small
portion of tenants chose the managed services, or they
patched their servers themselves. However, given that
Amazon CloudFront CDN did not patch any of their
servers, it seems unlikely that they would be patching
the same vulnerability for their EC2 customers.

Finally, for hosting services such as Rackspace and
SoftLayer that offer both managed and unmanaged ser-
vices, irregular and small patching is observed.

4.3 Comparison to Debian Weak Keys and
Heartbleed

There were two major historical security vulnerabili-
ties that are documented in the literature for their cor-
responding Internet-wide patching responses: (1) the
weak keys generated in the Debian OpenSSL pack-
age [37] reported in 2008; (2) the Heartbleed vulner-
ability (CVE-2014-0160) which is an information leak-
age bug in the OpenSSL cryptographic library that can
leak private keys [16, 20]. Both security vulnerabilities
are extremely dangerous as they can cause the crypto-
graphic keys to be guessed easily or even directly read
by a remote attacker.

The most interesting aspect for comparison is the
timeliness of patching in all three events (including the
TCP stack vulnerability). The three vulnerabilities are
all different: (1) Debian weak key is a flaw that requires
replacement of keys (arguably more effort than regular

0 20 40 60 80 100 120
Days since Public Disclosure

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 o
f 
U
n
p
a
tc
h
e
d
 E
n
ti
ti
e
s

Challenge ACK
Heartbleed
Debian PRNG

Figure 11: Comparison to Heartbleed and De-
bian PRNG. The initial number of vulnerable hosts of
Heartbleed and Debian PRNG at day 0 are estimated
based on data in [20,37].

patching). (2) Heartbleed is an application-layer vul-
nerability which is relatively easy to patch. (3) The
TCP vulnerability here is a kernel vulnerability which
requires rebooting to apply the patches.

We acknowledge that it is difficult to perform a direct
“apple-to-apple” comparison as there are several differ-
ences in the way datasets are collected: (1) the Debian
weak key study has a small sample of affected hosts
(only 751 out of 50,000 servers displayed weak keys); (2)
our TCP scan is against the Alexa top 10,000 while the
Heartbleed is against the top 1 million; (3) we started
our scan 9 days after the vulnerability disclosure while
Debian and Heartbleed scans started 4 days and 2 days
after, respectively. Nevertheless, we believe the data
can already shed some light on answering the follow-
ing question — how fast the affected hosts get fixed in
respect to the disclosure date.

To this end, we use the metric of fraction of affected
hosts, which is computed as “the number of affected
hosts” divided by “the total number of hosts that were
vulnerable prior to disclosure”. If the number drops
quickly early on, it means that patching is very respon-
sive. Fig. 11 captures this trend. For Heartbleed, only
11% of the hosts are reported to be vulnerable on their
initial scan conducted 2 days after the disclosure. Given
that it is estimated that the total fraction of vulnera-
ble hosts is around 24% to 55% prior to disclose [20],
this means that the vulnerable rate after 2 days is from
11%/55% = 20% to 11%/24% = 46%, and more than
half of the hosts (54% to 80%) have already been fixed
2 days after disclosure. Even if we use 54%, it is an
impressive patch rate from the very beginning. For the
TCP case, we consider all patched hosts to be vulnera-
ble prior to disclosure. Clearly, the patch rate is not as
impressive as Heartbleed. In our study, we see that still

10



60% of the affected hosts remain 9 days after disclosure,
while only about 20% affected hosts remain for Heart-
bleed on the same day. For Debian weak key, no esti-
mate is available on the total number of affected hosts
prior to disclosure. We there retroactively generate the
number according to the relatively stable curve which
started 4 days after disclosure. We admit that theoret-
ically there could be more affected hosts than what we
estimated, so the starting point for Debian curve needs
to be taken as a grain of salt. Nevertheless, the patch
trend since day 4 remains accurate. Overall, we can see
that both TCP kernel vulnerability and Debian weak
key have a more steady patching behavior than Heart-
bleed. In contrast, the patching for Heartbleed is much
more aggressive early on and dies off very quickly.

