Multipath TCP Traffic Diversion Attacks
and Countermeasures

Ali Munir
Computer Science and Engineering
Michigan State University
munirali@msu.edu

Alex Liu

Computer Science and Engineering

Michigan State University
alexliu@cse.msu.edu

Abstract—Multipath TCP (MPTCP) is an IETF standardized
suite of TCP extensions that allow two endpoints to simulta-
neously use multiple paths between them. In this paper, we
report vulnerabilities in MPTCP that arise because of cross-
path interactions between MPTCP subflows. First, an attacker
eavesdropping one MPTCP subflow can infer throughput of other
subflows. Second, an attacker can inject forged MPTCP packets
to change priorities of any MPTCP subflow. We present two
attacks to exploit these vulnerabilities. In the connection hijack
attack, an attacker takes full control of the MPTCP connection
by suspending the subflows he has no access to. In the traffic
diversion attack, an attacker diverts traffic from one path to
other paths. Proposed vulnerabilities fixes, changes to MPTCP
specification, provide the guarantees that MPTCP is at least as
secure as TCP and the original MPTCP. We validate attacks
and prevention mechanism, using MPTCP Linux implementation
(v0.91), on a real-network testbed.

I. INTRODUCTION

Multipath TCP (MPTCP) is an IETF standardized suite
of TCP extensions that allow an MPTCP connection between
two hosts to simultaneously use multiple available paths [1].
This parallelism capability significantly improves throughput
and reliability while maintaining the same TCP interface to
the applications. For example, smartphones can use MPTCP to
stream videos over both WiFi and 3G/4G connections simulta-
neously for better user experience. Since its inception, MPTCP
has been fueled with great interest and excitement from both
academia [2]-[5] and industry [1], [6]. For example, Apple
10S (version 7 onwards) supports MPTCP and Google Android
now has modified ROMs with MPTCP [7], [8] support.

Compared to TCP, MPTCP splits the security risk through
multiple subflows. If only one subflow is attacked, the MPTCP
connection as a whole may not be severely affected. In theory,
if only one subflow is eavesdropped, the attacker should
not be able to eavesdrop the traffic of the whole MPTCP
connection. On the flip side, MPTCP has a larger attack
surface than TCP — as long as any one of the subflows is
under attack (e.g. by a man-in-the-middle attacker), the whole
MPTCP connection can be affected, which puts MPTCP at a
disadvantage compared to TCP. Prior work lacks on analyzing

978-1-5090-6501-1/17/$31.00 (© 2017 IEEE

Zhiyun Qian
Computer Science and Engineering
U.C. Riverside
zhiyunq@cs.ucr.edu

Zubair Shafiq
Dept. of Computer Science
The University of IOWA
zubair-shafig@uiowa.edu

Franck Le
IBM T. J. Watson
IBM Research
fle@us.ibm.com

and comparing the attack surface of MPTCP with that of TCP
[9], [10]. To date, it is still largely unclear whether new attacks
are possible or whether prior known attacks on TCP (e.g.
connection hijack [11]-[14]) can be more easily launched on
MPTCP [1].

To fill this gap, in this paper, we specifically analyze
the MPTCP’s cross-path attack surface, i.e. what an attacker
controlling one path can do to affect other paths or the
MPTCP connection as a whole. We show that there are
indeed worrisome cross-path attacks that make the current
version of MPTCP less secure than TCP. For instance, we
show that an attacker controlling any one of the subflows can
take full control over the MPTCP connection (See § IV-B),
which makes many attacks that require full man-in-the-middle
capability much more likely to occur in MPTCP [15]-[17].
We subsequently analyze the root causes of such cross-path
vulnerabilities, propose and implement a set of changes to
MPTCP to prevent such class of attacks. As the weaknesses are
fundamental to MPTCP, we argue that these changes should
be made at the MPTCP layer itself (instead of being pushed
to higher layers).

Our key contributions and findings are as follows.

o Vulnerabilities: We report two cross-path MPTCP vulnerabil-
ities. First, an attacker eavesdropping one MPTCP subflow can
infer the throughput of other MPTCP subflows by analyzing
the local and global sequence numbers (GSN) embedded in
MPTCP headers. Second, an attacker can send forged packets
with the MPTCP MP_PRIO option containing the backup
flag to set any MPTCP subflow as the backup, causing it
to be stalled completely. Even though the vulnerabilities are
verified on the Linux MPTCP implementation (version 0.91),
they are actually caused by the current design of MPTCP,
which calls for changes to the specification rather than simple
implementation fixes.

e Attacks: Based on these vulnerabilities, we present two
practical attacks on MPTCP, directed traffic diversion attacks
and hijack attacks. We show that an attacker can onload
or offload controlled amount of traffic on specific MPTCP
subflows. We also show that an attacker controlling one path
can easily force all traffic to route through itself by setting all

other subflows as backup. We implement and validate these
attacks on a real network testbed using MPTCP Linux Kernel
implementation (v0.91) [18].

e Attack Prevention and Countermeasures: We show that the
two cross-path vulnerabilities can in fact be prevented by
leveraging the ‘“‘secret splitting” across multiple paths. The
intuition is that it is highly unlikely that an attacker will be
able to monitor and control all paths used by an MPTCP
connection. Therefore, secrets can be split across multiple
paths to prevent complete eavesdropping or tampering. We
propose a set of changes to MPTCP based on the intuition
and implement in the Linux MPTCP code base to verify the
ability to defend against this class of cross-path attacks.

In the rest of the paper, we present MPTCP background and
related work in § II. We present our threat model in § III, and
present MPTCP cross-path attacks in § IV. Lastly, we discuss
attack countermeasures in § V and conclude in § VI.

II. MPTCP BACKGROUND & RELATED WORK

Below, we first provide a brief overview of MPTCP, and
then discuss security issues of MPTCP in prior literature.

Host A Host B
Address A1 Address A2 Address B

LN S SYN + MP_CAPABLE(Key-A)________ U
I] 1
€ I SYNJACK + MP_CAPABLE(Key-B) 1
:' """" T™77ACK+ MP_CAPABLE(Key-A, Key-B) ":
I 1 ADD_ADDR(Addrs-A2) 1
r=——-=--- T T >
|
J- === —2YN+ MP_JOIN(Token:B, nonce:Al . __

" ACK + MP_JOIN(HMAC-A2) |

Fig. 1. Example 2-path MPTCP connection setup

A. MPTCP Background

MPTCP is an extended version of TCP implemented using
the TCP option field, which allows a TCP connection between
two hosts to use multiple paths simultaneously [1]. Below we
explain the operation of an example 2-path MPTCP connec-
tion, illustrated in Figure 1.

