
Perils and Mitigation of Security Risks of Cooperation in
Mobile-as-a-Gateway IoT

Xin’an Zhou

xzhou114@ucr.edu

University of California, Riverside

Riverside, California, USA

Jiale Guan

guanjia@iu.edu

Indiana University Bloomington

Bloomington, Indiana, USA

Luyi Xing

luyixing@indiana.edu

Indiana University Bloomington

Bloomington, Indiana, USA

Zhiyun Qian

zhiyunq@cs.ucr.edu

University of California, Riverside

Riverside, California, USA

ABSTRACT
Mobile-as-a-Gateway (MaaG) is a popular feature using mobile

devices as gateways to connect IoT devices to cloud services for

management. MaaG IoT access control systems support remote

access sharing/revocation while allowing “offline availability” for

better usability. Realizing these functionalities requires secure co-

operation among the cloud service, the companion app, and the

IoT device. For practical considerations, we find that almost all

cloud services perform access model translation (AMT) to translate

expressive cloud-side access policies to simple device-side policies.

During the process, ad-hoc protocols are developed to support

the access policy synchronization. Unfortunately, current MaaG

IoT systems fail to recognize the security risks in the process of

access model translation and synchronization. We analyze ten top-

of-the-line MaaG IoT devices and find that all of them have serious

vulnerabilities, e.g., allowing irrevocable and permanent access for

temporary users. We further propose a secure protocol design that

defends against all identified attacks.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; Software
reverse engineering; • Networks → Network architectures.

KEYWORDS
IoT; Access Control; Attack; Protocol; Formal Proof

ACM Reference Format:
Xin’an Zhou, Jiale Guan, Luyi Xing, and Zhiyun Qian. 2022. Perils and

Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560590

1 INTRODUCTION
IoT devices are featured varying Internet connectivity capabilities

and paradigms. Many prior works [54] studied IoT devices that are

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9450-5/22/11.

https://doi.org/10.1145/3548606.3560590

not connected to a server/cloud at all and such devices are managed

by local consoles, such as a mobile phone. Recent works [20, 22–

25, 29, 30, 32, 38, 40, 51, 56, 58, 68, 70, 82, 85] studied IoT devices that

leverage the modern IoT cloud infrastructure for convenient access

management and deployment, and such devices are connected to

the cloud/Internet either through built-in Wi-Fi/cellular modules,

or through a local Internet-connected IoT hub, such as a Bluetooth-

capable, Zigbee or Z-Wave compatible IoT hub. Access to the devices

(e.g., operation commands sent from the user’s mobile phone) goes

through the cloud for centralized mediation and access control.

Less studied is an emerging category of IoT devices that aims to

leverage the modern IoT cloud infrastructure (e.g., for centralized

user management, convenient device firmware updates), but lacks

persistent Internet connectivity. For reduced power consumption,

manufacturing cost, and maintenance cost, such devices are not

built with Wi-Fi/cellular modules (Wi-Fi is shown to consume 7x

the power compared to Bluetooth [59]), nor do they require a per-

sistent, dedicated Internet-connected IoT hub to connect to the

cloud. Rather, these devices leverage users’ mobile phones to act as

“Internet gateways” that relay information to and from the cloud

when the phones are nearby. We call such a paradigm Mobile-as-

a-Gateway (MaaG) IoT (Figure 1). Despite the popularity of MaaG

IoT [15, 77, 78], its security and privacy risks have yet to be fully

understood, not to mention adequately mitigated.

Companion AppCloud Service IoT Device

Access Policy Access Policy

Figure 1: The MaaG IoT Architecture

New security challenges inherentwithMaaG IoT. Priorworks [13,
36, 50] studied Device-Gateway-Cloud (DGC) IoT, which is simi-

lar to the MaaG IoT architecture studied in this paper. In particu-

lar, [13, 36] show that it is difficult to synchronize a permission-

revocation policy from the cloud to IoT devices in the presence

of network partitions (e.g., due to intentional blocking of devices’

access to the Internet, or internet outage). However, modern MaaG

IoT in the wild has become much more complicated (than DGC)

whose design comes with new fundamental security challenges. In

particular, different from the previously studied cloud-based IoT

3285

https://orcid.org/0000-0002-9994-5922
https://orcid.org/0000-0001-5253-1477
https://orcid.org/0000-0002-1036-1163
https://orcid.org/0000-0003-1506-2522
https://doi.org/10.1145/3548606.3560590
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3560590

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

in which devices maintain persistent Internet connections with

the cloud and all commands/requests to the devices are access-

controlled by the IoT cloud [13, 50], in MaaG IoT, the devices and

the cloud split security responsibilities and thus need to coordinate

their security control to ensure the overall system is secure (unau-

thorized/unexpected users should not operate the devices). For ex-

ample, popular IoT locks such as Kwikset Aura [2] manage/maintain

access code (used for unlocking) that is not shared with the cloud

(so a compromise of the cloud or communication channels will

not compromise the home’s physical security). In the meantime,

the IoT devices leverage the IoT cloud for complicated user man-

agement (user roles, permission, delegation, revocation, etc., see

Section 3). However, the proper security coordination among the

cloud service, the companion app, and the IoT device turns out to

be difficult to make right. Due to the lack of proper definition of

access control models in the cloud and devices for MaaG IoT (the

models often differ between the two), unclear and unsound results

of their combined control efforts can arise (see below).

Also challenging is the lack of proper consistency model for

the access policies between the cloud and IoT devices. MaaG IoT

is inherently network-partitioned [13] and devices often are not

connected to the cloud to fetch the latest access policies (e.g., revo-

cation of a certain user). For example, one might think an “eventual

consistency” model [36] (a benign user can help synchronize ac-

cess policies after a malicious attacker’s access is revoked) can be

a reasonable model. However, we find that it is tricky and error-

prone to implement such models for MaaG IoT. Further, even after

the devices are connected to the cloud through the gateway, the

necessary policies to synchronize between the cloud and devices

are never properly defined, easily leaving real-world devices under

insecure states (Section 5). The security challenges come with seri-

ous real-world security, privacy, and safety implications, but were

never systematically studied.

Security analysis and real-world flaws. To understand the se-

curity implications of real-world MaaG IoT, we pick ten top-of-

the-line MaaG IoT devices. After reverse engineering their custom

protocols, we systematically recovered their conceptual models

related to Access Model Translation and Synchronization. These

lead to discovering several classes of security flaws that can have

serious consequences. They include (1) allowing a temporary user

retaining permanent access to the device; (2) allowing a temporary

user to share her access to other unauthorized users; (3) allowing a

temporary user to escalate her privilege.

Even though similar forms of attacks have been demonstrated

in the past [36, 50], we wish to point out that the extent of the

consequences and the root causes they rely on are substantially

different. For example, [36, 50] have demonstrated that a malicious

temporary user can retain access to a smart lock for as long as they

can block the lock from synchronizing the access control policy

with the cloud — if a benign user is able to help the lock synchronize,

then the temporary user will lose access. However, in the attacks

we demonstrate, a temporary user can retain access forever even

after the permission is revoked at the cloud and the corresponding

policy being successfully synchronized with the IoT device. The

stronger results are obtained because of our superior understanding

of the fundamental operating model of MaaG IoT.

Table 1: Security models of different MaaG IoT devices

MaaG IoT device Access Management Offline Availability

Level [8] Remote Guest & Admin

August [1] Remote Admin only

Yale [11] Remote Admin only

Ultraloq [10] Local Admin only

Kwikset Aura [2] Remote Guest & Admin

Honeywell [6] Remote Guest & Admin

Schlage [9] Remote Guest & Admin

Geonfino [5] Remote Guest & Admin

Tile [4] Remote Guest & Admin

Chipolo [3] Remote Guest & Admin

Secure protocol design. Facing the security challenges of MaaG

IoT, we distill common design goals to avoid the pitfalls that we

witnessed in real-world systems. We then design a coherent access

control model/mechanism, and a novel lightweight protocol to

securely synchronize access policies between a cloud service and

an IoT device without trusting the gateway, which can defend the

attacks we have discovered.

Contributions. We summarize the contributions of the paper as:

• We distill and formulate the unique security challenges of MaaG

IoT, from the two main aspects: access model translation and access

policy synchronization.

• We study ten top-of-the-line MaaG IoT devices and discover a

number of weaknesses. They allow us to develop a number of

attacks, achieving stronger consequences than previous results.

• We design and implement a secure protocol that is tailored to

MaaG IoT. It avoids all the common pitfalls and is lightweight.

2 BACKGROUND
In this section, we first introduce two major and maybe contra-

dicting functionalities of MaaG IoT devices: remote access shar-

ing/revocation and offline availability. We then describe the com-

mon workflow of MaaG IoT.

2.1 Remote Access Sharing/Revocation and
Offline Availability

As of 2022, we observe that all MaaG IoT access control systems in

this paper have tried to enable access sharing/revocation and offline

availability. However, different systems employ slightly different

security models, as shown in Table 1.

We can see that all devices except Ultraloq can natively support

remote access sharing/revocation. It means that a (privileged) user

doesn’t need to physically approach the IoT device to share/revoke

access to/from an invitee: she can simply add that invitee to the

cloud-side access control policy [34]. The invitee’s app can later

ask the cloud to endorse its eligibility to access the device, e.g., by

authenticating to the cloud to obtain an access token/credential.

In contrast, in local access sharing/revocation, a (privileged) user

has to physically approach the IoT device to share/revoke access

to/from an invitee.

3286

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

We can also see that all devices support offline availability: users

may access the device even when their apps do not have Inter-

net connections. This can be done, for example, using access to-

kens/credentials that are recognized by the IoT devices directly.

Offline availability has become an indispensable feature for smart

locks because otherwise Internet outages or server downtime can

lock out residents. It is interesting to see that some devices allow

offline availability for low-privileged guest users while others allow

only high-privileged administrative users. In any case, this feature

is prevalent.

2.2 CommonWorkflow of MaaG IoT
To implement the two functionalities, IoT device manufacturers

deploy cloud services to maintain generally authoritative and up-

to-date access policies in order to decide whether a user is allowed

to access a device at a certain time. However, an IoT device can also

have its own on-device access control model and mechanism, which

are required by the device to decide whether a user agent (i.e., the

companion app) can have access, as well as to implement offline

availability which can improve usability as mentioned earlier.

With the MaaG IoT architecture, the device manufacturer’s of-

ficial IoT device companion app acts as the gateway (also, a user

agent) between the cloud and the device [15, 77, 78], and translates

responses from the cloud into application-layer messages under-

stood by the device. These messages are delivered to the device

using wireless protocols such as Bluetooth Low Energy (BLE). A

device may also have a feedback mechanism to inform the cloud

that a specific access policy update has been applied. Currently,

ad-hoc access policy synchronization protocols are designed by

different IoT device manufacturers to implement remote access

sharing/revocation and offline availability.

Figure 1 illustrates that with theMaaG IoT architecture, the cloud

service and the IoT device have different but closely related access

control models/mechanisms. For example, an MaaG IoT device may

have offline access code, allowing device access without using the

companion app, that is not synchronized to the cloud at all. The

cloud service, companion app, and the IoT device have to cooperate

to securely synchronize access policies between the cloud service

and the IoT device in order to ensure secure access control. In the

next section, we will show that theMaaG IoT architecture has subtle

and serious security implications.

3 SECURITY RISKS IN COOPERATION OF
MAAG IOT

Overview. A trustworthy MaaG IoT system needs security cooper-

ation and coordination among the cloud, the companion app, and

the IoT device. In MaaG, the cloud generally serves as the authority

to issue/manage policies and the device is the party to enforce the

policy when a user attempts to operate the IoT device (e.g., to unlock

a smart lock). The cloud can support/manage increasingly compli-

cated access control semantics and models, such as complicated

user roles [64], delegation relations between users [44, 76], and

grouped or location-based permissions [61, 65]. In the meantime, it

is difficult for the device to maintain access semantics/policies of the

cloud’s complexity, which can be overly complicated and expensive,

e.g., considering power consumption [59, 81], delays/difficulties in

firmware updates [35, 57, 73], or even the increasing cost of soft-

ware development [43]. For example, a smart lock may not need

to be aware of users’ delegation relations (e.g., whether user A’s

permission is granted by user B), as long as it can serve user A

when he attempts to operate the lock while denying unexpected

users. To support the access control in MaaG IoT, real-world manu-

facturers developed a set of protocols to translate the semantic-rich

cloud-side access models/policies to lighter weight device-side ac-

cess models/policies, presenting a mechanism which we call access
model translation (AMT). Section 4 reports the first and most in-

depth security analysis of real-world AMT processes, and reveals

the fundamental security design challenges with our end-to-end

attacks.

