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Abstract—Due to the loose authentication requirement between
access points (APs) and clients, it is notoriously known that
WLANs face long-standing threats such as rogue APs and
network freeloading. Take the rogue AP problem as an example,
unfortunately encryption alone does not provide authentication.
APs need to be equipped with certificates that are trusted by
clients ahead of time. This requires either the presence of PKI
for APs or other forms of pre-established trust (e.g., distributing
the certificates offline), none of which is widely used. Before any
strong security solution is deployed, we still need a practical
solution that can mitigate the problem. In this paper, we explore
a non-cryptographic solution that is readily deployable today
on end hosts (e.g., smartphones and laptops) without requiring
any changes to the APs or the network infrastructure. The
solution infers the Carrier Frequency Offsets (CFOs) of wireless
devices from Channel State Information (CSI) as their hardware
fingerprints without any special hardware requirement. CFO is
attributed to the oscillator drift, which is a fundamental physical
property that cannot be manipulated easily and remains fairly
consistent over time but varies significantly across devices. The
real experiments on 23 smartphones and 34 APs (with both
identical and different brands) in different scenarios demonstrate
that the detection rate could exceed 94%.

Index Terms—device fingerprinting, attack detection, authen-
tication, wireless networks

I. INTRODUCTION

WiFi networks are attracting various kinds of attacks due to

their extremely high popularity. Among these attacks, rogue

Access Points (i.e., rogue APs) and WiFi Freeloading are the

most common which bring significant security and privacy

threats. A rogue AP is a device set up by an adversary

to mimic the legitimate AP in public places such as coffee

shops and shopping malls. It usually uses the same identifiers

(basic service set identifier (BSSID) and service set identifier

(SSID)) as the original AP. Once users are fooled to connect

to it, the adversary could launch man-in-the-middle attack

and eavesdrop all the network communications. It has been

estimated that almost 20% of corporations have rogue APs

in their networks [1]. WiFi freeloading refers to that an

unauthorized user compromises or bypasses the authentication

of an AP and then gets into the private WLAN for free. Note
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that a freeloader may be stealing more than just bandwidth

considering that he has become an insider of the network.

A key point to defend against these attacks is a strong

mutual authentication mechanism between clients and APs.

In fact, the wireless security enhancement 802.11i RSNA

(Robust Security Network Association) does provide optional

mutual authentication using traditional cryptographic methods

(i.e., digital certificates), which can make both attacks less

likely if implemented properly. Unfortunately, as mentioned

by Jana et al. [2], wireless networks using 802.11i RSNA still

suffers from vulnerabilities due to several practical issues. For

instance, as the signal strength is the only criteria for clients to

select AP in the current implementation, users can be tricked

to connect to a fake AP with a higher signal strength than that

of the real one but does not support any security measures such

as RSNA. Even worse, as the management and distribution of

digital certificates are extremely cumbersome, most networks

simply choose to support only user authentication but never

AP authentication. As a result, it is still easy for adversaries

to deploy fake APs. For the freeloading attack, although most

networks authenticate users, the authentication is based on

human-determined passwords which are usually quite weak

and can be easily compromised or disclosed especially when

all users share one password (e.g., WPA2-PSK).

Motivated by the above, researchers have proposed noncryp-

tographic solutions based on device fingerprinting recently.

These solutions are not meant to replace cryptographic so-

lutions. Rather, they aim to provide an extra layer of security

in light of the difficulties in adopting cryptographic solutions.

Their common idea is to identify physical characteristics of the

hardware that can be extracted remotely to fingerprint wireless

devices [2]. An example scenario where this technique is

helpful is the following: when a user goes to a coffee shop

visiting frequently, without fingerprinting techniques, he will

easily be tricked to connect to a rogue AP with the same

identity as the real one. With fingerprinting, if the fingerprint

(remembered by the client) changes, the user could be alerted

that he is likely connecting to a rogue AP.

While a promising direction, there is no real-world de-

ployment of such fingerprinting techniques to our knowledge.

This is due to several important practical issues. First, the

solution may require special hardware which hinders the
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deployment. For instance, Brik et al. [3] propose to use some

Radio Frequency (i.e., RF) features such as the frequency

error, magnitude error, sync correlation and I/Q offset to

distinguish among different wireless devices. However, they

require additional hardware to capture and analyze the radio

signals. Second, the hardware characteristics can be spoofed

and therefore the security guarantee is questionable. Kohno et

al. [4] present a rogue AP detecting scheme which leverages

the clock screws measured by TCP/ICMP time stamps as

new device fingerprints. Unfortunately, Jana and Kasera [2]

haven shown that TCP/ICMP timestamps in general could be

easily spoofed. They instead measure the Time Synchroniza-

tion Function (TSF) timestamps in the beacon/probe response

frames (from the AP), which are tagged by hardware and

somewhat hard to spoof. Nevertheless, it has been shown that

it is still possible to spoof such timestamps by modifying the

device driver of a fake AP [5].

