
Resilient Decentralized Android Application
Repackaging Detection Using Logic Bombs
Qiang Zeng

Temple University, USA
qzeng@temple.edu

Lannan Luo
University of South Carolina, USA

lluo@cse.sc.edu

Zhiyun Qian
UC Riverside, USA
zhiyunq@cs.ucr.edu

Xiaojiang Du
Temple University, USA

dux@temple.edu

Zhoujun Li
Beihang University, China

lizj@buaa.edu.cn

Abstract
Application repackaging is a severe threat to Android users
and the market. Existing countermeasures mostly detect
repackaging based on app similarity measurement and rely
on a central party to perform detection, which is unscalable
and imprecise. We instead consider building the detection
capability into apps, such that user devices are made use of
to detect repackaging in a decentralized fashion. The main
challenge is how to protect repackaging detection code from
attacks. We propose a creative use of logic bombs, which
are regularly used in malware, to conquer the challenge. A
novel bomb structure is invented and used: the trigger con-
ditions are constructed to exploit the differences between
the attacker and users, such that a bomb that lies dormant
on the attacker side will be activated on one of the user de-
vices, while the repackaging detection code, which is packed
as the bomb payload, is kept inactive until the trigger con-
ditions are satisfied. Moreover, the repackaging detection
code is woven into the original app code and gets encrypted;
thus, attacks by modifying or deleting suspicious code will
corrupt the app itself. We have implemented a prototype,
named BombDroid, that builds the repackaging detection
into apps through bytecode instrumentation, and the eval-
uation shows that the technique is effective, efficient, and
resilient to various adversary analysis including symbolic
execution, multi-path exploration, and program slicing.

CCS Concepts • Security and privacy→ Software and
application security; Intrusion/anomaly detection and mal-
ware mitigation;

Keywords Android app repackaging, code obfuscation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CGO’18, February 24–28, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5617-6/18/02. . . $15.00
https://doi.org/10.1145/3168820

ACM Reference Format:
Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun
Li. 2018. Resilient Decentralized Android Application Repackaging
Detection Using Logic Bombs. In Proceedings of 2018 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO’18).
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3168820

1 Introduction
Application repackaging poses a severe threat to the Android
ecosystem. Dishonest developers unpack apps, replace the
icons and author information with theirs, repackage them
and then resell them to make profits; the whole procedure
can be automated and done instantly. Moreover, attackers fre-
quently insert malicious code into repackaged apps to steal
user information, send premium text messages stealthily, or
purchase apps without users’ awareness, threatening user
security and privacy [12, 18, 22, 25, 49–51]. Previous research
showed that 86% of 1260 malware samples were repackaged
from legitimate apps [61]. E.g., the malicious adware family,
Kemoge, which infected victims frommore than 20 countries,
disguised itself as popular apps via repackaging [56].

To deal with the critical problem, many repackaging detec-
tion techniques have been proposed. Most of them are based
on app similarity comparison [8, 12, 20, 36, 55, 60], and thus
tend to be imprecise when handling obfuscated apps. Besides,
they usually rely on a centralized trusted party to conduct
detection, which is not scalable considering the sheer num-
ber of apps. Moreover, there are a plethora of alternative app
markets, but their quality and commitment in repackaging
detection are questionable [27]. Finally, users may download
apps from places other than any markets and install them.
Thus, a decentralized repackaging detection scheme is

desired: it adds repackaging detection into an app being pro-
tected, such that it becomes an inherent capacity of the app
and thus does not rely on a third party. The main challenge
obviously is how to protect the repackaging detection capacity
from the attacker.While the goal of decentralized detection is
highly desired and some attempts have been made towards it,
the main challenge is not solved. For example, a state-of-the-
art defense, SSN [28], proposes to conduct repackaging de-
tection at a very low probability to hide the detection nodes;
however, such probabilistic computation can be turned de-
terministic through code instrumentation. Plus, SSN tries to
conceal specific API calls (mainly getPublicKey) through

50

CGO’18, February 24–28, 2018, Vienna, Austria Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li

reflection; but by inserting code that checks the reflection
call destination, an attacker can easily reveal and manipulate
all those calls. In short, SSN can be bypassed in multiple
ways (detailed in Section 2.1). The failed attempts show how
difficult it is to conquer the challenge.

Our observation is that the attacker side is very different
from the user side; specifically, (D1) the hardware/software
environments and sensor values are very diverse on the user
side, while the attacker can only afford the time and money
to test the repackaged app in a limited number of environ-
ments, and (D2) the attacker typically can only afford to test
a small portion of an app, while users altogether play almost
every part of the app. Such observation is actually consistent
with some well-known challenges in software testing; that is,
even with tremendous time and effort invested, a commercial
program typically can only be tested under a very limited
number of environments compared to the user side; and it
is difficult to achieve a high code coverage. Thus, if we can
exploit the differences and make sure the repackaging detec-
tion code is concealed and protected from being damaged
on the attacker side and meanwhile ensure it to be executed
on the user side, then the main challenge is solved.
To exploit the differences between the attacker side and

the user side, we propose a novel use of logic bombs, which
are normally used in malware. The trigger condition of a
bomb is crafted, such that a bomb which keeps dormant
on the attacker side will be activated on one of the user
devices. For instance, a trigger condition can test whether
the host app runs with some specific input or at a specific
GPS location. While it is very costly for an attacker to trigger
such a bomb by executing the app intensively, it is actually
free to rely on the user devices to activate it, which exploits
D1. Consequently, the repackaging detection code, as part
of the bomb payload, is not executed unless the bomb is
triggered. To exploit D2, bombs are inserted into various
parts of an app (and our optimization phase will remove
bombs that incur large overheads), such that many bombs
can survive the adversary analysis of attackers.

In order to protect logic bombs, we additionally apply the
following enhancements. First, the code of a logic bomb is
encrypted and, more importantly, the key used to decrypt
the code is not embedded in the app (which is unlike code
packing used in virus); instead, the key can only be derived
when the trigger condition is satisfied during program exe-
cution. Since the code is encrypted, attacks that try to search
for specific API calls or bypass trigger condition will fail. Sec-
ond, the bomb code is woven into the app code before being
encrypted, such that attacks that simply delete suspicious
code will corrupt the app execution.

As repackaging detection is performed online during app
program execution, it provides good opportunities for rich
actions upon detection of repackaging, such as slowing down,
freezing, or crashing the app, which cause poor user experi-
ence and motivate users to uninstall the app. Moreover, the
repackaging detection effort can be aggregated from user
devices in many ways. First, the bad rating of a repackaged
app due to the poor user experience will discourage other

users from downloading the app. Second, the information
about the repackaged app can be sent to the original de-
veloper, who can take further actions, e.g., requesting the
host app market to take down the repackaged app. For apps
downloaded from the Google Play app store, the Remote
Application Removal Feature can wipe a malicious app from
Android devices without any action on the user side [38],
propagating the effect of detection from one device to others.
We have implemented the decentralized repackaging de-

tection technique in a system named BombDroid, which
adds the repackaging detection capacity to the bytecode
of an app through bytecode instrumentation. Thus, it does
not require the source code of apps to apply the technique,
which means a third-party company may sell this service to
developers who want to enhance their apps. We evaluated
BombDroid on 963 Android apps. The evaluation results
show that the protection provided by BombDroid is effec-
tive in repackaging detection, resilient to various adversary
analysis, and incurs a very small speed overhead (~2.6%).

