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ABSTRACT
Recent advances of Large Language Models (LLMs), e.g., ChatGPT,
exhibited strong capabilities of comprehending and responding to
questions across a variety of domains. Surprisingly, ChatGPT even
possesses a strong understanding of program code. In this paper,
we investigate where and how LLMs can assist static analysis by
asking appropriate questions. In particular, we target a specific
bug-finding tool, which produces many false positives from the
static analysis. In our evaluation, we find that these false positives
can be effectively pruned by asking carefully constructed questions
about function-level behaviors or function summaries. Specifically,
with a pilot study of 20 false positives, we can successfully prune
8 out of 20 based on GPT-3.5, whereas GPT-4 had a near-perfect
result of 16 out of 20, where the four failed ones are not currently
considered/supported by our questions, e.g., involving concurrency.
Additionally, it also identified one false negative case (a missed bug).
We find LLMs a promising tool that can enable a more effective and
efficient program analysis.

CCS CONCEPTS
• Security and privacy → Systems security; • Computing
methodologies→ Natural language processing.
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1 INTRODUCTION
Static analysis faces the inherent trade-off between precision and
scalability [13]. In real-world applications, static analysis tools often
generate a significant number of false positives, hindering their
widespread adoption [3, 7, 22, 23].

This paper explores the possibility of employing Large Language
Models (LLMs), such as ChatGPT [15], as versatile and compre-
hensive aids to static analysis. Specifically, ChatGPT even shows
a capability in understanding programming language [4] and we
conjecture that it can generate function summaries with greater
precision than those computed by static analysis, particularly in
the presence of loops and operations on variable-length data struc-
tures (e.g., 7strlen()). These precise function summaries serve as
the foundation for more effective analysis that reduces both false
positives and false negatives.

We develop a systematic methodology that utilizes ChatGPT to
create accurate summaries of functions automatically. Our approach
has been evaluated on false positives and false negatives, identified
as imprecise function summaries by a real-world static analysis
tool known as UBITect [21]. Notably, using the latest GPT-4 model,
our method has provided exact summaries for 16 of 20 instances in
our pilot study, effectively eliminating false positive cases.

We summarize our contributions as follows:
• We develop a novel approach utilizing LLM to enhance function
summary precision and reduce both false positives and false
negatives in static analysis.

• We propose an automated and progressive methodology for gen-
erating precise function summaries with ChatGPT.

• We evaluate our approach to complement a real-world static
analysis tool, which showed great promise.

• To foster further research and development, we open source our
work on https://github.com/seclab-ucr/GPT-Expr.

2 BACKGROUND & RELATEDWORK
LLM for Software Engineering. Xia et al. [20] propose an au-
tomated conversation-driven program repair tool using ChatGPT,
achieving nearly 50% success rate. Pearce et al. [14] examine zero-
shot vulnerability repair using LLMs and found promise in synthetic
and hand-crafted scenarios. Lemieux et al. [8] leverages LLM to
generate tests for uncovered code. In this paper, we explore how
LLM can be used as an alternative to achieve better results when
static analysis encounters difficulties.

https://doi.org/10.1145/3611643.3613078
https://doi.org/10.1145/3611643.3613078
https://github.com/seclab-ucr/GPT-Expr
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1 static int libcfs_ip_str2addr(...){
2 unsigned int a, b, c, d;
3 if (sscanf(str, "%u.%u.%u.%u%n",
4 &a, &b, &c, &d, &n) >= 4 && ...){
5 // use of a, b, c, d
6 }
7 }
8 int sscanf(const char *buf, const char *fmt, ...){
9 va_start(args, fmt);
10 i = vsscanf(buf, fmt, args);
11 va_end(args);
12 }

Figure 1: Code snippet of sscanf and its use case, derived from Linux kernel

UBITect. UBITect targets Use Before Initialization (UBI) bugs in
the Linux kernel through a two-stage process [21]. The first stage
employs a bottom-up summary-based static analysis of the kernel.
The analysis is aMAY analysis, where function summaries indicate
potential bug occurrences, resulting in many bugs (i.e., ∼140k). In
the second stage, UBITect uses symbolic execution to filter out
false positives by verifying the path feasibility of reported bugs.
However, over 40% of the reported bugs are discarded due to timeout
or memory limitations in symbolic execution, potentially rejecting
genuine bugs. In this paper, we focus on these 40% discarded cases
to prune out false positives and also find missed actual bugs.