In this paper, we investigate a novel wireless device fin-

gerprinting approach that can avoid the above problems and

is applicable to both rogue APs and WiFi freeloading. In

particular, our scheme fingerprints a device by estimating its

Carrier Frequency Offset (CFO) compared with the finger-

printing node. CFO is attributed to the oscillator drift, which

remains fairly consistent over time but varies significantly

across devices. What’s more, such oscillator drift is caused

by the crystal imperfection and cannot be spoofed by any

software. As a result, it could act as an ideal fingerprint.

The major challenge is that on both mobile devices and

APs, there is no software approach to estimate the CFO from

the underlying hardware. The state-of-the-art [3], [6] typically

requires additional hardware (e.g., vector signal analyzer and

USRP) to capture and analyze the raw signals, which prevents

them from being applied to fingerprinting in practice. Unlike

their work, we propose to mine the CFO indirectly from the

Channel State Information (CSI), which is easily measurable

using software on off-the-shelf wireless devices [7]. We can

achieve this because CFO will contribute a specific phase

offset at the receiver signal and the CSI measurement rightly

contains a field that records the total phase offset during signal

propagation, which includes the offset due to CFO. This task

is no-trivial because there are many other factors (e.g., Time

of flight) can also contribute to the final offset and we have

to filter out their interferences.

In summary, we make the following contributions:

(1) We propose the first CFO-based WiFi device finger-

printing mechanism that are readily deployable on off-the-shelf

wireless devices such as smarphones. Experiments show that

such fingerprints are consistent over time and locations.

(2) We propose a novel approach to precisely and quickly

estimate CFO from CSI, which does not require any additional

hardware and is difficult to spoof.

(3) We implement a prototype system to verify the perfor-

mance of our scheme. The results show that our approach can

achieve a high accuracy that can be used in real world for

applications such as rogue AP detection.

II. BACKGROUND OF CSI & CFO

CSI (Channel State Information): it describes the combined

effect of, e.g., scattering, fading and power decay on the

signal propagation from the transmitter to the receiver. The

IEEE 802.11 standard defines a mechanism to measure CSI

between each transmitter-receive (Tx-Rx) antenna pair. The

CSI continually captures signal strength and phase information

of each OFDM subcarrier. Let X and Y be the receive

and transmit signal vectors, respectively, and H and N be

the channel matrix and noise vector, respectively. We have

Y = H × X + N , where H is a complex vector, called

Channel Frequency Response (CFR) which reflects the signal

gain between the Tx-Rx pair. Those information can be used

to achieve reliable communication with high data rate. The

CSI measurements are the sampling for the CFR at different

subcarriers. At the 2.4Ghz frequency band with bandwidth

20Mhz, the CSI measurements consist of 30 complex values,

where each corresponds to a selected subcarrier. Let Ntx

and Nrx be the number of transmit and receive antennas,

respectively. There are 30 × Ntx × Nrx CSI streams for a

received 802.11 frame. The CSI stream for the kth subcarrier

between the ith transmit antenna and the jth receive antennas

can be expressed as Hk,i,j = |H|e−jφk,i,j , where |H| is the

amplitude and φk,i,j is the phase part of subcarrier k.

CFO: For OFDM system, the carrier frequency f should

be the same between Tx-Rx pair in the ideal situation. But

due to the hardware imperfection, there usually exists a

offset between the Tx-Rx oscillators, which causes a Carrier

Frequency Offset (CFO). Since a large CFO will introduce a

big noise at the receiver end, the CFO is compensated by the

hardware. But there still exists a fractional CFO, ∆fc, after

such compensation because the hardware imperfection. The

CFO results in a phase shift ϕt at the receiver signal, which can

be represented as ϕt = 2π∆fct, where ∆fc is the CFO after

compensation. For commercial WiFi devices, the fractional

CFO is inevitable. The fractional CFO can be up to 100 kHz

according to IEEE 802.11n standard. For convenience, the

word CFO always means the fractional CFO in this article.

III. THREAT MODEL

In this paper, we focus on the following two major threats:

Rogue AP: An adversary sets up an unauthorized AP to

masquerade an authorized AP in public places such as airport

and coffee shop. We assume that the adversary is power

enough to modify the SSID and BSSID fields of each frame

to the same values of the authorized AP. Moreover, she/he

employs the same authentication strategy (i.e., pre-shared key

or 802.1X authentication) as the authorized AP but always lets

connecting users pass the authentication. Note that the rogue

AP and the authorized AP could be both active at the same

time. In this case, as the current AP selection mechanisms

use signal strength as the only selection criteria, the user

could be still attracted to connect to the rogue one if it has

higher signal strength. According to our experiment, if two

overlapped WLANs use the same SSID, the mobile device

would just show the stronger one in its WLAN list. Once a user
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logins into the rogue AP, the adversary is assumed to launch

various man-in-the-middle attacks to eavesdrop, collect, and

analyze any amount of data without being detected.

