Figment: Fine-grained Permission Management for
Mobile Apps

Toannis Gasparis*, Zhiyun Qian*, Chengyu Song*, Srikanth V. Krishnamurthy*, Rajiv Gupta* and Paul Yu®

*Department of Computer Science and Engineering, University of California, Riverside, Tu.s. Army Research Lab
igasp001 @ucr.edu, zhiyunq@cs.ucr.edu, csong@cs.ucr.edu, krish@cs.ucr.edu, gupta@cs.ucr.edu, paul.l.yu.civ@mail.mil

Abstract—Today’s Android systems do not allow users to
manage the permissions granted to applications (apps) in a
flexible and dynamic way. Recent studies show that apps often
misuse these permissions to access private information, or have
trapdoors via which other malicious apps can do the same. In this
paper, we develop a framework Figment, which consists of set of
libraries that developers can easily use to build in fine-grained
dynamic permission management capabilities. The users of their
apps can readily invoke these capabilities during execution. The
apps would potentially run with reduced functionalities if the
user does not wish to allow certain permissions. Figment also
allows either the developer or a user to specify context aware
permissions, which cause different permissions to be granted
to the app in different functional modes (contexts). We believe
that Figment reduces the attack surface exposed to potentially
malicious apps and offers a significant step in preserving user
privacy. While the rudimentary version of Figment uses aspect-
oriented programming and does not need rooting of the phone or
changes to the Android sub-system, we also provide an optional
root-level fail safe implementation that facilitates the embedding
of dynamic permission management functions in old applications
not built by using Figment libraries. We show that Figment offers
significant benefits over the Android Marshmallow permission
management system with lower runtime overheads; the main
penalty is a one time higher compilation overhead.

I. INTRODUCTION

Unfortunately, today most mobile apps declare (sometimes
many) permissions at install time and retain these permissions
for their lifetimes. Not only are many of these permissions
seldom used, they expose a large attack surface that can poten-
tially compromise user privacy. A recent report [6] examined
over a million apps available on the Google Play Store [10]
and found that on average each app asks for 5 permissions.
Most apps require permissions for network access (83%), for
modifying data on local disk (54%), for reading phone status
and identity (35%), for accessing the precise user location
(24%), for finding accounts (e.g., Facebook) of the user (16%)
and accessing the camera (12%). A combination of these
(often permanent) permissions allows an app to compromise
the privacy of the user (information is accessed and transferred
over the network); a poorly developed app could allow other
malicious apps to exploit its permissions [1], [14]. The afore-
mentioned study [6] also surveyed over 400 adults and found
that over 60% of the surveyed population decided not to install
an app because it requires many permissions and hence, they
were concerned about their privacy. Although many such app
requests could be legitimate, the users might have trusted them
if they could enable/disable permissions dynamically.

Android Marshmallow and what it brings: Android 6.0
viz., Marshmallow (Android M) and later versions are similar
to 10S, and allow users to grant permissions to each app
at run-time. Note here that without loss of generality we
focus our attention on Andriod M since it was the first to
support revocable permissions. However, all of our work is

applicable to newer versions of Android including Android
Oreo (Android-O) and also relevant to iOS.

Although this is an improvement over previous Android
versions, it still has some inherent limitations. First, apps
not developed for Android M or smartphones using previous
Android versions, will not support fine-grained permission
management. Second, even with Android M, an app that seeks
access to a device feature (e.g., camera), need not declare the
permission if it uses intents for that action (intents allow late
runtime binding between code in different apps [3]). Third,
an app can access sensor data (e.g., accelerometer) without
declaring any permission at all. Recent works such as [27]
have shown that this could lead to privacy leakage for a
user. Fourth, an app could use third party libraries (e.g., Ad
libraries) which inherit the permissions granted to the app. The
user does not know when (in what context or for enabling what
functionalities) sensitive APIs or resources are accessed. As
an example, the app Location Tracker [13] displays a user’s
location but at the same time uses an ad library that tracks the
user’s location. While in this example, the usage of location
information is likely to be legitimate, it has been shown
recently that there can be cases where a third party library can
misuse the privilege and compromise user privacy [29]. Last
but not least, developers will have to make significant, non-
trivial changes to their application code in order to support
the new permission mechanisms of Android M. They will
also have to ensure backward compatibility to support users
of previous versions of Android.

Our goal: Given these limitations of Android M, we seek to
develop a developer and user friendly, permission management
framework. The framework should allow users to dynamically
manage the permissions granted to the apps that run on their
smartphones, either on a case by case basis or based on the
context (context, in brief, refers to a coarse grained, pre-
defined functionality that uses the permission and is discussed
later) of usage. In facilitating this, it should ensure that apps
do not crash on the user’s phone. The development of such a
framework is not easy and has several associated challenges.

Challenges: It is unlikely that developers will make an
attempt to facilitate fine-grained permission management if
it requires them to significantly increase the number of lines
of code they need to write. Thus, a key challenge we need
to address is: “How can our framework enable developers to
easily facilitate dynamic permission management?” To ensure
widespread usage, the framework must be usable not only
with Android M but also previous versions i.e., we ask: “How
can we make the framework Android version agnostic?” With
widespread usage in mind, we ask: “How can we ensure that
a user does not need to root her phone or install a customized
version of Android in order to utilize the permission man-
agement functions incorporated by a developer?” Sometimes,



a developer may not properly declare the permissions that
are required (or not required). Thus, a challenge we need to
address is “How can we enforce proper permissions when
an app either uses intents, or when permissions that aren’t
required are not disabled?” The framework should contain
safeguards to protect the user’s interests in such cases.

Last, we ask “What can we do (and how can we do it)
if a developer chooses not to use the framework to support
dynamic fine-grained permission management ?” In this case,
a user space solution (not requiring root privileges) does not
suffice. Thus, we seek to provide fine grained permission
management (similar to the developer assisted user space
framework) if the user chooses to root her phone.