Connection Establishment. The client uses its IP address
Al to establish an MPTCP subflow with the server. The
SYN, SYN/ACK, and ACK handshake packets include the
MP_CAPABLE option to indicate MPTCP support. Hosts also
exchange 64-bit keys during the handshake to authenticate
the establishment of additional subflows in future. The client
notifies the server that it has another IP address A2 using the
ADD_ADDR option. Note that, these address advertisements
can be refreshed periodically and sent on any subflow. A host
receiving the advertisements will then establish new MPTCP
subflows using the MP_JOIN option. The SYN, SYN/ACK,
and ACK handshake packets include the MP_JOIN option
to indicate establishment of the new MPTCP subflow, using
Adress A2. Hosts use 32-bit tokens to identify the MPTCP
connection. Hosts also use 64-bit truncated Hash-based Mes-
sage Authentication Code (HMAC) for authentication. Finally,
MPTCP uses address identifiers (advertised via ADD_ADDR),
instead of IP addresses, to cope with possible IP address
changes due to the presence of a NAT on the path. Each address

has a corresponding address identifier to uniquely identify it
within a connection.

Data Transfer. MPTCP packets include a 32-bit local se-
quence number and a 64-bit global sequence number (also
called data sequence number, short for DSN) to ensure reliable
and in-order data delivery. The 32-bit local sequence number
is used for flow control at the subflow level and 64-bit global
sequence number is used for flow control at the connection
level. MPTCP also signals both the connection-level acknowl-
edgements and subflow level acknowledgments to implement
flow control.

Subflow Priority. MPTCP uses the MP_PRIO option to
dynamically change the priority of subflows. Hosts can re-
quest change in the priority to use a subflow as regular or
backup. A backup subflow is used only if there is no regular
subflow available for data transmission [1]. MP_PRIO carries
an optional address ID field that can be used to specify the
subflow that needs to be set as backup. To set a subflow as
backup, a host can request a change in the subflow priority
by sending MPTCP MP_PRIO option to the other host with
the corresponding address identifier. The key property of
MP_PRIO messages is that they can be sent on any subflow.
The reason is that if a subflow is already congested, it may
not be possible to deliver the message to pause itself.

B. MPTCP Attacks

RFC 6181 [9] and RFC 7430 [10] discuss some MPTCP-
specific attacks including flooding, hijacking, and Denial of
Service (DoS) attacks. However, they do not cover the threat
model and the problems discussed in this paper.

Shafiq et al. [19] proposed cross-path throughput inference
attacks on MPTCP. The authors showed that MPTCP subflows
are interdependent due to the congestion control coupling.
The authors demonstrated that the resulting side-channels can
be exploited by an attacker controlling one of the subflows
to infer the throughput of other subflows. In this paper, we
build on their work by proposing novel traffic diversion attacks
optionally based on cross-path MPTCP throughput inference
that provides feedback to the attacker. We also design and
implement countermeasures to defend against these cross-path
throughput inference based attacks.

Popovici et al. [20] discuss use of MPTCP congestion
control for diverting traffic from one network to another to gain
profit. Authors introduce a policy drop strategy that, a network
operator, can be used to divert traffic from one path to another
path by introducing packet drop on one of the paths. This
allows network operators to reduce the traffic they carry, and
divert some of their own traffic to the other path(s). However,
this work does not consider per-connection policy drops and
assume all the connections experience same level of packet
drops. Our MPTCP connection throughput inference attack
will allow more fine-grained control of traffic diversion attacks.
Network operators can use throughput inference to monitor
the overall connection throughput, from the subflow through
their network, and only divert some amount of traffic that does
not hurt the overall MPTCP connection throughput. Moreover,
using MP_PRIO option, an attacker can diverge traffic to or
from a specific path, which can not be done by other existing
attack scenarios.

Jadin er al. [21] propose MPTCPSec that adds authen-
tication and encryption to MPTCP for both the data and
MPTCP options. MPTCPSec is a complete suite that can be
used to prevent the attacks discussed in this paper. It is a
relatively heavyweight solution (e.g., key distribution/sharing
and more complete encryption) compared to the small changes
we propose to prevent the reported attacks.

Since MPTCP transparently distributes traffic of an end-
to-end TCP connection across multiple paths, network moni-
toring devices such as intrusion detection systems (IDS) can
only observe partial traffic. Therefore, MPTCP will negatively
impact the functionality of network monitoring devices [22].
For examples, attackers can evade signature-based detection by
splitting malicious payloads across multiple paths. Distributed
signature-based intrusion detection approaches (e.g., [23]) have
been investigated to overcome these difficulties.

III. MPTCP THREAT MODEL AND VULNERABILITIES

In this section, we first discuss our threat model for attacks
on MPTCP connections and then discuss two vulnerabilities
that can be exploited under this threat model.

A. Threat Model

Figure 2 illustrates an MPTCP connection where the
attacker is on one of the two paths used in the MPTCP
connection. In the more general case, if there are m paths (with
m subflows), an attacker may be on a subset of the paths. Our
threat model assumes that the attacker can eavesdrop or inject
traffic on the paths. This threat model is commonly found
in the case of open WiFi access points where an attacker
connected to the same access point can eavesdrop or inject
traffic on the subflow established through the access point.
Our threat model does not assume that the attacker can modify
existing traffic.

B. Backup Flag Vulnerability

MPTCP supports using subflows as backup — i.e., using a
subflow to send data only if there is no other subflow available.
Specifically, an MPTCP host can send a request to the other
host to set any subflow as a backup by using the MPTCP
MP_PRIO option. As mentioned earlier, this request can be
sent via any MPTCP subflow. After receiving such a control
packet, the sender will stop sending data and the corresponding
subflow’s throughput will drop to zero. Unfortunately, un-
like MP__JOIN, such a control packet has no authentication
required by the specification whatsoever [1], allowing an
attacker controlling only one path to set any subflow (using the
corresponding address ID) as back up, Figure 2. For example,
for the two path MPTCP connection shown in Figure 2, the
attacker on pathl can send a forged MP_PRIO packet with
address ID of path2 to set subflow on path2 as backup.
The backup flag vulnerability allows an attacker to divert
traffic among MPTCP subflows. An attacker can offload traffic
from the eavesdropped subflow to other MPTCP subflows by
sending forged packets with the MP_PRIO option to set the
eavesdropped subflow as a backup. An attacker can also onload
traffic from non-eavesdropped subflows to the eavesdropped
subflow by sending forged packets with the MP_PRIO option
to set all other subflows as backup. This attack is similar
to connection hijack attack, where an attacker diverts all the
traffic to pass through the subflow on the eavesdropped path.

Time tz< Data Transfer >

Time t1< Data Transter + backup message (VIP_PRIO [Path2"Address 1D]) >

Time t; <

Data Transfer >

Time t, Data Transfer (patsed)

Fig. 2. Subflow pause using MP_PRIO option

C. Throughput Inference Vulnerability

If there are two subflows in an MPTCP connection, Shafiq
et al. showed that an attacker eavesdropping a subflow can
learn the throughput of the other subflow [19]. For example,
an attacker can infer the throughput of the non-eavesdropped
subflow on most phones that have both WiFi and cellular
network interfaces. The subflows of an MPTCP connection
are seemingly independent, but in reality they are fundamen-
tally coupled because they carry data of the same MPTCP
connection. Take the example of an MPTCP connection with
two subflows, since the two subflows carry packets in the same
MPTCP connection, the destination host needs to reassemble
the packets from both subflows into that MPTCP connection.
Thus, each packet in a subflow needs to have two sequence
numbers: a local sequence number for reliable transmission
over that subflow, which is the traditional subflow sequence
number encoded in the TCP sequence field, and a global
sequence number for assembling packets from both subflows
into that MPTCP connection. By passively eavesdropping
one subflow, an attacker can calculate the throughput of the
eavesdropped subflow from the local sequence number and that
of the MPTCP connection from the global sequence numbers.