Further, the cloud intends to keep the device-side policies in sync

with the cloud, although this is difficult since MaaG IoT essentially

is featured with network partition and weak consistency. Section 5

shows that the prior “eventual consistency” model [69] for data syn-

chronization in distributed systems bestows low security assurance

for modern MaaG IoT, and real world vendors and stakeholders

failed to fully understand and come up with a sufficient access pol-

icy consistency model between the cloud and the MaaG IoT device,

leaving tremendous space for new attacks.

In this paper, we summarize the flaws we discover into two

classes related to access model translation (Section 4) and access

policy synchronization (Section 5) in the MaaG IoT scenario.

Threat model. First, we assume the cloud service and the IoT de-

vice are trusted. We also assume the mobile device and the compan-

ion app of the legitimate user (e.g., owner) are trusted (e.g., free of

malware). However, we assume the companion app and mobile op-

erating systems of the attacker (e.g., temporary and low-privileged

users such as invited guests) can be arbitrarily tampered. For ex-

ample, an attacker can root/jailbreak his own smartphone [74, 84],

reverse engineer the publicly available companion app, and modify

the app. More specifically, the attacker can read any user man-

uals or developer-facing APIs (if any) and understand the proto-

col/interactions between the device, the companion app, and the

cloud service. This means that the attacker can arbitrarily replicate

and change the logic of the companion app to interact with the

device and the cloud. We do not assume the attacker can inspect or

alter either the device firmware (e.g., not even a factory reset) or

the cloud-side code [71].

The goal of a malicious temporary user is to retain her access

for as long as possible, to distribute such access further, or even to

escalate her privilege.

Responsible Disclosure. At the time of writing, we have reported

every product vulnerability in this work to related vendors, and

we have received acknowledgements from seven vendors. Three

vulnerabilities already have unpublished CVE numbers, and four

vendors have already patched their vulnerabilities (e.g., August/Yale,

Level, and Geonfino).

4 RISKS IN ACCESS MODEL TRANSLATION
A key security challenge in MaaG IoT is how the IoT cloud can

translate modern semantic-rich security policies/models to lighter

weight policies for the device side to enforce. By studying a set of

3287

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

Kwikset Lock

2. Challenge String rslock3. Challenge String rslock

5. cr = σ(rslock) 6. cr = σ(rslock)

4. If the user is

authorized

1. Request Challenge rslock

7. Authorized OS-wide
BLE bonding is built

HTTPS

BLE

Kwikset Cloud

Figure 2: Kwikset AMT process

ten popular MaaG IoT devices, our study shows that it is gener-

ally difficult for mainstream IoT manufacturers to ensure that the

policy-translation preserves sufficient security semantics, and con-

sequently it is difficult for the IoT devices to soundly enforce access

policies (Weakness 1, Section 4.1). Further, the device-side access

policy/model is not merely a simplified version of the cloud-side

policy, and the device may also maintain access policies that are

not intended to be fully shared and synchronized with the cloud,

of which the management is often chaotic and vulnerable in reality

(Weakness 2, Section 4.2).

4.1 Weakness 1: Semantic Loss in AMT
Although the MaaG IoT device commonly aims to support lighter

weight access model than the cloud, it ought to maintain commen-

surate, sufficient semantics when the complex cloud-side access

model is translated to the device-side, a security-critical process

that was never adequately defined.

In MaaG IoT, the device owner can manage users (e.g., managing

user roles such as admin, guest; inviting guests and granting them

individualized permissions such as locking, unlocking, and inviting

additional users). Such modern access management is performed

through the IoT companion app (mobile app), and the policies are

maintained on the device manufacturer’s cloud side.
1
Although the

cloud offers functionality-rich access management, in the MaaG

architecture (Section 2), it is the IoT device that enforces access

policies when a user attempts to operate the device (e.g., to unlock

the smart lock) and for this purpose, the device side maintains a

simpler access model 𝐴𝑀𝐷 . For example, the access model 𝐴𝑀𝐶 in

the cloud side includes managing the access roles 𝑅 (e.g., whether

it is an admin user or guest user), delegation relations 𝐷𝑅 (e.g.,

user A authorized user B as a guest), and permissions 𝑃 (e.g., lock,

unlock, add access code) of IoT users based on their user identity

𝑖𝑑 (e.g., email address, phone number, or account nickname) and

supports sophisticated user authentication mechanisms 𝑈𝐴 (e.g.,

entering passwords in the mobile app, clicking links in the email,

or 2FA [16]):

𝐴𝑀𝐶 := (𝑖𝑑, 𝑈𝐴, 𝑅, 𝑃, 𝐷𝑅) (1)

In contrast, 𝐴𝑀𝐷 (the device side model) might not be main-

taining the user IDs or supporting the complicated authentication

(likely for simplicity and the lack of resources/hardware such as

I/O [48]). To support access control, a user’s identity and her permis-

sions from the cloud-side access model is translated to an abstract

notion of secret credential 𝑐𝑟 and a set of attributes 𝐴𝑡𝑡𝑟 related

to 𝑐𝑟 (e.g., including permissions), which are all recorded in the

1
The term “app” in this paper always refers to the IoT vendor’s mobile app (sometimes

called companion app).

device-side access model:

𝐴𝑀𝐷 := (𝑐𝑟, 𝐴𝑡𝑡𝑟) (2)

The credential 𝑐𝑟 is endorsed by the cloud (e.g., based on a sig-

nature, see below), so the device is assured that it represents an

intended/authorized user. When an intended user wants to operate

the device, her IoT mobile app presents 𝑐𝑟 (obtained from the cloud,

see below) to the device, which can make access decisions based

on information stored in its access model 𝐴𝑀𝐷 .

The key question here is whether 𝐴𝑀𝐷 maintains sufficient se-

mantics commensurate with 𝐴𝑀𝐶 for making access decisions. In

our study, we found that𝐴𝑀𝐶 and𝐴𝑀𝐷 are often extended/customized

by individual vendors based on the access control features they offer

(e.g., grouped permissions based on locations on SmartThings [61],

user roles, etc.). In the absence of a standard, security-assured mech-

anism to translate 𝐴𝑀𝐶 to a corresponding access model 𝐴𝑀𝐷 that

features light footprint and efficiency — called access model transla-
tion or AMT in this paper — we show that mainstream IoT vendors

generally failed to preserve commensurate semantics when trans-

lating the access models and policies between the cloud and device.

We elaborate on the AMT processes of a few vendors, their security

weaknesses, and our attacks as follows.

Lost identities in AMT. Our study shows that in the absence of

a principled security guideline and approach, real-world manufac-

turers’ efforts to translate the 𝐴𝑀𝐶 side user identities, roles and

permissions to the device-side counterparts in 𝐴𝑀𝐷 were ad-hoc

and could easily go wrong.

Figure 2 outlines the AMT process we recovered from Kwikset

(i.e., Kwikset Aura Smart Lock [2]) by reverse engineering the Kwik-

set mobile app and app traffic. The user with the Kwikset app first

needs to be authenticated to the lock before operating it. Based on

a BLE connection (non-authenticated, based on Just Works [66]),

the Kwikset app obtains a random string 𝑟𝑠𝑙𝑜𝑐𝑘 from the lock (step

1&2), and sends it to the Kwikset cloud (step 3). Based on the cloud-

side policy in 𝐴𝑀𝐶 , if the user is authorized (e.g., a guest, tenant,

employee authorized by the owner/administrator), the cloud replies

with a user credential 𝑐𝑟 , which is a signature signed on 𝑟𝑠𝑙𝑜𝑐𝑘 by

the cloud (step 4&5). The lock receives 𝑐𝑟 (step 6), verifies the sig-

nature, and thus is assured that the user is authorized by the cloud.

Then the lock trusts the user app and establishes a BLE bonding

with the mobile phone following a standard BLE pairing/bonding

process, so her phone can connect to and operate the lock in the

future without going through steps 1 to 6 again. After these steps,

the lock drops 𝑐𝑟 and relies solely on the BLE bonding to recognize

an authenticated user.

There are multiple problems in the AMT process of the Kwikset

Aura lock, as found out in our study. The first is the loss of trusted
user identities in𝐴𝑀𝐷 , which can lead to a number of consequences.

3288

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Although the IoT device is only bound with authorized users who

have authenticated to the Kwikset cloud and are endorsed by the

cloud, the device side 𝐴𝑀𝐷 does not maintain the user’s identity

or the user-related credential 𝑐𝑟 known to the cloud (as mentioned

above). Instead, the lock maintains only a BLE-level binding rela-

tion, i.e., (𝐵𝐿𝐸_𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑎𝑚𝑒, 𝐵𝐿𝐸_𝑏𝑜𝑛𝑑𝑖𝑛𝑔_𝑙𝑜𝑛𝑔_𝑡𝑒𝑟𝑚_𝑘𝑒𝑦) with
the phone denoted as 𝑟_𝑏𝑙𝑒; 𝐵𝐿𝐸_𝑏𝑜𝑛𝑑𝑖𝑛𝑔_𝑙𝑜𝑛𝑔_𝑡𝑒𝑟𝑚_𝑘𝑒𝑦 is also

maintained on the user’s phone so she can connect to the lock in

the future without asking the cloud again (for offline access). Note

that here the 𝐵𝐿𝐸_𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑎𝑚𝑒 (e.g., JaneDoeNexus6) is provided

by the attacker-controlled Kwikset app, which can be set to any

arbitrary value unrelated to the user’s identity known to the cloud

(𝑖𝑑 in 𝐴𝑀𝐶 , see Equation 1), e.g., the user ID or email address. This

means that a benign “owner” will not be able to revoke the ac-

cess of a malicious user at the device, because there is no mapping

stored anywhere between the 𝐵𝐿𝐸_𝑏𝑜𝑛𝑑𝑖𝑛𝑔_𝑙𝑜𝑛𝑔_𝑡𝑒𝑟𝑚_𝑘𝑒𝑦 and

the original trusted user identity. Indeed, based on the Kwikset user

manual [7], when a benign “owner” (or “admin” user) denoted as

𝑜𝑤 wants to revoke the user’s permission (a delegatee user), 𝑜𝑤 can

use the Kwikset app to remove a delegatee user based on her user

ID, which will only remove the user from the cloud (𝐴𝑀𝐶) behind

the scene.

To try to clean up𝐴𝑀𝐷 , we find that𝑜𝑤 will have to go physically

to the lock and use the Kwikset app to remove the user from the lock,

although this is still problematic. Behind the scene, the app sends

a query message query_paired_smartphones to the lock (through

the BLE bonding), retrieves all recorded BLE binding relations such

as 𝑟_𝑏𝑙𝑒 , and displays device names such as 𝐵𝐿𝐸_𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑎𝑚𝑒 for

the “owner” to select and delete. The owner’s selection of device

name is sent to the lock, which correspondingly deletes the 𝑟_𝑏𝑙𝑒 ,

so the target user can no longer connect to (or control) the lock. The

problem is that in𝐴𝑀𝐷 , 𝐵𝐿𝐸_𝑑𝑒𝑣𝑖𝑐𝑒_𝑛𝑎𝑚𝑒 is untrusted, not reliably

related to user identities (or the user credential 𝑐𝑟 known to the

cloud). In practice, a malicious delegatee user (e.g., an Airbnb/hotel

guest [52], prior employee) can use a deceptive device name (e.g.,

name of the owner), so the real owner can easily get confused and

fail to locate the delegatee user correctly, or mistakenly believe the

delegatee is already removed.

Lost roles, permissions, and lifecycle control in AMT. The
problem of the above AMT process did not stop here. Unlike Au-

gust/Yale locks (see §5.2) that differentiate user roles based on a

logical “slot” number recorded in the device, the design of Kwikset’s

access model 𝐴𝑀𝐷 lacks the semantics to identify user roles and

their different privilege levels. Specifically, although the Kwikset

cloud keeps track of each user’s roles and permissions in 𝐴𝑀𝐶 (e.g.,

only “admin” users can invite other users, only authorized users

can bind with the lock), in step 6 outlined in Figure 2, when the

lock receives a credential 𝑐𝑟 that assures the legitimacy of the user,

there is no companion attribute associated with 𝑐𝑟 that can describe

the user’s role or permissions. Interestingly, the “privilege level” at-

tribute seems to be recorded locally by the app. For a low-privileged

guest user, the Kwikset app will not display privileged operations in

its GUI, e.g., adding/reading offline access code, or removing other

users from the lock. Nevertheless, the attribute is apparently miss-

ing in the device’s𝐴𝑀𝐷 . This means that a malicious low-privileged

guest user who may only have temporary access to the lock (e.g.,

an Airbnb/hotel guest, visitor [79], prior employee) can essentially

act as an “owner” and send any privileged commands supported by

the lock. These privileged commands can be practically obtained

by reserve engineering the Kwikset app.