WiFi Freeloading: An adversary steals the credential of

an authorized user to login to a private WLAN and then

does something evil in the name of the legitimate user.

Here, the credential might be either a simple password if the

WLAN adopts WPA-PSK mode, or a username-password pair

if the WLAN adopts WPA-Enterprise mode. The adversary

could obtain such credentials through various means. For

instance, recently, there are many crowdsourced apps like WiFi

Companion for sharing users’ WiFi login credentials. When

an authorized user of a private WLAN installs such apps,

her/his credentials would be stealthily collected and shared

with others, certainly including attackers as well.

As we mentioned earlier, both these threats are due to the

loose authentication requirement between mobile devices and

APs. This paper aims to propose a non-cryptographic solution

to significantly enhance these schemes and effectively detects

the above threats. We next present our key technique.

IV. METHODOLOGY

Our solution tries to estimate the frequency offset (i.e. CFO,

which have been introduced in Sec. 2) of a device as its

fingerprint to perform attack detection. As mentioned in Sec. 2,

CFO is due to the carrier oscillator drift in the WiFi network

card, which, in theory, remains consistent over time and

locations but varies across devices. Moreover, it’s hard to spoof

as it’s a pure hardware feature and can hardly be affected by

any software running on the application processor. As a result,

it’s an ideal feature for device fingerprinting. Nevertheless,

existing solutions [3], [6] to estimate CFO require additional

hardware, which prevents them from using in practice.

As section II introduces, the phase fields of CSI measure-

ments capture the accumulated phase offset during the signal

propagation. As CFO will result in a phase offset at the receiv-

er, it is straightforward to consider if we could estimate CFO

from CSI measurements. If the answer is positive, it means

CFO could be estimated without using additional hardware

because CSI could be obtained by upper layer application on

off-the-shelf wireless devices by just modifying NIC drivers.

Nevertheless, we find this task is non-trivial as the recorded

phase offsets in CSI are contributed by many other factors

besides CFO. In order to precisely estimate CFO, we have

to first filter out these unrelated factors. So, below, before

presenting the proposed method to estimate CFO from CSI,

we first analyze the composition of each phase value in CSI.

A. Decomposing phase values of CSI measurements

Suppose that the fingerprinter has received n frames from

the target device, and, for each frame, it has acquired the CSI

measurements from the NIC driver. Let us consider the CSI

measurement between a specific Tx-Rx pair for the frame at

time t. As we mentioned in Sec. 2, for the kth subcarrier, this

measurement contains a phase filed φt,k, which records the

measured phase offset of the frame between the transmitter
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Fig. 1: Integrated phase shifts due to SFO, ToF and FDD over

time (Each color curve corresponds to a frame.)

and the receiver at this subcarrier. According to [8], [9], φt,k
is added up by four offsets due to different factors:

φt,k = ωt,k + θt,k + ψt,k + ϕt, (1)

where ϕt is the phase drift due to CFO. The other three

components are caused by the following factors:

ωt,k: the phase shift due to the frame detection delay (FDD).

When a frame arrives at the receiver, it takes some time for

the receiver to detect it, which would cause a time delay τd
in the CSI measuring. Such a time delay inevitably causes a

phase shift ωt,k which is proportional to the frequency. Since

the subcarrier index is also proportional to the frequency, it

could be mathematically written as ωt,k = 2παkζd, where α

is a constant coefficient, k is subcarrier index, and ζd is a value

highly related to τd. Since ζd might vary with time, ωt,k also

varies across frames.

θt,k: the phase shift due to Sample Frequency Offset (SFO).

SFO is caused by the out-of-sync of the sample clocks between

the transmitter and receiver. Similar to FDD, such out-of-sync

also introduces a time delay τs, and further causes a phase

shift that linearly increases with the subcarrier index. So, we

have θt,k = 2πβkζs, where β is constant, k is the subcarrier

index, and ζs is determined by τs.

ψt,k: the phase shift due to the time of flight (ToF). ToF

represents the time for the signal flies from the transmitter to

the receiver, which certainly introduces another phase offset.

In the absence of multipath, we have ψt,k = 2πfktp, where tp
is the line-of-sight(LoS) propagation time from the transmitter

to the receiver and fk is the frequency of the kth subcarrier.