In this paper, we show that it is not hard to generalize the
result to more than two subflows. Specifically, if an attacker
eavesdropping on m — 1 subflows for an m-path MPTCP
connection (m > 2), it is possible to infer the throughput of
the non-eavesdropped subflows. For an eavesdropped subflow,
from the local sequence numbers, which indicates the number
of bytes that have been transferred over that subflow, the
attacker can calculate the throughput of the subflow; from the
global sequence number, which indicates the number of bytes
that have been transferred over all subflows, the attacker can
calculate the throughput of the overall MPTCP connection.
Let ¢y, ,t, denote the throughput of m subflows over
paths pi,---,pm, respectively. Let ¢ denote the throughput
of the overall MPTCP connection over m paths. Then we
have t; + ... + t,, = t. Suppose the attacker can eaves-
drop the m — 1 paths py,---,p,—1. Then, the attacker can
calculate the throughput ¢,, of the subflow over path p,, as

-1
b =t — Y000 &

The ability to infer throughput can help an attacker validate
the success of connection hijack attack and traffic diversion
attacks. Note that, a simple approach to validate the attacks
is to check that there are no holes in DSS space, however, it
works only for a connection with two subflows or when all the
subflows have been hijacked. For a connection with more than
two subflows or when only specific subflows are targeted, we
still need throughput inference to validate and detect change in
throughput.An attacker eavesdropping a single path can infer
the total throughput of the MPTCP connection () and the

throughput of the subflow (¢,,) on that path. Therefore, using
this information, an attacker can validate that the backup flag
attack was successful. For example, for an MPTCP connection
with two subflows, ¢ will be equal to ¢, if the backup attack
was successful. Similarly, from this the attacker can calculate
the total throughput of the MPTCP connection on other paths
(as tpaths = t — tm), however, an attacker can not calculate
the throughput of a particular subflow on the uneavesdropped
path, unless it can eavesdrop m — 1 paths. For example, an
attacker eavesdropping m — 2 paths can not calculate the exact
throughput of the other 2 paths as it does not have sufficient
information to compute the throughput. This information can
help an attacker to offload or onload traffic from one subflow to
another subflow while maintaining the same overall throughput
of the MPTCP connection. Note that the connection hijack
attack can work without throughput information, however
throughput information can help an attacker make sure that
the attack was successful. For example, in some cases, the
host may or may not decide to stop sending the data on the
backup path. Therefore, it is important for connection hijack
attack that the attacker is able to infer the throughput.

IV. ATTACK ANALYSIS AND VALIDATION

In this section, first, we demonstrate how an attacker can
leverage passive cross-path throughput inference and backup
flag vulnerability to launch a connection hijack attack. Next,
we demonstrate how an attacker can launch directed traffic
diversion attacks. In the hijack attack, an attacker diverts all
the traffic through his own path to take full control of the
connection. In the directed traffic diversion attack, an attacker
manipulates traffic on specific individual subflows while main-
taining the same throughput of the MPTCP connection. Note
that the connection throughput can itself vary in real-life.
However, using throughput inference, an attacker can ensure
that the overall throughput does not change too much (for long)
and any unusual activity is not discovered by the attack victim.

IP, (WlFl) \
P, (Wired) Pueng
Cllenl Path p, Server

Fig. 3. Experiment Topology

A. Experimental Setup

To validate the hijack and traffic diversion attack under
varying network settings, we conduct experiments on a testbed
running the MPTCP Linux implementation (v0.91) [18]. We
consider the scenario shown in Figure 3, where a client and
server can communicate using two paths configured as WiFi
(path p;) and Wired (path p2). We setup and configure the loss
rate and throughput on these paths to approximate WiFi and
Wired connections. MPTCP connections compete with single-
path TCP connections on paths p; and p,. The client and the
server can have a 2-path MPTCP connection whose subflows
use paths p; and ps. Let ¢; and ¢5 denote the throughput of the
MPTCP subflows over the paths p; and po respectively. Let
T, and T% denote the throughput of TCP connections passing
through paths p; and py respectively. In our experiments, we
assume that there is a malicious attacker on path p; who can
eavesdrop and inject forged packets on path p;.

N
&

P

3
JZ
|
{
L,

Throughput (Mbps)
5
T
L

o o

Time (min)

Fig. 4. MPTCP connection hijack attack using backup flag

B. Connection Hijack Attacks

First, we show a special case of traffic diversion, where an
attacker can launch a connection hijack attack to onload traffic
to the subflow on its eavesdropped path.

1) Motivation: In these scenarios, an attacker’s motivation
could be to observe all the data in the MPTCP connection for
surveillance or to charge users for additional data usage as
a cellular ISP. To gain full control over MPTCP connection,
an attacker can set the subflows as backup and pause non-
eavesdropped subflows between two hosts. By pausing the non-
eavesdropped subflow, an attacker can get full control over the
MPTCP connection.

2) Overview: In the connection hijack attack, the attacker
uses the backup flag vulnerability to onload traffic to its own
path and uses the cross-path throughput inference to validate
the success of hijack attack.

Consider the scenario shown in Figure 3 where two sub-
flows of an MPTCP connection pass through paths p; and
p2. An attacker can hijack the non-eavesdropped subflow on
p2 by dynamically changing the priority of a subflow and
declaring it as backup. To launch this attack, an attacker only
needs to know the address identifier of the host, which can
be obtained by eavesdropping other paths or easily guessed
as they are set incrementally in current Linux implementation
of MPTCP. Since the identifier has only 8 bits, it can even
be bruteforced. To set a non-eavesdropped subflow as backup
between hosts A and B, an attacker can request a change in the
subflow priority by sending MPTCP MP_PRIO option to host
B with the address identifier of host A. Since by design the
MP_PRIO messages can be sent on any subflow, the attacker
eavesdropping on any path capable of sending such a forged
backup message can pause any other path. Note that a backup
MPTCP subflow may still be used for data transmission later,
which can be detected by the attacker by observing the overall
MPTCP throughput.

Effectively, this attack degrades an MPTCP connection to a
regular TCP connection as all traffic will be routed through the
attacker-controlled path. Given that MPTCP has an increased
attack surface, this vulnerability makes MPTCP more likely
to be hijacked compared to TCP. Unfortunately, MPTCP
specification does not include any authentication mechanism
whatsoever regarding the MP_PRIO message.

3) Attack Validation: To validate the attack, we consider a
scenario where the client and the server have a 2-path MPTCP
connection whose two subflows use paths p; and po. Figure 4
plots the results of the hijack attack using backup flag for the
scenario shown in Figure 3. In Figure 4, both ¢; and ¢, achieve
similar throughput till £ = 2 minutes. To gain full control, at
t = 2 minutes, the attacker launches backup flag attack and as
a result py throughput drops to zero, which can be observed
by the attacker on p; using our throughput inference scheme.