3 MOTIVATION
Figure 1 shows a false positive produced by UBITect. A bug is
reported in line 4 and line 5 because it is believed that arguments a,
b, c, d are not initialized but used. However, both are incorrect due
to the following reasons:
Inability to recognize special functions. First, the report in line
4 is incorrect because there is no “use” of args inside sscanf(),
other than the va_start() call and va_end() call in line 9 and
line 11. Unfortunately, UBITect cannot find the definition of these
two functions and conservatively assumed that they might “use”
args. However, these functions are the compiler’s built-in ones
that recognize variable-length arguments and no “use” is involved.
Indeed, the semantic of sscanf() is to “define”/write new values
into args as opposed to “use”.
Unawareness of postconditions. Second, the report in line 5 is
incorrect because the function summary generated by UBITect is
insensitive to the check of its return value (if(sscanf(...)>=4),
or post-condition [11]. Therefore, UBITect provides a conservative
summary and estimates all parameters “may” left uninitialized.

3.1 Observation
In light of our motivating sscanf case, we argue that both issues
are prevalent in static analysis. The variable-length argument issue
can be attributed to Inherent Knowledge Boundaries (KB), and the
unawareness of post-conditions is essentially due to the Exhaustive
Path Exploration (PE) in path-sensitive static analysis.
Inherent Knowledge Boundaries. Static analysis often needs
to encode domain knowledge to model certain special functions
which cannot be analyzed. Beyond the variable-length argument
case, there are numerous other scenarios (especially in the Linux
kernel) that involve complex domain knowledge and are difficult
to analyze directly, such as assembly code, hardware behaviors,
concurrency, and compiler built-in functions [6].

Exhaustive Path Exploration. Correctly handling cases like
sscanf() requires it to consider the check: sscanf(...)>=4. Un-
fortunately, existing path-sensitive static analysis (and symbolic
execution) techniques operate under a methodical but exhaustive
paradigm, exploring all potential execution paths through the code-
base. While this approach is theoretically comprehensive, it often
leads to a combinatorial explosion. The vast array of execution
paths necessitates the exploration of myriad functions, many of
which ultimately prove irrelevant to the specific analysis task at
hand. In the sscanf() case, its return value is computed inside an
unbounded loop when iterating over an unknown string variable
buf. This causes UBITect’s symbolic execution to time out exactly
due to this problem.
The advent of LLMs [1] offers a promising alternative to bypass
these challenges. This is because LLMs, especially ChatGPT be-
ing trained and aligned with extensive materials that include both
natural language and program codes and shows a promising under-
standing of code comprehension [12].

4 METHODOLOGY
Our aim is to integrate ChatGPT with UBITect to enhance the
detection of UBI bugs. The process is depicted in Figure 2. It’s
important to remember that UBITect operates in two phases: an
initial static analysis to pinpoint potential UBI bugs, followed by
symbolic execution to confirm these suspicions. However, in our
replicated experiments, 40% of cases were disregarded due to either
time or memory restrictions. This scenario presents a conundrum:
if we classify these potential bugs as false positives, we run the
risk of overlooking real bugs. Conversely, if we consider them as
true bugs, we may face an overwhelming influx of false positives.
To navigate this challenge, our approach is to consult ChatGPT
on these ambiguous cases, enabling us to discern if they are false
positives or genuine bugs.

At a high level, we first extract key facts of a potential UBI bug
from UBITect, i.e., the uninitialized variable, the post-condition,
and the function that might initialize the variable. Next, we auto-
matically put this information into ChatGPT and let it determine
whether the variable is being initialized.