PoC Attack. For Kwikset Aura Smart Lock, we implemented the

following attack where a less-privileged guest user can perform

high-privilege (i.e., security-critical) operations. First, we, acting

as an invited guest attacker using attacker’s Kwikset account (au-

thorized as a guest user of the device) and attacker’s own smart-

phone, will authenticate to the cloud and obtain a corresponding

application-layer credential to the guest account. This credential

can then be presented to the lock using the non-authenticated

BLE connection, in order to establish a BLE bonding (pairing) with

the lock. Once the BLE bonding is established, the attacker can

send commands directly to the lock from his smartphone. Even

though the app GUI will not contain options for performing any

privileged operations, e.g., creating/reading access codes, we by-

pass that by modifying the Kwikset app states/logic using dynamic

instrumentation tools (e.g., Frida [62]). Specifically, we crafted

BLE messages to the device containing privileged operations, e.g.,

creating/reading access code by sending BLE messages like new
byte[]{TLV8CommandTxType.CMD_TX_TYPE_SET_ACCESS_CODE,
access_code}; where access_code is the attacker-controlled ac-

cess code. This effectively broke the security requirement that only

administrative users can create/read access code.

4.2 Weakness 2: Asymmetric and Misplaced
Security Responsibilities

In the design of MaaG, the device-side access model 𝐴𝑀𝐷 is not

merely a simplified version of the cloud-side model𝐴𝑀𝐶 . In certain

circumstances, the device needs to maintain access policies that

are not intended to be fully shared with the cloud, and thus needs

to properly coordinate its security responsibility and control with

the cloud. However, our study shows that real vendors’ design and

practice are often ad-hoc and vulnerable in reality.

For example, a Kwikset lock owner or authorized, invited users

can add offline access code to Kwikset locks (used for unlocking

without using the app, see Section 2). Specifically, the authorized

user whose Kwikset app has bound with the Kwikset lock (see

Section 4.1) can simply use the app to designate an access code, and

the app will encode the access code into a device-specific command

and send the command to the lock to add the access code. Behind

the scene, the 𝐴𝑀𝐷 recorded the offline access code denoted as 𝑎𝑐 .

While the access code is security/safety-critical, we found that 𝑎𝑐 is

not designed/intended to be shared with the Kwikset cloud, which

does not record the lock’s access code in 𝐴𝑀𝐶 . Indeed, by design,

the Kwikset cloud does not maintain any credential that can be

directly used to unlock/lock the Kwikset device — 𝐴𝑀𝐶 only keeps

track of who the authorized users are and helps them bind with

the device when they need to as outlined in Figure 2. Such a design

does help mitigate some security risks so the Kwikset cloud does

not become the single point of security failure: even if the cloud is

compromised and leaked credentials it stored, attackers would not

otherwise get the access codes to control all Kwikset users’ devices.

Despite the security benefit from this design, serious problems

arise: while a typical IoT owner may rely on the vendor’s app

(which communicates with the cloud) to remotely manage the

3289

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

device and fully inspect the accessibility states of the device (e.g.,

all current authorized users, locked/unlocked status), the Kwikset

cloud could not show there is access code added on the device,

even after a malicious delegatee user adds one during her stay (e.g.,

in Airbnb or vacation rental). Even after the owner revokes the

delegatee user from the app — an operation that actually removes

the user from 𝐴𝑀𝐶 , we found that the access code is still recorded

in 𝐴𝑀𝐷 and effectively allows the malicious user to still unlock the

smart lock after his permission is revoked from the cloud’s/app’s

perspective (see our PoC attack below). In our experiment, we

found that the owner has to go physically near the lock, so her app

could query the full status from 𝐴𝑀𝐷 in the lock: the app has a

dedicated UI to show access codes already added to the lock and

allows the owner to add/remove the codes. Such a design has two

practical problems in modern IoT usage. First, modern Airbnb hosts

and hospitality services often only remotely manage the access

for guests and leverage the vendor’s app to manage (add/remove)

users and grant/revoke access without the intention/assumption to

physically go to the house. Second, from the owner’s perspective,

the full, secure management of the IoT device is split into two

complementary parts without being made clear by the vendor: the

remote management of 𝐴𝑀𝐶 and the local management of 𝐴𝑀𝐷

(e.g., the management of access code has to be done locally), and

the oversight of managing any part, which is highly possible in

reality, can leave the device under an insecure, unintended state,

with serious security and safety implications.

PoC attacks. We implemented the following attack. We, acting

as an authorized, invited user of Kwikset Aura, first have to au-

thenticate to the cloud and obtain a valid credential and establish a

valid BLE bonding with the lock (just like the previous PoC). Then

we add a malicious access code using the attacker’s smartphone

directly to the lock via the BLE message mentioned in the previous

PoC. As discussed, such access codes are not synchronized to the

cloud. We verified that even after the owner revoked our access

permission/role from 𝐴𝑀𝐶 , and later physically removes our BLE

bonding from the lock, we can still use the previously installed

access code to unlock the lock. This is because the offline access

codes are entered through physical keypads (which are separate

from the BLE bonding). A benign owner will need to query the list

of access codes through BLE and then remove them.

5 RISKS IN POLICY SYNCHRONIZATION
In modern IoT usage scenarios (e.g., remote Airbnb/hospitality

management), the cloud and device in MaaG IoT have to rely on

guest/untrusted users’ phones as gateways to communicate and

synchronize access policies. That is, MaaG IoT essentially is fea-

tured with network partition and weak consistency. Hence, another

key challenge in MaaG IoT is the design of proper mechanism to

synchronize access policies between the cloud and device to reach a

sufficient level of consistency. The “sufficiency” and corresponding

security assumptions are yet to be well understood. Notably, even

though the classic “eventual consistency” model [69] has been pro-

posed as a potential solution in similar contexts [36], it is not clear

how to properly achieve it in the context of MaaG IoT. As we show

in this section, real-world vendors and stakeholders failed to fully

understand and come up with a sufficient consistency model be-

tween the MaaG cloud and device, leaving significant opportunities

for new attacks.

5.1 Weakness 3: Inadequately Defined Causal
Consistency in Access Policy
Synchronization

In MaaG IoT, when there is a policy update on the cloud (e.g., the

owner/administrator uses the mobile app to grant/revoke permis-

sions for a user), the cloud needs to synchronize the policy update

to the device, so that the device can enforce the up-to-date policies

when a user attempts to operate the device.

m1 = (u1, p1) m3 = (u1, R)m2 = (u1, p2) m5 = (u2, R)m4 = (u2, p3)

Level App

Level Cloud

Level Lock

Figure 3: Level Lock’s Policy Synchronization Messages

Take the Level lock as an example (Figure 3). The on-device poli-

cies in 𝐴𝑀𝐷 maintain a set of <user, permission> records and the

cloud sends policy-sync messages to the device as “updates” to the

device, e.g., to report the fact that a new user is created. For each

Level user account, a public/private key pair is recorded in the Level

app. As an example, a device owner may grant a “guest” permission,

𝑝1, to a user 𝑢1 (aiming that the user can lock/unlock the lock but

cannot configure the lock or invite other users), and correspond-

ingly the Level cloud sends the policy update as a message,𝑚1, to

the device:𝑚1, signed by the cloud, includes the public key of 𝑢1
and the permission 𝑝1. Note that in the design of Level and other

eventual consistency models [26], the app of any authorized user, if

physically near the device, serves as the Internet gateway to relay

the messages. After 𝑚1 is received by the lock, the lock records

the public key of 𝑢1. Thus, when the user 𝑢1 uses his Level app to

operate the lock, the app signs the commands with his private key,

which can then be recognized by the lock. Additionally, the owner

may grant the same user 𝑢1 another permission 𝑝2 (e.g., for lock

configuration such as adding access code, see policy-sync message

𝑚2 in Figure 3), and then revoke all his permissions by removing

the user 𝑢1 (see policy-sync message𝑚3). Additionally, the owner

might bestow another user 𝑢2 access to the device and revoke his

permission later (see𝑚4,𝑚5).

In real-world scenarios, policy-sync messages (e.g.,𝑚1,𝑚2) to ar-

rive at the device may be disordered. For example, if𝑚2 is received

after𝑚3 (e.g., due to unintended network partitions/interruptions

or intentionally manipulated reordering, see our PoC attack below)

— with the order denoted as (𝑚1,𝑚3,𝑚2) — the eventual policy

3290

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

state in the device will include (𝑢1, 𝑝2), which violates the secu-

rity expectation. Traditional distributed systems often leverage

temporal-order causal relation between messages to handle the

nondeterministic order of message arrivals to ensure that an older

version of a data object, if received later than a newer version of the

data, will not overwrite the newer data [46]. Using a state-of-the-art

causal relation model based on vector clock [31, 49, 53] (adopted by

AWS DynamoDB, an industry-leading distributed database [26]),

for example, the messages are labeled with temporal information

by the sender and messages such as𝑚1, if received later than𝑚2,

should be dropped by the receiver (𝑚1 is created earlier than𝑚2

and the recipient should not replace𝑚2 with𝑚1).
2

The proper synchronization of policies between the cloud and

MaaG IoT devices bears greater logical complexity and cannot

directly adopt the prior, industry-testified temporal-order causal

consistency models. Following the previous example, despite the

temporal order (𝑚1,𝑚2,𝑚3) with which the messages are created,

both𝑚1 and𝑚2 are important to keep regardless of their orders

to arrive (𝑚1 received later than𝑚2 should also be kept). Hence, it

appears that the causal relation between policy-sync messages in

MaaG must bear a “loose” causal relation such that regardless of

the order to receive, for example,𝑚1 and𝑚2, both messages should

be processed to update the access policy in the device. However,

the order to receive𝑚3 relative to𝑚1 and𝑚2 is security-critical

(see above). This is because𝑚3 is causally related to both𝑚1 and

𝑚2, although𝑚1 and𝑚2 are logically independent with each other.

Further, the relative order between the two groups of messages

𝑚1,𝑚2,𝑚3 and𝑚4,𝑚5 may not be security sensitive (they are con-

cerning security policies of two separate users); however, if the

cloud issues a message 𝑚6 to remove all users (or users with a

particular role concerning both 𝑢1 and 𝑢2), the order to process𝑚6

(on the device) relative to the five messages (𝑚1 to𝑚5) is security-

critical (e.g., processing𝑚6 then𝑚4 will leave the user 𝑢2 on the

device). Hence, the design here needs to clearly define the relative

logical relations between multiple policy-sync messages, and the

prior temporal causal models are insufficient for the security of

MaaG IoT access policy synchronization.

In the absence of an in-depth security analysis and properly

designed mechanism for MaaG policy-sync, our study indicates

that real-world MaaG vendors and systems failed to appreciate

the essential logical relations between the policy-sync messages,

leaving opportunities for practical attacks. Further complicating a

proper design of the MaaG policy sync is goals to ensure the cloud’s

awareness of the latest device-side policy states, since an IoT user

would naturally rely on the cloud to understand/manage status

of her device (e.g., using the mobile app as a control console, see

2
In a distributed system, multiple storage/computing nodes maintain the same data

objects (as replicas for high availability) and when any one node has/receives an

updated version of the data, it tries to send out the data to other nodes, aiming that all

nodes eventually have consistent, latest version of the data (also known as eventual

consistency [69]). To this end, in the prior models, a sender node should label temporal-

order version information (called version-clock) along with the data (e.g., based on

vector clock [31, 49, 53] adopted by AWS DynamoDB, an industry-leading distributed

database [26]), and the version-clock can indicate causal relation between multiple

copies of a data object. For example, a sender node𝑛𝑜𝑑𝑒_1 sends out multiple versions

of a data object 𝑜𝑏 𝑗 it received, with each version accompanied with the version-clock

(𝑛𝑜𝑑𝑒_1, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛_1) , (𝑛𝑜𝑑𝑒_1, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛_2) , etc. Although the multiple versions of

the data object may not arrive at other nodes strictly following the temporal order (e.g.,

due to network partition or failure), a node that receives the data with temporally newer

version-clock can disregard a later received copy with temporally older version-clock.