Contributions: Our main contribution in this paper is
the design and implementation of Figment, a developer as-
sisted framework for dynamic, fine-grained version-agnostic
permission management framework that addresses the above
challenges. Figment is developed as an Android library and
has an associated annotation language that makes it easy for
developers to use. Figment intelligently exploits the power
of Aspect Oriented Programming (AOP) to weave in permis-
sion management code into an annotated application code at
compilation time to achieve its goal. It allows both (i) the
user to grant/revoke permissions in a fine-grained way on
a case by case basis and, (ii) context-aware provisioning of
permissions (permissions are granted only if certain conditions
hold). To address cases where an app is developed without
using Figment, we design and implement an optional fail safe
mechanism for users with rooted phones.

In brief, our contributions in building Figment are:

e We design and develop a developer friendly (simple to use)
annotation language. The annotations intelligently exploit
the AOP paradigm to facilitate fine-grained, dynamic per-
mission management (Section III).

e We design and develop an Android library that can trans-
form existing applications developed for any version of An-
droid into applications that supports fine-grained revocable
permissions. These libraries are weaved into the application
code at compilation time (Section IV).

e We enhance the fine-grained revocable permission approach
(similar to what is available with Android M) by providing
a simple but effective context aware mechanism supporting
flexible permissions as well as by introducing and managing
new permissions for sensors (e.g., accelerometer) that output
sensitive data (Section III and IV).

e We develop a fail safe mechanism within Figment to safe-
guard a user’s permission choices when apps use intents
or when developers improperly declare permissions. The
mechanism essentially checks and returns either a null
pointer or fake information (as in [19]) to the app if it asks
for permissions disallowed by the user, if doing so does not
cause the app to crash. Else, it prompts the user indicating
that it is a necessary permission (Section IV).

e We develop an optional fail safe mechanism for users with
rooted phones that want to have a fine-grained permission
management for applications that do not use the basic
version of Figment. The idea in this fail safe mechanism is
similar to what was included in the basic version of Figment,
but the implementation is different (Section V).

We implement and evaluate both the basic version of

Figment and its optional fail safe component for existing
and new Android apps on different versions of Android.
We show that Android M’s runtime overhead is higher than
that of Figment (by approximately 272%). Further, Android
M’s fine-grained permission mechanism, in our case studies,
requires a developer to write on average 131% more lines
of code compared to when she uses Figment’s annotation
language. However, the one time compilation overhead of
an app using Figment is relatively high compared to that of
Android M (180% increase on average); we believe that this
is a reasonable cost given Figment’s benefits.

II. LIMITATIONS OF ANDROID’S PERMISSION MODEL

This section provides background on the Android permis-
sion mechanism. We then discuss why these are insufficient in
terms of protecting user privacy either in inadvertent benign
cases or from malicious applications.

Android System Permissions: Android’s security design is
based on the principle that no application by default has any
permission to perform an action that will adversely impact
other applications, the OS or the user’s data. Because of
sandboxing, apps must explicitly share resources and data by
declaring permissions they need (for additional capabilities
beyond the ones that are offered by the sandbox mechanism).
An app’s permissions are declared in its Manifest file. There
are certain permissions that are granted to the app by default;
however, certain other permissions will need to be explicitly
granted by the user. Prior to Android M, such permissions
were granted by the user during the installation of the app;
if the user wanted to revoke such permissions, she had no
recourse but to uninstall the app (and reinstall if desired). In
Android Marshmallow (similar to i0S), the permissions are
granted during run-time. The user is prompted when an app
first seeks to use a resource. If the user does not grant the
requisite permission, the app can potentially still run, but with
limited functionality. Android M allows the user to modify the
permissions granted to an app via a system application.

Motivation for Figment: Android’s permission manage-
ment system however, has significant limitations (even with
Android M). First, the new permission management mech-
anism is only available with Android M. Thus, to migrate
her app to Android M, a developer must ensure that her app
is backward compatible with the previous Android versions.
This makes the code more complex. Moreover, the process
of handling requests and responses for permissions in the
new Android is more complicated. If the android version is
previous to M, then the permissions were already granted
during the installation. If the android version is M or beyond,
then the developer should perform the following steps:

e Every time the app needs to perform an action that requires
access to sensitive resources, the developer should insert
specific instructions within the app’s code to explicitly
check if the permissions are granted even if the user had
already granted that permission before. The ContextCom-
pat.checkSelfPermission() method must be called to check
if the app has a particular permission.

e If the app does not have a permission to complete a
restricted action, the developer should insert specific code
in order to ask the user to grant that kind of permis-
sion. This can be done by calling the Activity.request-
Permissions(String[], int) method.



e In many circumstances, the developer might want to help
the user understand why her application needs a permission.
In order to do that, the developer should specifically write
code to export this reasoning to the user.

e When an app requests a permission, the system presents
a dialog box to the user and when the user responds the
onRequestPermissionsResult(int, String[], int[]) method is
called. The app should override this method to find out
whether the permission was granted by the user or not.

e The developer should appropriately handle both positive or
negative responses from the user.

First, it is evident that the above steps add complexity and
significantly more code to an app. Second, Android M is
context agnostic; its permission mechanism handles every
request of permission the same way. As a consequence, the
user’s privacy can be compromised. For example, a user may
be willing to share her location in a specific context (e.g. show
a route on a map), but not be willing to share it under a
different context (e.g., the same app uses a 3rd library that
tracks the user’s location for analytic purposes even if she
is not seeking a route). Finally, Android M provides only an
ability to revoke a subset of the available permissions. For
example, it does not allow the revocation of a permission
granted to access the Bluetooth interface; further, permissions
are not necessary for the use of sensors like the accelerometer.
As prior efforts such as [27] have shown, this can result in
serious privacy leaks that could have been prevented if the
user had the option to not grant (or revoke) such permissions
to undesired (possibly malicious) apps.