5. IMPACT ON TOP 1M WEBSITES
To measure the impact on a larger scale, we began to

conduct scans on the Alexa Top 1 million websites since
Sep 8, 2016, almost a month since the vulnerability went
fully public, until Feb 11, 2017. Again, we excluded
the duplicate IPs (which lead to 537,049 unique IPs
remaining) and those that timeout before we can finish
our scan, which leaves us to 474,093 unique IPs.

In terms of vulnerable websites, on the day of Sep
8, 26.7% of IPs were vulnerable for the top 1 million
(shown in Fig. 8) as opposed to 22.4% for the top 10,000.
This is perhaps expected as the top 10,000 websites
are typically operated by larger companies and possibly
CDNs. Interestingly, there is a large fraction of servers
(34.8%) that are not compliant to RFC 5961. We fur-
ther verified that most of them in fact are vulnerable to
traditional blind in-window attacks [14], even though
they are not vulnerable to the challenge ACK attacks.

Patching behavior. Since our 1 million websites
measurement started on Sep 8, a large proportion
(23.1% of all IPs) of the RFC 5961 compliant Linux
hosts are already patched before our scan started. As
shown in Fig. 8, over the course of the scan, we find
mostly steady and measurable patching throughout, ex-
cept a few notable drops in vulnerable hosts that are
somewhat more significant than others. Upon closer in-
spection, they correspond to large companies such as
Google patching their servers during the same period.

Interestingly, towards the end of the scan (6 months
after disclosure), we see that the patched hosts keep in-
creasing with no signs of leveling off. At this point, it
is unclear if the hosts are really patching against the
specific vulnerability. It is more likely that the system
administrators simply have a very loose maintenance
schedule for kernel updates. In general, it is worri-
some to see that kernel vulnerabilities are being patched
this slowly as opposed to application-layer vulnerabili-
ties such as heartbleed, especially considering that slow
kernel patching could leave many other kernel vulnera-

bilities open as well.
Also, Fig. 9 shows that, similar to the top 10K case,

the V2 patch has a surge from Dec 12 to Dec 14, again
due to CloudFlare upgrading all of their already V1
patched servers.

Middlebox behaviors. According to our measure-
ment, the most common middleboxes that may affect
the challenge ACK attack is the TCP sequence num-
ber checking firewall [29]. As shown in the decision tree
(Fig. 6), such firewalls block SYN/ACK packets that
come with out-of-window sequence numbers, and makes
the hosts partially vulnerable. Overall, around 2% of
the IPs (10741 in total) are behind such sequence check-
ing firewalls (we conservatively exclude them from the
set of vulnerable IPs). Interestingly, as shown in [29],
sequence number checking firewalls themselves can in-
troduce security vulnerabilities; this is worth looking
into in the future.

In addition, we observe a very small fraction of fire-
walls (affecting 0.03% or 161 IPs) that terminate con-
nections upon seeing an in-window RST, which ren-
ders the server vulnerable to the traditional blind in-
window attacks, even when the servers are already
patched against them. We also confirm another type
of firewalls (affecting 0.02% or 108 IPs) simply drop in-
window RST packets silently, whose behavior was not
publicly known. However, both such firewalls do not
prevent the challenge ACK attack as suggested by the
researchers [19].

6. OTHER IMPACT

6.1 Impact on other services
Tor services. The challenge ACK attack is par-

ticularly dangerous for Tor services [19], as users may
be forced to go through attacker-controlled relays when
connections with other relays are repeatedly shut down.
We extract a full list of publicly advertised online Tor
relays on Sep 16 which consists of 6,767 IPs. Among
them, 37.9% are vulnerable, 21.9% are patched, 35.0%
are non-RFC 5961 compliant, and the rest are unknown.