Section 1). In the case of Level (Figure 3), when the lock receives a

policy-sync message (e.g.,𝑚1,𝑚2), it replies to the cloud (through

the mobile as the Internet-gateway) a response message indicating

that the particular message (e.g.,𝑚1,𝑚2) has been received and pro-

cessed on the device. Again, such a response message, aiming that

the cloud is notified about the policy status on the device, cannot

reliably reach the cloud based on the order they are generated due

to the network partition nature in MaaG. For example, a response

message to𝑚2 might arrive at the cloud later than the response

message to𝑚3 (because the device fundamentally lacks a reliable

Internet connection in MaaG IoT), even if𝑚2 and𝑚3 arrive at the

device in the right temporal order. In such a situation, it is non-

trivial for the cloud to know the order of𝑚2 and𝑚3 processed at

the device and thus the real policy states on the lock. We find that,

for the Level lock, a malicious user (e.g., an authorized employee,

tenant, guest) could manipulate the order of 𝑚2 and 𝑚3, or the

response messages of𝑚2 and𝑚3, such that the policy state on the

device will be different from the one on the cloud.

PoC attacks. Due to inadequately defined causal consistency, an

attacker, acting as a malicious invited guest, can reorder or re-

transmit messages when forwarding them from the cloud to the

device using the attacker’s smartphone. This can lead to various

unexpected states at the Level lock — in this case, the attacker can

retain its access even after it is revoked by the owner. We first did

a trivial experiment as follows: when the cloud issues an initial

remote invitation message that grants the attacker access, denoted

as𝑚𝑎𝑑𝑑𝐴 and later a revocation message𝑚𝑟𝑒𝑣𝐴 removing the at-

tacker’s access, an attacker can simply reorder the two messages if

both are forwarded through the attacker’s smartphone. It would

then cause the𝑚𝑟𝑒𝑣𝐴 to apply first, which effectively does nothing

at the lock, and then the𝑚𝑎𝑑𝑑𝐴 message will allow the attacker to

gain access subsequently. However, a more likely scenario is that

𝑚𝑎𝑑𝑑𝐴 and𝑚𝑟𝑒𝑣𝐴 are sent some time apart, e.g., a guest stays for

a few days in a rental property and then leave. In such a scenario,

we show that an attacker can first apply the initial𝑚𝑎𝑑𝑑𝐴 and still

retain access after𝑚𝑟𝑒𝑣𝐴 . What the attacker has to do is to save a

copy of the original𝑚𝑎𝑑𝑑𝐴 while forwarding it to the lock. Later

on, the attacker simply re-sends it after𝑚𝑟𝑒𝑣𝐴 is applied (possibly

by another benign user), re-allowing the attacker access. It’s worth

mentioning that these messages do have timestamps and the lock

can see that the re-sent message𝑚𝑎𝑑𝑑𝐴 is an older one compared

to𝑚𝑟𝑒𝑣𝐴 . Nevertheless, because of the unreliable nature of message

delivery in MaaG IoT, the device cannot expect to see messages

arrive in order and would therefore still accept an older message,

enabling the attack.

Discussion. Notably, a quite related work [36] proposed adopting

eventual consistencymodel thatmay apply toMaaG scenarios when

the cloud needs to synchronize policies to the device. However, the

approach, based on a few key assumptions, is difficult to work in

modern MaaG architecture, and has not been adopted in any of the

devices we studied. Above all, it assumed completely equivalent

access models between the cloud and device. In Section 3, we show

that real-world MaaG cloud needs to maintain more complicated

access models than the device; for example, the device may not

be able to authenticate the user or directly maintain the user ID,

and in reality needs an AMT process, which is critical but was not

considered in [36]. Second, [36] is based on relatively simple access

3291

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

4. E(key, r3|r4), sn

1. r1, r2
2. E(key, r1|r2), sn

7. Session encrypted with
key r1|r2|r3|r4

3. E(key, r1|r2), sn

HTTPS BLE

5. E(key, r3|r4), sn

6. r3, r4 August/Yale Lock

AMT1

AMT2August/Yale Cloud

Legend: Keyadmin, sn = 0 Keyguest, sn = 254

Figure 4: August Online Authentication Protocol

models (access control list) compared to those in real devices and

assumed that when there is a policy update on the cloud, the cloud

sends its entire policy to the device, which can be cumbersome for

IoT with limited resources/power and is not the case in real MaaG

IoT systems we observed.

5.2 Weakness 4: Lack of Conflict Identification
in Access Policy Synchronization

Our study finds that in the absence of a reliable, standard mech-

anism to synchronize access policies, there are a variety of possi-

bilities in the design space of MaaG IoT that can be leveraged by

attackers to cause conflicts of access policies between the cloud and

devices. When the conflict is indeed introduced, there lacked the

proper understanding and techniques to identify the conflicts, not

to mention adequately reconcile them without serious impacts on

availability and usability.

The August Smart Lock [1] and the Yale Smart Lock [11], among

the most popular in the U.S. market of smart locks, come with a

relatively complicated interaction protocol between the cloud and

locks leveraging the mobile phone as the gateway (based on their

US Patent No. 2016/0189454A1 [42] and a third-party analysis [41]).

The protocol offers multiple advanced capabilities. In particular,

two offline access features are provided: (1) in-app offline access

(even if the cloud is temporarily down or the app loses Internet

access, authorized admin users’ app can still operate the lock), and

(2) offline access code (used for unlocking without the app, see

Section 2). We find that the sophisticated access control features

in modern MaaG IoT can easily go wrong and lead to intractable

access-policy inconsistencies between the cloud and devices.

Figure 4 outlines the patented access management protocol in-

volving the August/Yale cloud service, mobile app, and lock. Each

lock comes with two built-in, persistent secrets pre-shared with

the cloud under the factory setting, namely 𝑘𝑒𝑦𝑎𝑑𝑚𝑖𝑛 and 𝑘𝑒𝑦𝑔𝑢𝑒𝑠𝑡
(recorded at two logical slots, slot 0 and slot 254 respectively in

𝐴𝑀𝐷). At a high level, a legitimate user can fetch a token 𝑡𝑛 en-

crypted by the cloud with the key corresponding to her role (admin

or guest), so the device receiving the token can determine her le-

gitimacy and role based on the key needed to decrypt the token.

More specifically, the app sends two random numbers 𝑟1 and 𝑟2
(step 1); the cloud service encrypts them to obtain token 𝑡𝑛 and

sends 𝑡𝑛 to the lock (step 2 and 3); the lock decrypts 𝑡𝑛 to obtain 𝑟1,

𝑟2, knows the user’s role based on the decryption key needed, and

encrypts two new random numbers 𝑟3 and 𝑟4 using the same key,

and sends the result 𝑟𝑡 to the cloud (step 4 and 5); the cloud decrypts

𝑟𝑡 to obtain 𝑟3 and 𝑟4 and release them to the app (step 6). From

this point of time, the app and lock both know the four random

numbers and concatenate them to form a 128-bit value 𝑟1 |𝑟2 |𝑟3 |𝑟4
as a session key. The app can then send commands corresponding

to the user’s role (e.g., locking, unlocking, configuring) encrypted

with the session key.

Exploiting offline access features. Since a session can expire

soon (after tens of seconds), to support sophisticated fault tolerance

(e.g., the app works even when the cloud is temporarily down [12],

see above), the August/Yale lock supports two offline-access fea-

tures. We found that supporting such features unwittingly bestows

the mobile gateway excessive trust. Exploiting the trust, we iden-

tified at least two practical opportunities for a malicious user to

manipulate the interaction process and introduce inconsistent pol-

icy states between the cloud and device. First, to enable the offline

app (either the app lost Internet access or the cloud is down) to

access the device, based on an established, valid session, the app

can add a new key, such as 𝑘𝑒𝑦𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 , to the lock (by calling a

lock API), recorded at a logical slot in the device 𝐴𝑀𝐷 (with a slot

number between 1 to 253, in parallel to the two built-in keys at

slot 0 and 254 discussed above). When the app lost connection to

the cloud (and thus cannot establish a fresh session), 𝑘𝑒𝑦𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 ,

known to both the app and lock, is used to derive a new session key

between the app and lock similar to the process in Figure 4. A fun-

damental problem here is that, in modern MaaG IoT contexts, the

mobile gateway is not always honest (e.g., a guest or more generally

delegatee user) and after the 𝑘𝑒𝑦𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 is added to the lock, there

lacks a reliable protocol for the cloud to fully monitor the addition,

existence, or revocation of the 𝑘𝑒𝑦𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 . As a consequence, when

the August/Yale device owner removes the authorized user from the

cloud, she could not track any 𝑘𝑒𝑦𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 left by the user or identify

any inconsistent policy states between the cloud and the lock.

Second, the August/Yale locks support offline access code whose

states are not reliably synchronized between the cloud and device.

Specifically, based on an established, valid admin session, the user

app can add an offline access code to the lock. The user app is

supposed to synchronize such a policy to the cloud (by calling the

cloud API to record the same offline code to the cloud), but it does

not have to do so possibly because August/Yale favors the offline

support or fault tolerance. Consequently, even if the owner removes

the invited user from the cloud-side policy, the user retains access

to the lock with the offline access code.

PoC attacks.We, acting as an attacker with owner (August’s/Yale’s
terminology equivalent to admin) privilege, could inject a malicious

3292

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

offline key into the August and Yale Smart Lock without having the

offline key recognized / recorded at the cloud. Specifically, we first

allow the attacker’s app to complete its handshake with the lock

(see Figure 4), so that the app is authenticated to the lock as owner
and can add new offline keys to the lock. By design, when a benign

user attempts to add an offline key via app GUI, the app will check

whether the offline key has been successfully added to the lock

via BLE, and subsequently inform the cloud about the success or

failure. However, an attacker can simply change the app’s behavior

(again using dynamic instrumentation as mentioned in other PoCs)

and omit the last step of informing the cloud. This means that the

cloud will never be aware of the fact the offline key is successfully

installed on the lock. Even after another honest owner user revoked
the attacker’s cloud-side access and then physically synchronized

the lock with the cloud, the attacker could still retain access to the

lock (e.g., to lock/unlock the smart lock) using the “hidden” offline

key. This is because the lock itself does not have a way to report its

current policy state to the cloud.

6 SUMMARY AND DISCUSSION OF FLAWS
AND ATTACKS IN ALL MAAG IOT DEVICES

For the sake of clarity, we do not go into the details of all ten MaaG

IoT devices which we analyzed. However, we summarize all the

results in Table 2, which shows that not a single MaaG IoT device is

free of the vulnerabilities we discovered. As we can see, weakness

1 is the most common flaw that is observed in five smart locks and

two item trackers, showing the generality of the weaknesses that we

have found. For example, Ultraloq, Honeywell, Schlage, Geonfino,

Tile, Chipolo all implement access sharing/revocation by sharing

static keys that never change/rotate to untrusted users/invitees.

Once the keys are known to the untrusted users/invitees, they can

always dynamically instrument the companion apps to control the

IoT devices. We have developed PoCs for all of these devices, show-

casing that an attacker can retain unfettered access with the static

keys, even after their accesses being “revoked”. Since these attacks

are straightforward to understand, we omit the details. Vulnerabili-

ties of this style is categorized as weakness 1 (semantic loss in the

AMT process) because the static key (after the AMT) does not retain

any of the original information in 𝐴𝑀𝐶 , e.g., user id, permissions,

access time. Interestingly, even though some smart locks share the

same weakness (e.g., weakness 1), they can lead to different attack

consequences. This is because the underlying flaws sharing the

weakness may differ. The next most common weakness is weakness

4, affecting three smart locks.

Generality of the flaws. We have showcased the flaws in 8

smart lock devices and 2 other IoT devices. We believe the flaws

we identify are general across an even a wider range of MaaG IoT

devices, as long as they have the notion of access sharing. We see

that it is the de facto standard that the IoT cloud will maintain

a primary copy of the access control policy to facilitate remote

management. On the other hand, the IoT device itself needs to

be able to enforce the policy in some way, and it needs to do so

independent of the cloud due to the offline access requirement. This

implies that they will need some version of the policy from the

cloud. As such, access model translation and synchronization are

natural concerns for these MaaG IoT devices. In addition, there is a

Table 2: Summary of Measurement Results

MaaG IoT device Weakness Consequence Google Play Installation

Level [8] 3 (a) 10k+

August [1] 4 (a) 1,000k+

Yale [11] 4 (a) 100k+

Ultraloq [10] 1,4 (a) 100k+

Kwikset Aura [2] 1,2 (a),(c) 100k+

Honeywell [6] 1 (a),(b) 1,000k+

Schlage [9] 1 (a) 100k+

Geonfino [5] 1 (a),(b) 100k+

Tile [4] 1 (a),(b) 5M+

Chipolo [3] 1 (a),(b) 500k+

(a) allowing a temporary user retaining permanent access to the MaaG IoT device;

(b) allowing a temporary user to share the access to other unauthorized users;

(c) allowing a temporary user to escalate her privilege.

trend of IoT devices becoming more and more multi-user friendly.