We made the following contributions.
• We present the first resilient decentralized Android app
repackaging detection technique which builds repack-
aging detection code directly into apps.
• A creative use of bombs is proposed to exploit the dif-
ferences between attackers and users, such that bombs
keeping inactive on the attacker side will be activated
on one of the user devices.
• We employ effective measures to enhance bombs, such
that our technique defeats code deletion attacks and
is resilient to various adversary analysis.
• We have implemented the techniques in a prototype
system, and evaluated its effectiveness, efficiency, and
resilience to various evasion attacks.

2 Threat Model, Goals and Architecture
2.1 Threat Model
Background. Before an app is released, it is signed using
the developer’s private key. When an app is installed, the
signature is verified by the Android system using the public
key stored in the certificate file carried in the APK file of the
app. Once an app is installed, its certificate is managed by
the Android system and cannot be modified by app processes.
Each developer owns a unique public-private key pair; thus,
when an app is repackaged by an attacker, the public key
contained in the APK file of the repackaged app is certainly
different from the original one. Therefore, it is possible to
detect repackaging by comparing the original public key
against the public key in the app’s current certificate.
SSN’s design. In order to discuss the threat model in a more
concrete way, we first describe a vulnerable design, as shown
in Listing 1, for building repackaging detection into the app
code, which was adopted in SSN [28]. It detects repackaging
by comparing the app’s current public key to the original
public key, PUBKEY, which is inserted into the code by SSN;
the current public key is retrieved through a call to Android
system service API getPublicKey. In order to hide the call

51

Resilient Decentralized Android Application Repackaging Detection ... CGO’18, February 24–28, 2018, Vienna, Austria

Listing 1. A vulnerable design.
1 if(rand() < 0.01) {
2 funName = recoverFunName(obfuscatedStr);
3 currKey = reflectionCall(funName);
4 if(currKey != PUBKEY)
5 // repackaging detected!
6 // response is delayed
7 }

from attackers, SSN proposed the following measures: (1)
repackaging is only invoked probabilistically as shown in
Line 1; (2) the function name “getPublicKey” is obfuscated, so
attackers cannot find the word in the code; the call is issued
through reflection (Line 3), which requires the function name
to be recovered (Line 2), though. (3) after repackaging is
detected, instead of responding to it, the response is delayed
to confuse the attacker analyzing the protected app.
Next, we present attacks against repackaging detection.

As our technique leverages logic bombs, we not only con-
sider various common attacks, but also the state-of-the-art
adversary analysis against bombs. We will also show how
SSN is vulnerable to multiple types of attacks [34].
Text search. An attacker may search for specific text pat-
terns, such as “getPublicKey”, to locate repackaging detec-
tion code. In the case of SSN, it hides calls to getPublicKey
through reflection calls.
Debugging.An attacker may install the repackaged app and
run it on an emulator or a real device. Whenever suspicious
symptoms arise, the attacker may use a debugger to trace
back to the repackaging detection and response code. Such
dynamic analysis works only when repackaging detection
is executed. An attacker may try to hook critical calls the
repackaging detection code relies on. For instance, an at-
tacker may hook calls to getPublicKey in order to locate
the repackaging detection code.
Blackbox fuzzing. An attacker may use blackbox fuzzing
to run the repackaged app by providing a large number of
random inputs to trigger as many logic bombs as possible [32,
52]. For every activated bomb, the attacker can trace back
and disable it.
Path exploration. Various techniques have been proposed
to explore execution paths in a program. A dynamic anal-
ysis based approach is to explore multiple paths during ex-
ecution [33]. Symbolic execution has been widely applied
to discovering inputs that execute program along specific
paths [5, 6, 11, 19, 31]; it uses symbolic inputs to explore as
many execution paths as possible, and resolves the corre-
sponding path conditions to find the concrete inputs. Recent
research has shown that symbolic execution is an effective
approach to discovering conditional code and identifying
trigger conditions [19].When symbolic execution is applied to
SSN, Line 1 cannot stop symbolic executor from exploring (and
hence exposing) the path containing repackaging detection.
Circumventing trigger conditions. An attacker may sim-
ply circumvent trigger conditions and execute payloads di-
rectly. E.g., given a line of suspicious code, an attacker may
perform backward program slicing starting from that line

of code, and then execute the extracted slices to uncover
the payload behavior [37]. Or, the attacker may apply forced
execution to directly execute the code that is suspected to
be payloads [47]. Take SSN as an example: an attacker can
circumvent Line 1 to execute the following code; thus, SSN
is vulnerable to such attacks.
Code instrumentation. An attacker may modify code to
assist attack. In SSN, e.g., the attacker can insert code right
before a suspicious reflection call to check the destination of
the call, i.e., if(funName==‘‘getPublicKey’’), and mod-
ify funName at will; or force rand() to return 0, such that
probabilistic invocation becomes deterministic.
Code deletion. A trivial attack is to delete any suspicious
code. Code deletion is not difficult to defeat. For example, we
can transform some of the app code into a suspicious form,
such that deletion of such code may lead to corruption of the
app, or weave the logic bombs with the original app code.

2.2 Our Goals
The example of SSN, which is vulnerable to a variety of
attacks, shows there exist plenty of pitfalls when design-
ing a user-side repackaging detection technique and it also
illustrates how challenging it is to propose a resilient design.

Our goals are as follows: (G1) it should be resilient to path
exploration; (G2) the defense should be resilient to attacks
via text search, code instrumentation, and circumventing con-
ditions; (G3) it should be resilient to debugging and fuzzing;
and (G4) it should defeat attacks based on code deletion. Dif-
ferent techniques and measures are employed in our system
and they work together to achieve all the goals.
Assumptions: We do not handle users who are in collusion
with pirates. We assume users do not jailbreak their devices;
otherwise, the Android framework on the user device could
be hacked to mislead our detection. However, attackers are
allowed to hack and modify their own Android systems
arbitrarily to assist adversary analysis.

2.3 Architecture
Figure 1 shows the procedure of building the repackaging
detection capacity into an app. The input is the APK file of
the app to be protected. BombDroid works on the binary
code level. This is different from the prior state-of-the-art
SSN [28], which can only work on source code. (1) The APK
file is first unpacked to extract classes.dex (which is then
converted to a collection of java classes) and a folder of re-
sources containing the CERT.RSA file. (2) Then, BombDroid
extracts the public key from CERT.RSA, and selects candidate
locations for inserting logic bombs through static analysis of
the binary code. (3) For each candidate location, a logic bomb
is constructed and inserted by instrumenting the binary code.
(4) The bomb code is then encrypted and the encryption key
is deleted from the app code. The output is a protected app
and will be sent to the legitimate developer to sign the app;
note that the private key is kept by the legitimate developer
and is not disclosed to BombDroid.

52

CGO’18, February 24–28, 2018, Vienna, Austria Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li

Public key Protected

unsigned APK

condition

Repackaging

detection nodeNCandidate

methods &

locations

Packaging

Bytecode

instrumentation Protected

code
Obfuscations

& encryption
Static

analysisJava class
Disassembling

APK

Unpacking

Other Res.

CERT.RSA

classes.dex

Step 1 Step 2 Step 3 Step 4

Figure 1. Architecture of BombDroid.