The attacker can unset the backup flag to resume the subflow
on po (t = 6 minutes).

C. Directed Traffic Diversion Attacks

Next, we show how an attacker can launch a directed traffic
diversion attack on a specific subflow to offload or onload
traffic from one subflow to another subflow. As compared to
simple traffic diversion, the goal of the directed traffic diversion
attack is to hurt the performance of a subflow on a specific
path or a subflow used by a specific network. Our threat model
is different from (also more generic) [20] and can be used to
launch both the simple and directed traffic diversion attacks.

1) Motivation: There are both malicious and benign moti-
vations for traffic diversion.

A malicious attacker eavesdropping an MPTCP subflow
can launch the directed traffic diversion (offloading) attack to
gain more bandwidth, i.e., diverting traffic to other paths so
that he can use that path to carry more of his own traffic and
at the same time affect the performance of connections using
a specific network to which attacker has no access. This will
improve the network performance of attacker, however, it will
hurt the performance of the users in the targeted network to
whom traffic is diverted. Likewise, a malicious ISP can launch
the traffic diversion attack to reduce its load by diverting traffic
to other ISPs. This allows a malicious ISP to carry more traffic
of its own users and degrade the performance of users in the
other network.

In a benign scenario, a cellular ISP can use traffic diversion
to reduce users’ data usage over 3G/4G links by diverting
traffic to WiFi links. This helps the users keep their cellular
data usage under control and avoid overage charges, and also
helps the cellular ISP to offload traffic during peak hours.

In traffic diversion attacks, the attackers can make sure
that end-user quality of experience is not affected. This can
be made possible by diverting only a limited amount of traffic
such that the overall throughput of the MPTCP connection
remains unchanged. An attacker can monitor the overall con-
nection throughput from global sequence numbers using our
proposed throughput inference model.

2) Overview: To launch the directed offloading or onload-
ing attack, an attacker needs to identify the target path to
offload or onload data. For directed offloading data to a specific
path, an attacker can either throttle traffic of the paths (e.g.,
introducing packet loss), he has access to, or set the subflows
going through these paths as back up using MP_PRIO option
in MPTCP. For onloading traffic, an attacker can set targeted
paths as backup to direct traffic to its own paths.

To decide which path to onload from or offload to, an
attacker can gather mapping between IP address and address
ID from the MP_JOIN and ADD_ADDR options. Both the
options contain the IP address and corresponding address
ID and are sent over the existing connection in plain-text.
Therefore, an attacker eavesdropping on one of the subflows
may be able to see this information, if advertised on the
eavesdropped path, and find mapping between IP address and
its corresponding address ID to launch the targeted traffic
diversion attacks.

=)
=)

Throughput (Mbps)
o n > o ==
Throughput (Mbps)
o n > o (==

Time (min)
(a) Offloading
Demonstration of the traffic diversion attack

Time (min)

(b) Onloading

Fig. 5.

3) Attack Validation: We first consider a scenario where
the client and the server have a 2-path MPTCP connection
whose two subflows use paths p; and po. Let ¢ denote the
throughput of the MPTCP connection where ¢t = t; + to.
We also setup TCP connections (acting as background traffic)
passing through paths p; and p,, with throughput 77 and
T5 respectively. The attacker can eavesdrop path p; but not
p2. By eavesdropping, the attacker can calculate the overall
throughput ¢ of the MPTCP connection. Using our MPTCP
throughput inference scheme, the attacker can then calculate
to = t — t1. The attacker can use this information for traffic
diversion to make sure that the backup flag vulnerability is
exploited correctly and the attack was successful.

Figure 5 plots the results of the traffic diversion attack for
two-path connection scenario. To launch the traffic diversion
attack, MPTCP subflow passing through p; or p, is throttled
using MP_PRIO option. In Figure 5(a), ¢; and to achieve a
throughput of about 6 Mbps and 2 Mbps, respectively, and the
spare capacity is utilized by TCP flows on both the paths.

Later, when the attacker sets its own path as backup (e.g.
to free up more bandwidth on its own path), the MPTCP
subflow on path p;, to offload its traffic to other path, ¢;
decreases significantly; however, to increases to make up for
the reduced throughput of ¢;. However, in this case as the
available bandwidth is not sufficient, not all the traffic is
offloaded to po, the overall throughput, ¢ = t; + to drops
during the traffic diversion attack. Attacker can detect this
change and make sure the attack was successful. Similarly,
Figure 5(b) demonstrates that when the attacker sets other path
as backup, the MPTCP subflow on path ps, to onload traffic
from other path, to drops to zero and ¢; increases to make up
for the reduced throughput of ¢5. In this case as the available
bandwidth is sufficient on pq, therefore, more than 80% traffic
is offlaoded to p;, and the overall throughput, ¢ remains almost
unchanged during the traffic diversion attack. Attacker can
detect the drop in to using our throughput inference model
and make sure the attack was successful.

4) Step-wise traffic divergence: Step-wise divergence can
be used to offload data in steps without realizing any change
in throughput. An attacker can launch this attack by gradually
throttling the throughput of the desired subflow. By gradual
throttling, a two-path MPTCP connection, the attacker can
identify the minimum value for ¢; that does not impact ¢. There
are multiple ways to throttle a subflow, such as the attacker
can rate limit a subflow by dropping packets, which will
cause throughput degradation due to the congestion control
mechanisms, which we use in our experiments.

Our experiment demonstrates that an attacker can offload
data to other paths without hurting ¢ using the proposed
traffic diversion method. Note that the magnitude of possible

3

T T T T T
4 100 4

IS
T
5
!

80 [q

60 —
40 E
20 - | —

0
1 2 3 4 5 6 7 8 20 40 60 80 100
Time (min) Traffic Throttled (%)

(b) Throughput Diverted (%)

Fig. 6. Demonstration of stepwise traffic diversion attack.

@
g
!

Throughput (Mbps)
S
Traffic Diverted (%)

o =

(a) With Stepwise Diversion

traffic diversion depends on the properties of path po, i.e., an
attacker might not be able to offload enough data during higher
congestion. To illustrate this, we repeat the above experiment
but throttle 1 in a stepwise manner. We throttle the subflow by
dropping the packets of MPTCP subflow and increase the drop
rate stepwise to achieve different level of throttling. Similar
effect can be achieved by sending duplicate Acks on the path,
and as a result the subflow throughput will be dropped. From
Figure 6, we can observe that initially all of the throttled traffic
is diverted to the other path (i.e., 5 in this case); however as
the attacker increases throttling level, the fraction of the traffic
diverted to other path decreases (Figure 6(b)). In Figure 6(a),
when the attacker throttles the MPTCP subflow on path p;
by 20% at time = 2 minutes, ¢; decreases and to increases
to make up for the reduced throughput of ¢;. However, when
the attacker increases the throttling level at time = 3,5and 7
minutes respectively, not all the traffic is diverted to the path
p1. This experiment shows that the amount of diverted traffic
may vary depending on path conditions and that all of the
traffic may not be diverted if enough capacity is not available.