However, if considering the multipath effect, there is another

item, which is related to the environment, should be included

in ψt,k. Since this offset is mainly determined by the time of

flight, it is extremely useful in the field of indoor localization.

In fact, there have been some work [10], [11] studying how

to sanitize the CSI phase domain to perform indoor location.

Nevertheless, because our aim in this paper is to extract the

CFO component rather than the ToF component, we cannot

directly use their phase sanitization algorithms. Now, based

on the analysis above, Equation (1) can be rewritten as

φt,k = k · (2παζd + 2πβζs) + ψt,k + 2π∆fct, (2)
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Fig. 2: The relationship of ∆φ̄-∆t for the same device at different time and different places, where the stripe slope is strongly

correlated to CFO.
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Fig. 3: The relationship of ∆φ̄-∆t for different devices with the same environment

where the CFO component ϕt have been replaced by 2π∆fct
as we discussed in section II.

Among four components, we are only interested in the last

one as our goal is to estimate ∆fc. Obviously, if the impacts of

the first three components were consistent across frames, we

could easily eliminate them by subtracting the measurements

of the same subcarrier of two frames. We thereby conduct an

experiment to validate whether this hypothesis is established.

We collected the CSI measurements of 5000 frames in total.

For each frame, we subtracted the phase value of the first

subcarrier from those of other subcarriers. By doing so, the

phase shift caused by CFO is eliminated as this component is

independent with the subcarrier index and remains the same

across subcarriers. We then plot the resulted phase values of

each subcarrier of all the 5000 frames in the same Phase-

Index plot. In particular, the points corresponding to the same

frame use the same color and are connected to form a curve.

Obviously, if the above assumption is true, the curves of

different colors would coincide with each other. Unfortunately,

our result in Fig. 1 shows that these curves do not overlap,

which indicates that the integrated phase shifts caused by SFO,

ToF and FDD are time-varying. Therefore, we have to find a

more complicated way to eliminate them.

B. Estimating CFO From CSI

We now describe our technique to estimate CFO from those

noisy phase fields of CSI measurements. To make readers

easier to follow, we first make a quick overview of our

proposal, and then go into details to elaborate why it can

eliminate the undesired impacts due to FDD, SFO and ToF.

Our proposal first defines and computes a new phase vari-

able φ̄t =
φt,−1+φt,1

2 for each frame at time t, where denoting

by φt,−1 and φt,1 the measured phase values of subcarrier −1
and 1, respectively. Then, for every pair of adjacent frames,

it calculates their phase difference ∆φ̄ (mapped into [−π, π])
and TDoA (Time Difference of Arrival) ∆t in microseconds,

respectively. Afterwards, it plots all the points (∆φ̄,∆t) in

the X-Y plane as Fig. 2a shows. As you can observe, these

points form a serials of periodical stripes, which are marked

by red boxes in Fig. 2a. Moreover, stripes are tilted and seem

to have the same slope. Our proposal leverages the method to

be introduced in the next section to estimate the slope of these

stripes, and finally outputs it as the estimated CFO.

As one example, we present the stripe figures of the same

device in Fig. 2 when the time of testing and the position

of target device are changed. The results show that the stripe

slope remains fairly consistent in different scenarios. We also

compare such stripe figures for different target devices in

Fig. 3, and find that the stripe slope varies significantly.

In summary, from these figures, it seems that the slope of

stripes is stable across environment but varies significantly

across devices, which is rightly the desired feature of CFO

for fingerprinting. We below show that such stripe slope can

be regarded as a perfect estimation of CFO.

FDD and SFO removal. Both FDD and SFO cause a time

delay in CSI measuring. As we discussed earlier, such time
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delays would result in phase shifts which linearly increase

with the subcarrier index. According to equation (2), if we

sum φt,k1
and φt,k2

where k1 and k2 satisfying k1 + k2 = 0,

we can remove the phase shifts due to FDD and SFO. In

802.11n standard [?], the CSI measurements record data for

30 subcarriers with indices in [−28,−26,· · · ,−2,−1,1,3,· · · ,

27,28] when the bandwidth is 20 Mhz. There are only two

pairs, [−1, 1] and [−28, 28] can meet the requirement. That is

why we define the new phase variable φ̄t =
φt,−1+φt,1

2 in our

approach. In fact, for a time point t, φ̄t can be expressed as

φ̄t = 2π∆fct+
ψt,−1 + ψt,1

2
+ (−1 + 1) · (2παζd + 2πβζs)

= 2π∆fct+
ψt,−1 + ψt,1

2
.

(3)

Fig. 4 compares the stripe figure using the original phase

values of subcarrier -28 with the stripe figure using the average

phase values of subcarrier -1 and 1. We observe that removing

FDD and SFO phase shifts make the stripe figure much clearer.