4.1 Design Exploration
Before achieving the final design, we first explore a straightforward
method by asking ChatGPT at one time: given the code context,
we ask ChatGPT whether a potential UBI bug is an actual bug.
Specifically, we provide a detailed description of what constitutes
a UBI bug, and then copy the function where the uninitialized
variable is declared. We also follow the principles outlined in §4.2
such as Chain-of-Thought.

We test this idea against two case studies along with three real
CVEs that we refer to in the later evaluation. The two cases include
a false positive (cpuid), and the other is a true bug (p9pdu_readf).
ChatGPT failed in both cases. Interestingly, even though we ex-
plicitly offered ChatGPT to ask follow-up questions about function
definitions, we found that it would still generate a plausible but
incorrect answer without requesting more information.

This has motivated us to consider breaking down the task into
smaller and simpler ones for ChatGPT to solve. Intuitively, the
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Static Analysis Symbolic
Execution Our Approach

result
40% inconclusive

UBITect

60% successful execution

Figure 2: The overview of our approach. Start with the discarded cases by
UBITect and determine whether these reported bugs are true or false.

① Provide function call
and context to ChatGPT

② ChatGPT assesses function

③ Provide additional information
(e.g., function definition)

If needs more info

④ ChatGPT analyzes and
generates a precise summary

If enough info

⑤ ChatGPT outputs a structured summary
(e.g., JSON format)

Figure 3: The workflow. Green stands for what ChatGPT (API) responds (role:
assistant) and the blue stands for what the user (script, role: user) prompts.

simpler the question and the smaller the scope, the more likely
ChatGPT will be able to provide a correct answer.

4.2 Our Approach
Recognizing the crucial role function summaries play in UBITect
and their direct impact on the results (as shown in the motivating
example); instead of directly asking for the existence of UBI bug, we
prompt ChatGPT to summarize the function. Hence, the “must_init”
is equivalent to “not a bug” and we make the question smaller.

As Figure 3 shows, for each reported bug, we extract the function
call context, including concrete arguments and return value checks.
We then ask ChatGPT whether the variable “must” be initialized
given the calling context and under specific post-conditions. Lastly,
we prompt ChatGPT to generate a structured summary for seamless
integration with further analysis.
Prompt Design. Prompting ChatGPT to elicit reliable responses is
essential [16]. Based on our experience, we identify the following
key principles for designing prompts when summarizing function
behaviors related to variable initialization.
• Chain-of-Thought. The Chain-of-Thought (CoT) [5] approach
utilizes the phrase "think step by step" to encourage ChatGPT
to generate longer responses containing intermediate results at
each step. We incorporate the CoT strategy into our prompts.

• Task Decomposition. Referring to §4.1, we find that mixing
multiple tasks is ineffective. Therefore, we break down our prob-
lem into multiple steps and instruct ChatGPT to complete smaller
ones. Similarly, when we need a structured output, we always
initiate a new request at the end of the conversation and prompt
ChatGPT to conclude with JSON format separately.

• Progressive Prompt. In instances where our requirement states,
“Always deliver a result”, ChatGPT may produce unreliable re-
sponses. To circumvent this issue, we develop the progressive
prompt. As Figure 3 demonstrates, we progressively provide

information, such as function definitions when necessary. Specif-
ically, we always prompt ChatGPT with the following message:
“If you experience uncertainty due to insufficient function defini-
tions, please indicate the required functions”. Upon receiving a
request for additional information from ChatGPT, we automat-
ically retrieve and provide the required data from the source
code of Linux, enabling the model to reevaluate and generate an
improved response.

Limited by space, we showcase an automatic and complete interac-
tion with ChatGPT on a webpage1.