V. COUNTERMEASURES

The problems of throughput inference and connection hi-
jack are rooted in the MPTCP specification. In this section, we
propose countermeasures to address these vulnerabilities and
as a result prevent the traffic diversion and connection hijack
attacks. At a high level, our security improvement hinges on
the simple fact that a secret can be split and distributed across
multiple paths so that an attacker controlling only a subset
of the paths will not be able to know the assembled secret.
We show how this idea can be applied to authenticating the
MP_PRIO control packets as well as encrypting the global
sequence number (GSN).

A. Current MPTCP Security Mechanism

MPTCP does have a built-in authentication mechanism
that prevents unauthorized subflows to be established. In the
beginning of a new MPTCP connection (i.e. the very first
subflow), the sender and receiver exchange a set of keys (i.e.
sender key and receiver key) in plaintext at the connection
setup time through MP_CAPABLE messages during the TCP
handshake process. Additional subflows start in the same
way as initiating a normal TCP connection, but the SYN,
SYN/ACK, and ACK packets also carry the MP_JOIN option
as well as the authentication information. Specifically, for a
new subflow, the MP_JOIN on the SYN packet contains a
token, a random number, and an address ID. The token is
generated from a HASH function of the receiver’s key and
is used to identify the MPTCP connection to which the new
subflow belongs. The random number (nonce) is sent as a
challenge to the receiver who needs to use it to compute
a subsequent HMAC which prevents replay attacks. Upon

receiving an MP_JOIN SYN with a valid token, the host
responds with a MP_JOIN SYN/ACK containing a random
number and a truncated (leftmost 64 bits) Hash-based Message
Authentication Code (HMAC) based on the sender’s and
receiver’s key as well as the sender’s random number. If the
token or HMAC is incorrect, the initial sender can reset the
subflow and fall back to TCP or it can deny the request for
new subflow setup.

As we can see, the only “secrets” (keys) are exchanged
during the very first subflow; subsequent subflows only au-
thenticate themselves but no additional new secrets are being
shared. This means that as long as an attacker controls the
first subflow, he or she can manipulate all subflows (e.g.
creating fake subflows, or sending other control packets such as
ADD_ADDR that require authentication). As will be discussed
next, our proposed solution requires new secrets to shared
on newly established and authenticated subflows. Further, the
changes mostly piggyback on the existing security mechanisms
without substantial redesign of the protocol.

B. Backup Flag Vulnerability Prevention

As mentioned before, the fundamental reason for backup
flag attack is the lack of authentication of MP_PRIO messages.
We present progressively-more-secure changes to the way
MP_PRIO messages are generated and handled.

1. Address ID removal. MP_PRIO messages use address
identifiers (ID) to specify a target subflow for which priority
needs to be changed. A simple solution to prevent this attack
is to simply remove the address ID from the MP_PRIO option,
i.e. the MP_PRTIO option must be sent on the same subflow as
the one where it applies. This implies that the attacker must be
on-path of this subflow to cause it to become a backup (which
he can do anyways). This defense is simple to implement,
however, as suggested in RFC6824 [1], address ID is optional
for the scenario where a path is extremley congested (e.g.,
radio coverage issue) that the MP_PRIO message has to be
delivered on a different path. This proposal has been adopted
by RFC6824bis [24].

2. Invalid Address ID rejection. MP_PRIO messages use
address identifiers (ID) to specify a target subflow for which
priority needs to be changed. One possibility to counter an at-
tacker that sends random address IDs could be, for an MPTCP
implementation, to reject a subflow where an MP_PRTIO refers
to an invalid address id. Rejecting/terminating a subflow where
an MP_ PRIO with one or more invalid address ID is observed
can be a simple solution, as it indicated a compromised path.
However, it is unclear whether this can lead to false alarms
(especially when significant dynamics are present, e.g., new
subflows joining and old ones leaving).

3. Address ID randomization. Currently, address IDs are
assigned incrementally (not required by RFC6824 [1]) in
MPTCP Linux implementation, which makes it easier for the
attacker to guess the address ID of the subflows on the non-
eavesdropped path. For example, if the first address is assigned
an address ID as 1, the next address of the same connection
will be assigned an address ID of 2. This behavior is not
defined in the MPTCP specification but rather observed in the
current Linux MPTCP implementation. We can mitigate this
flaw by randomizing the address IDs that are assigned to the
address in MPTCP connection. Although this approach will not

012345678901234567890123456728290
Kind | Length

1 1
i Subtype | {B} AddrID (opt)

Authentication Badge (64 bits - opt)

Nonce/ random number (32 bits - opt)

Fig. 7. Secure MP_PRIO TCP option

completely eliminate the threat, it can at least make it harder
for the attacker to guess correct address ID of target subflow.
We can make it more difficult to guess the correct address ID
by adopting techniques such as limiting the number of IDs
that can be attempted per fixed time interval. The firewalls
and middleboxes can also be configured to avert this attack.
However, the current address ID field is only 8 bits and an
attacker can still quickly launch this attack.

4. Adding a standard/static badge for authentication. A
better solution is to require a subflow level authentication
badge, which is sent along with the MP_PRIO packet, to
ensure that an attacker controlling only one subflow cannot
spoof a valid packet. This badge can be similar to the HMAC
computed in MP_JOIN messages during the subflow setup
time. However, there are two issues with using the standard
badge, similar to current token. First, the current token is static
as it is simply a hash of the received key (and will be the
same no matter on which subflow it is used). Unfortunately,
the current token is exposed during the subflow setup in either
the MP_JOIN or MP_CAPABLE packet, allowing an attacker
controlling any subflow to be able to replay the token. The
problem is that the current token is supposed to be used only
once during the subflow setup phase, while it is now misused
multiple times (as a badge) to authenticate control packets such
as MP_PRIO. Second, even if the badge is replay-resistant, as
long as it is generated from the key exchanged in the first
subflow, an attacker knowing the key can always compute the
badge easily and set any other subflow as backup.

5. Adding a secure/dynamic badge for authentication. Next,
we propose a secure badge based authentication that must meet
the following requirements: First, the badge needs to be replay-
resistant. Second, the badge generation should not depend on
keys shared on only a specific subflow (e.g., primary one).

Choice of badge generation. To satisfy the first requirement,
we propose to generate an authentication badge using HMAC
derived from not only the keys as well as an additional nonce
(32 bits) that changes every packet (e.g., a new field in the
MP_PRIO message, Figure 7). This avoids sending a fixed
badge over the MPTCP connection and prevents replay attacks.
We propose using a badge size of 8 bytes, similar to current
MP__JOIN option in the current MPTCP specification. Similar
to the way current token is generated, we can use the truncated
HMAC (leftmost 64 bits) using the key material plus nonce,
as shown in the example below.