3 Logic Bombs for Repackaging Detection
3.1 Straightforward Use of Logic Bombs

Listing 2. A naive use of logic bombs.
1 if (X == c) {
2 // repackaging detection
3 }

While logic bombs have been widely used in building mal-
ware and are very effective in practice for keeping malicious
code dormant until “correct” conditions are met, a straight-
forward use of logic bombs will be vulnerable to attacks.
For example, as shown in Listing 2, a logic bomb is used for
repackaging detection, which should not be activated unless
the trigger condition X == c is true, where X is a variable
or an expression, and c is a constant value. Consistent with
the analysis in Section 2.1, the piece of code is vulnerable to
various automated attacks. For example, the attacker may
modify the bytecode such that the trigger condition is al-
ways true; worse, the attacker can circumvent the trigger
condition evaluation to analyze and reveal the enclosed code
directly [37]. Actually, it shares all the weaknesses of SSN.
Thus, a naive use of bombs will not work for our purpose.

3.2 Cryptographically Obfuscated Logic Bombs

Listing 3. A cryptographically obfuscated logic bomb.
1 if(Hash(X) == Hc) // this line is equivalent to "X==c"
2 // "code" is encrypted and can only be decrypted when X=c
3 p = decrypt(code, X);
4 execute(p);
5 }

To defeat such attacks, we present a type of cryptographically
obfuscated logic bombs. Let us take the code in Listing 2 as
an example to show how to transform a vulnerable bomb
to a cryptographically obfuscated bomb. First, the trigger
condition “X==c” in Listing 2 is transformed into Hash(X) ==
Hc , where Hc = Hash(c). Second, the repackaging detection
code is encrypted (before the app is released) and can only
be decrypted correctly when X=c; any attempts that try to
decrypt the code with an incorrect key will fail. Finally, the
constant value c, which works as the key, is removed from the
code, which means that an attacker cannot expect to search
the code to find the correct key to recover the encrypted

code. Through such transformation, the code in Listing 2 is
transformed into the code shown in Listing 3.

The transformation applies both cryptographic hashes and
encryption. A cryptographic hash function has two prop-
erties that are critical for transforming a condition X == c
to the obfuscated condition Hash(X) == Hc , where Hc =
Hash(c). First, the one-way function (pre-image resistance)
property means it is difficult to recover the constant value c
based on Hc , which ensures that it is computationally infea-
sible to reverse the obfuscation and hence defeats constraint
solvers relied on by symbolic execution. Second, the second
pre-image resistance property makes it difficult to find an-
other constant value c′ whose hash value is also Hc ; thus,
the obfuscated condition is semantically equivalent to the
original, ensuring the correctness of the transformation.

Below is a simple example. The left part is a code snippet
extracted from a real app. The right part is the correspond-
ing obfuscated version: only when mMode is assigned with
0xfff000, can the payload code be successfully decrypted.

if (mMode == 0xfff000) {

 payload;

}

if (Hash(mMode) ==

da4b9237bacccdf19c0760cab7aec4a8359010b0) {

 p = decrypt (encrypted_payload, mMode);

 execute (p);

}

When designing the cryptographically obfuscated logic
bombs, we were inspired by user authentication invented by
Roger Needham [48], which stores user passwords as hash
values [15], such that user passwords are not exposed but the
authentication can still be performed. We found such trans-
formations were widely discussed by researchers working on
virtual black-box obfuscation [4] and concealingmalware [40].
Their work confirms the security of such transformations.

3.3 Trigger Conditions
A condition that can be used as a trigger condition for the
transformation must check equality of two operands with
one of them having a constant value; the equality check-
ing includes == and comparison methods such as string’s
equals, startsWith, and endsWith. We call such a condi-
tion a qualified condition (QC). Without loss of generality,
a QC is denoted as “ϕ == c” in the following presentation,
where ϕ is an expression or variable and c has a statically
determinable constant value.
Existing qualified condition. A logic bomb can use a QC
in the original code to build its trigger condition, which is

53

Resilient Decentralized Android Application Repackaging Detection ... CGO’18, February 24–28, 2018, Vienna, Austria

called an existing qualified condition.Whilemedium and large
sized programs usually have many existing QCs, smaller
programs may not, which limits the number of logic bombs
that can be inserted.
Artificial qualified condition. The drawback can be re-
solved by inserting artificial qualified conditions: given a
program location L, a variable ϕ, and a constant value c, as-
sume L ∈ scope (ϕ) and c ∈ dom(ϕ), where scope (ϕ) denotes
the program locations where ϕ can be accessed and dom(ϕ)
is the set of all possible values of ϕ. Then, ϕ == c is an
artificial QC that can be inserted at L and work as a trigger
condition. In an app, program variables with many possi-
ble values (i.e., a high entropy) are suitable for this purpose.
Without knowing the program logic, it is difficult to determine
whether a condition is an existing or artificial one.

3.4 Countermeasures against Code Deletion
An easy-to-conceive attack is to delete all suspicious code
that involves cryptographic hash computation and code de-
cryption. We apply the following countermeasures.
Code weaving. The first countermeasure is to weave the
payload (i.e., the repackaging detection and response code)
into the original app code. It is particularly suitable when a
logic bomb is built based on an existing qualified condition
(QC). When instrumenting the bytecode and injecting code,
the repackaging detection and response code is woven into
the body of the if statement for the existing QC. After code
weaving, if attackers delete conditional code that look sus-
picious, it will corrupt the app itself. The consequences of
corrupting an app can be various, such as instability, visual-
ization errors, incorrect computation, or crashes.
Bogus bombs. The second countermeasure is to transform
some conditional code of the app and make it look like logic
bombs, and we call them bogus bombs. Deletion of bogus
bombs will corrupt the app as well. Through such counter-
measure, it is difficult for attackers to determine whether a
piece of suspicious code is a real or bogus logic bomb.
Therefore, instead of hiding the repackaging detection

code, which is difficult to achieve, we deter attackers from
deleting the code.

4 Repackaging Detection and Response
4.1 Repackaging Detection
Repackaging detection and response are inserted as the pay-
load of logic bombs, and we consider the following methods
to detect repackaging.
Public Key Comparison. As used in previous attempts
that try to build repackaging detection into the app code [28,
39], we also make use of public key comparison to detect
repackaging. Each developer (or software company) has her
own public-private key pair; thus, once an app is repackaged
and resigned, the public key of the app must be different
from the original one. We can retrieve the public key Kr at
runtime and compare it against the original public key Ko to
detect whether the app has been repackaged. Ko is extracted
from CRET.RSA in the input APK file and then hard coded

into the detection code, while Kr is retrieved by invoking an
Android Framework API Certificate.getPublicKey.

Once an app is installed, its certificate is managed by the
Android system and cannot be modified by app processes.
While there are techniques that can intercept Android API
calls and return fake values, they usually depend on jail-
break [10] or require code modification [24]. Note that we
assume user devices are not jailbroken; moreover, modifica-
tion of encrypted code will not work. Still, it should be pos-
sible to intercept system service calls in other ways, which
is further discussed below.
Code Digest Comparison. The second way is to compare
the original digest Do of a resource or code file against the
one Dr retrieved from MANIFEST.MF at runtime. However,
the challenge is that it is unlikely to predict the digest of a
code file and then hard code it into the code file. To solve
it, we leverage steganography to hide Do in strings.xml (a
file storing string literals for the app), and then extract it at
runtime and compare it against Dr . Note that it is unnec-
essary to compare the complete digest value; thus, Do can
encode part of a digest value into a string. Similarly, we can
detect repackaging by checking whether the app icon and
author information have been changed; it is very similar to
checking digest values and thus omitted here.