For example, we have seen a number of recent studies (described

in related work) covering a variety of IoT devices that allow device

sharing across users [36, 39, 50].

7 MITIGATING VULNERABILITIES IN MAAG
IOT ACCESS CONTROL

In this section, we first present the security goals of a secure MaaG

IoT access control system. Then, we design a novel protocol that

satisfies all the security goals and defends against all identified

MaaG IoT attacks. After that, we perform formal security analyses

that can provide security guarantees for the proposed protocol.

Finally, we implement the protocol end-to-end to show that it is

practical in the real world.

7.1 Security Goals
The security goals of our design are the following: (1) only currently

and explicitly authorized users according to the access policy on the

cloud can access the IoT device, subject to a bounded delay (config-

urable) that allows users to retain access for some limited time, (2)

permanent users (e.g., owners) can enjoy “offline availability” [50]

with an extended period of time (configurable).

7.2 Secure Protocol Design
High-level Design. A key principle in our design is that we force
the user app to help synchronize the cloud-side policy to the IoT device
while authenticating to the IoT device. To implement this, we require

some form of “credentials” the app has to acquire through the

cloud when interacting with the IoT device. During the process of

acquiring the credentials, the app has to also relay the most recent

device-side access policy to the cloud service for it to perform any

appropriate access model translation and achieve cloud-to-device

synchronization. The credentials have limited lifetime of validity

which is configurable depending on the privilege level and the

desired trade-off between security and usability. The longer the

lifetime, the more convenient and offline accessibility it provides.

On the other hand, longer lifetime also means that an attacker

can potentially retain longer access (if the IoT device does not get

synchronized with the cloud through other channels, e.g., a benign

user app). Below we detail the design of our Secure Access Policy

Synchronization (SAPS) Protocol.

3293

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

Untrusted
Mobile Device

Benign

Cloud Service

Benign
IoT Device

3.

{nonce, On_Device_Policy}

2. {nonce, On_Device_Policy}

1. Pre-authentication token

4.

[{nonce, Policy_Delta},

session_key, encrypted_session_key]

5.

{nonce, Policy_Delta}

DCKeyLegend:
Figure 5: Secure Access Policy Synchronization (SAPS) Protocol

Design Regarding Access Model Translation. As mentioned in

§4.1, we allow the cloud service to deploy expressive access control

and dynamically translate access models for MaaG IoT devices,

which enable lighter weight access control. For example, the cloud

can combine role-based access control with proper permission cas-

cading (i.e., revoking permissions automatically and cascadingly).

We require the MaaG IoT devices to use at a minimum the cre-

dentials associated with attributes to authenticate user apps. The

attributes should contain allowed operations (e.g., to lock/unlock,

to add a new access code, to factory-reset). Additionally, we require

the attributes to contain a configurable timeout, determining the

lifetime of credentials as mentioned above. The timeout can be set

by the cloud depending on the role of each user (an owner can have

an unlimited lifetime). The device does not have to be aware of the

various user roles and only needs to enforce the timeout instead.

In addition, our design specifies that the credentials endorsed by

the cloud should be tightly coupled (generated along) with access

model translation. Finally, our design requires that the creden-

tials be cross-cutting across all parties — cloud, app, and device.

This means that the credentials must be delivered from the cloud,

through the app (which stores the credentials), and then to the

device. This effectively can prevent the semantic loss problem in

access model translation (described in §4.1).

Design Regarding Access Policy Synchronization. As men-

tioned earlier, the key intuition is that we force apps (benign or

malicious) to participate in the synchronization of access policies.

In particular, given that a malicious user tends to have less privi-

leges, unlike the owner, their credentials will timeout and be forced

to participate in the synchronization protocol. With the correctly

designed synchronization protocol (to be detailed next), we can

then ensure the freshness of the policy without relying exclusively

on benign users (as is the case in the design of August/Yale locks,

etc.). This means that if the malicious user’s access is revoked at

the cloud, it can retain the (offline) access only for a limited time

window. We will reason about the security property of our protocol

in §7.3 and show how it can defend all attacks described previously.

Details of the SAPS Protocol.We assume the IoT device and cloud

service pre-share (1) a symmetric encryption key (Device-Cloud

Key, or DCKey in short) and a symmetric encryption/decryption

algorithm (this is fairly standard and adopted by current smart

lock vendors already), (2) a message authentication code (MAC)

algorithm, (3) an app-to-device session key encryption key (SKEK).

Note that DCKey and SKEK are never exposed to other entities

(never transmitted over the network and not observable by an

untrusted app being a MitM) and are the trust anchors our design

relies on. The usages of these keys are described later.

The cloud service dynamically translates access models and re-

leases endorsed, fresh access policy (i.e., in the form of (cr, Attr) as
mentioned in §4.1) and user-specific credentials to user apps. The

fresh access policy to be applied to the device is cryptographically

protected so that the app cannot tamper with it.

Authorized user apps have to follow the secure access policy

synchronization protocol in Figure 5 to access the device. Autho-

rized user apps can obtain the physical (MAC) address of the IoT

device from the cloud service beforehand to discover the device. We

require the app to initially authenticate to the IoT device through an

unauthenticated connection (e.g., BLE Just Works local link). Specif-

ically, we require the smartphone to obtain a pre-authentication

token from the cloud to initiate the authentication process with

the IoT device. This is necessary because otherwise any user physi-

cally adjacent to the device can initiate the entire protocol, which

can be quite expensive, and lead to DoS attacks. We reuse the pre-

authentication token generation method described in [60], which

is based on monotonically increasing counters. The device, see-

ing a valid pre-authentication token, starts the policy synchro-

nization. It generates a nonce to guarantee freshness [45, 60] and

concatenates it with all the on-device access-policy identifiers (i.e.,

On_Device_Policy). Then, the nonce and the On_Device_Policy
are encrypted with DCKey, and a message authentication code

(MAC) is calculated for the encrypted payload to guarantee mes-

sage integrity. Finally, the payload and the MAC are transmitted to

the user app (step 2 in Figure 5).

Then, the app accepts the encrypted payload and directly for-

wards it to the cloud service to obtain the fresh access policy and

the access credentials session_key and encrypted_session_key.
When receiving the encrypted payload, the cloud performs AMT.

It first checks if the user is an authorized user of the device. If

that is the case, the cloud generates a random session_key for

the upcoming app-to-device encrypted connection, and encrypts

{session_key, user_ID} using the session key encryption key (SKEK),
outputting encrypted_session_key. If the user is a guest user,

the cloud assigns guest permissions and a very short session key

validity, such as 30 seconds, to session_key. If the user is an owner
user, the cloud assigns owner permissions and a configurable ses-

sion key validity set by the IoT device manufacturer. After perform-

ing AMT for the current user, the cloud service also performs AMT

for other users of the same device, generating a fresh access-policy

to be synchronized to the device. Then, the cloud service verifies

3294

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

the MAC and decrypts the encrypted payload from the app. If the

MAC is correct, the cloud calculates the delta between the fresh

access-policy and On_Device_Policy, generating Policy_Delta.
The cloud does not modify the nonce because the nonce is a primi-

tive for the IoT device to guarantee access-policy freshness [45, 60].

The nonce’s space should be large enough, e.g., we used 64 bits in

our implementation. The cloud then encrypts the payload {nonce,

Policy_Delta} with DCKey, and calculates a MAC for the en-

crypted payload. The cloud sends back the encrypted payload to

the app along with encrypted_session_key, session_key, and
other attributes (such as the session key validity) through secure

tunnels (in our implementation HTTPS).

The app then knows the session_key is valid within a time

window, and forwards the encrypted, fresh access policy to the

device. The device verifies the MAC, decrypts the payload, and

applies Policy_Delta only when (1) the nonce in the returned

payload matches the nonce originally generated by the device itself,

and (2) the MAC is correct.

We borrow a part of Needham–Schroeder protocol [55] to let

the app initialize an encrypted session with the IoT device in

order to authenticate to the IoT device. The app first sends its

encrypted_session_key to the device. If the device finds the en-

closed user_ID in its on-device access-policy, the device encrypts

a nonce Nonce_D with the enclosed session_key and sends it

to the app. If the app can return Nonce_D - 1 encrypted with

session_key, the device grants the mobile phone’s physical ad-

dress the permissions of user_ID. The app can encrypt device

commands using session_key to operate the device when that

user’s session key is still valid (i.e., within the session key’s validity

time window).

For simplicity, we allow only one ongoing session at a time. For

each session, we set a timeout for protocol to complete (where we

consider nonce to be fresh). If the session is not completed within

the timeout, the protocol will abort. This means that the if an at-

tacker drops messages or do not participate fully in the protocol, it

will simply cause the session to abort and no policy update will oc-

cur. If the attack tampers with any messages, it will cause the MAC

check to fail and the protocol will abort the session immediately.

Definitions and properties. Directly based on the design of the

protocol, we define the following properties held by SAPS.
(1) Property of “nonce expiration” (NE):𝑇𝑛 is a time window (e.g.,

20 seconds in our implementation) for the nonce (step 2) to expire.

Based on the protocol definition, once the nonce expires, the device

will not respond to step 5. 𝑇𝑛 is configured by the system.

(2) Property of “one-time use nonce” (OUN): For any round 𝑟𝑑𝑥
of protocol execution with nonce 𝑛𝑥 , once the step 5 is successfully

finished (the device has accepted the message with 𝑛𝑥 in step 5),

𝑟𝑑𝑥 is finished and the device drops 𝑛𝑥 .

(3) Property of “device-side policy expiration” (DPE):𝑇𝑝 is a time

window specified in policy updates regarding records of temporary

users, it is a minimum of (1) the pre-configured value (30 seconds

in our implementation) and (2) the absolute timeout in the record

on the cloud-side policy 𝑃𝑐 . 𝑇𝑝 effectively determines when the

device-side policy 𝑃𝑑 will expire (we assume all records in 𝑃𝑑 share

the same𝑇𝑝 and expire together for ease of discussion), and it most

likely is determined by the pre-configured value as it is typically

much smaller than the longer-term timeout on 𝑃𝑐 . Based on the

protocol definition, 𝑃𝑑 , if not empty, expires after 𝑇𝑝 if 𝑃𝑑 is not

updated until expiration.

(4) Property of “At-most One Round of Protocol Execution at

a Time” (AOR): The execution of step 1 - 5 sequentially is called

one round of protocol execution. After step 1 is accepted by the

device, one round starts and the device generates a nonce and

starts to count down for the nonce to expire. Based on the protocol

definition, at any time t, once one round has started, if the round

has not successfully finished and its nonce has not expired, the

device does not start another round of protocol execution (i.e. the

device does not accept step 1 in another round).

7.3 Security Analysis
In this section, we elaborate the formal security guarantees of

the proposed defense (the SAPS protocol) based on generalized

theorems and corresponding formal proofs.

Assumption. According to our threat model, the device and cloud

are honest and always respond to requests based on the protocol

(step 1, step 3, step 5 being requests made by the phone/user; step

2 and step 4 being responses to their prior steps); the cloud al-

ways responds using the latest policy it has; the user/phone can be

malicious and might not follow the protocol.

Def. 1: IoT operations 𝑂𝑑 . We consider all IoT operations (e.g.,

to switch on/off, to reset) supported by the device as a finite set

𝑂𝑑 . Intuitively, in contrast, there can be operations managed by the

cloud, such as permission delegation, that may not be supported

by the IoT device.

Def. 2: No semantic loss. We consider the device-side access

policy 𝑃𝑑 has no semantic loss from the cloud-side access policy

𝑃𝑐 , denoted as 𝑃𝑑 𝜓 𝑃𝑐 (also called 𝑃𝑑 is a no-loss translation from

𝑃𝑐), if both of the following conditions hold:

(1) For any policy record 𝑟 as a tuple <𝑢𝑖𝑑, 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡, . . .>,

𝑟 ∈ 𝑃𝑐 , 𝑟 is uniquely mapped to a policy record 𝑟 ′, 𝑟 ′ ∈ 𝑃𝑑 .

(2) For any record 𝑟 ′ as a tuple <𝑐𝑟, 𝐴𝑡𝑡𝑟 (𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠′, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ′, . . .)>,
𝑟 ′ ∈ 𝑃𝑑 , for each 𝑝 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 in the corresponding policy

record in 𝑃𝑐 , if 𝑝 relates to any operation supported on the IoT de-

vice (𝑝 ∈ 𝑂𝑑), we must have 𝑝 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠′. Also, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ′ must

be 𝑇𝑝 as assigned by the system (see definition in §7.2). Note that

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠′ is a subset of 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 in 𝑟 because there may be

permissions related to operations that are supported on the cloud

only (beyond the ones in 𝑂𝑑).