ToF removal. The best way to removal the ToF phase is to

obtain the ToF itself. In fact, there does exist some work [12],

[13] that studies how to gain the ToF from CSI measurements.

Nevertheless, their methods usually have to scan the entire fre-

quency band in 802.11n, which need the cooperation between

the transmitter and receiver. Such cooperation is impractical

in our scenario because the device to be fingerprinted might

cheat during this process. In our approach, instead of trying to

obtain the ToF directly, we take some measures to restrict the

variation of ToFs. As you know, the variation of ToF is mainly

due to two reasons. The first one is the changing of the relative

position between the receiver and the transmitter, and the

second one is the changing of the surrounding environment,

e.g., there are persons walking around. Thus, we first require

both the receiver and the transmitter to keep stationary during

the frame collection, which fixes their relative position. Note

that this requirement would not significantly affect the user

experience because the fingerprinting process could finish

within 10 seconds according to our experiments. Second, our

approach only selects adjacent frames to calculate the phase

differences. This measure is motivated by the fact that the

time interval between most adjacent frames is usually less

than 3ms, which is so short that the environment could be

considered to be static. However, there do exist some adjacent

frames whose time intervals are long. Sen et al. [10] proposes

a CSI phase sanitization scheme and demonstrate that the

transformed phases are static when the environment is stable.

The effect of these measures is illustrated by Fig. 5. Therefore,

by taking these measures, we can assume the ToF between

two adjacent frames is constant, which indicates that when

we calculate the phase difference ∆φ̄, the phase shift caused

by ToF can be eliminated as well.

Now, we can rewrite ∆φ̄ as ∆φ̄ = φ̄t1 − φ̄t2 = 2π∆fc∆t.
It’s easy to see that ∆fc is just the slope of the linear function

between ∆φ̄ and ∆t. That is, in theory the points in those

stripe figures should form periodical lines instead of stripes.

The gap between the theory and the practice is attributed
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Fig. 4: Effects of our measures to remove FDD and SFO
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Fig. 5: Effect of selecting adjacent frames based on phase

sanitization

to the various measurement errors and a known firmware

issue of Intel 5300 NIC according to [12] and [14]. The

measurement errors make the stripes not a smooth line but

have some noise points. For instance, if the clock frequency

of a device is 10Mhz, then the upper-limit precision to obtain

the exact arrival time of a frame at the receiving antenna

is 0.1µs. Therefore the interval of any points pair in the

stripes figure is 0.1µs at least in that case. The firmware

issue results extra stripes in the figures which makes the ∆φ̄
and ∆t looks that doesn’t meet a function relationship. But

fortunately, such extra stripes won’t affect the slope estimation.

And for a purpose of attack detection, it’s fine to use a CFO

related quantity rather than CFO itself as the fingerprint. In

other words, our task is transformed from estimating CFO to

estimating the stripe slope from the noisy stripe figure drawn

based on CSI measurements, which do not require additional

hardware. We will delay our solution to the next section.

V. IMPLEMENTATION

In this section, we introduce the technical details to im-

plement our proposal, especially the approach to estimate the

stripe slopes from those noisy figures.

Specifically, when a mobile device (i.e., a laptop or smart-

phone) wants to fingerprint an AP, we make it first connect to

the AP as usual. Then, it leverages the built-in tool, Ping, to

send testing data to the AP and collects the CSI measurements

of all the response frames. To guarantee the high precision of

the obtained fingerprint, we need about 5000 frames. Since the

transmission rate could reach 11Mbps for 802.11b, this process
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usually takes fewer than 10 seconds. Based on these CSI

measurements, we derive the stripe figure described in the last

section and then estimate the slope of those stripes contained

as the final device fingerprint. The process to fingerprint a

mobile device is completely the same except that we have to

configure a WiFi P2P connection between the two devices.

Now, we will explain the details of how to estimate CFO in

the CFO stripe figure. There are two phases involved : stripe

extraction and slope estimation.

A. Stripe Extraction

To estimate the slope, we need first obtain the point sets

which constitute each stripe. Our process to extract the slopes

can be summarized as three steps which are shown in Fig. 6.

Selecting high dense region. The distribution of the TDoAs

of adjacent frames is mainly dominated by the transmission

rate of the network, which usually fluctuates within a certain

range. As a result, as we show in the first sub-figure in Fig.

6, some interval on ∆t-axis may include more points than

others which form a high dense region in the stripe figure.