Given these limitations of Android, we design and im-
plement a flexible, context aware permission management
framework, Figment, that works with all versions of Android.
The basic framework is available as an Android library and
can be used in current or future Android projects. To enable
Figment, the developer has to annotate methods that require
restricted actions; we develop a simple to use annotation
language for this purpose. In subsequent sections, we describe
the components of Figment in detail.

III. Figment: LIBRARIES AND ANNOTATIONS

In this section, we begin with some background on AOP.
We then discuss the design of our annotation language that
developers can use to provision fine-grained permission man-
agement. Subsequently, we provide an overview of how AOP
and the annotation language fit in within Figment.

Aspect oriented programming: Aspect Oriented Program-
ming (AOP) [25] allows a developer to add executable blocks
into the source code without changing it. While doing so,
she can specify which part of code can be modified via what
is called a pointcut. Pointcuts are expressions which specify
where code, not central to the business logic, can be added
(code injection) in a program. Using pointcuts ensures that
code that is core to the functionality of the app is not cluttered.

It is common for apps to contain functionalities that span
multiple layers. These functionalities typically support oper-
ations such as authentication, logging, instrumentation, and
validation. In AOP, cross-cutting concerns, describe such
functionalities (which affect the entire app). For example, a
developer may want to add logging to the communication and
the UI (user interface) layers of her app in order to see how
much time the CPU is spending in each method. Although

Source Code Final Program

Pointcut
:| Aspect

[
1]

Advice

Fig. 1: Aspect Oriented Programming paradigm.

the purpose of the two layers differ, the code needed for
performing the logging is identical and centralizing this code
makes it easier to manage (change it) in the future.

Fig. 1 summarizes the AOP paradigm. The code that is
injected (at a pointcut) is called advice. Typically, there are
three kinds of advices, before, after and around which are
executed before, after or instead of a method, respectively.
Pointcuts can specify a single point in the code (e.g., code is
inserted before the main method) or multiple points (e.g., code
is inserted after the execution of any method inside a specific
class). The process of injecting code is called weaving and the
combination of an advice and pointcut is called aspect. With
AOP new code can be injected either (i) at run-time, wherein
the program has to explicitly ask for an enhanced code, or
(ii) at load-time, wherein the modification is performed when
the targeted classes are being loaded (e.g., Dalvik or ART), or
(iii) at build-time, wherein the build process is modifying the
code before packaging and deploying the app. In Figment, the
code is injected during the build process.

Annotation Language for Permissions: In AOP, annota-
tions are typically used as pointcuts. This makes it easy for
developers to infer where the weaving process will inject code.
Thus, with Figment, annotations are to be used by a developer
for specifying which methods require what permissions.

Java Annotations: Java supports annotations [12], which
provide information to the compiler to help detect errors or
suppress warnings. They can also be used during compilation
to help software tools generate code, or other files. They can
also be made available to be examined at runtime. They start
with the character “@” which tells the compiler that what
follows is an annotation. They can include elements and can
be applied to declarations of classes, fields, methods, etc.

Design of the Annotation Language: Android apps are
developed in Java and thus, can be annotated. In Java, the
functionality of an object is contained in its method. Thus,
when a developer calls a restricted API, her code is written
inside a method. Such methods can be annotated with Figment.

Figment provides two kinds of annotations for developers.
First, methods requiring only one permission are annotated us-
ing the “@Permission” annotation. An annotation is described
by (a) the type of permission, (b) a message that is displayed
to the user if the permission is disabled and, (c) the context of
the permission (discussed next), where a developer can specify
under what contexts a method needs specific permissions.
Contexts are labeled using an ID and annotations using the
same ID are considered part of the same context. For example
a method that requires the Location permission under the
context with ID “MapLocator,” is expressed as:

@Permission(requires=Location, message="Find Location”,
context="MapLocator”)
public void findLocation () {
// code




Second, if a method requires multiple permissions, Figment
supports what is called the intersected method annotation
(“@InterPermission”) where the developer specifies an array
of permissions, a message, and the context. For this method
to be called, all the permissions should have been granted by
the user. An example can be seen below:

@InterPermission( requires ={Location, Camera}, message="Picture With
Location”, context="Cameral.ocation”)
public void takePictureWithLocation () {
// code

What do we mean by context? In this paper, “context” refers
to a specific functionality (for what purpose the permission
is used). For example, “MapLocation” may be a context
specification wherein the location is used to show the user’s
location on a map; in contrast “AdLocation” could be a context
specification where the location is used by an ad library.
Similarly, “CameraSelfie” may refer to a specification where a
user is taking a selfie versus “CameraPoint” which may refer
to when she uses it for a point and shoot. The developer can
specify the context in his annotated code as discussed above.
As discussed later, if a developer has not annotated his code,
Figment allows the user to enforce a new context; the system
simply polls the user for the permission and creates a context
based on why the permission is being asked. It then saves the
information for future use.

While finer-grained definitions of context are possible [21]
(e.g, a permission may be granted only if the residual battery
percentage is higher than a threshold), we defer such a
possibility to the future. Note that since contexts are specified
by a set of “method invocations” in Figment, they are finite
and in almost all cases, are limited to a very small set of
possibilities (as also pointed out in [23]).

Warning the developer of possible issues: Figment in-
cludes a static analysis tool for developers, based on lint [4].
It checks for potential problems during compilation between
simple and annotated methods that are dependent. Specifically,
it checks the consequences of disabling an annotated method
(assuming a permission was denied) on the program execution.
If the consequence is fatal (e.g. the app crashes), a warning is
displayed to the developer. This helps developers refine their
code; such issues can be avoided by ensuring that there are no
dependencies between different simple and annotated methods.