Telnet services. Hosts that run telnet services incur
significant risks against off-path attacks who can inject
malicious commands. We conducted a one-time scan
on Oct 04 over telnet servers in the IPv4 range, based
on the IP set with an open port of 23 from Censys [5].
We have measured a total of 2,797,179 unique IPs. As
expected, telnet services are not commonly enabled on
Linux servers, only 1.8% of them are found to be vul-
nerable to the challenge ACK attack. Interestingly, we
do observe that 14.8% are patched Linux, a much better
patch rate compared to web servers.

6.2 Notifications
We conjectured that it is more difficult to patch ker-

11



P
e
rc

e
n
ta

g
e
 o

f 
p
a
tc

h
e
d
 h

o
s
ts

Figure 12: Notification effects.

nel vulnerabilities; however, we are curious if notifica-
tions will in fact make any difference in improving the
patching behavior. On Dec 4, we started our notifica-
tion study following a similar methodology described
in [26, 34]. We constrain the study to the top 10,000
URLs. Out of them, we randomly select 1185 vulner-
able URLs, among which are further divided into into
our notification set (593) and control set (592). Specif-
ically, we send a verbose email every week to the IPs in
the notification set, describing the vulnerability and the
associated IP addresses to the WHOIS abuse contacts
obtained from Abusix. We then measure whether these
IPs have patched the vulnerability over the course of
three weeks. In the case that we have multiple URLs
for the same email contact, we performed aggregation
when possible to reduce the number of emails we send.

From our observations, we noticed that sending
emails to abuse contacts generally helped in increas-
ing patch rates. As of December 25th, we found that
patching rates were double that of the control group -
16.86% for the notification group and 8.11% for the con-
trol group, despite some emails sent to the notification
group not reaching their destinations (bounced back).
Interestingly, this improvement is generally in line with
the prior studies [26,34] even though the vulnerabilities
used in their studies are not kernel ones. The underly-
ing factors that determine how successful vulnerability
notifications will be (e.g., severity, who manages the af-
fected services, and how easy is it to patch) remain an
important research question.

7. RELATED WORKS
Off-path TCP attacks. The oldest off-path TCP

attack can be dated back to 1985 [28], which allows an
attacker to predict the initial sequence number of the
SYN/ACK packet from the server without actually ob-
serving the packet. This effectively allows an attacker
to establish connections with the server using spoofed
IP addresses. In 1999, Linux had an interesting vulner-
ability [7] where it allows an off-path attacker to create
a legitimate connection using any spoofed IP address.
In 2004, the famous blind in-window attack is discov-
ered [36] where an off-path attacker can craft various
types of spoofed packets to interfere with a victim con-
nection. The attack succeeds as long as any such packet
has a sequence number within the receive window of the

receiver. In recent years, a number of new off-path TCP
attacks have been reported that can infer (instead of
guessing blindly) what sequence number can be used to
carry out attacks that can either forcefully terminate a
connection or inject arbitrary content to the victim con-
nection. Most attacks require executing malicious code
on the client side [4,19,23–25,29,30], either in the form
of malware [29,30] or malicious javascript [23–25]. The
most recent one reported in Aug 2016 [19] is the only
one that does not have any requirement of executing
malicious code, rendering it the most powerful attack to
date. It is also the only off-path TCP attack that pri-
marily targets servers, which prompts many Internet-
facing services to patch their Linux servers. In our
study, we developed a fast and scalable methodology
for conducting the measurement of this latest vulnera-
bility to measure their impact on Internet servers.