It is obvious that the more points a stripe contains, the more

accurate the liner fitting will be. So, our first step is to use

a sliding window algorithm on ∆t-axis to identify such high

dense region. In each window of fixed length, we count the

total number of points, and then move to the next by sliding

exactly one window length. Finally, we select the window with

the highest number of points as the high dense region, and

all the following processes are applied to this window. The

window size is empirically determined by manually checking

the stripe figures of thirty devices. Suppose that the average

span of stripes on ∆t-axis is s. Then, the window length is

set to 6s in our experiment, which could guarantee that the

extracted region contains at least three clear stripes.

Converting to a binary image. Looking at the second

sub-figure in Fig. 6, we can observe that most points are

concentrated along the central lines of stripes while there are

still some outliers sparsely located between different stripes.

Obviously, such outliers would bring significant side effects

to the slope estimation, and thus have to be removed. For this

purpose, our method transforms the high dense region iden-

tified in the last step into a binary image, which exploits the

great density difference between normal and abnormal points

to eliminate the latter ones. In particular, we first divide the

region into small rectangles of equal size that each corresponds

to a pixel in the newly generated binary image. Then, for each

rectangle, we count the insider points. If the total number

exceeds a pre-defined threshold, the corresponding pixel in

the binary image is set to 1; otherwise 0. By doing so, as

we show in the third sub-figure in Fig. 6, most outliers have

been removed. For a few of images still containing a large

number noises, we can employ some existing image processing

schemes such as ALM (Augmented Lagrange Multipliers)-

based PCA [15] to further reduce the noises.

Obtaining connected component. Although by now we

have obtained a much clearer strip image by taking the above

measures, there still exist some noises. Fortunately, we can

observe that the normal points now form some connect-

ed components which are much longer than those formed

by noises. What’s more, it seems there is strict one-to-one

correspondence between the stripes and the long connected

components. We thus use the algorithm described in [16] to

identify the k longest connected components in a 2D binary

image and then transform the task to estimate the slope of

stripes to estimate the slope of these connect components. Of

course, in practice, we might get some wrong components that

do not correspond to any stripe. Therefore, we need a more

slope estimation mechanism as we show below.

B. Slope Estimation

After the stripe extraction process, we have gotten the point

sets for each long connected component. Let the point set

forming a specific component c be S. Its slope k̂c can be

obtained by using the least square method as

k̂c = arg min
ρ

∑

(y,x)∈S

(y + 2πxρ+ ω)2, (4)

where ω is a constant. So, we pick out each connected

components and calculate its slope k with this method.

However, the slopes obtained may vary since the connected

components may be not exactly the stripe that we desire. In

order to solve this problem, we take a voting strategy on those

slopes. First, we divide the slopes into different intervals where

the length is empirically initialized to 0.1 and increased by

0.01 each time until there is at least one interval contains more

than 10% of the obtained slopes. It then counts the number

of slopes fall into each interval. Finally the average value of

slopes in the densest interval is used as the end result. Since

the slopes are a series of real numbers and the number of

slopes is small, such process can be fast. The motivation of

vote is based on a simple fact that the right values are usually

close however the wrong values trend to be varied.

VI. EXPERIMENTS

In this section, we introduce our experiments for evaluating

the real performance of the proposed fingerprint mechanism.

In our experiments, we use a Thinkpad X200 laptop as

a fingerprintor to collect CFO fingerprints of testing devices

(both APs and smartphones). This laptop is equipped with an

Intel 5300 WiFi Card, of which the driver has been modified

based on the tool introduced in [7] to report timely CSI

measurements for each received frame. In order to fingerprint

an AP, we let the laptop connect to it and send it Ping

messages. For each response frame, the laptop obtains and

stores the corresponding CSI measurements. The sending

interval between two Ping messages is 1s by default, which

is too long for our fingerprinting purpose. Hence, we use the

−i parameter to shorten this interval to 0.002s, which would

produce 500 frames every second. For each device, we collect

5000 response frames in total, which usually takes about 10s.

The laptop then uses the proposed approach to estimate the

CFO as the device’s fingerprint. To fingerprint a smartphone,

we configure the same laptop to work as a WiFI hotspot.
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Fig. 6: The main steps to extract stripes from the noisy figure

The phone is then made to connect to the laptop and send

it messages the same as the laptop does in AP fingerprinting.

The laptop fingerprints the phone based on the collected CSI

measurements of the frames received.

We mainly focus on two performance indicators of our

proposal. The first one is the stability of the fingerprints (i.e.,

the estimated CFO) of devices over time and across locations.

The second one is the accuracy of our mechanism, including

the detection rates of rouge APs and smartphones, and false

alarm rates. Our experiments cover 23 smartphones and 34

APs, including both the same and different models. We now

present the details and results of our experiments.