As MANIFEST.MF is managed by the Android system, app
processes cannot manipulate it. In addition, an attacker does
not know how to manipulate strings in strings.xml even
when they look suspicious, as the logic for recovering the
digest value information from Do is encrypted as part of the
repackaging detection code.
Code Snippet Scanning. The third way is to scan code
snippets and compute their hash values, which are then com-
pared against the pre-computed values hidden in the data
section or strings.xml; this is a mature code-integrity de-
tection technique [7]. Unlike the previous two methods, code
scanning does not rely on Android system service calls. We
can combine public-key/digest checking with code snippet
scanning: since any code modification can be detected by
public key/digest checking, instead of scanning the whole
app, the scanning can be focused on checking the integrity
of bombs that compare the public keys and digests. In addi-
tion, it is indeed possible to intercept calls to getPublicKey
through vtable hijacking [54]; scanning can be used to check
the integrity of the vtable or the function body. That is, the
scanning can be extended to scan other program elements.

4.2 Response
The responses upon repackaging detection should cause
negative user experiences. For example, the response may
set a reference variable to be NULL, cause memory leak (e.g.,
by allocating a large data structure and pointing to it using a
static reference field), set up a timer that will terminate the
process, or launch a thread executing an endless loop.

In addition, the response can warn users about the repack-
aging. Many ways can alert users through, e.g., TextViews,
PopupWindows, and Dialogs. The response can also send

54

CGO’18, February 24–28, 2018, Vienna, Austria Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li

a brief description of the repackaged app to the develop-
ers, who can take further actions, such as requesting the
store to take down the repackaged app before being widely
distributed. How to collect software piracy information in an
inexpensive way has been a challenge for many app companies,
and our technique can serve as a solution for them.

5 Security Analysis
We then examine how the goals described in Section 2.2
are achieved by our design. First, all path exploration tech-
niques [5, 6, 11, 33], including symbolic execution and multi-
path execution, rely on resolving constraints correctly. In
our case, the constraint Hash(X) == Hc , has to be resolved
in order obtain the key to decrypt and analyze the payload
code. However, as cryptographic hash functions cannot be
reversed, no constraint solvers can solve it. Therefore, we
have achieved G1 successfully.
Second, as the repackaging detection and response code

is encrypted, attacks that rely on text search, code instrumen-
tation, and circumventing conditions for forced execution will
all fail. Thus, G2 is achieved as well.

Third, we insert many logic bombs into different parts of
an app. It is not surprising that through blackbox fuzzing,
an attacker may be able to trigger some of them, but it is
very difficult to reach a high ratio. This is also consistent
with one of the well-known facts about software testing:
it is difficult to reach a high code coverage. Without the
assistance of symbolic execution, even a line as simple as this,
if (x==0x56789abc), may take the fuzzer billions of tries to
satisfy the condition. Our evaluation also shows that only a
small portion of bombs can be triggered through black-box
fuzzing. Therefore, G3 is also achieved. On the other hand,
given a large number of diverse users that play an app in many
different contexts, it is natural that most of the logic bombs
will be triggered on the user side for checking repackaging.

Fourth, as described in Section 3.4, code deletion is defeated
by code weaving and bogus bombs; thus, G4 is achieved.

5.1 Attacks against Keys
As the key of of a logic bomb is important, we consider
attacks specifically against keys. Attackers may try to figure
out the key used in each logic bomb. One approach is brute
force attacks. Given an obfuscated condition Hash(X) ==
Hc , attackers may compute Hash(X) for all possible values
of X to identify a value that satisfies Hash(X) == Hc . Thus,
the strength of the hash operation is determined by the set
of possible values that X may take, denoted as dom(X). Let t
be the time needed to verify one value of X, then the brute
force attack for cracking a key will take |dom(X) | ∗ t time.
One way of determining the upper bound of |dom(X) | is

based on the number of bits of X. For example, if X is an
32-bit integer, the brute force attack may take up to 232t time.
Generally, if X has n bits, the attack needs 2nt time. Thus, an
obfuscated condition that depends on a string variable tends
to be more resistant than a condition that involves a boolean
variable. To reduce the search time, attackers may attempt

Outer trigger

Repackaging

detection and

response code

Code here

is encrypted

(a) Single-trigger bomb

Outer trigger

Inner trigger

Repackaging

detection and

response code

Code here

is encrypted

(b) Double-trigger bomb

Figure 2. Two types of logic bombs. We used double-trigger bombs
in our implementation.

to apply rainbow attacks, which use a precomputed table for
reversing hash functions. However, it is well known that
such attacks can be defeated by mixing a unique plaintext
salt (for each bomb) into the hash computation.

6 Enhancement: Double-trigger Bombs
As symbolic execution, which is commonly used in whitebox
fuzzing for a high code coverage, cannot be used to “crack”
our bombs, we estimate that attackers may invest more on
blackbox fuzzing, e.g., by renting cloud services to run mul-
tiple fuzzers concurrently for a prolonged period of time.
Knowing that blackbox fuzzing is inefficient in analyzing
bombs, to make our defense even more resilient we propose
double-trigger bombs. But note that the security of our system
takes it as an enhancement (rather than a must).
Fig. 2a shows the structure of a single-trigger bomb pre-

sented above (in Section 3.2), while Fig. 2b shows a double-
trigger bomb structure. In a double-trigger bomb, an extra
environment-sensitive inner trigger condition is inserted and
the logic bomb is activated only if both trigger conditions
are met. In a double-trigger bomb, both the inner trigger
condition and payload (i.e., the repackaging detection and
response code) are encrypted.

With double-trigger bombs, we can finely exploit the sharp
differences between the attacker side (who runs apps in a lim-
ited number of different environments) and the very diverse
user side. While the outer trigger condition is satisfied only if
the control flow reaches the trigger condition with X equals
to c (Line 1 in Listing 3), the inner trigger condition is met
only if the app runs on a device with some specific environ-
ment in terms of the system build number, IP address, GPS
location, etc. Given the huge number of possible environ-
ment variable values, attackers have to invest enormously to
blindly keep trying different combinations of environments
for triggering logic bombs. As another example, a bomb can
be constructed such that it sets off only if the app is played
at some specific time. Thus, running an app for a longer time
does not necessarily trigger it.

The inner trigger condition is a quantifier-free first-order-
logic formula consisting of one or more constraints, which
are concatenated by && or ||; each constraint is in the form
of “f(env) op r”, where op∈ {<, >,==, ! =}, r is a constant

55

Resilient Decentralized Android Application Repackaging Detection ... CGO’18, February 24–28, 2018, Vienna, Austria

value, and f() is a function of env. Below are some example
environment variables that can be used in an inner condition.
• Hardware environment and status. Different user de-
vices have different manufacturers, boards, boot loader
versions, brand names, CPU types, display metrics,
MAC addresses, serial numbers, flash sizes, etc.
• Software environment, e.g., SDKs, API levels, OS ver-
sions, IP addresses, etc.
• Time and sensors. A trigger condition can be con-
structed based on time and sensor information, such
as GPS, light, and temperature.