Large-scale measurement on Internet servers
and security patching. Recent advances in Inter-
net measurement has allowed much more to be learned
about the behaviors of Internet servers at scale. ZMap is
one of the pioneering tools that enabled Internet-wide
(IPv4 range) scans [22]. Subsequently, significant re-
search has been performed leveraging ZMap or similar
concepts [21, 33]. A recent Internet measurement stud-
ied the resilience of TCP stacks against off-path/blind
in-window attacks [27]. The conclusion is that there
is still a significant fraction of TCP stacks (of top web
servers) on the Internet that are using extremely old and
vulnerable implementations (which are confirmed in our
study as well, e.g., the servers whose TCP stacks are
prior to RFC 5961). There are two other recent Inter-
net measurement was on the matter of Heartbleed and
Debian weak keys [20, 37]. We compare our measure-
ment results extensively with them in §4.3. Recently,
researchers have also started to explore Internet-wide
vulnerability notification as a proactive approach to im-
prove the security patch rate [26, 34]. We also conduct
a notification study on the challenge ACK vulnerability
and show that the patch rate does improve drastically.

8. CONCLUSION
In this work we analyzed the impact of the recent

challenge ACK vulnerability in Linux kernel, including
(1) who was initially vulnerable, (2) patching behavior
over time, by hosting services, and by network services
(e.g., Tor and telnet), (3) how notification affects the
patching behavior. In general, we find that many in
the top websites were vulnerable and remain vulnerable
for an extended period of time. Interestingly, compared
to top 1K and 1M websites, a larger fraction of Top
100 websites were initially vulnerable but eventually
they caught up and have smaller fraction of vulnerable
servers. We find that the hosting services behind many
of the top websites in fact have a surprisingly diverse

12



and sometimes opposite patching behavior. We show
that Linux kernel patching has some interesting differ-
ences from the recent Heartbleed and the Debian weak
key event. The lessons and data collected will hopefully
help the community better react to future Internet-wide
security events.

Acknowledgment
Research was sponsored by National Science Founda-
tion under grant #1464410 and grant #1528114. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-
plied, of the National Science Foundation or the U.S.
Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation here on.

9. REFERENCES

[1] TCP protocol - Linux man page. http://man7.
org/linux/man-pages/man7/tcp.7.html.

[2] Amazon AWS IP Address Ranges.
http://docs.aws.amazon.com/general/

latest/gr/aws-ip-ranges.html.
[3] AWS Managed Services. https:

//aws.amazon.com/cn/managed-services/.
[4] Blind TCP/IP Hijacking is Still Alive.

http://phrack.org/issues/64/13.html.
[5] Censys Scan Data Repository.

https://censys.io/data.
[6] CVE-2016-5696 and its effects on Tor.

https://blog.patternsinthevoid.net/

cve-2016-5696-and-its-effects-on-tor.

html.
[7] Linux Blind TCP Spoofing Vulnerability.

http://www.securityfocus.com/bid/580/info.
[8] Linux bug leaves USA Today, other top sites

vulnerable to serious hijacking attacks.
http://arstechnica.com/security/2016/08/

linux-bug-leaves-usa-today-other-top-

sites-vulnerable-to-serious-hijacking-

attacks/.
[9] [PATCH net] TCP: enable per-socket rate limiting

of all ’challenge acks’.
https://www.mail-archive.com/netdev@vger.

kernel.org/msg119411.html.
[10] [PATCH net] TCP: make challenge acks less

predictable. https://www.mail-archive.com/
netdev@vger.kernel.org/msg118677.html.

[11] [PATCH v2 net] TCP: make challenge acks less
predictable. https://www.mail-archive.com/
netdev@vger.kernel.org/msg118918.html.

[12] Rackspace Managed Hosting Services. https:
//www.rackspace.com/en-us/managed-hosting.

[13] RFC 1948.
https://tools.ietf.org/html/rfc1948.

[14] RFC 5961.
https://tools.ietf.org/html/rfc5961.

[15] RFC 6056.
https://tools.ietf.org/html/rfc6056.

[16] The Heartbleed Bug. http://heartbleed.com/.
[17] The TCP “challenge ACK” side channel.

http://lwn.net/Articles/696868/.
[18] Vulnerability in the Linux kernel’s TCP stack

implementation.
https://blogs.akamai.com/2016/08/

vulnerability-in-the-linux-kernels-tcp-

stack-implementation.html.
[19] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V.