Putting it all together: With our annotation language
and AOP, Figment allows a developer to include revocable
permissions in her app. If contexts are properly created and
separated, disabling a context should allow the app to execute
in other contexts (app should not crash). The user is informed
of mandatory permissions needed by the app (in all contexts).

Figment is agnostic to the Android version. As part of
Figment we package the annotation language and the AOP
techniques for code injection (described in Section IV) in a
library, which can be imported into an Android project and
compiled with it. The code is injected during the build process.
The process is shown in Fig. 2. Before the actual compilation,
the annotated code and our libraries pass through the weaving
process, during which code (for enabling proper permissions)
is injected at appropriate places (where the code is annotated).
Then, the modified code is compiled and transformed into the
Dex format. Finally, the ApkBuilder constructs the final APK
(Android application package) package.

Annotation
and Aspect Library|

‘Application Code

Android Project

(@) (b)

Fig. 3: Control Flow Graphs.

IV. Figment: CLIENT SIDE OPERATIONS

In this section, we first describe how fine grained context
aware permissions are enforced with Figment. Then we discuss
how our system fits in within Android.

Fine grained permission management: Fine grained per-
mission management in Figment comes into play when its
code is injected into an annotated Android project. A program,
during its execution, traverses many different paths that can
be represented using a Control Flow Graph (CFG) [18].
The permission management mechanism determines the paths
allowed (traversable) in the CFG during run-time based on
user input. It thus, based on the permissions granted, creates
a different functional version of the same program (with
different capabilities). To illustrate, imagine that we have an
Android app that displays the user’s location on a map and
at the same time, can take pictures. Its CFG can be seen in
Fig. 3a. The nodes represent methods. The user by granting
the app a permission for accessing her location but not for
taking pictures, transforms the CFG during run-time into the
one in Fig. 3b. As seen in the latter figure, everything below
the getLocation node is truncated in the graph by Figment.

To support changing of an app’s functionality during run-
time, we design the Figment’s revocable permission mecha-
nism. Its functions are described with the help of the example
in Fig. 4. As the app is executed, at time t;, it encounters an
annotated method that needs a permission. Thus, the action
(advice) taken by an aspect at that pointcut will be: (1) Read
the central database. (2) If the app has not asked the relevant
permissions yet (for this particular annotated method), then
a message is displayed to the user. (3) If the permission is
granted, then the permission together with the context and
the app name, is saved to the database. Thus, the user is not
asked again in the future, for that permission for this particular
annotated method. Later, if the program execution encounters
the same annotated method, the database will return a success
and the method will be executed right away. (4) Finally, our



=

Pointcut |1 Permissi
> Invocation of /
Annotated Method

Pointcut |2
—

User Granted Permission

Advice:  |read No Permission availablel Display Message
check to User
Save

Invocation of
Annotated Method

User did not grant permission
Program Execution

Fig. 4: Figment’s Revocable Permission Mechanism.

library performs the invocation of the annotated method.

At time tp, the program encounters an annotated method that
requires a permission that is different from the one at t;. The
steps performed by the encountered aspect are the following:
(1) Read the central database. (2) If the application has not
asked for the relevant permissions yet (for this particular
annotated method), then a message is displayed to the user.
(3) If the permission is denied, the Figment library will not
invoke the annotated method and the execution of the program
will continue after the pointcut.

The user can dynamically change her decisions with regards
to granted/denied permissions using a front end that is part of
Figment. It reads the database and displays the enabled/dis-
abled permissions for each installed app. If the user decides
to change her decision, she can do so by using the front end
and the central database is updated accordingly.

Handling dependencies: Consider a case where a method
(say A) calls an annotated method B. However, the permissions
sought by B are not granted by the user. If the two methods
are independent (meaning that the other parts of A can be
executed without B), then A is safely executed without calling
B. If on the other hand, A depends on a value returned by B
(e.g., location), then Figment tries to return the safest value
(which ensures that the app does not crash) as we discuss
later. However, A may expect a value from B that has nothing
to do with a permission (e.g., calculation); in such a case,
Figment cannot return a safe value. It simply informs the user
that A cannot be executed without the permissions needed by
B. Note that as discussed earlier, Figment already warns the
developers of such cases which can be avoided if there is a
clean separation between methods (no dependencies).

How does Figment Fit in? We show how Figment fits in
within the Android system in Fig. 5. When an app has to
access a resource (e.g., Camera) or a system service (e.g.,
Location), the Android system checks if the app has been
granted the required permission (Permission Check). If the
permission has not been granted, the app will stop working.
If Android M is used, and if the app supports revocable
permissions, it can function without the functionalities that
require the corresponding permission. As shown, with an an-
notated app using the Figment library, when an action requires
a permission, an additional check is invoked by Figment’s
library, prior to Android’s permission check. Thus, revocable
permissions are now possible with older Android versions.

Protection from missed annotations: A developer may
compile her project with the Figment library but “not” annotate
all the methods or intents. This may cause some unnecessary
permissions to be granted, which in turn can lead to privacy
leaks and/or a large attack surface. To protect users in such
cases, Figment creates pointcuts for each API call that accesses
any resources needing permissions. The only requirement here

Application Layer System Service

Location SMsS

Injected Code]

; D x
.d v Permission Check
Figment's Perm. Check
Y
Permission Check
v v v
Camera Binder

Kernel Layer

Fig. 5: Permission Check in Android and Figment. The shaded
blocks represent Figment’s components.

is that the app has to be compiled with the Figment library.

To illustrate, consider a case where a developer (using
Figment) provides a camera functionality to her app via
a third party app by leveraging the intent mechanism in
Android [5]. When the program execution reaches the camera
intent, Figment will automatically check the database if the
corresponding app, under that context, has the camera permis-
sion. If not, a message is displayed to the user, who can then
choose to grant or not grant the permission. If the user denies
the permission, then the intent is not called.