A. Stability

The fingerprints in our proposal are CFOs estimated from

CSI measurements, which are collected from Commercial

Off-The-Shelf(COTS) devices. As much research work [17],

[18] mentions, the amplitude domain of CSI is environment

sensitive, and even the phase domain can be also affected by

the environment changes as we discussed in section IV. Thus,

although in theory CFO is considered to be consistent when

the relative motions between devices could be ignored in the

indoor environments, we still conducted extensive experiments

to verify whether CFO is really stable in practice such that

can be used as a long-term fingerprint. Our verifications are

focused on two aspects: time stability and location stability.

Time Stability: For this aspect, we want to verify whether

CFO is consistent over time. Our experiments consider two

time scales: one day and one month. Fig. 7 shows the

estimated CFO of two APs, NETGEAR R7000 and TP-LINK

WDR4300, at different times in one day. Here, we let both

APs keep working all day, and record the CSI every 6 hours.

We can observe that the CFO estimations of both APs are

fairly consistent across different times of the whole day.

To verify the stability of CFO in a long-term, we collected

CSI from a smartphone (Xiaomi Note) at different days in one

month. As shown in Fig. 8, the CFO estimations in the month

are almost the same and the relative differences are below 0.1.

Location Stability: As we mentioned earlier, the phase

domain of CSI includes a ToF shift which is highly sensitive

to the relative positions of devices and the surrounding envi-

ronments. To bring in the complex multipath effects, we chose

an indoor environment, which is a lab room of 7.7m× 6.5m,

to verify the location stability of the CFO fingerprints of four

APs. For each AP, we put it at four different locations, one
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(1.398, 1.466)
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Fig. 7: Estimated CFOs at different times in one day for

NETGEAR R7000 and TP-LINK WDR4300, where the value

pair in each parentheses denotes the minimum and maximum

values among the 15 measurements
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Fig. 8: The estimated CFO from a smartphone, Xiaomi Note,

in one month

of which is separated by the wall from the laptop. During

each test, we asked two persons to walk around the room

to mimic the real environments that are always changing.

We performed 15 times of fingerprintings for every AP at

each location. The averaged CFO estimations (as well as the

minimums and maximums) for these APs at different locations

are presented in Fig. 9. It shows that the changes of the CFO

estimations due to location changes for the same AP can

be neglected compared with the differences between different

APs, which demonstrates that our CFO estimations are stable

across locations. We conducted similar experiments for four

different smartphones and obtained the similar result.

B. Attack Detection Accuracy

To evaluate the accuracy of our proposal, we conducted

a serials of experiments to test its detection rate and false

1706



Location
L1 L2 L3 L4

C
F

O

1.2

1.4

1.6

1.8

2

2.2

2.4

AP1

AP2

AP3

AP4

(1.494, 1.541)

(1.421, 1.461) (1.436, 1.474)

(1.512, 1.553)

(1.416, 1.477)

(1.519, 1.581)

(1.973, 2.027)(1.967, 2.023)

(2.181, 2.267) (2.198, 2.272)

(1.983, 2.041)

(2.161, 2.273)(2.141, 2.233)

(1.484, 1.558)

(1.443, 1.485)

(1.984, 2.046)

Fig. 9: Estimation of APs at different locations in the lab

alarm rate. To make the results more persuasive, we fingerprint

each AP/phone K times, and store all the K fingerprints in a

database. Suppose that there are N devices, which indicates

we collect K ·N fingerprints in total. In each test, we sample a

set Hd by randomly pick M of K fingerprints for each device

d. Then build a whitelist W by computing the mean value of

Hd. The M in our experiment is set to one third of K, which

is 5 for K = 15 and 2 for K = 7. Let S denote the set of

remained fingerprints. Then, if comparing one fingerprint in S

to the fingerprint of a different device in W , we are actually

simulating to detect a Rogue AP or a freeloading attack. On the

other hand, if comparing a fingerprint in S to the fingerprint of

the same device in W , we are actually simulating the normal

communication. So, we can define the detection rate Pd of

attacks and the false alarm rate Pf as

Pd =

∑
i∈S

∑
j∈W

[id(i) 6= id(j)] · match(i, j)

(K −M)× (N − 1)×N
(5)

and

Pf =

∑
i∈S

∑
j∈W

[id(i) = id(j)] · match(i, j)

(K −M)×N
, (6)

where id(i) is the device index of fingerprint i, and

match(i, j) equals 1 if Fingerprint i matches Fingerprint j;

otherwise 0. The match process calculate the greatest angle

difference of Hid(i) as Th and the absolute angle difference

between two slopes as da. Then decide whether the two

fingerprints is matched by comparing da to a threshold which

is set to the larger of 1◦ and Th in our experiments.

We first consider our evaluation for APs. We conducted

experiments in 4 different scenarios including a teach-building,

a lab room, the university library, and several Starbucks in

the downtown and collected 382 fingerprints in total. The

details of APs in these environments are shown in Table I.