7 Implementation
We leverage Javassist [23] for instrumenting bytecodes.
Additional code for realizing our approach comprises 6,354
lines of Java code measured with CLOC [9].

7.1 Candidate Methods
Given an app, in order to avoid a high overhead, we first use
profiling to find hot methods, i.e., the most frequently in-
voked ones, and exclude them from instrumentation; the rest
are candidate methods used to insert logic bombs. Specifically,
we first use Dynodroid [32] to generate a random stream of
10, 000 user events and feed them to the app. Meanwhile, we
use Traceview [44] to log the execution trace, which includes
the invocation count of each method. The top 10% most fre-
quently invoked methods are considered as hot methods; the
rest methods are candidate methods.

7.2 Outer Trigger Conditions
BombDroid first searches existing qualified conditions and
then constructs artificial ones for building bombs.
Existing qualified conditions. We use Soot [42] to gener-
ate the CFG of each candidate method and locate all qualified
conditions that include equality checking; specifically, we
search for instructions containing IFEQ, IFNE, IF_ICMPEQ,
IF_ICMPNE, and TABLESWITCH. As a heuristic optimization,
we avoid inserting bombs into loops in a procedure.

Logic operations such as && or || combine more than one
simple condition. For logical and operators, e.g., if (X ==
a && Y == b), as both simple conditions (X == a, and Y
== b) must be satisfied to execute conditional code, either
of the two can serve as the outer condition.

For logical or operators, e.g., if (X == a || Y == b), as
showed below, since either of the two simple conditions may
execute conditional code, we duplicate the conditional code
and use if...else if constructs; this way, the payload can
be injected into either of the two branches.

if (X == a | | Y == b) {

 foo ();

}

if (X == a) {

 foo ();

} else if (Y == b) {

 foo ();

}

Artificial qualified conditions. α = 0.25 (α is config-
urable) of the candidate methods are randomly picked for in-
serting artificial qualified conditions. In each selectedmethod,

a program location that is not in a loop of the method is ran-
domly chosen for inserting an artificial QC. At each selected
program location, we collect the possible values that each
accessible field takes through profiling; fields that have the
largest numbers of unique values are considered to have
higher entropies and are used to construct artificial QCs. To
construct an artificial QC, one of the field values is randomly
selected as the constant value.

7.3 Inner Trigger Conditions
Inner trigger conditions depend on environment variables.
We collect information about environment variables from
online resources. E.g., the Android official website maintains
a Dashboards page, which provides information about the
ratio of devices that share some property in terms of the OS
version, API level, or screen size [14]; AppBrain provides sta-
tistics about manufacturers [43]. We also allow developers to
override the collected information; for example, an app may
be used on tablets only or target users at specific countries.

Base on the information collected, we construct inner trig-
ger conditions, each of whichwill be satisfied at some specific
probability p. The probability range is customizable by de-
velopers; in our implementation, p ∈ [0.1, 0.2]. For example,
when building an inner trigger condition that depends on
the IP address A.B.C .D, the condition 101 < C < 132 has
p = 30/256. Note that it does not mean that, given a device,
when an inner trigger condition is evaluated for 1/p times on
the device the bomb will be activated once; instead, the bomb
may never be activated on that device until the environment
condition is met. But when the condition is evaluated for 1/p
times under the diverse user environments, it is expected the
bomb gets activated once.

7.4 Hash, Encryption, Obfuscations, and
Repackaging Detection

We use SHA-128 as the hash function and AES-128 for en-
cryption. We use key = Hash(c|S), where S is a salt, to
transform a constant value c with a various size into a uni-
form 128-bit key to be used for encryption. Our current
prototype implemented the repackaging detection method
based on public-key comparison; as this work is focused on
presenting the new logic bomb structure and its effectiveness
in concealing bombs on the attacker side, and we leave the
inclusion of other detection methods for future work.

7.5 Bytecode Instrumentation
We first use apktool [2] to unpack the APK file to gen-
erate classes.dex and CERT.RSA (the latter is used to ex-
tract the original public key using openssl). We then use
dex2jar [16] to convert classes.dex to a collection of java
classes, which are used for instrumentation.
We leverage Javassist [23] for bytecode instrumenta-

tion. Javassist allows us to write the repackaging detection
code in Java, and it then compiles the code on-the-fly during
instrumentation. The generated code, after being mixed with
part of the original code, is encrypted into a string, which is
inserted into the app code (during execution time, when a

56

CGO’18, February 24–28, 2018, Vienna, Austria Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li

Table 1. Static characteristics.

Category # of Avg Avg # of Avg # of exist. Avg #

apps LOC candidate qualified of env.
methods conditions var.

Game 105 3,043 95 56 16
Science&Edu. 98 4,046 86 44 8
Sport&Health 87 5,467 113 40 11

Writing 149 7,099 149 67 6
Navigation 121 9,374 185 52 9
Multimedia 108 10,032 203 72 17
Security 152 11,073 242 86 12

Development 143 14,376 373 93 11

bomb is triggered, the string will be decrypted and stored in
a separated .dex file, which is then loaded and invoked; note
that ART supports dynamic loading of .dex files). There def-
initely exist other ways to implement the system. For example,
the encrypted code can also be inserted into the .data section
of a shared library of the app. To make BombDroid work for
Android apps, during instrumentation, android.jar is in-
cluded into the build path, and all the packages that payloads
relying on such as PackageManager are imported. Finally,
after instrumentation, we use dx to convert the modified
Java classes into a new classes.dex.

8 Evaluation
We have applied BombDroid to a set of Android apps, 963
totally, downloaded from F-Droid [17]. We first present the
static characteristics of the apps, and then describe the evalu-
ation results about effectiveness, resilience, and side effects.

8.1 App Program Characteristics
Table 1 shows the static characteristics of the apps. For each
category, it shows the number of apps, the average number of
lines of Java code, the average number of candidate methods,
the average number of existing QCs, and the average number
of environment variables used by apps.
All the apps use environment variables, and apps in the

Multimedia category use themost of them on average. Larger
sized programs tend to have a larger number of candidate
methods and existing qualified conditions. Note that Bomb-
Droid allows to insert artificial QCs.

To construct artificial QCs, program variables are used. As
an example, we visualize howprogram variables of AndroFish
change their values with time in Figure 3. In the main in-
terface, multiple fishes move around, and players need to
click these fishes to gain scores. The six program variables
in Figure 3 store different information of the currently visi-
ble fish, such as its moving direction, width, height, speed,
and position. We use Dynodroid [32] to run the app for an
hour, and record program variable values once per minute. It
shows that while some variables have many unique values,
others take few different values. We choose those with the
largest numbers of unique values to construct more resilient
artificial qualified conditions.
Table 2 shows the number of injected bombs in eight

randomly selected apps from each of the eight categories. For
the sake of consistency, we use the eight apps to demonstrate

1.00

0.75

0.50

0.25

0.00

50250

30

20

10

25

20

15

10

50250

200

150

100

50

0

100000

75000

50000

25000

0

50250

160000

120000

80000

40000

0

dir

time

width height

speed posX posY

Figure 3. Visualization of how the values of six program variables
of AndroFish vary with time. The x-axis and y-axis represent the
time (mins) and variable values, respectively.