Def. 3: Fresh policy. A cloud-side policy 𝑃𝑐 is fresh at time 𝑡 if 𝑃𝑐
is the latest policy of the cloud at time 𝑡 .

Def. 4: Expired policy. A device-side policy 𝑃𝑑 is expired if the

corresponding timeout 𝑇𝑝 is triggered. This means that the policy

is no longer effective on-device.

Theorem 1. Considering any state or time 𝑡 with the cloud 𝑐 , the
device𝑑 , and an arbitrary user𝑢 in the protocol (Fig. 5), the device-side
policy 𝑃𝑑 is in one of the three states (1) 𝑃𝑑 is empty; (2) 𝑃𝑑 is expired;
(3) 𝑃𝑑 is a no-loss translation of the cloud-side policy 𝑃𝑐 , where 𝑃𝑐 is
fresh at a time 𝑡 ′ earlier than 𝑡 where the time difference is bounded
by 𝑡 −𝑡 ′ ≤ 𝑇𝑝 +𝑇𝑛 (see definition of𝑇𝑝 and𝑇𝑛 in the previous section).

Intuitively, Theorem 1 says, at any time t, the device-side policy

𝑃𝑑 is either an empty/expired policy (by default denying any access)

or a no-loss translation of the cloud-side policy 𝑃𝑐 , and 𝑃𝑐 is fresh at

least at a recent time point 𝑡 ′. We consider all three cases acceptable

3295

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

with regards to our security guarantee because the worst that can

happen is that a malicious user has a prolonged (bounded by 𝑇𝑝)

access due to case (3), which matches our goal outlined in §7.1.

Proof. Case 1: 𝑃𝑑 is empty at time 𝑡 , if no phone/user has exe-

cuted the protocol successfully until 𝑡 .

Case 2: If no phone/user successfully executes (finishes) the

protocol between time (𝑡 −𝑇𝑝 , 𝑡), based on Lemma 2, 𝑃𝑑 is expired

or empty at time 𝑡 .

Case 3: If any phone/user successfully executes (finishes) the

protocol between time (𝑡 −𝑇𝑝 , 𝑡), based on Lemma 1 and Lemma 2

(see below), 𝑃𝑑 is a no loss translation of the cloud policy 𝑃𝑐 .

In Case 3, let the round of protocol execution that yields 𝑃𝑑 on

the device (from 𝑃𝑐 on the cloud) be 𝑟𝑑 . Because 𝑟𝑑 finishes as

early as 𝑡 −𝑇𝑝 , 𝑟𝑑 starts and executes as early as after 𝑡 −𝑇𝑝 −𝑇𝑛
(otherwise, the nonce of 𝑟𝑑 expires and 𝑟𝑑 cannot finish). Hence,

𝑃𝑐 (used in step 4 of 𝑟𝑑) is fresh at time 𝑡 ′, and the time difference

between 𝑡 and 𝑡 ′ is bounded: 𝑡 − 𝑡 ′ <= 𝑇𝑝 +𝑇𝑛 . □

Lemma 1. Consider any state with the cloud c, the device d and an
arbitrary user u in the protocol (Fig. 5), immediately after u success-
fully carries out any one round of the protocol (step 1 to 5), the policy
of the device 𝑃𝑑 𝜓 𝑃𝑐 , where 𝑃𝑐 is the cloud policy used in this round
(i.e., 𝑃𝑐 is used to generate 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎 in step 4).

Proof. We consider all operations (e.g., to switch on/off, to reset)

supported by the device as a finite set𝑂𝑑 without loss of generality.

Let the round of protocol execution be 𝑟𝑑 and 𝑟𝑑 starts at time

𝑡 without loss of generality. Let the time when 𝑟𝑑 successfully

finishes be 𝑡 ′. Once 𝑟𝑑 starts, based on the property of AOR, 𝑟𝑑 is

not interrupted by any other round of protocol execution until 𝑡 ′.
At step 4 of 𝑟𝑑 , the cloud policy 𝑃𝑐 is used to generate a 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎.

𝑃𝑐 is based on the access model 𝐴𝑀𝐶 and each record 𝑟 , 𝑟 ∈ 𝑃𝑐 ,

denoted as (𝑢𝑖𝑑, 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑒𝑥𝑝𝑖𝑟𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, . . .), includes
(1) a unique user identity (𝑢𝑖𝑑), (2) all permissions of the user de-

noted as a set 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , (3) an 𝑒𝑥𝑝𝑖𝑟𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 value for

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 .

Case 1: If the device-side policy is empty or expired at time 𝑡 , in-

dicating that𝑂𝑛_𝐷𝑒𝑣𝑖𝑐𝑒_𝑃𝑜𝑙𝑖𝑐𝑦 in step 2 is empty, 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎 is

a set, and for each 𝑟, 𝑟 ∈ 𝑃𝑐 , there is a unique 𝑟
′ ∈ 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎 de-

noted as (𝑢𝑖𝑑,𝐴𝑡𝑡𝑟 (𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠′, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ′, . . .)), where
𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠′ ⊂ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , and for each 𝑝 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 , if

𝑝 ∈ 𝑂𝑑 , 𝑝 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠′. 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ′ is 𝑇𝑝 or set by the

cloud based on 𝑒𝑥𝑝𝑖𝑟𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 . After step 5 (at time 𝑡 ′), 𝑃𝑑 is

a copy of 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎. 𝑃𝑑 is a no-loss translation of 𝑃𝑐 (at time 𝑡 ′).
Case 2: if the device-side policy is neither empty nor expired

at time 𝑡 , indicating that 𝑂𝑛_𝐷𝑒𝑣𝑖𝑐𝑒_𝑃𝑜𝑙𝑖𝑐𝑦 in step 2 is not empty,

𝑂𝑛_𝐷𝑒𝑣𝑖𝑐𝑒_𝑃𝑜𝑙𝑖𝑐𝑦 will be transmitted to the cloud representing

the on-device policy at time 𝑡 . Let 𝑃𝑥 be a no-loss translation of 𝑃𝑐 .

In step 4 of 𝑟𝑑 , 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎 = 𝑃𝑥 −𝑂𝑛_𝐷𝑒𝑣𝑖𝑐𝑒_𝑃𝑜𝑙𝑖𝑐𝑦. After step

5 of 𝑟𝑑 , 𝑃𝑑 = 𝑂𝑛_𝐷𝑒𝑣𝑖𝑐𝑒_𝑃𝑜𝑙𝑖𝑐𝑦 + 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎 = 𝑃𝑥 .

With both Case 1 and Case 2, the lemma is proved. □

Lemma 2. Consider any state or time 𝑡 with the cloud 𝑐 , the device
𝑑 (with policy 𝑃𝑑), and an arbitrary user 𝑢 in the protocol (Fig. 5). If
one round of protocol execution starts (at time t) and fails to finish
until the nonce expires (by time 𝑡 +𝑇𝑛), at time 𝑡 +𝑇𝑛 , the device-side
policy 𝑃𝑑 is not changed (except to expire).

Proof. Let the round that starts at time 𝑡 be 𝑟𝑑 . Based on the

property of AOR, once 𝑟𝑑 starts, the device blocks any other rounds

unless 𝑟𝑑 successfully finishes or it is after time 𝑡 +𝑇𝑛 . No round of
protocol execution successfully finishes by time 𝑡 +𝑇𝑛 . Hence, the
device-side policy is not changed between time (𝑡, 𝑡 +𝑇𝑛) except
that it can expire. □

Theorem 2. For arbitrary two 𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎 messages (step 5 in
the protocol)𝑚1 and𝑚2 accepted by the device, if𝑚2 is accepted after
𝑚1, then𝑚2 is generated by the cloud after𝑚1 (𝑚2 is a newer policy
than𝑚1 based on the cloud-side policy).

Proof. Let the round of protocol execution that includes 𝑚1

be 𝑟𝑑1, with nonce 𝑛1. Let the round of protocol execution that

includes 𝑚2 be 𝑟𝑑2, with nonce 𝑛2. Because the device accepted

both𝑚1 and𝑚2, based on the property of OUN, 𝑛1 ≠ 𝑛2. Hence,

𝑟𝑑1 is not 𝑟𝑑2.

Let the time when𝑚1 is accepted be 𝑡𝑚1
. Then 𝑟𝑑1 finishes at

𝑡𝑚1
. Let the time when𝑚2 is accepted be 𝑡𝑚2

. Then 𝑟𝑑2 finishes at

𝑡𝑚2
.

Let the execution period of 𝑟𝑑1 be (𝑡1, 𝑡𝑚1
). Let the execution

period of 𝑟𝑑2 be (𝑡2, 𝑡𝑚2
). Based on the property of AOR, either

𝑡𝑚2
< 𝑡1 (𝑟𝑑1 is after 𝑟𝑑2) or 𝑡𝑚1

< 𝑡2 (𝑟𝑑1 is before 𝑟𝑑2) is true.

Case 1 (𝑡𝑚2
< 𝑡1): because 𝑡𝑚1

< 𝑡𝑚2
, we get 𝑡𝑚1

< 𝑡1, a contra-

diction.

Case 2 (𝑡𝑚1
< 𝑡2): because of the contradiction with Case 1, Case

2 is true and thus 𝑟𝑑1 is before 𝑟𝑑2.

Hence,𝑚2 is generated by the cloud after𝑚1 and the theorem is

proved. □

Defeating the attacks with Weaknesses 1 - 4. First, the original
attacks with Weakness 1 succeeded because of semantic loss in

AMT, specifically due to the loss of user identities, permissions and

expiration control in the device-side policies (§4.1). Based on Theo-

rem 1, at any time, the device-side policy is either empty/expired

(by default denying any access) or is a no-loss translation of the

cloud-side policy (including the user identities, user-specific per-

missions and permission expiration time). All the attacks discussed

in §4.1 can not succeed based on our design.

Second, Weakness 2 also relates to AMT and comes with two

key causes: (1) part of the on-device policy (e.g., offline access code)

does not expire; (2) part of the on-device policy is not invalidated

(removed) if the corresponding user is removed from the cloud-side

policy. These problems/attacks are defeated in SAPS based on (1)

Theorem 1: any on-device policy record is related to a user identity

known to the cloud, and after any round of protocol execution,

removed user from the cloud policy will lead to the removal of the

user’s policy record in the device; and (2) the DPE property: even

without any new round of protocol execution, all on-device policies

expire after time 𝑇𝑝 .

Third, the attacks with Weakness 3 rely on the reordering of the

policy messages (e.g.,𝑚1 to𝑚3 in Fig. 3) in the absence of otherwise

clearly defined causal relations between those messages (e.g., what

message order is right/wrong to process on the device). Such attacks

are defeated based on Theorem 2: policy messages (𝑃𝑜𝑙𝑖𝑐𝑦_𝐷𝑒𝑙𝑡𝑎

messages in SAPS) are always processed by the device based on the

order the messages are created by the cloud.

3296

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Last, the key problem with Weakness 4 is that at any time t, if

the device and cloud have inconsistent policies (e.g., the device

maintains a 𝑘𝑒𝑦𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 for user A while A has been removed from

the cloud, see §5.2), the inconsistency persists and there lacked a

mechanism to audit and identify such a conflict. SAPS effectively
defeated the attack based on the DPE property: all on-device policies

expire after time 𝑇𝑝 . SAPS further addressed the problem with

a new auditing capability: after step 3 of any round of protocol

execution, the cloud can audit the 𝑂𝑛_𝐷𝑒𝑣𝑖𝑐𝑒_𝑃𝑜𝑙𝑖𝑐𝑦 and check if

it is inconsistent with the on-cloud policy.

Discussion of limitation. Although SAPS achieves key security

goals and effectively defeats the MaaG attacks, we acknowledge

a few limitations. In particular, at any time t, although Theorem 1

guarantees that the device-side policy, if not empty/expired, is a no-

loss translation of a quite fresh version of the cloud-side policy, the

cloud-side policy can still evolve (e.g., immediately after a recent

round of protocol execution). Hence, it is not possible to ensure

the device always has the latest policy (although this is expected

because otherwise it will require constant/reliable communication

with the cloud, which is not always possible for the MaaG architec-

ture). Second, for simplicity and increased level of security, SAPS
currently does not support the potentially complicated causal re-

lations between policy messages, and leverages Theorem 2 to guar-

antee their correct order of processing (first created, first applied).