Choice of secret splitting. To satisfy the second require-
ment, we propose to exchange independent keys on individual
subflows and use the combined key to compute the badge.
Specifically, since only the primary subflow exchanges keys
explicitly through MP_CAPABLE messages, we need a way
to exchange new keys for non-primary subflows. A simple
strategy is to reuse the nonces exchanged in MP__JOIN as keys
(as they are random in nature too). Once we have a pair of
independent keys exchanged on each subflow, the new badge

Host A Host B
Address A1 Address A2 Address B1
S s
| 1 SYN/ACK + MP_CAPABLE(Key-B) |
: Lo S _V'_“:MP__iQ'N(_Ksz:_neacs-_Al____.:
: 1= == SYNJACK < MP JOIN(Key-B2= nonce-B) 1

BADGE = HMAC(Key-A+Key-A2, ID + NONCE)
Fig. 8. Example Use of Secure MP_PRIO

can be computed by combining keys of two subflows: (1) the
one on which MP_PRIO is sent; (2) the one that is to be set
as backup. This means that even if the attacker eavesdrops on
the first subflow, it is impossible to compute a valid badge
to set any other subflow as backup, so long as the attacker
is not eavesdropping on other subflows. For bookkeeping, the
additional pair of keys for each subflow needs to be maintained
until the subflow is terminated.

Example scenario. Now let us consider an example to under-
stand how everything works together, as shown in Figure 8.
Assuming an MPTCP connection between hosts A and B
with two subflows 1 and 2, where the attacker controls the
subflow 1. First, the keying material is taken from the keys in
MP_CAPABLE option of subflow 1 and the random numbers
from the MP_JOIN of subflow 2. To change the priority of
subflow 2, the secure MP_PRIO will contain an authentication
badge generated using keying material and the random nonce,
as shown in Fig. 7. The authentication badge is the HMAC
derived from the MP_PRIO nonce and the keys exchanged on
both subflows. For example, in this case, the badge for subflow
2 can be generated as follows: Badges = HMAC (keya +
keyas, NONCE + ID), where keys and keyas are simply
concatenated. If a legitimate MP_PRIO message has been sent
on subflow 1 (to change the priority of subflow 2), an attacker
eavesdropping on 1 may learn the badge. However, in order to
inject a subsequent MP_PRIO message, the attacker needs to
compute a new badge (using the new nonce). Further, since
the badge also includes the keys exchanged on subflow 2
during MP__JOIN, the attacker cannot easily compute the new
badge, unless the attacker is also eavesdropping on subflow
2 (in which case the attacker already has full control of both
subflows and the attack is unnecessary).

C. Throughput Inference Vulnerability Prevention

The fundamental enabler for cross-path throughput in-
ference is the GSN embedded in MPTCP packets. On one
hand, they are needed for reassembling packets from multiple
subflows into a MPTCP connection and for detecting packet
losses. On the other hand, as we demonstrated, GSN create a
vulnerability that allows an attacker to infer the throughput of
a subflow that he has no access to.

Packet header encryption using solutions such as IPsec [25]
could prevent attackers from inferring throughput. However,
this requires additional keys to be established ahead of time
and the VPN server can be a single point of failure. In addition,
from the VPN server to the real destination, MPTCP may still
be used and therefore encounter same problem. Note that using
SSL/TLS will not help as they are above the transport layer
and the proposed attacks will still work at the transport layer.

0123456789012345678901234567890°1

Kind Length Subtype | (reserved) |F|m|[M]a|A

Encrypted Data ACK (4 or 8 octets, depend on flags)

Encrypted Data Sequence number (4 or 8 octets, depend on flags)

Subflow Sequence Number (4 octets)

Data-Level Length (2 octets) Checksum (2 octets)

Fig. 9. Secure DSS MPTCP option

Therefore, we propose a simple solution to address the very
problem introduced in the MPTCP layer in MPTCP itself —
encrypt only the DSN (and DSAck) in MPTCP headers, as
shown in Figure 9. As will be detailed later, we can simply
combine the keys exchanged on multiple paths (similar to
the idea in backup flag attack prevention) to encrypt and
decrypt the GSN (symmetric key encryption). The symmetric
key can be used in any standard symmetric key encryption
algorithms such as AES [26] (e.g., in CTR mode to eliminate
the fixed block size [27]). Note that the attacker might have
some knowledge about the plaintext GSN which constitutes a
“known-plaintext attack” (i.e. knowing a pair of corresponding
plaintext and ciphertext). However, modern symmetric encryp-
tion algorithms such as AES is resistant to such attacks [26].

However, the challenge here is that, unlike the authenti-
cation token that is sent sporadically, GSN is embedded in
every data packet. Once a key has been agreed on between the
sender and receiver, it is not trivial to update the keys on the fly.
For instance, when the very first subflow is established, only
the keys exchanged on the first path can be used to encrypt
the GSN, which is susceptible to man-in-the-middle attacks
on the path (as the keys are exchanged in cleartext and the
GSN can be decrypted). Later on, when the second subflow is
established, to make encryption more secure we can combine
the keys on the second path to form the key material for GSN
encryption. This is easy for the second subflow as the key
material is readily available. However, it is not the case for
first subflow as it needs to switch from unencrypted GSNs
to encrypted ones. Therefore, it requires additional signaling
mechanism to switch to the newer key material.

Choice of key material change signaling. To address this
problem, we can make use of subflow setup or the unused
header fields in MPTCP DSS option or MP__JOIN TCP option.
For example, when a new subflow is setup, the MP_JOIN
option or first DSS MPTCP option, on the new path, can be
used as a signal to start the encryption of the first subflow’s
GSN without the need of sending any explicit signal. A simple
strategy is to start the encryption of GSN on the first subflow
upon seeing MP__JOIN packet of the second subflow, or upon
receiving the first DSS packet on the second subflow. Such
an implicit signaling may cause ambiguity for packets that are
in-flight together with the MP_ JOIN packet (unclear what key
material to use to decrypt them). To avoid such confusion,
we encode an explicit signal in the MP_JOIN message of
the second subflow, indicating when exactly the encryption
should start on the first subflow. This way, as long as the
specified DSS is larger than any of the outstanding packets,
the receiver knows exactly when to start decrypting the DSS.
Note that the signaled DSS needs to be part of the HMAC input
during MP__JOIN to prevent tampering (as we will discuss later
in §V-D). We can add a 4-byte or 8-byte sequence number

Host A Host B

Address A1 Address A2 Address B1

___T ____SYN+MP_CAPABLE(Key-A, Enc) r
SYNJACK + MP_CAPABLE (Key-B, Enc) 1

I
1 1
MP_DSS(DSAck, DSS
PR Ao MpDS SIDSACk.DSS) _____________ .
I

Storej Key-A, Key-B | SYN/ACK + MP_JOIN(Key-B2= nonce-B, DSS-B) |
&4 Key-A2,Key-B2| |

DSS-Enc = Encrypt(Key-A+Key-A2+ID, dss), when dss >= DSS-A
DSAck-Enc = Encrypt(Key-A+Key-A2+ID, dsack), when dsack >= DSS-B

Fig. 10. Explicit Signaling of GSN Encryption on the First Subflow.

to the MP_JOIN packet, and set the packet Length field
to 16 or 20 respectively. We assume that the signal has to
be initiated from the client to avoid race conditions where
both sides simultaneously initiate new subflows. When the
server acknowledges the message, a reverse signal can be
piggybacked in the response MP_JOIN to decide when to
perform GSN encryption in the reverse direction. We outline
this process in Figure 10.