Table 2. Injected logic bombs.
of # of existing # of artificial

App logic bombs qualified qualified
injected conditions conditions

AndroFish 67 36 31
Angulo 43 25 18

SWJournal 58 28 30
Calendar 104 63 41
BRouter 263 144 119

Binaural Beat 82 52 30
Hash Droid 65 37 28
CatLog 73 35 38

Table 3. Triggering the first logic bombs.

App Min time Max time Avg time Success
(sec) (sec) (sec) times

AndroFish 12 213 89 50/50
Angulo 17 778 125 50/50

SWJournal 8 369 93 50/50
Calendar 11 452 136 50/50
BRouter 23 590 142 50/50

Binaural Beat 9 241 75 50/50
Hash Droid 17 436 158 50/50
CatLog 26 522 164 50/50

all the evaluation results in the rest of the section. Take
AndroFish as an example; 67 bombs are injected into the
app totally, consisting of 36 bombs based on existing qualified
conditions and 31 on artificial ones.

8.2 Effectiveness
We then measure how soon repackaging detection is per-
formed when users run an app; i.e., how long it takes to
trigger the first logic bomb. We use BombDroid to embed
logic bombs into the eight apps and repackage them. We let
four human testers play the repackaged apps; each tester
players two apps on emulators. Each app is played until the
first logic bomb is triggered, and the time taken to trigger
the first bomb is recorded; each app is measured for 50 times,
and the testers are asked to vary the emulator configurations
(device types, SDK versions, and CPU/ABI, etc.) between the
runs. The minimum/maximum time to trigger the first logic

57

Resilient Decentralized Android Application Repackaging Detection ... CGO’18, February 24–28, 2018, Vienna, Austria

CatL
og

Has
h D

roi
d

Bina
ura

l B
ea

t

BRou
ter

Cale
nd

ar

SWJo
urn

al

Ang
ulo

And
roF

ish

120

100

80

60

40

20

0

of

 in
ne

r t
rig

ge
r c

on
di

tio
ns

Weak
Medium
Strong

CatL
og

Has
h D

roi
d

Bina
ura

l B
ea

t

BRou
ter

Cale
nd

ar

SWJo
urn

al

Ang
ulo

And
roF

ish

160

140

120

100

80

60

40

20

0

of

 c
on

di
tio

ns

Weak
Medium
Strong

(a) Existing qualified conditions

App

CatL
og

Has
h D

ro
id

Bina
ur

al
Bea

t

BRout
er

Cale
nd

ar

SW
Jo

ur
na

l

Ang
ulo

And
ro

Fis
h

300

250

200

150

100

50

0

D
at

a

Weak
Medium
Strong

CatL
og

Has
h D

roi
d

Bina
ura

l B
ea

t

BRou
ter

Cale
nd

ar

SWJo
urn

al

Ang
ulo

And
roF

ish

120

100

80

60

40

20

0

of

 c
on

di
tio

ns

Weak
Medium
Strong

(b) Artificial qualified conditions

Figure 4. Strength of outer trigger conditions.

bomb and the number of successful detection times (if no
bomb is triggered within 60 minutes it is considered as a
failure) are listed in Table 3.
The results are encouraging showing that victim users

can be quickly alerted when using a repackaged app. The
response time is as short as 8 seconds, while the maximum
times to trigger the first bombs are all within 13 minutes.

8.3 Resilience
Security analysis (see Section 5) of our approach has shown
that two types of attacks are more effective than others: brute
force attacks and fuzzing. We thus evaluated the resilience
to these attacks.

8.3.1 Resilience to Brute force Attacks
Given an outer trigger condition Hash(X) == Hc , attackers
may try to search the value of X from dom(X) that satisfies
the condition. To evaluate the resistance, we define three
levels of strength based on the type of the data used in the
condition. An obfuscation is considered strong, medium, or
weak if the QC depends on string, integer, or boolean con-
stant values, respectively. Figure 4 shows the analysis results
on the eight apps. Figure 4a shows that a high percentage of
the existing QCs have a weak obfuscation. Figure 4b shows
that the artificial QCs all have medium to strong obfusca-
tions. Note that the number of artificial qualified conditions
are adjustable, so developers can insert more artificial ones
if they can afford a larger overhead.

8.3.2 Resilience to Fuzzing and Human Analysis
We first measure the number of outer trigger conditions sat-
isfied during one hour analysis by state-of-the-art Android
fuzzing tools, including Monkey [46], PUMA [21], Android-
Hooker [1], and Dynodroid. Table 4 shows the results. It can
be observed that Dynodroid performed slightly better.
We then look into the number of logic bombs triggered

(when both trigger conditions were met) by Dynodroid. Fig-
ure 5 shows the results; each line corresponds to the percent-
age of triggered bombs for each app. In the first 5 minutes

Table 4. Percentages of satisfied outer trigger conditions (AH rep-
resents AndroidHooker).

App Monkey PUMA AH Dynodroid
AndroFish 28.4 31.3 32.8 35.8
Angulo 30.2 34.8 30.2 37.2

SWJournal 27.7 31.0 29.3 34.5
Calendar 31.7 35.6 33.7 38.5
BRouter 19.4 22.1 20.9 26.6

Binaural Beat 24.4 26.8 26.8 34.1
Hash Droid 29.2 33.8 32.3 38.5
CatLog 26.0 27.4 30.1 38.4

60544842363024181261

40

35

30

25

20

15

10

5

�����������
�
��
���
���
��
��
��
��
��
��
��
�
��

���������
������
���������
��������
�������
�������������
����������
������

0

1

2

3

4

5

6

7

Figure 5. Number of bombs triggered by Dynodroid in one hour.
Table 5. Execution time overhead.

App Ta (sec) Tb (sec) Overhead (%)
AndroFish 124 126 1.7
Angulo 125 128 1.6

SWJournal 115 118 2.6
Calendar 148 151 2.2
BRouter 132 135 1.8

Binaural Beat 163 166 1.9
Hash Droid 155 157 1.4
CatLog 131 134 2.3

a small number of bombs are triggered, and the growth of
the numbers slows down quickly. After 35 minutes, no new
bombs are triggered. Atmost 6.4% bombs are triggered, mean-
ing the majority of bombs keep dormant and the apps are
resilient to such attacks.

We next let four human analysts to manually run the apps
in order to trigger the survived bombs. They are skilled in
debugging and test input generators. Each analyst took care
of two apps and spent 20 hours on each one. They are in-
formed of the detailed implementation of BombDroid, and
allowed to apply any tools to assist investigation and mu-
tate environment variables’ values. The results show that
at most 9.3% bombs are triggered. Mutating environment
variables values is slightly helpful to trigger more bombs.
However, considering that there are so many possible environ-
ment variables and each may have a large domain, attacker
cannot configure the environments in a guided way.

8.4 Side Effects
The side effects of BombDroid on apps are measured in the
following three aspects: false positives, code size change, and
execution time overhead.

58

CGO’18, February 24–28, 2018, Vienna, Austria Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li

As the response code injects errors into program execu-
tion, it is critical to ensure that such response code is never
executed on apps that have not been repackaged, i.e., ensur-
ing zero false positives. We thus run Dynodroid on each app
protected by BombDroid for ten hours, and log whether the
response code is executed. No false positives are triggered.