In Starbucks, we did not see the devices so that their brand

is unknown. For other scenarios, all the APs share the same

brand and model. Note that this actually simulates the worst

case where the attacker sets up a rogue AP with the same

model as that of authorized APs. Intuitively, devices from the

same vendor should have closer fingerprints. According to the

results in Table II, the detection rates in all 4 scenarios exceed

94%, while the false alarm rates are below 5.2%.

TABLE I: detailed scenarios of ap experiments

Scenario AP Brand
Total

Fingerprints
# of APs Value of K

Teaching
Building

HUAWEI 112 16 7

Starbucks Unknown 90 6 15

Lab room
NETGEAR,

TP-LINK
120 8 15

Library HUAWEI 60 4 15

TABLE II: accuracy of ap in different scenes

Scene Detection Rate Pd False Alarm Rate Pf

Teaching building 94.07% 4.76%

Starbucks 95.05% 2.31%

Lab room 97.24% 1.47 %

University Library 94.37% 5.11 %

Besides APs, we also conducted experiments to evaluate

the accuracy for fingerprinting smartphones. Our experiments

cover 23 smarpthones from various brands as shown in Table

III where K = 15 for all phones. The definitions of detection

rates and false alarm rates are similar to those defined for APs.

The average detection rate can achieve 94%, while the false

alarm rate is just below 3%.

We also do the experiment on the same model phones as

illustrated in Table IV. Since the dataset is small, we express

Pdf and Pf as fractions. We can find that our proposal can

still well distinguish between devices of the same model.

TABLE III: detail information of phones

Smartphone Quantity

Meizu 3

Samsung 5

Xiaomi 7

Others 8

TABLE IV: accuracy of same model phones

Smartphone Quantity Detection Rate False Alarm Rate

Xiaomi with the same
WiFi NIC

6 149/160 1/70

Samsung S4 3 70/70 0/35

VII. RELATED WORK

The weakness of the existing authentication in 802.11

wireless network has raised many security issues. To fill

such security holes, there are some device fingerprint based

approaches having been proposed. Unlike traditional cryp-

tographic solutions, the device fingerprint approach use the

device-related information to generate the unique fingerprint

and such fingerprint can be used to distinguish among devices

which preventd the identity spoof in the wireless network.

A wide variety of features have been used as the finger-

print and the different extracting methods lead to different

approaches. In [19], the authors use the packet inter-arrival

time(IAT) as the feature. In [20], the data rate information

in the PHY-layer frame header is used as a feature. In [21],

the authors employ a set of wireless parameters to fingerprint

a target devices including the inter-arrival time, frame size,

transmission rate and etc. Those features are both related to

network traffic. A better way to do this is to use a radiometric

feature since it is highly related to the device itself.
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As an example of RF feature, Hall et al. [22] find that

it’s possible to use the transient signal to fingerprint wireless

device. In [3], a set of radiometric feature are extracted to as

the signatures of device, including the phase error, I/Q offset

and CFO. The main different between our work from [3] is

that we didn’t need any additional hardware, which makes our

scheme more convenient to deploy on existing devices.

Jana and Kasera [2] leverage the clock skew to fingerprint

the device. Despite the clock skew is not a RF feature, it

still a device-correlated signature and can achieve a high

accuracy. Unfortunately, since the time stamp only exists in the

beacon/probe response frame, their scheme can’t do a mutual

fingerprinting and have no way to detect freeloading attacks.

We notice that there is some work [23] using CSI to

identify different users with a high accuracy. However, this

scheme, strictly speaking, is not to fingerprint the device, but

to fingerprint the channel, which is an essentially different

problem. Since CSI usually varies with locations, it seems no

way to use CSI as a device fingerprint. Similarly, [24] can also

be categorized as channel fingerprinting.

In [25], CFO is elegantly used to implement privacy preserv-

ing location verification in LBS system. In [26], the authors

also use the CFO as the device fingerprint. However, their

scheme requires to employ additional equipments, i.e., the

USRP2, to obtain the CFO.

VIII. CONCLUSION

This paper has demonstrated that CFO can be used as long-

term device fingerprints to significantly enhance the current

cryptographic authentication mechanism between mobile de-

vices and APs in WLAN. Our experiments show that such

fingerprints are fairly consistent over time and locations but

vary across devices. As a result, we can use them as extra

identities besides MAC addresses to identify devices and

further detect rouge APs and users. We solve the challenge

to estimate CFO precisely from CSI measurements, which

could be obtained by upper-layer applications without using

any additional hardware. Our extensive experiments on real

APs and smartphones show that our approach could achieve a

high detection rate but produce very few false alarms.
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