For backward compatibility, we propose using a flag in
MP_CAPABLE to signal if GSN encryption is supported by
both the client and server. If either the client or server does
not support encryption, GSN encryption will not be employed.

Choice of secret splitting. As described earlier, we want to
combine keys of multiple paths to form the key material for
GSN encryption. For example, for an MPTCP connection with
2 subflows, the keys of path;, and pathy, can be used for
encrypting GSN on path; and paths as well. Similarly, for
an MPTCP connection with 3 subflows, the keys of path; and
paths can be used to encrypt GSN on paths. The strategy is to
combine the keys exchanged on the primary subflow and the
ones changed on the current subflow where GSN encryption
takes place. For more security, an alternative strategy could be
to combine keys of all active subflows. For example, for an
MPTCP connection with 3 subflows, we can use the keys of
path;, paths, and paths for encrypting GSN on path; . However,
it may need frequent updates to the keys generated for the
paths as more subflows join or leave the MPTCP connection.
For example, the key material for the first subflow will be
updated twice as subflow 2 and 3 are established; it gets tricky
when both new subflows are being established simultaneously
because the client and server may not have a consistent view
on which of these two subflows gets established first (and may
cause a different key material to be formed on the two ends).

Choice of key generation. Based on the above discussion, we
propose combining the keys exchanged on only two subflows:
(1) the current subflow and (2) the primary subflow. For
example, for a connection between hosts A and B, with two
subflows 1 and 2, the encryption key of subflow 2 (encryption
at A and decryption at B) can be generated as EncKeys, =
keya + keyao (as shown in Figure 10). The encryption starts
as soon as the original value is greater than the signaled DSS
value (DSS — A in the example). Similarly, the encryption
of the DSAck starts when its value becomes greater than the
signaled DSS value in the opposite direction (DS.S — B in the
example). We omit the details for the reverse direction where
the encryption key will be EncKeys, = keyp+keypa. Given
that all such numbers are randomly generated, we can simply
concatenate them to form the key.

Example scenario. Let us consider a 2-path MPTCP connec-
tion setup in Figure 10 to understand how an MPTCP con-
nection progresses when GSN encryption is enabled. All sub-
flows are setup and authenticated as per the original MPTCP
connection setup. The required keying material is exchanged
in MP_CAPABLE (i.e. the keys, Key — A and Key — B) and
MP_JOIN (i.e. nonce— A and nonce— B) as described before.
At the end of subflows setup, all the required keying material
for the encryption have been exchanged. Moreover, during
MP_CAPABLE exchange, hosts also negotiate if encryption
is supported (Using Enc bit) by both the hosts A and B.
Moreover, the MP__JOIN option on subflow 2 also carries the
signal DSS after which the encryption starts at host A (denoted
as DSS — A). Similarly, host B informs the host A of the
DSS after which the encryption starts at host B (denoted as
DSS — B). Next, the keying material is combined to form the
encryption keys (DSS — Enc and DS Ack — Enc) for each
subflow. When data transmission starts, GSNs are encrypted
on path 2 from the beginning because the key materials are
ready (details are omitted in the figure). For encrypting GSNs
(and GSN-ACKSs) on path;, it needs to start encrypting the
GSN at a later point. Note that some data packets might be
transferred on subflow 1 before subflow 2 setup is completed.
GSNs of these few packets will not be encrypted and visible
to the attacker on path;, as shown in Figure 10. However, as
soon as subflow 2 setup completes, the encryption can start on
path 1 as indicated by “DSS — Enc” in Figure 10, so long
as DSS > DSS — A. Similarly, the encryption of DSACK
can start as soon as DSAck > DSS — B.

D. Security Analysis

We now discuss the potential attacks that can be launched
against our security improvements and show we do not in-
troduce any new vulnerabilities. We follow the same threat
model as defined in where a MITM attacker is on one or more
communication paths and can both passively eavesdrop on and
actively tamper with the subflow(s).

First, more specifically, when an attacker is capable of
tampering the first subflow, the whole MPTCP connection can
be forced to revert back to a regular TCP connection and thus
subject to total control of the attacker. Our proposed changes
do not change this result. However, if the attacker is capable
of tampering subflows other than the first, our changes will
prevent the two classes of cross-path attacks that were possible
without the changes.

Second, an active attacker may tamper with a subset of the
secrets shared (when the corresponding paths are controlled
by the attacker), in which case the wrong key material may
be used for authentication token and GSN encryption. The
HMAC mechanism introduced earlier during subflow setup
already mitigates this threat. For instance, if the key on the
second subflow is tampered, the attacker also needs to know
the key exchanged on the first subflow to be able to compute
an updated HMAC (as the key is part of the input). Even if the
attacker can indeed successfully cause wrong keys to be used
in a particular subflow, the worst case scenario is denial-of-
service — the authentication token generated by either end will
be considered invalid — the encrypted GSN may be decrypted
using the wrong key material. However, we argue that such
attacks are no worse than before, as both are possible if an
attacker is on-path.

Third, we consider two possible targeted attacks against
GSN encryption:

o Attacking the MPTCP option to indicate the support of GSN
encryption in MP_CAPABLE messages. An attacker has to
tamper with the first subflow to be able to strip such option or
fake such an option to either disable GSN encryption or cause
confusion later on. However, as we discussed, if an attacker
is already capable of tampering with the fist subflow, then
complete control or denial-of-service can be easily achieved.

o Attacking the signal carried in an MP_JOIN message (e.g.,
second subflow setup) indicating the GSN of the first subflow
after which GSN encryption will begin. An attacker capable of
tampering with this subflow can strip or modify the sequence
number. However, the HMAC of MP_JOIN includes the
signaled GSN as input so any tampering will be immediately
detected, unless a powerful attacker also eavesdrop the first
subflow and know the initial keys exchanged there to be able
to compute the updated HMAC. Even for a powerful attacker,
in the worst case it is again DoS which is no worse than before.

Finally, we want to ensure that no unnecessary security
features are added in reference to TCP. Since MPTCP and
TCP both reside in the same transport layer, whatever security
guarantees not offered by TCP do not have to be offered by
MPTCP either. Otherwise, it is likely that the proposed features
will be redundant with higher layer ones (e.g. SSL/TLS).
Specifically, TCP does not provide any confidentiality or
integrity of any connection data. The proposed changes to
MPTCP do not attempt to provide confidentiality or integrity
of any subflow either (e.g. a MITM attacker can read/modify
the payload or any other fields in an MPTCP packet). What we
do address are the security flaws that manifest as cross-path
vulnerabilities, where a MITM attacker on one path can infer
or tamper with the subflow on another path, which effectively
makes MPTCP much more susceptible to MITM attacks —
if one of the subflows of an MPTCP connection is under a
MITM attacker, the whole MPTCP connection may be subject
to attacks. We consider this an increased attack surface for
MPTCP and therefore makes it less secure than TCP (as TCP
traverses only a single path and is “less likely” subject to
MITM attacks).