The code size increase ranges from 8% to 13% and averages
9.7% among all the apps. To evaluate the execution time
overhead, we employ Dynodroid to generate a sequence of
20,000 user events, and feed the same user events to both
the original and protected apps fifty times to measure the
average execution time. The average execution time of the
original app and protected app are denoted as Ta and Tb
respectively; the execution time overhead is calculated as
O = (Tb −Ta)/Ta . Table 5 shows the results (2.6% overhead
at most). It can be seen that the overhead is very small. We
attribute the small overhead to three reasons: (1) the logic
bombs are not injected into hot methods, (2) the payloads
are not executed until the conditions are met, and (3) the
code decryption is one-time effort by caching it in memory.

9 Related Work
9.1 Logic Bombs
Various approaches have been proposed for discovering
trigger-based behaviors [3, 5, 6, 11, 19, 26, 35, 37, 41, 47, 57].
Bitscope uses static analysis and symbolic execution to un-
derstand the behavior of malware binaries [5]. MineSweeper
utilizes binary instrumentation and mixed concrete and sym-
bolic execution for detecting trigger-based behavior [6]. By
combining symbolic execution, path predicate reconstruc-
tion, and control-dependency analysis, TriggerScope can
identify time-, location-, and SMS-related triggers in apps [19].
Our obfuscation on trigger conditions makes the path con-
straints unresolvable. HSOMINER [35] combinesmachine learn-
ing and program analysis to discover hidden sensitive oper-
ations in apps; however, it cannot handle trigger conditions
that involve program variables as in our bombs.
Some techniques try to circumvent trigger conditions and

directly execute payloads. Rasthofer et al. propose HARVESTER,
which performs backward program slicing starting from the
line of suspected code, and then executes the extracted slices
to uncover the payload behavior [37]. Wilhelm and Chiueh
propose a forced sampled execution approach that forces
execution along different paths [47]. As BombDroid applies
encryption on payloads, it is infeasible to directly execute
payload without discovering the key used for decryption.

9.2 Repackaging Detection
Different app repackaging detection techniques use different
features and methods for comparing app code [12, 13, 20,
29, 30, 36, 53, 59, 60]. For example, DroidMOSS uses hash-
ing of app instruction sequences to detect repackaging [60].
Potharaju et al. use program syntactic fingerprints to detect
plagiarized apps [36]. Chen et al. use the program depen-
dency graphs to detect repackaging [8]. AppInk [58] and
DroidMarking [39] inject watermarking into apps so that a

trusted party with the knowledge of watermarking can help
detect repackaging. AnDarwin detects similar apps using the
semantic information [13]. Most of them rely on a central-
ized effort, and the detection techniques can be easily evaded
by obfuscations. SSN [28] attempts to build repackaging de-
tection into the app code, but as detailed in Section 2.1, it is
vulnerable to a variety of attacks. BombDroid implements
the first resilient decentralized repackaging detection.

10 Discussion
Ethical issues. First, when users use a repackaged app pro-
tected by our system, they experience crashes, slowdown,
and other negative user experiences. We consider this ac-
ceptable, as causing negative user experiences is a common
practice for handling pirated software in industry. Second,
user devices are made use of to detect repackaging. This
should not be a problem if we regard repackaging detection
as helping users check potentially harmful apps.
Limitations. It is widely recognized that any software-based
protection can be bypassed as long as attackers are deter-
mined enough, which is also true with BombDroid. We
assume attackers are interested in repackaging apps only if
it is cost-effective, e.g., when the cost of repackaging is less
than that of developing apps from scratch. For example, al-
though BombDroid has good resiliency to many attacks, we
do not guarantee that determined attackers cannot crack the
keys of bombs through, say, brute force attacks. As we inject
artificial qualified conditions, which have medium to strong
obfuscation strength, it is difficult to enumerate all possible
values. But understanding the semantics of the branch con-
ditions can help reduce the number of possible values and
assist attackers to guess the keys.
Future work. We plan to improve the prototype by adding
other detection methods, such as code snippet scanning,
which does not rely on any Android APIs to detect code
modifications. An interesting direction is to explore how to
mute other bombs strategically once a bomb is triggered, so
that even more bombs can survive. Finally, we plan to apply
custom packers [45] widely used in virus to our logic bombs.

11 Conclusion
Building repackaging detection into apps brings many ad-
vantages over the centralized scheme, but how to make the
detection code resilient to various adversary analysis is not
resolved in prior work. We creatively propose to use bombs
to conceal repackaging detection code. Cryptographically ob-
fuscated bombs are used to construct resilient bombs, while
double-trigger bombs achieve finer control of the triggering
of bombs. We have built a prototype and evaluated it. The
evaluation results show that the technique is efficient, effec-
tive and resilient. We expect it to benefit numerous honest
Android app developers.

Acknowledgments
We would like to thank anonymous reviewers for their in-
valuable and constructive comments.

59

Resilient Decentralized Android Application Repackaging Detection ... CGO’18, February 24–28, 2018, Vienna, Austria

References
[1] AndroidHooker. 2016. https://github.com/AndroidHooker.
[2] Apktool. 2017. https://ibotpeaches.github.io/Apktool/.
[3] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher

Kruegel, Engin Kirda, and Giovanni Vigna. 2010. Efficient Detection
of Split Personalities in Malware. In NDSS.

[4] Zvika Brakerski and Guy N Rothblum. 2014. Virtual Black-Box Obfus-
cation for All Circuits via Generic Graded Encoding.. In TCC, Vol. 8349.
1–25.

[5] David Brumley, Cody Hartwig, Min Gyung Kang, Zhenkai Liang,
James Newsome, Pongsin Poosankam, Dawn Song, and Heng Yin.
2007. BitScope: Automatically dissecting malicious binaries. In Tech.
Rep. CMU-CS-07-133.

[6] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn
Song, and Heng Yin. 2008. Automatically identifying trigger-based
behavior in malware. In Botnet Detection.

[7] Hoi Chang and Mikhail J. Atallah. 2002. Protecting Software Code by
Guards. In Security and Privacy in Digital Rights Management.

[8] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving Accuracy
and Scalability Simultaneously in Detecting Application Clones on
Android Markets. In ICSE.

[9] CLOC—Count Lines of Code. 2013. http://cloc.sourceforge.net/.
[10] Valerio Costamagna and Cong Zheng. 2016. ARTDroid: A Virtual-

Method Hooking Framework on Android ART Runtime.. In IMPS@
ESSoS.

[11] Jedidiah R. Crandall, Gary Wassermann, Daniela AS de Oliveira, Zhen-
dong Su, S. Felix Wu, and Frederic T. Chong. 2006. Temporal search:
Detecting hidden malware timebombs with virtual machines. In ACM
Sigplan Notices.

[12] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the
Clones: Detecting Cloned Applications on Android Markets. In ES-
ORICS.

[13] Jonathan Crussell, Clint Gibler, and Hao Chen. 2013. AnDarwin:
Scalable Detection of Semantically Similar Android Applications. In
ESORICS.

[14] Dashboards. 2017. http://developer.android.com/about/dashboards/
index.html.

[15] Key derivation function. 2017. https://en.wikipedia.org/wiki/Key_
derivation_function.