If the method is returning a value, then Figment’s protection
mechanism will try to return the safest value based on the
documentation for the Android API [2], that ensures that the
app will not crash. For example, say the method is getLast-
KnowLocation which requires a permission for Location, and
the developer has not performed a null check for the return
value. If the method returns a null value the program will
crash with a NullPointerException. Figment recognizes this by
registering a global exception handler for each Android app
to monitor the uncaught exceptions that result in a crash. It
then returns either a random or a predefined value that ensures
otherwise (again a proper value is chosen based on the Android
API and the function). For example, an acceptable value for
a location is one that provides a latitude between -90° to 90°
and a longitude between -180° to 180°. Thus, Figment will
return a random or a predefined location within that range. As
another example, consider the International Mobile Equipment
Identity (IMEI) number. IMEI is a 15-digit number assigned
to all cellular devices. If the user denies access to her IMEI,
Figment returns a random or a predefined 15-digit number.

V. Figment: FAIL SAFE OPTION

If a developer does not use the Figment library (e.g., for
older apps), fine-grained permission management for that app
is not possible. For such cases, Figment includes an optional
fail-safe mechanism for users with rooted phones. Note that
only root access is needed and there is no need to make kernel
level modifications to the Android system.

Hooking Methods: One can modify the functionality of an
Android app by obtaining its APK, decompiling it (assuming
that the code is not obfuscated) and inserting new code in
desired locations. However, one will have to recompile and
sign the entire APK. Now, the APK will not have the same
signature as the developer/company that originally developed
it. Thus, the modified APK cannot be made available in
Google’s Play Store [10]. Every time a new version of that app
is available, one will have to repeat the procedure in order to



bring about the desired functionality. However, Android allows
rooted users to “hook” method calls, meaning that the user can
inject her own code before and after method calls.

After the initialization of the kernel, the first process that
runs is called “init,” which initializes the elements of the
Android system. init starts Zygote, which is a daemon
for launching Android apps (i.e., it is the parent process
of every Android app). Zygote preloads all necessary Java
libraries and starts the “system server,” which is responsible
for initializing all system services. Zygote also opens a socket
/dev/socket/zygote to listen for requests for starting apps.

When an Android app is to be launched, Zygote receives a
request through this socket and triggers a fork() call to create a
clone of itself. Because Android is based on the Linux Kernel,
during the fork process no memory is actually copied. It is
shared and marked as Copy-on-Write (COW). Thus, all apps
use the exact same copy of libraries and resources. Because of
this, with root access one can easily change the Java libraries
and resources of the Zygote process making all the Android
apps follow a different classpath. By introducing a library that
wraps all the Android’s API methods in the classpath, one can
force the system to use the “hooked” methods instead of the
original ones. When a caller calls an Android’s API method,
the hooked method is called first, followed by the calling of
Android’s API method. One can change the functionality of
the app before or after the API method call or entirely ignore
it (meaning that never execute it).

Fail-Safe Root Level Management: Hooking methods are
exploited to enable users with rooted phones, enforce fine-
grained permission management on apps not developed using
Figment. The hooked method checks a database on the local
disk (as before) and asks for needed permissions. If such a
permission is granted, the database is updated with the app
name, and the context (deciphered) for which the permission
was granted. If the permission is denied, the hooked method
tries to return the safest value that ensures that the app will not
crash (as with the basic version discussed previously). Note
that, the user can still change her decision at a later time by
making changes to the database entries for an app.

VI. EVALUATIONS

In this section, we first present the details of our imple-
mentation of both the core version of Figment as well as its
optional fail safe component. Then, we evaluate Figment via
case studies and comparisons with Android M.

A. Implementation

Figment Library: We implement the Figment Library using
the Android SDK (Android Software Development Kit) ver-
sion 10. The annotation language is designed by leveraging
the java.lang.annotation package [12]. Dynamic permission
management is achieved using AOP [25] as described in
Section III. We use the Aspect] [8] compiler during the build
process of an Android app. It can be used on any phone that
runs Gingerbread or a newer version (as of 2018 [16], the
phones that run Gingerbread or newer versions of Android,
account for 100% of the Android phones).

Figment’s Fail-Safe Mechanism: The optional fail-safe
mechanism of Figment requires a rooted phone. It has been
developed as an extension to the Cydia Substrate Frame-
work cydia-substrate (a popular code modification platform
for i0OS and Android). The extensions to the Cydia Substrate
are regular classes that are loaded immediately after the Java

VM is initialized. These classes have a static method named
initialize and once loaded by the classloader, this method is
executed allowing the user to run code that uses the public API
provided by the Cydia Substrate. Once the fail-safe mechanism
is installed, the Cydia Substrate framework automatically
discovers it. Upon rebooting the phone, it is activated.

B. Android M vs Figment

First, we perform a case study with a custom app whose
functions are common to existing popular messaging apps. The
app consists of 5 fragments. Table I shows the permissions re-
quired by each fragment with (a) Figment and (b) Android M.
The SMS fragment is used for sending SMS messages and re-
quires the SEND_SMS permission. The READ_CONTACTS
permission is needed by the Contacts fragment (to show the
contacts). The Camera fragment requires the CAMERA and
the WRITE_EXTERNAL_STORAGE permission (to save the
picture to the local disk). Similarly, the Voice fragment needs
the RECORD_AUDIO and WRITE_EXTERNAL_STORAGE
permissions. The Location Fragment displays the user’s loca-
tion and tracks her movement using the accelerometer. It also
uses a third party custom library that tracks the user’s location
periodically and sends it to a remote server. These function-
alities in Android M require the ACCESS_FINE_LOCATION
permission. The Figment library requires two permissions
here, because the tracking of the user’s location is performed
under two different contexts; further, with Figment, also re-
quired is a permission for using the “ACCELEROMETER”.