7.4 Evaluation
We implemented the protocol end-to-end to show its practicability.

We deployed the MaaG IoT firmware written in Node.js on Rasp-

berry Pi 4B (2GB RAM). We used the Cordova mobile application

development framework and Flask server framework to implement

the app and the cloud server respectively. We deployed the app

on Google Pixel 6. We deployed the cloud server on Amazon EC2

(U.S. West). The response time of the cloud-to-IoT access policy

synchronization on average is 6.8 seconds out of 10 rounds. As a

comparison, the August/Yale online authentication protocol has an

average end-to-end time of 3.1 seconds out of 10 rounds (where

their cloud server is deployed in a similar location, with a similar

RTT). Our implementation has significant room for optimization.

Currently, a bottleneck lies in the app-to-device BLE communica-

tion where the throughput it achieves is much lower than industry

benchmark. In addition, our implementation uses scripting lan-

guages (e.g., Node.js and python) which also contributes to the

time cost.

8 RELATEDWORK
Access Model/Policy Translation. Previous work [14, 21, 28,

47, 80] explored access control policy translation. This is driven

by the requirement of interoperability between different systems.

While it is easy to do such translation in trusted, resource-rich

environments, how such translation can be done right in malicious,

resource-constrained environments needs further research.

IoT Access Control. IoT generally suffers from weaker access

control, often due to its unique resource constraints and design

paradigms [36–39, 50, 76]. [36, 50] discovered limited forms of state

inconsistency problems between IoT devices and cloud under the

DGC architecture. Although our paper has a similar threat model,

our contribution is that we distill the problems into access model

translation and access policy synchronization. This fundamental

understanding and modeling of the problem allowed us to not only

discover many more root causes that can lead to state inconsis-

tencies but also develop much stronger attacks. [39] discovered

that different management channels of an IoT device might not

have well-aligned security policy enforcement and lead to interfer-

ence that harms security. Our paper, however, demonstrates that

even the single authoritative management channel (i.e., through

the companion app) can lead to insecure access controls.

On the other hand, many efforts have been devoted to improve

IoT access control security [17, 38, 40, 44, 65]. [40] proposed a fine-

grained context-based access control system for appified IoT plat-

forms. [72] introduced P-Verifier, a formal verification tool that can

automatically verify cloud-based IoT access-control policies. While

these work take constructive steps, our work specifically addresses

the cloud service and IoT devices’ access model discrepancies and

faulty access policy synchronization in the real world.

Smart Lock Security. [75] revealed that compromised mobile

devices can leak an August smart lock’s offline keys. In contrast,

we are able to find protocol-level vulnerabilities in the August

smart lock. [33] analyzed the security policy and the session key

generation method of the August smart lock and failed to identify

any weaknesses. Our research, on the other hand, finds that August

smart lock’s handshake key/offline key synchronization process

was vulnerable, again due to our systematic modeling of the access

model translation and synchronization.

Wireless Protocol Security. Much prior work has shown that

wireless protocols are vulnerable to attacks from different lay-

ers. [18, 19, 63, 83] demonstrated that Bluetooth has weaknesses,

allowing eavesdropping, packet injection and device spoofing. [67]

demonstrated that malicious co-located apps can harm access con-

trol of BLE devices. These findings have motivated IoT manufactur-

ers to develop ad-hoc application-layer encryption for IoT autho-

rization/authentication [27]. This paper discovers that MaaG IoT

access control systems based on application-layer encryption could

fail in practice due to insecure co-operations of system components.

9 CONCLUSION
This paper systematically investigates security risks in Mobile-as-a-

Gateway (MaaG) IoT, by distilling the problems into access model

translation (AMT) and access policy synchronization. This has al-

lowed us to understand the fundamental challenges in MaaG IoT

and identify a variety of root causes that can lead to vulnerabilities

in real-world systems. Our study demonstrates that real world man-

ufacturers have failed to orchestrate the security responsibilities

of MaaG IoT system components, which allows tremendous space

for practical attacks. To mitigate the risks, we designed a coherent,

secure access policy synchronization protocol and access control

model to protect MaaG IoT devices from unauthorized access.

ACKNOWLEDGMENTS
This work is supported in part by NSF CNS-1652954, CNS-2145675,

CCF-2124225, and Indiana University’s FRSP-SF, REF, and IAS Col-

laborative Research Award.

3297

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin’an Zhou, Jiale Guan, Luyi Xing, & Zhiyun Qian

REFERENCES
[1] 2022. August Smart Lock. https://august.com/products/august-smart-lock-3rd-

generation.

[2] 2022. Aura Bluetooth Smart Door Lock | Kwikset. https://www.kwikset.com/aura.

[3] 2022. Chipolo ONE 4 Pack. https://chipolo.net/en-us/products/chipolo-one-4-

pack.

[4] 2022. Find Your Lost Phone, Keys, or Anything with Tile’s Bluetooth Tracker |

Tile. https://www.thetileapp.com/en-us/store/tiles/pro.

[5] 2022. Geonfino Smart Lock. https://www.amazon.com/dp/B0957PSMBJ/.

[6] 2022. Honeywell Bluetooth Enabled Deadbolt Door Lock With Keypad, Satin

Nickel | Honeywell Store. https://www.honeywellstore.com/store/products/

honeywell-bluetooth-enabled-entry-deadbolt-nickel-8812309s.htm.

[7] 2022. Kwikset Aura Product Documents. https://www.kwikset.com/support/

productdetail/aura-bluetooth-enabled-smart-lock#documents

[8] 2022. Level | Level Lock - The Smallest and Most Advanced Smart Lock Ever.

https://level.co/products/lock.

[9] 2022. Schlage Sense™ Smart Deadbolt with Camelot trim. https://www.schlage.

com/en/home/products/BE479CAMFFF.html.

[10] 2022. Ultraloq U-Bolt Pro Smart Lock | World’s Most Versatile Smart Lock –

U-tec. https://store.u-tec.com/products/ultraloq-u-bolt-pro-bluetooth-enabled-

fingerprint-and-keypad-smart-lock.

[11] 2022. Yale Assure Lock Touchscreen, Standalone - Yale Home.

https://shopyalehome.com/collections/keypad-locks/products/yale-assure-

lock-touchscreen-standalone?variant=39341912162436.

[12] Giuseppe Aceto, Alessio Botta, Pietro Marchetta, Valerio Persico, and Antonio

Pescapé. 2018. A comprehensive survey on internet outages. Journal of Network
and Computer Applications 113 (2018), 36–63.

[13] Tahir Ahmad, Umberto Morelli, and Silvio Ranise. 2020. Deploying Access

Control Enforcement for IoT in the Cloud-Edge Continuum with the help of

the CAP Theorem. In Proceedings of the 25th ACM Symposium on Access Control
Models and Technologies. 213–220.

[14] Apu Kapadia Jalal Al-muhtadi. 2000. IRBAC 2000: Secure interoperability using

dynamic role translation. In In Proceedings of the 1st International Conference on
Internet Computing. 231–238.

[15] Gianluca Aloi, Giuseppe Caliciuri, Giancarlo Fortino, Raffaele Gravina, Pasquale

Pace, Wilma Russo, and Claudio Savaglio. 2016. A mobile multi-technology

gateway to enable IoT interoperability. In 2016 IEEE first international conference
on internet-of-things design and implementation (IoTDI). IEEE, 259–264.

[16] Florian Alt and Stefan Schneegass. 2022. Beyond Passwords—Challenges and

Opportunities of Future Authentication. IEEE Security & Privacy 20, 1 (2022),

82–86.

[17] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb,

Hyung-Sin Kim, David E Culler, and Raluca Ada Popa. 2019. {WAVE}: A de-

centralized authorization framework with transitive delegation. In 28th USENIX
Security Symposium (USENIX Security 19). 1375–1392.

[18] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. BIAS:

Bluetooth ImpersonationAttackS. In 2020 IEEE Symposium on Security and Privacy
(SP). 549–562. https://doi.org/10.1109/SP40000.2020.00093

[19] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen. 2019. The

KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation

Of Bluetooth BR/EDR. In 28th USENIX Security Symposium (USENIX Security
19). USENIX Association, Santa Clara, CA, 1047–1061. https://www.usenix.org/

conference/usenixsecurity19/presentation/antonioli

[20] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. 2019. IoTGuard: Dynamic

Enforcement of Security and Safety Policy in Commodity IoT.. In NDSS.
[21] Somchai Chatvichienchai, Mizuho Iwaihara, and Yahiko Kambayashi. 2003. Se-

cure Interoperability between Cooperating XML Systems by Dynamic Role Trans-

lation. In Database and Expert Systems Applications, Vladimír Mařík, Werner

Retschitzegger, and Olga Štěpánková (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 866–875.

[22] Jiongyi Chen, Chaoshun Zuo, Wenrui Diao, Shuaike Dong, Qingchuan Zhao,

Menghan Sun, Zhiqiang Lin, Yinqian Zhang, and Kehuan Zhang. 2019. Your

IoTs Are (Not) Mine: On the Remote Binding Between IoT Devices and Users. In

2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 222–233. https://doi.org/10.1109/DSN.2019.00034

[23] Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chatterjee, and

Earlence Fernandes. 2022. Practical Data Access Minimization in {Trigger-
Action} Platforms. In 31st USENIX Security Symposium (USENIX Security 22).
2929–2945.

[24] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul

Chatterjee, and Earlence Fernandes. 2021. Data privacy in trigger-action systems.

In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 501–518.
[25] Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2022. Delay Wreaks

Havoc on Your Smart Home: Delay-based Automation Interference Attacks. In

2022 IEEE Symposium on Security and Privacy (SP). IEEE, 285–302.
[26] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.

ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[27] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.

2013. An empirical study of cryptographic misuse in android applications. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 73–84.

[28] Csilla Farkas, Andrei Stoica, and Parag Talekar. 2003. APTA: An automated

policy translation architecture. In Int. Conf. Computer, Communication and Control
Technologies. Citeseer.

[29] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security Analysis of

Emerging Smart Home Applications. In 2016 IEEE Symposium on Security and
Privacy (SP). 636–654. https://doi.org/10.1109/SP.2016.44

[30] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. 2018. De-

centralized action integrity for trigger-action IoT platforms. In Proceedings 2018
Network and Distributed System Security Symposium.

[31] Colin J Fidge. 1987. Timestamps in message-passing systems that preserve the

partial ordering. (1987).

[32] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2021. {HAWatcher}:{Semantics-

Aware} Anomaly Detection for Appified Smart Homes. In 30th USENIX Security
Symposium (USENIX Security 21). 4223–4240.

[33] Megan Fuller, Madeline Jenkins, and Katrine Tjølsen. 2019. Security Analysis of

the August Smart Lock. en. In:() (2019), 17.
[34] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-

lence Fernandes, and Blase Ur. 2018. Rethinking Access Control and Authentica-

tion for the Home Internet of Things ({{{{{IoT}}}}}). In 27th USENIX Security
Symposium (USENIX Security 18). 255–272.

[35] Yi He, Zhenhua Zou, Kun Sun, Zhuotao Liu, Ke Xu, Qian Wang, Chao Shen,

Zhi Wang, and Qi Li. 2022. RapidPatch: Firmware Hotpatching for Real-Time

Embedded Devices. In 31th USENIX Security Symposium (USENIX Security 22).
[36] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and

David Wagner. 2016. Smart locks: Lessons for securing commodity internet of

things devices. In Proceedings of the 11th ACM on Asia conference on computer
and communications security. 461–472.

[37] Blake Janes, Heather Crawford, and TJ OConnor. 2020. Never ending story:

Authentication and access control design flaws in shared iot devices. In 2020 IEEE
Security and Privacy Workshops (SPW). IEEE, 104–109.

[38] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru

Zhao, and Yuqing Zhang. 2020. Burglars’ IoT Paradise: Understanding and

Mitigating Security Risks of General Messaging Protocols on IoT Clouds. In 2020
IEEE Symposium on Security and Privacy (SP). 465–481. https://doi.org/10.1109/

SP40000.2020.00051

[39] Yan Jia, Bin Yuan, Luyi Xing, Dongfang Zhao, Yifan Zhang, XiaoFeng Wang,

Yijing Liu, Kaimin Zheng, Peyton Crnjak, Yuqing Zhang, et al. 2021. Who’s In

Control? On Security Risks of Disjointed IoT Device Management Channels. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 1289–1305.

[40] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,

ZhuoqingMorleyMao, Atul Prakash, and SJ Unviersity. 2017. ContexloT: Towards

Providing Contextual Integrity to Appified IoT Platforms.. In NDSS, Vol. 2. San
Diego, 2–2.