E. Linux Implementation

We implement a simple version of the proposed coun-
termeasures in Linux kernel 4.3 using MPTCP implemen-
tation v0.91 [18]. We add a fixed 8-byte badge field in
MP_PRIO option to prevent backup flag attack. Our cur-
rent implementation supports both the existing MP_PRIO
option formats and the proposed badge field. The option
field Length can be changed to choose among the de-
sired format. For the length control, we add a new pa-
rameter MPTCP_SUB_LEN_PRIO_B. For our current im-
plementation, we used a static badge value and have not
implemented the secure badge generation, as discussed
above. Upon receiving MP_PRIO packet with length field
MPTCP_SUB_LEN_PRIO_B, correct ADDR_ID and badge,
the receiver sets the corresponding path as backup, else it
silently ignores the request. We modify the required logic
in mptcp_parse_options functions in mptcp_input.c
We check the badge field and then verify the token in the
mptcp_handle_options function.

We encrypt data sequence numbers in MP_DSS op-
tion to prevent throughput inference attack. At the sender
side, for an outgoing packet with MP_DSS option, we en-
crypt the DSN using encryption key. For this, we modify
the mptcp_options_write function in mptep_output.c
file and update the mptcp_write_dss_data_ack and
mptcp_write_dss_data_seq functions. At the receiver
end, upon receiving packet with MP_DSS option, we first de-
code the DSN numbers before further processing the packets.
We modify the required logic in mptcp_parse_options
functions in mptcp_input.c. We do not keep the encrypted
DSNs at the endhosts as DSN is encrypted just before sending
packets out in the network and is immediately decrypted upon
receiving packet at the destination. In our current implemen-
tation, we assume static key for encryption (xor of DSN and
key) and assume both the sender and receiver have this key.
We leave the exact implementation of key generation and
encryption as future work.

Evaluation: To evaluate, we repeat attack experiments and
observe that proposed countermeasures prevent the connection
hijack attacks by making it impossible to infer connection
throughput and use backup vulnerability. We omit the results
for brevity. We also evaluate the overhead of proposed modi-
fications on the MPTCP connection throughput. First, we ob-
serve that adding a token field to the MP_PRIO does not effect
the throughput of MPTCP connection, as MP_ PRIO message is
sent only once or very few times over the connection. Second,
in our current implementation, the per-packet encryption of
DSN can incur processing overhead and may decrease the
overall connection throughput. To evaluate this, we evaluate
MPTCP connection throughput between two Linux machines
with 1 Gbps ethernet cards. We observe very minimal MPTCP
connection throughput variation. For example, we observe a
throughput of 912 Mbps without encryption scheme, and a
throughput of 907 Mbps with GSN encryption. This shows
that even at high speed packet transmission the computation
overhead of encryption is minimal and does not effect con-
nection significantly. Note that, the connection speed in real
scenarios (e.g. cellular networks) is much less, therefore adding
encryption will not hurt the overall connection throughput.

VI. CONCLUSIONS

MPTCP has already been widely deployed (including An-
droid and i0S); however, its security is not well understood.
In this paper, we describe MPTCP vulnerabilities that can be
exploited to divert traffic and hijack MPTCP subflows. We
implemented and evaluated our attacks on a testbed using the
MPTCP Linux kernel (v0.91) implementation. We also pro-
posed lightweight encryption-based countermeasures based on
secret splitting to mitigate these attacks. Our countermeasures
do not introduce any new security flaws to MPTCP. We plan
to explore opportunities to leverage the secret splitting as a
way to bootstrap keys for higher level protocols such as TLS.

Acknowledgment

Research was sponsored by National Science Foundation
under grant #1528114. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either ex-
pressed or implied, of the National Science Foundation or the
U.S. Government. We would like to thank shepherd Olivier

Bonaventure for his valuable feedback and suggestions to
improve this work.

REFERENCES

[11 A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” RFC 6824.

[2] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, ‘“Design,
implementation and evaluation of congestion control for multipath
TCP,” in USENIX NSDI, 2011.

[3] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? Designing and
implementing a deployable Multipath TCP,” in USENIX NSDI, 2012.

[4] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. L. Boudec,
“MPTCP is not pareto-optimal: performance issues and a possible
solution,” in ACM CoNEXT, 2012.

[5] Q. Peng, A. Walid, and S. H. Low, “Multipath TCP algorithms: theory
and design,” in ACM SIGMETRICS, 2013, pp. 305-316.

[6] M. Scharf and A. Ford, “Multipath TCP (MPTCP) Application Interface
Considerations,” RFC 6897.

[7]1 “iOS: Multipath TCP Support in iOS 7,” http://support.apple.com/kb/
HT5977, Jan. 2014.

[8] “MPTCP on Android Devices,” http://multipath-tcp.org/pmwiki.php/
Users/Android, January 2014.

[9] M. Bagnulo, “Threat analysis for TCP extensions for multipath opera-
tion with multiple addresses,” RFC 6181, IETF, March 2011.

[10] M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure, and C. Raiciu,
“Analysis of Residual Threats and Possible Fixes for Multipath TCP
(MPTCP),” RFC 7430.

[11] “Linux Blind TCP Spoofing Vulnerability,” The U.S. Department of
Energy, Computer Incident Advisory Capability, March 1999.

[12] 1lkm, “Blind TCP/IP hijacking is still alive,” 2007.

[13] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborated off-path tcp sequence
number inference attack — how to crack sequence number under a
second,” in CCS, 2012.

[14] Z. Qian and Z. M. Mao, “Off-Path TCP Sequence Number Inference
Attack - How Firewall Middleboxes Reduce Security,” in SP, 2012.

[15] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in SP. IEEE,
2010, pp. 191-206.

[16] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing Known Attacks
on Transport Layer Security (TLS) and Datagram TLS (DTLS),” RFC
7454, Internet Engineering Task Force (IETF), 2015.

[17] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Kisper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt, “Drown:
Breaking tls using sslv2,” in USENIX Security 16, 2016.

[18] C. Paasch, S. Barré et al., “Multipath tcp in the linux kernel,” Available
Sfrom {www. multipath-tcp. org.}, 2013.

[19] M. Z. Shafiq, F. Le, M. Srivatsa, and A. X. Liu, “Cross-path inference
attacks on multipath tcp,” in HotNets-XII, 2013.

[20] M. Popovici and C. Raiciu, “Exploiting multipath congestion control for
fun and profit,” in Hot Topics in Networks. ACM, 2016, pp. 141-147.

[21] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure, “Securing multi-
path tep: Design & implementation,” in JEEE INFOCOM 2017, 2017.

[22] C. Pearce and S. Zeadally, “Ancillary Impacts of Multipath TCP on
Current and Future Network Security,” Internet Computing, 2015.

[23] J. Ma, F. Le, A. Russo, and J. Lobo, “Detecting Distributed Signature-
based Intrusion: The Case of Multi-Path Routing Attacks,” in /EEE
INFOCOM, 2015.

[24] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” RFC 6824bis-09.

[25] S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap,” RFC 6071.

[26] J. Nechvatal, E. Barker, L. Bassham, W. Burr, and M. Dworkin, “Report
on the development of advanced encryption standard (aes),” 2000.

[27] H. Lipmaa, P. Rogaway, and D. Wagner, “Comments to nist concerning
aes modes of operations: Ctr-mode encryption,” NIST, Tech. Rep., 2000.