Listing 1: Code snippet using Figment.

@OQOverride
public void onStart () {
super . onStart () ;

. requestLocation () ;

requestAccelerometer () ;

}

.@Permission(requires = Permissions. LOCATION, message = “"We require

this permission to display your location .”, context =
“FragmentLocation™)
private void requestLocation () {
 IMng = (LocationManager)
getActivity () . getSystemService (
Context. LOCATION_SERVICE);

if (IMng != null) {

. IMng.requestLocationUpdates

LocationManager.GPS_PROVIDER, 2000, 10, this);

}
}

@Permission(requires = Permissions . ACCELEROMETER, message =

”We require this permission to track your movement.”, context =
“FragmentLocation™)
‘private void requestAccelerometer () {
Sensor acc;
sMng = (SensorManager)
getActivity () . getSystemService (Context. SENSOR_SERVICE);

. if (sMng != null) {

acc = sMng.getDefaultSensor(Sensor. TYPE_ACCELEROMETER);

sMng. registerListener ( this, acc,
SensorManager.SENSOR_DELAY_NORMAL);

}

}

Listings 1 and 2 show snippets of code for accessing the
location of the user using Figment and the API of Android
M, respectively. Upon the creation of the Location Fragment,
it returns the view hierarchy associated with it by invoking
the onCreateView method. The onStart method is called to
make the fragment visible to the user. In our example, Figment



Fragments Figment

Android M

SMS SEND_SMS

SEND_SMS

Contacts READ_CONTACTS

READ_CONTACTS

Camera CAMERA, WRITE_EXTERNAL

CAMERA, WRITE_EXTERNAL_STORAGE

Voice

RECORD_AUDIO, WRITE_EXTERNAL

RECORD_AUDIO, WRITE_EXTERNAL_STORAGE

Location LOCATION, ACCELEROMETER

ACCESS_FINE_LOCATION

3rd Library LOCATION

ACCESS_FINE_LOCATION

TABLE I: Permissions required for each fragment with Figment and Android M.

registers two listeners, one for the location and the other for
the accelerometer, respectively (lines 14 and 26 in Listing 1).
A developer using Android M will have to check each time
if the permission is granted and if it is not, she will have
to request it. For each permission therefore, she has to write
around 10 lines of code (e.g., lines 8 to 29 in Listing 2 for
the Location permission). If the developer uses the Figment
library, she only needs to annotate the requestLocation and
requestAccelerometer methods and our library will handle
everything automatically (lines 8 and 19 in Listing 1) , which
entails one line of code per method.

Listing 2: Code snippet using Android Marshmallow API.
final int REQUEST_LOC = 21;

private static
@OQOverride
public void onStart () {
super . onStart () ;
requestAccelerometer () ;

if (ContextCompat.checkSelfPermission(
this . getActivity (),
Manifest. permission . ACCESS_FINE_LOCATION) ==
PackageManager.PERMISSION_GRANTED) {
requestLocation () ;
} else {
if (ActivityCompat.shouldShowRequestPermissionRationale(
this . getActivity (),
Manifest . permission . ACCESS_FINE_LOCATION)) {
ShowDialog dialog = new ShowDialog(”Location Permission”, "We
require this permission to display your location.”);
dialog . execute () ;
} else {
ActivityCompat. requestPermission (
this . getActivity (),
new String []{
Manifest. permission .ACCESS_FINE_LOCATION},
LOCATION_REQUEST);
}
}
}

public void onRequestPermissionResult(int reqCode, String
permissions [], int[] results ) {
if (reqCode == LOCATION_REQUEST) {
if (results .length > 0 && results[0] ==
PackageManager. PERMISSION_GRANTED) {
requestLocation () ;

}

}
}

private void requestLocation () {

IMng = (LocationManager)

getActivity () . getSystemService (

Context. LOCATION_SERVICE);

if (IMng != null) {

IMng.requestLocationUpdates

LocationManager.GPS_PROVIDER, 2000, 10, this);

}

}

private void requestAccelerometer () {

Sensor acc;

sMng = (SensorManager)

. getActivity () . getSystemService (Context. SENSOR_SERVICE);
if (sMng != null) {

acc = sMng.getDefaultSensor(Sensor. TYPE_ACCELEROMETER);

sMng. registerListener ( this, acc,
SensorManager.SENSOR_DELAY_NORMAL);

}

}

Next, we take two existing open source apps and modify
them to support revocable permissions. We make two con-
structs; in the one the API of Android M is used, and in the
other, Figment is used. The first app is called Ringdroid [15]
and the second is SoundRecorder [17]. The first requires five,
what we consider sensitive permissions (Read/Write Contacts,
Writing to the local disk, recording audio and writing system
settings) while the second requires only 2 such permissions
(writing to the local disk and recording audio).

Overhead in terms of lines of code: Our library in general
requires one line of code (LOC) for initialization and one
line of code for each method that requires such a permission.
In contrast, depending on the situation, Android M requires
10 or more lines of code to achieve the same functionality
that Figment achieves with one line of code (the developer
follows the procedure described in Section II with Android
M; multiple lines of code are needed to check for permissions
each time, prompting the user for the permission, etc.). We
count the lines using the cloc [9] program. For the custom app,
our library requires only 8 more lines of code while Android
Marshmallow requires 62 (i.e., a 675% difference).

With Ringdroid, a modified Android M version requires
59 more lines of code. However, with Figment, it requires
only 5 lines of code. The difference is approximately 169%.
In contrast, with two permissions, SoundRecorder needed 53
and 25 more lines of code respectively (approximately a
72% difference). The higher number of lines in code with
SoundRecorder is because we had to make small changes
in the code in order to support modular annotations. Note
here that for much more complex applications with several
permissions, sought in different contexts, using Figment and
our annotation language can be expected to significantly
reduce the number of lines of codes needed for fine-grained
permission management in the absolute.