5 EVALUATION
To evaluate the effectiveness of our approach, we randomly sample
a number of inconclusive cases from the symbolic execution phase
of UBITect, as shown in Figure 2. Specifically, we randomly select 20
cases that were manually determined to be false positives and two
additional real bugs missed by UBITect. Because all of these cases
are inconclusive using UBITect alone, we are interested in assessing
the effectiveness of our approach in determining the outcomes of
these reported bugs. All experiments (both for GPT-3.5 and GPT-4)
are run under ChatGPT version on March 23, 2023.

In assessing the outcomes of function summaries, our attention
is centered on two primary aspects: Soundness, i.e., whether vari-
ables identified as “must_init” are correct; and Completeness, i.e.,
whether all “must_init” variables are correctly identified. We per-
form three runs for each case to account for the probabilistic nature
[17] of ChatGPT’s output, and if any of the runs exhibit unsound
or incomplete, we consider the result of the case to be failed.

5.1 Naive Approach
To address the research question, we gather three real UBI CVEs
and input them into ChatGPT (GPT-4) for analysis. As mentioned
earlier in §4.1, the results of providing the context directly are poor.
In our experiments, we explicitly mention the uninitialized variable
and ask ChatGPT to determine the existence of a genuine bug.
The three CVEs examined are CVE-2022-1016, CVE-2022-0382, and
CVE-2021-29647, with the first two disclosed after the cut-off date
(September 2021).

We also apply prompt design strategies mentioned in §4.2. For
example, we leverage the progressive prompt by requesting Chat-
GPT with “If you need function definitions, you should ask us, and
we will provide them.” We test the naive approach on 3 real CVEs,
repeating each test case 5 times. Our findings reveal that none of
the test cases were consistently analyzed correctly across all five
repetitions. For the three CVEs, ChatGPT correctly identifies the
bug in 3/5, 2/5, and 0/5 instances, respectively.

5.2 Results
Table 1 compares the function summaries generated by GPT-3.5
and GPT-4. Most responses are consistent across all three runs. We
excluded four false positive cases from the table because UBITect
reported them for reasons beyond what we outlined in §3.1, e.g.,
inaccurate indirect call resolution. As we can see, GPT-3.5’s results
show that only 61% are sound, and 44% are complete. On the other

1https://github.com/seclab-ucr/GPT-Expr/blob/main/conversation.md

https://github.com/seclab-ucr/GPT-Expr/blob/main/conversation.md
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Table 1: Selected function summaries: “S?” for Soundness and “C?” for Com-
pleteness. Type indicates analysis challenges: Inherent Knowledge Bound-
aries (KB), Exhaustive Path Exploration (PE), or both.

Function Call Type GPT-3.5 GPT-4
S? C? S? C?

False Positives of UBITect
sscanf KB, PE ✓ ✓ ✓ ✓

read_mii_word KB, PE ✗ ✗ ✓ ✓

acpi_decode_pld_buffer KB, PE ✓ ✓ ✓ ✓

of_graph_get_remote_node KB ✓ ✓ ✓ ✓

msr_read KB ✓ ✓ ✓ ✓

cpuid KB ✗ ✗ ✓ ✓

bq2415x_i2c_read KB ✓ ✓ ✓ ✓

parse_nl_config PE ✓ ✗ ✓ ✓

snd_interval_refine PE ✗ ✗ ✓ ✓

xfs_iext_lookup_extent PE ✓ ✗ ✓ ✓

__skb_header_pointer PE ✗ ✗ ✓ ✓

snd_rawmidi_new PE ✓ ✗ ✓ ✓

snd_hwdep_new PE ✗ ✗ ✓ ✓

xdr_stream_decode... PE ✓ ✓ ✓ ✓

of_parse_phandle... PE ✓ ✓ ✓ ✓

kstrtoul PE ✓ ✓ ✓ ✓

False Negatives of UBITect
pv_eoi_get_user PE ✗ ✗ ✓ ✓

p9pdu_readf KB, PE ✗ ✗ ✗ ✗

hand, GPT-4 demonstrates a substantial enhancement in perfor-
mance, attaining 94% soundness and completeness. The table’s top
16 cases indicate false alarms, while the final two cases represent
authentic UBI bugs.