Krishnamurthy, and L. M. Marvel. Off-path TCP
exploits: Global rate limit considered dangerous.
In 25th USENIX Security Symposium (USENIX
Security 16), 2016.

[20] Z. Durumeric, J. Kasten, D. Adrian, J. A.
Halderman, M. Bailey, F. Li, N. Weaver,
J. Amann, J. Beekman, M. Payer, and V. Paxson.
The matter of heartbleed. In Proceedings of the
2014 Conference on Internet Measurement
Conference, IMC ’14, 2014.

[21] Z. Durumeric, J. Kasten, M. Bailey, and J. A.
Halderman. Analysis of the HTTPS certificate
ecosystem. In Proceedings of the 2013 Conference
on Internet Measurement Conference, IMC ’13,
2013.

[22] Z. Durumeric, E. Wustrow, and J. A. Halderman.
Zmap: Fast internet-wide scanning and its
security applications. In Presented as part of the
22nd USENIX Security Symposium (USENIX
Security 13), 2013.

[23] Y. Gilad and A. Herzberg. Off-Path Attacking the
Web. In USENIX WOOT, 2012.

[24] Y. Gilad and A. Herzberg. When tolerance causes
weakness: the case of injection-friendly browsers.
In WWW, 2013.

[25] Y. Gilad, A. Herzberg, and H. Shulman. Off-Path
Hacking: The Illusion of Challenge-Response
Authentication. Security Privacy, IEEE, 2014.

[26] F. Li, Z. Durumeric, J. Czyz, M. Karami,
M. Bailey, D. McCoy, S. Savage, and V. Paxson.
You’ve got vulnerability: Exploring effective
vulnerability notifications. In 25th USENIX
Security Symposium (USENIX Security 16), 2016.

[27] M. Luckie, R. Beverly, T. Wu, M. Allman, and
k. claffy. Resilience of deployed TCP to blind
attacks. In Proceedings of the 2015 ACM
Conference on Internet Measurement Conference,
IMC ’15, 2015.

[28] R. Morris. A Weakness in the 4.2BSD Unix
TCP/IP Software. Technical report, 1985.

13



[29] Z. Qian and Z. M. Mao. Off-Path TCP Sequence
Number Inference Attack – How Firewall
Middleboxes Reduce Security. In IEEE
Symposium on Security and Privacy, 2012.

[30] Z. Qian, Z. M. Mao, and Y. Xie. Collaborative
TCP sequence number inference attack: How to
crack sequence number under a second. In CCS,
2012.

[31] Redhat. Bug 1354708 - (CVE-2016-5696)
CVE-2016-5696 kernel: challenge ACK counter
information disclosure. https://bugzilla.
redhat.com/show_bug.cgi?id=1354708.

[32] Redhat. CVE-2016-5696. https://access.
redhat.com/security/cve/cve-2016-5696.

[33] Z. Shamsi, A. Nandwani, D. Leonard, and
D. Loguinov. Hershel: Single-packet OS
fingerprinting. In The 2014 ACM International
Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’14, 2014.

[34] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and

M. Backes. Hey, you have a problem: On the
feasibility of large-scale web vulnerability
notification. In 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[35] UCR Today. Study Highlights Serious Security
Threat to Many Internet Users.
https://ucrtoday.ucr.edu/39030.

[36] P. Watson. Slipping in the window: TCP reset
attacks, Apr. 2014.

[37] S. Yilek, E. Rescorla, H. Shacham, B. Enright,
and S. Savage. When private keys are public:
Results from the 2008 Debian OpenSSL
vulnerability. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement
Conference, IMC ’09, 2009.

[38] M. Zalewsk. Strange attractors and TCP/IP
sequence number analysis. Technical report, 2001.
http:

//lcamtuf.coredump.cx/oldtcp/tcpseq.html.

14