Compilation Overhead: Our case study was performed on
Android Studio 1.4.1, running on a machine with a quad core
Intel Core i7 2.00GHz CPU with 8GB of RAM and a hard
drive of 1TB at 5400 rpm. Due to the weaving process and
the size of the Figment library, the compilation process with
Figment is longer than with Android M’s API. To quantify this
overhead, we performed a clean before each compilation in
order to achieve the maximum overhead that can be incurred.
With 10 runs, both the average results and the 95% confidence
intervals are shown in Figure 6a. On average, the custom app
developed using Figment compiled after 78 seconds while with
Android M it took 30 seconds (a decrease of 61.54% is with
Android M). Ringdroid with Android M compiles in 22.43
seconds while the SoundRecorder does so in 28.03 seconds, on
average. Using Figment the times are 67.53 and 73.33 seconds,



respectively. This corresponds to an increase of approximately
201% and 161%. Although this overhead is significant, it is
incurred only once, when the app is compiled for the first time.

Runtime Overhead: Next, we compare the overheads to
check and ask for a permission, with Figment and Android
M. The experiments below were run on a Nexus 5 phone
using the custom app. We use a different Android version
(lollipop) with Figment (not Android M) so as to make a clean
comparison of these runtime checks. The results are in Figure
7. The results from 100 runs in terms of the 95% confidence
intervals and the averages are in Fig. 7. We see that the average
delay with Figment is around 0.55 ms while it is 2.05 ms with
Android M (Figment is 4 times faster). We find that the results
are very similar with RingDroid and SoundRecorder since the
permission management functions are similar. Thus, we do not
present them due to space constraints.

There are two reasons why the runtimes are much lower
with Figment. First, during runtime, the access control mech-
anism of Android M has to check whether this app has
been granted each specified permission. Furthermore, when the
app requests a permission, Android M creates a background
thread in order to perform that check. With Figment on the
other hand, the access control checks are performed during
the installation of the app. Figment in essence provides an
lightweight overlay mechanism (as described earlier) on top
of the what Android provides. Further, Figment checks the
permissions using the same thread and thus, the lookup is
very fast (no time is taken for creating a background thread.)

C. Figment’s Context Awareness

We next illustrate how Figment supports context aware
permissions. We develop a simple Android app with which
a user can press a button and display her last known location.
The app also uses a library that tracks the user’s location
and using a background thread it sends this information to
a server. The findLastLocation method finds and displays the
last known location of the phone, while the startTracking
method tracks the user’s location and sends this information
to a remote server. Since the app’s code accesses the location
in two places in the code, the developer should annotate the
startTracking and findLastLocation methods to facilitate con-
text aware permissions. Figment asks the user for permissions
for both methods explicitly since the contexts are different.
The user can choose “not” to grant the permission in one of
the contexts and thus has a finer grained control of how the
app operates. With Android M, the developer cannot provide
context awareness in her app. When the app is launched,
a dialogue is displayed to the user asking her to grant a
permission for accessing her location. In case she grants it, the
app will be able to get and display her last known location;
however, the key issue is that the background thread will
implicitly inherit the permission to track her location (thereby
violating privacy). We have verified that this is the case.

D. Figment’s Protection Mechanism

Next, we seek to show how Figment prevents intents from
accessing resources without an explicit permission from the
user. Towards this, we develop an app that takes a picture and
transmits it to a remote server. The app leverages Android’s
intent mechanism of taking pictures; it sends an intent to a
different third party app (which takes the picture on its behalf).
This functionality of the app is shown as a snippet in Listing 3.

Listing 3: Camera Intent

private void takePicturelntent () {

Intent intent = new Intent(MediaStore. ACTION_IMAGE_CAPTURE);

if (intent . resolveActivity (getPackageManager()) != null) {
startActivityForResult ( intent , REQUEST_IMAGE);

In order to get the picture from the other app using inter
process communication (IPC), our app overrides the following
method (Listing 4).

Listing 4: Getting picture from other app

@Override
protected void onActivityResult (int requestCode, int resultCode,
Intent data) {
if (requestCode == REQUEST_IMAGE && resultCode ==
RESULT_OK) {
Bundle extras = data. getExtras () ;
Bitmap bitmap = (Bitmap) extras .get(”data”);
sendImageToRemoteServer(bitmap);

The app’s code is compiled with Figment. There is no
annotation with the takePicturelntent method (Listing 3).
However, Figment determines that the app seeks to use the
camera and prompts the user for an explicit permission. This
is because line 4 in Listing 3 is in fact a pointcut (see
Section III). Thus, Figment extracts the Intent object that
was in the startActivityForResult method. It finds out (by
calling the getAction method of the Intent’s class) that it
is an intent for taking pictures. Then the procedure follows
what was described in Section IV. Note here that Android
M’s permission mechanism by itself, does not ask for any
permission to perform this action. We also point out that this
feature of Figment is compatible with Android M.

E. Figment’s Optional Fail Safe Mechanism

In this subsection we describe how Figment’s fail safe
mechanism protects the user with a case study. Specifically,
we download an existing app (the flashlight app) from Google
Play Store [10] and perform this study on a rooted Moto X
running Android Ice Cream Sandwich.

With Figment, the user can open the permission manager
and see what permissions this flashlight app requires. As
shown in Fig. 8a, Flashlight requires permissions for accessing
the location of the user, reading and writing data to the disk,
accessing the state of the phone and accessing the camera.
Most of these permissions do not affect the core functionality
of the app! Let us assume that the user decides that the app
should have access only to her camera (and should not be
granted the other permissions). Figment’s optional fail safe
framework allows her to do so. Using the dialogue presented
using the phone’s front end (see Fig. 8b) she can disable the
undesired permissions. We have verified that the flashlight app
continues to function without any of these permissions.