[41] Jmaxxz. 2016. Backdooring the Front Door. https://media.defcon.org/DEF%

20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-

%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf.

[42] Jason Johnson, Rolf Rando, Siddharth Gidwani, and Christopher Dow. 2021.

Intelligent door lock system in communication with mobile device that stores

associated user data. US Patent 10,993,111.

[43] Magne Jorgensen and Martin Shepperd. 2006. A systematic review of software

development cost estimation studies. IEEE Transactions on software engineering
33, 1 (2006), 33–53.

[44] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E.

Culler. 2019. JEDI: Many-to-Many End-to-End Encryption and Key Delegation

for IoT. In 28th USENIX Security Symposium (USENIX Security 19). USENIX As-

sociation, Santa Clara, CA, 1519–1536. https://www.usenix.org/conference/

usenixsecurity19/presentation/kumar-sam

[45] Kwok-yan Lam and Dieter Gollmann. 1992. Freshness assurance of authentication

protocols. In European Symposium on Research in Computer Security. Springer,
261–271.

[46] Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and Chris-

tian Menard. 2021. Quantifying and Generalizing the CAP Theorem.

arXiv:2109.07771 [cs.DC]

[47] Gregory Leighton and Denilson Barbosa. 2011. Access control policy translation,

verification, and minimization within heterogeneous data federations. ACM
Transactions on Information and System Security (TISSEC) 14, 3 (2011), 1–28.

[48] Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo Luo. 2020. T2pair: Secure

and usable pairing for heterogeneous iot devices. In Proceedings of the 2020 acm
sigsac conference on computer and communications security. 309–323.

[49] Barbara Liskov and Rivka Ladin. 1986. Highly available distributed services and

fault-tolerant distributed garbage collection. In Proceedings of the fifth annual

3298

https://august.com/products/august-smart-lock-3rd-generation
https://august.com/products/august-smart-lock-3rd-generation
https://www.kwikset.com/aura
https://chipolo.net/en-us/products/chipolo-one-4-pack
https://chipolo.net/en-us/products/chipolo-one-4-pack
https://www.thetileapp.com/en-us/store/tiles/pro
https://www.amazon.com/dp/B0957PSMBJ/
https://www.honeywellstore.com/store/products/honeywell-bluetooth-enabled-entry-deadbolt-nickel-8812309s.htm
https://www.honeywellstore.com/store/products/honeywell-bluetooth-enabled-entry-deadbolt-nickel-8812309s.htm
https://www.kwikset.com/support/productdetail/aura-bluetooth-enabled-smart-lock#documents
https://www.kwikset.com/support/productdetail/aura-bluetooth-enabled-smart-lock#documents
https://level.co/products/lock
https://www.schlage.com/en/home/products/BE479CAMFFF.html
https://www.schlage.com/en/home/products/BE479CAMFFF.html
https://store.u-tec.com/products/ultraloq-u-bolt-pro-bluetooth-enabled-fingerprint-and-keypad-smart-lock
https://store.u-tec.com/products/ultraloq-u-bolt-pro-bluetooth-enabled-fingerprint-and-keypad-smart-lock
https://shopyalehome.com/collections/keypad-locks/products/yale-assure-lock-touchscreen-standalone?variant=39341912162436
https://shopyalehome.com/collections/keypad-locks/products/yale-assure-lock-touchscreen-standalone?variant=39341912162436
https://doi.org/10.1109/SP40000.2020.00093
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://doi.org/10.1109/DSN.2019.00034
https://doi.org/10.1109/SP.2016.44
https://doi.org/10.1109/SP40000.2020.00051
https://doi.org/10.1109/SP40000.2020.00051
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam
https://arxiv.org/abs/2109.07771

Perils and Mitigation of Security Risks of Cooperation in Mobile-as-a-Gateway IoT CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

ACM symposium on Principles of distributed computing. 29–39.
[50] Hui Liu, Juanru Li, and Dawu Gu. 2020. Understanding the security of app-in-

the-middle IoT. Computers & Security 97 (2020), 102000.

[51] Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and JunzheWang. 2021. Westworld:

Fuzzing-Assisted Remote Dynamic Symbolic Execution of Smart Apps on IoT

Cloud Platforms. In Annual Computer Security Applications Conference. 982–995.
[52] Shrirang Mare, Franziska Roesner, and Tadayoshi Kohno. 2020. Smart Devices in

Airbnbs: Considering Privacy and Security for both Guests and Hosts. Proc. Priv.
Enhancing Technol. 2020, 2 (2020), 436–458.

[53] Friedemann Mattern et al. 1988. Virtual time and global states of distributed
systems. Univ., Department of Computer Science.

[54] Muhammad Naveed, Xiao-yong Zhou, Soteris Demetriou, XiaoFeng Wang, and

Carl A Gunter. 2014. Inside Job: Understanding and Mitigating the Threat of

External Device Mis-Binding on Android.. In NDSS.
[55] Roger M. Needham and Michael D. Schroeder. 1978. Using Encryption for Au-

thentication in Large Networks of Computers. Commun. ACM 21, 12 (dec 1978),

993–999. https://doi.org/10.1145/359657.359659

[56] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V Krishnamurthy,

Edward JM Colbert, and Patrick McDaniel. 2018. IoTSan: Fortifying the safety

of IoT systems. In Proceedings of the 14th International Conference on emerging
Networking EXperiments and Technologies. 191–203.

[57] Christian Niesler, Sebastian Surminski, and Lucas Davi. 2021. HERA: Hotpatching

of Embedded Real-time Applications.. In NDSS.
[58] TJ OConnor, Dylan Jessee, and Daniel Campos. 2021. Through the Spyglass:

Towards IoT Companion App Man-in-the-Middle Attacks. In Cyber Security
Experimentation and Test Workshop. 58–62.

[59] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. 2006. CoolSpots:

Reducing the Power Consumption of Wireless Mobile Devices with Multiple

Radio Interfaces (MobiSys ’06).
[60] Adrian Perrig, Robert Szewczyk, Justin Douglas Tygar, Victor Wen, and David E

Culler. 2002. SPINS: Security protocols for sensor networks. Wireless networks 8,
5 (2002), 521–534.

[61] Amir Rahmati, Earlence Fernandes, Kevin Eykholt, and Atul Prakash. 2018. Tyche:

A risk-based permission model for smart homes. In 2018 IEEE Cybersecurity
Development (SecDev). IEEE, 29–36.

[62] Ole André Vadla Ravnås. 2016. Frida-A world-class dynamic instrumentation

framework. URL: https://frida. re (2016).
[63] Mike Ryan. 2013. Bluetooth: With Low Energy Comes Low Security. In

7th USENIX Workshop on Offensive Technologies (WOOT 13). USENIX Associ-

ation, Washington, D.C. https://www.usenix.org/conference/woot13/workshop-

program/presentation/ryan

[64] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.

Role-based access control models. Computer 29, 2 (1996), 38–47.
[65] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational access control

in the internet of things. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1056–1073.

[66] B SIG. 2016. Bluetooth core specification version 5.0. Specification of the Bluetooth
System (2016).

[67] Pallavi Sivakumaran and Jorge Blasco. 2019. A Study of the Feasibility of

Co-located App Attacks against BLE and a Large-Scale Analysis of the Cur-

rent Application-Layer Security Landscape. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1–18. https:

//www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran

[68] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng

Guo, and Patrick Tague. 2017. {SmartAuth}:{User-Centered} Authorization for

the Internet of Things. In 26th USENIX Security Symposium (USENIX Security 17).
361–378.

[69] Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (2009), 40–44.

[70] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.

Charting the attack surface of trigger-action IoT platforms. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security. 1439–
1453.

[71] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. 2019. Look-

ing from the Mirror: Evaluating {IoT} Device Security through Mobile Compan-

ion Apps. In 28th USENIX Security Symposium (USENIX Security 19). 1151–1167.
[72] Luyi Xing, Ze Jin, Yiwei Fang, Yan Jia, Bin Yuan, and Qixu Liu. 2022. Under-

standing and Mitigating Security Risks in Cloud-based IoT Access Policies. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security.

[73] Meng Xu, Manuel Huber, Zhichuang Sun, Paul England, Marcus Peinado, Sangho

Lee, Andrey Marochko, Dennis Mattoon, Rob Spiger, and Stefan Thom. 2019.

Dominance as a new trusted computing primitive for the internet of things. In

2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1415–1430.
[74] Wen Xu and Yubin Fu. 2015. Own Your Android! Yet Another Universal Root.

In 9th USENIX Workshop on Offensive Technologies (WOOT 15). USENIX Associa-

tion, Washington, D.C. https://www.usenix.org/conference/woot15/workshop-

program/presentation/xu

[75] Mengmei Ye, Nan Jiang, Hao Yang, and Qiben Yan. 2017. Security analysis of

Internet-of-Things: A case study of august smart lock. In 2017 IEEE conference on
computer communications workshops (INFOCOM WKSHPS). IEEE, 499–504.

[76] Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, XiaoFeng Wang, and Yuqing

Zhang. 2020. Shattered Chain of Trust: Understanding Security Risks in Cross-

Cloud IoT Access Delegation. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 1183–1200. https://www.usenix.org/conference/

usenixsecurity20/presentation/yuan

[77] Thomas Zachariah, Neal Jackson, and Prabal Dutta. 2022. The internet of things

still has a gateway problem. In Proceedings of the 23rd Annual International
Workshop on Mobile Computing Systems and Applications. 109–115.

[78] Thomas Zachariah, Noah Klugman, Bradford Campbell, Joshua Adkins, Neal

Jackson, and Prabal Dutta. 2015. The internet of things has a gateway problem.

In Proceedings of the 16th international workshop on mobile computing systems
and applications. 27–32.

[79] Eric Zeng and Franziska Roesner. 2019. Understanding and Improving Security

and Privacy in Multi-User Smart Homes: A Design Exploration and In-Home

User Study. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 159–176. https://www.usenix.org/conference/

usenixsecurity19/presentation/zeng

[80] Aijuan Zhang, Jingxiang Gao, Jiuyun Sun, and Cheng Ji. 2013. Declaration and

Translation of Spatial Access Control Policy. J. Softw. 8, 5 (2013), 1132–1139.
[81] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick,

Zhuoqing Morley Mao, and Lei Yang. 2010. Accurate online power estimation

and automatic battery behavior based power model generation for smartphones.

In Proceedings of the eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis. 105–114.

[82] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin

Zhu. 2018. Homonit: Monitoring smart home apps from encrypted traffic. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1074–1088.

[83] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. 2020.

Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks. In

29th USENIX Security Symposium (USENIX Security 20). USENIX Association, 37–

54. https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-

yue

[84] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau. 2021. An Investigation

of the Android Kernel Patch Ecosystem. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 3649–3666. https://www.usenix.org/

conference/usenixsecurity21/presentation/zhang-zheng

[85] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and

Yuqing Zhang. 2019. Discovering and Understanding the Security Hazards in

the Interactions between IoT Devices, Mobile Apps, and Clouds on Smart Home

Platforms. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1133–1150. https://www.usenix.org/conference/

usenixsecurity19/presentation/zhou

3299

https://doi.org/10.1145/359657.359659
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran
https://www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran
https://www.usenix.org/conference/woot15/workshop-program/presentation/xu
https://www.usenix.org/conference/woot15/workshop-program/presentation/xu
https://www.usenix.org/conference/usenixsecurity20/presentation/yuan
https://www.usenix.org/conference/usenixsecurity20/presentation/yuan
https://www.usenix.org/conference/usenixsecurity19/presentation/zeng
https://www.usenix.org/conference/usenixsecurity19/presentation/zeng
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zheng
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	2.1 Remote Access Sharing/Revocation and Offline Availability
	2.2 Common Workflow of MaaG IoT

	3 Security Risks in Cooperation of MaaG IoT
	4 Risks in Access Model Translation
	4.1 Weakness 1: Semantic Loss in AMT
	4.2 Weakness 2: Asymmetric and Misplaced Security Responsibilities

	5 Risks in Policy Synchronization
	5.1 Weakness 3: Inadequately Defined Causal Consistency in Access Policy Synchronization
	5.2 Weakness 4: Lack of Conflict Identification in Access Policy Synchronization

	6 Summary and Discussion of Flaws and Attacks in All MaaG IoT Devices
	7 Mitigating Vulnerabilities in MaaG IoT Access Control
	7.1 Security Goals
	7.2 Secure Protocol Design
	7.3 Security Analysis
	7.4 Evaluation

	8 Related Work
	9 Conclusion
	References