Various reasons contribute to the inability of GPT-3.5 to
analyze some cases. For example, variable name matters. In the
snd_interval_refine case, GPT-3.5 is confused about the names
of formal and actual parameters, resulting in an incorrect response.

In addition, in the GPT-3.5 experiment, we find that it would
often prematurely conclude an answer without requesting more
information (e.g., asking for more function definitions), even though
we explicitly instruct it to do so. When this happens, results are
often unreliable. In contrast, GPT-4 consistently engages in lengthy
conversations as needed, contributing to its superior performance.

5.3 Case Study
In this case study, we discuss two examples (both are real UBI bugs)
demonstrating the effectiveness and limitations of our approach in
analyzing function behaviors and detecting uninitialized variables.
Example 1: Figure 4 presents a real bug in arch/x86/kvm/lapic.c,
where the uninitialized variable val is used. If pv_eoi_get_user
returns a value less than 0, the code continues without an early
return, leading to Line 5, which is used as val&0x1. UBITect fails
to detect this bug due to timeout. ChatGPT handles the case and
correctly identifies the bug by categorizing val as “may_init”.
Example 2: Figure 5 shows another UBI bug in net/9p/client.c.
We can see that function p9pdu_vreadf() may not initialize
its parameter ecode when it returns -EFAULT. Nonetheless,
p9_check_zc_errors() directly uses its value without checking

1 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu){
2 u8 val;
3 if (pv_eoi_get_user(vcpu, &val) < 0)
4 apic_debug(...);
5 return val & 0x1;
6 }

1 "response": {
2 "func_call": "pv_eoi_get_user(vcpu, &val) < 0",
3 "parameters": ["vcpu", "&val"],
4 "must_init": [],
5 "may_init": [{"name": "&val", "condition": ...}]
6 }

Figure 4: The code and summary of pv_eoi_get_user from GPT-4

1 int p9_check_zc_errors(...){
2 err = p9pdu_readf(..., "d", &ecode);
3 err = -ecode;
4 }
5
6 int p9pdu_vreadf(..., const char *fmt, va_list ap){
7 switch (*fmt) {
8 case 'd':{
9 int32_t *val = va_arg(ap, int32_t *);
10 if (pdu_read(...)) {
11 errcode = -EFAULT;
12 break;
13 }
14 val = ...; // initialization
15 }
16 return errcode;
17 }

Figure 5: Code snippet of p9pdu_readf and its usecase, derived from net/9p

the return value at Line 3. While ChatGPT always correctly
identifies the relevant code (Line 8-14 in Figure 5), its final verdict
is occasionally incorrect (one in three times) — categorizing ecode
as “must_init”. This inconsistency between the obtained results
and the reasoning steps is a known issue in chain-of-thought
prompting [19, 24]. In future work, we plan to employ additional
design strategies to address this inconsistency [9, 10, 18].

6 DISCUSSION & LIMITATIONS
We recognize several limitations in our current implementation.
Our experiments have been conducted on a relatively small scale,
primarily due to the unavailability of the GPT-4 API, which necessi-
tates manual testing. Nevertheless, our workflow is fully automatic
by design and can work in large-scale datasets directly with the
API. Furthermore, our approach does not yet consider indirect calls
or more complicated types of bugs, we left them in the future.

We have not encountered token limit issues in our experiment.
This might imply the current context window (i.e., 8k tokens for
GPT-4) is sufficient for most cases. However, given the progressive
prompt design, we suspect they may reach the limitation when
ChatGPT continuously requesting for more functions.

Recent announcements suggest that Bard can understand code
effectively [2]. However, our preliminary tests indicate that it per-
forms worse than ChatGPT. Specifically, it consistently provides
results directly rather than progressively requesting unknown func-
tion definitions.

7 CONCLUSION
In this work, we present a novel approach that utilizes ChatGPT
to aid in static analysis, which has yielded promising results. We
believe our effort only scratched the surface of the vast design space,
and hope our work will inspire future research in this exciting space.
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