[16] dex2jar. 2017. https://github.com/pxb1988/dex2jar.
[17] F-Droid. 2017. Free and Open Source Software Apps for Android.

https://f-droid.org/.
[18] Parvez Faruki, Vijay Ganmoor, Vijay Laxmi, M. S. Gaur, and Ammar

Bharmal. 2013. AndroSimilar: Robust statistical feature signature for
Android malware detection. In SIN.

[19] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. 2016. TriggerScope: To-
wards Detecting Logic Bombs in Android Applications. In S&P.

[20] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and
Dawn Song. 2013. Juxtapp: A Scalable System for Detecting Code
Reuse Among Android Applications. In DIMVA.

[21] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh
Govindan. 2014. PUMA: programmable UI-automation for large-scale
dynamic analysis of mobile apps. In Proceedings of the 12th annual
international conference on Mobile systems, applications, and services.

[22] Heqing Huang, Sencun Zhu, Peng Liu, and DinghaoWu. 2013. A frame-
work for evaluating mobile app repackaging detection algorithms. In
Trust and Trustworthy Computing.

[23] Javassist. 2017. http://jboss-javassist.github.io/javassist/.
[24] Taeyeon Ki, Alexander Simeonov, Bhavika Pravin Jain, Chang Min

Park, Keshav Sharma, Karthik Dantu, Steven Y Ko, and Lukasz Ziarek.
2017. Reptor: Enabling API Virtualization on Android for Platform
Openness. In MobiSys.

[25] Shuang Liang and Xiaojiang Du. 2014. Permission-combination-based
scheme for android mobile malware detection. In Communications
(ICC), 2014 IEEE International Conference on. IEEE.

[26] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti.
2011. Detecting environment-sensitive malware. In International Work-
shop on Recent Advances in Intrusion Detection.

[27] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias
Neugschwandtner, Elias Athanasopoulos, Federico Maggi, Christian
Platzer, Stefano Zanero, and Sotiris Ioannidis. 2014. AndRadar: fast
discovery of android applications in alternative markets. In DIMVA.

[28] Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu, and Peng Liu. 2016.
Repackage-proofing Android Apps. In DSN.

[29] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
2014. Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software plagiarism detection. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM.

[30] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
2017. Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software and algorithm plagiarism
detection. IEEE Transactions on Software Engineering (2017).

[31] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu,
Neng Gao, Min Yang, Xinyu Xing, and Peng Liu. 2017. System Ser-
vice Call-oriented Symbolic Execution of Android Framework with
Applications to Vulnerability Discovery and Exploit Generation. In Pro-
ceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 225–238.

[32] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid:
An Input Generation System for Android Apps. In FSE.

[33] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring
multiple execution paths for malware analysis. In S&P.

[34] Ravshanbek Norboev, Zakia Hossain, Lannan Luo, and Qiang Zeng.
2017. On the Robustness of Stochastic Stealthy Network against Android
App Repackaging. Technical Report. Temple University.

[35] Xiaorui Pan, Xueqiang Wang, Yue Duan, XiaoFeng Wang, and Heng
Yin. 2017. Dark Hazard: Learning-based, Large-scale Discovery of
Hidden Sensitive Operations in Android Apps. In NDSS.

[36] Rahul Potharaju, Andrew Newell, Cristina Nita-Rotaru, and Xiangyu
Zhang. 2012. Plagiarizing smartphone applications: attack strategies
and defense techniques. In In Engineering Secure Software and Systems.

[37] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden.
2016. Harvesting runtime values in android applications that feature
anti-analysis techniques. In NDSS.

[38] Remote Application Removal Feature. 2010. http://android-developers.
blogspot.com/2010/06/exercising-our-remote-application.html.

[39] Chuanggang Ren, Kai Chen, and Peng Liu. 2014. Droidmarking: Re-
silient Software Watermarking for Impeding Android Application
Repackaging. In ASE.

[40] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee.
2008. Impeding Malware Analysis Using Conditional Code Obfusca-
tion. In NDSS.

[41] Chengyu Song, Paul Royal, andWenke Lee. 2012. Impeding Automated
Malware Analysis with Environment-sensitive Malware.. In HotSec.

[42] Soot. 2017. http://sable.github.io/soot/.
[43] Top Manufacturers. 2017. http://www.appbrain.com/stats/

top-manufacturers.
[44] Traceview. 2017. http://developer.android.com/tools/help/traceview.

html.
[45] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G

Bringas. 2015. SoK: Deep packer inspection: A longitudinal study of
the complexity of run-time packers. In Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 659–673.

[46] UI/Application Exerciser Monkey. 2017. http://developer.android.
com/tools/help/monkey.html.

[47] JeffreyWilhelm and Tzi cker Chiueh. 2007. A forced sampled execution
approach to kernel rootkit identification. In International Workshop on
Recent Advances in Intrusion Detection.

[48] Maurice Vincent Wilkes. 1972. Time-sharing computer systems.
(1972).

[49] Longfei Wu, Xiaojiang Du, and Xinwen Fu. 2014. Security threats
to mobile multimedia applications: Camera-based attacks on mobile

60

CGO’18, February 24–28, 2018, Vienna, Austria Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li

phones. IEEE Communications Magazine 52, 3 (2014).
[50] Longfei Wu, Xiaojiang Du, and Jie Wu. 2014. MobiFish: A lightweight

anti-phishing scheme for mobile phones. In Computer Communication
and Networks (ICCCN), 2014 23rd International Conference on. IEEE.

[51] Rubin Xu, Hassen Saïdi, and Ross Anderson. 2012. Aurasium: Practical
Policy Enforcement for Android Applications. In USENIX Security.

[52] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. Droid-
fuzzer: Fuzzing the android apps with intent-filter tag. In Proceedings
of International Conference on Advances in Mobile Computing & Multi-
media.

[53] Shengtao Yue, Weizan Feng, Jun Ma, Yanyan Jiang, Xianping Tao,
Chang Xu, and Jian Lu. 2017. RepDroid: an automated tool for An-
droid application repackaging detection. In Proceedings of the 25th
International Conference on Program Comprehension. IEEE Press.

[54] Chao Zhang, Dawn Song, Scott A Carr, Mathias Payer, Tongxin Li, Yu
Ding, and Chengyu Song. 2016. VTrust: Regaining Trust on Virtual
Calls.. In NDSS.

[55] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng
Liu. 2014. ViewDroid: Towards Obfuscation-Resilient Mobile Applica-
tion Repackaging Detection. In WiSec.

[56] Yulong Zhang. 2015. Kemoge: Another Mobile Malicious Adware
Infecting Over 20 Countries. https://www.fireeye.com/blog/
threat-research/2015/10/kemoge_another_mobi.html.

[57] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong,
Xinhui Han, and Wei Zou. 2012. SmartDroid: an Automatic System
for Revealing UI-based Trigger Conditions in Android Applications.
In Proceedings of the second ACM workshop on Security and privacy in
smartphones and mobile devices.

[58] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. 2013. AppInk: water-
marking android apps for repackaging deterrence. In ASIA CCS.

[59] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou.
2013. Fast, Scalable Detection of “Piggybacked” Mobile Applications.
In CODASPY.

[60] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting
Repackaged Smartphone Applications in Third-party Android Mar-
ketplaces. In CODASPY.

[61] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware:
Characterization and Evolution. In S&P.

61