VII. RELATED WORK

In this section we discuss relevant related work.

Privacy and Permissions: To protect privacy,
AppFence [24] and MockDroid [19], return fake data
in lieu of real data to specified apps. However, these systems
need a modified version of Android. Moreover, they do
not provide any context aware mechanisms for fine-grained
permission management.



Average Time (sec)
Average Time (sec)
T
L
Average Time (sec)
—

Marshmallow Figment Marshmallow Figment

Framework

(b) Ringdroid.
Fig. 6: Average Compilation Time.

Framework

(a) Custom App.

@ Flashlight @ riashlight

(b) Disabled Permissions.

(a) Enabled Permissions.

Fig. 8: Flashlight Permissions.

Context Awareness: ipShield [20] and CSAC [28] provide
context aware mechanisms for access control in Android.
However, both approaches require changes to the Android
operating system; different changes are needed for different
versions of Android (with different kernels). Furthermore, no
tools such as Figment are provided to build apps that support
fine grained permission management. Figment can work with
any Android version and provides user-space based, developer
assisted permission management. Unlike in these approaches,
thus, new contexts can easily be introduced within Figment.

Annotation and AOP: Google [11] has developed a set of
annotations for permissions in Android but it is used only in
code inspection tools such as /int. APE [26] uses an annotation
language that eases the development of energy-efficient An-
droid apps. In Java, AOP is used by frameworks like Spring [7]
to provide declarative enterprise services and to allow users to
implement their own custom aspects. WeaveDroid [22] allows
a user to use AOP on Android by taking any existing Android
app adding an aspect as input, and weaving them together; the
goal however is not fine-grained permission management.

VIII. CONCLUSIONS

In this paper, we design and implement a framework,
Figment, that facilitates fine-grained permission management
for mobile apps. Figment contains a set of libraries which can
be readily called by developers using its annotation language,
to allow users to grant and revoke permissions on a case-by-
case basis. Figment works with any version of Android, and
does not need any changes to the Android system. We show
via case studies that Figment reduces the code complexity
compared to Android M in addition to providing context aware
operations. It also reduces the runtime overhead compared
to Android M, but experiences an increase in the one time
compilation overhead.

IX. ACKNOWLEDGMENTS

This research was partially sponsored by the Army Re-
search Laboratory and was accomplished under Cooperative
Agreement Number W911NF-13-2-0045 (ARL Cyber Secu-
rity CRA). The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.

Marshmallow Figment
Framework

Average Delay (ms)

Marshmallow Figment

Framework

(c) SoundRecorder.

Fig. 7: Average Runtime Overhead for Custom
App.

The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on. The work was also partially supported
by NSF Award 1617481. The authors would like to thank the
anonymous reviewers for their constructive feedback.

REFERENCES

[1] Aggressive advertisers pose privacy risks. http:/goo.gl/c18HuK.

[2] Android api. http://goo.gl/kOQqRE.

[3] Android: Intents and intent filters. http://goo.gl/zrt6vBY.

[4] Android: lint. http://goo.gl/OTshmb.

[5] Android: Taking photos simply. http://goo.gl/0ZQrf6.

[6] Apps permissions in the google play store. http://goo.gl/ph7KGk.

[7]1 Aspect oriented programming with spring. http://goo.gl/1UnkGS.

[8] Aspectj. https://goo.gl/LHLhDv.

[9] Cloc. https://goo.gl/PsfjQP.
[10] Google play store. https://goo.gl/kNONhz.
[11] Improving code inspection with annotations. http://goo.gl/qSE9dh.
[12] Java se annotations. http://goo.gl/g9b0Dh.
[13] Location tracker. https://goo.gl/X2LuAd.
[14] Mobile operating system wars - Android vs. ios. http://goo.gl/VOwbTS.
[15] Ringdroid. https://goo.gl/MhLqGW.
[16] Share of android platforms on mobile devices with android os. http:
//goo.gl/2WaEEI.

Soundrecorder. https:/goo.gl/apNf3X.

F. E. Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,
pages 1-19. ACM, 1970.

A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mockdroid: trading
privacy for application functionality on smartphones. In Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications,
pages 49-54. ACM, 2011.

S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry, M. Millar, and
M. B. Srivastava. ipshield: A framework for enforcing context-aware
privacy. In NSDI, pages 143-156, 2014.

S. Elmalaki, L. Wanner, and M. Srivastava. Caredroid: Adaptation
framework for android context-aware applications. In MobiCom, 2015.
Y. Falcone and S. Currea. Weave droid: aspect-oriented programming
on android devices: fully embedded or in the cloud. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, pages 350-353. ACM, 2012.

I. Gasparis, A. Aqil, Z. Qian, C. Song, S. V. Krishnamurthy, R. Gupta,
and E. Colbert. Droid m+: Developer support for imbibing android’s
new permission model. In ACM AsiaCCS, 2018.

P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 639-652. ACM, 2011.
G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. Springer, 1997.
N. Nikzad, O. Chipara, and W. G. Griswold. Ape: an annotation
language and middleware for energy-efficient mobile application devel-
opment. In ACM ICSE, 2014.

E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang. Accessory: password
inference using accelerometers on smartphones. In ACM Workshop on
Mobile Computing Systems & Applications, 2012.

A. Rahmati and H. V. Madhyastha. Context-specific access control:
Conforming permissions with user expectations. In ACM CCS Workshop
on Security and Privacy in Smartphones and Mobile Devices, 2015.

R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Investigating
user privacy in android ad libraries. In Workshop on Mobile Security
Technologies (MoST). Citeseer, 2012.

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

(25]

[26]

(27]

(28]

[29]



