
Invetter: Locating Insecure Input Validations in Android Services
Lei Zhang

Fudan University

lei_zhang14@fudan.edu.cn

Zhemin Yang

Fudan University

yangzhemin@fudan.edu.cn

Yuyu He

Fudan University

heyy16@fudan.edu.cn

Zhenyu Zhang

Fudan University

zhenyuzhang15@fudan.edu.cn

Zhiyun Qian

University of California Riverside

zhiyunq@cs.ucr.edu

Geng Hong

Fudan University

ghong17@fudan.edu.cn

Yuan Zhang

Fudan University

yuanxzhang@fudan.edu.cn

Min Yang

Fudan University

m_yang@fudan.edu.cn

ABSTRACT
Android integrates an increasing number of features into system

services to manage sensitive resources, such as location, medical

and social network information. To prevent untrusted apps from

abusing the services, Android implements a comprehensive set

of access controls to ensure proper usage of sensitive resources.

Unlike explicit permission-based access controls that are discussed

extensively in the past, our paper focuses on the widespread yet

undocumented input validation problem.

As we show in the paper, there are in fact more input validations

acting as security checks than permission checks, rendering them

a critical foundation for Android framework. Unfortunately, these

validations are unstructured, ill-defined, and fragmented, making

it challenging to analyze. To this end, we design and implement a

tool, called Invetter, that combines machine learning and static

analysis to locate sensitive input validations that are problematic in

system services. By applying Invetter to 4 different AOSP codebases

and 4 vendor-customized images, we locate 103 candidate insecure

validations. Among the true positives, we are able to confirm that at

least 20 of them are truly exploitable vulnerabilities by constructing

various attacks such as privilege escalation and private information

leakage.

KEYWORDS
Android Framework, System Service, Input Validation, Permission

Validation

ACM Reference Format:
Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang, Zhiyun Qian, Geng

Hong, Yuan Zhang, and Min Yang. 2018. Invetter: Locating Insecure Input

Validations in Android Services. In CCS ’18: 2018 ACM SIGSAC Conference on
Computer & Communications Security, Oct. 15–19, 2018, Toronto, ON, Canada.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3243734.3243843

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243843

Android Framework

public ParcelFileDescriptor openDevice(String){

if (isBlackListed()) {

 // terminate the process

}

 }

RPC

IUsbManager.openDevice();

Android APP

Android SDK

Figure 1: Input validations fromAndroid system service and
Linux kernel.

1 INTRODUCTION
Never before has any operating system (OS) been so popular as

Android. Over 60 percent [22] of mobile devices are running An-

droid with a huge number of applications (apps for short) that are

connected to our daily life. To achieve a variety of functionalities,

apps read and manipulate Android system resources, such as GPS

device and screen display, and perform sensitive operations such as

sending and erasing SMS messages. In Android, these resources and

sensitive operations are administered by over 100 system services.

Evidently the access control in these services plays an important

role in the security of Android systems and is a relatively under-

studied research area.

Among the access controls, permission validations are well-

studied, e.g., Kratos [26] addressed the inconsistent permission

enforcement problem. In this paper, we conduct an empirical study

on a different set of critical security enforcements in system ser-

vices, which we define as sensitive input validations. As will be
unveiled in our study, Android imposes over 700 distinct sensitive

input validations (only a lower bound), compared to just 351 per-

missions. They serve various purposes, as an example in Figure 1,

the sensitive input deviceName is used to restrict usage of sensitive
operations, thus preventing system services from being abused by

untrusted apps. To the best of our knowledge, our work is the first

to systematically study the secure use of sensitive input validations

of Android services.

https://doi.org/10.1145/3243734.3243843
https://doi.org/10.1145/3243734.3243843

Unlike the traditional input validation studies that focus on a

narrow and well-defined set of sensitive input, e.g., web input that

can cause SQL injection attacks, and user-space pointers passed to

Linux kernel that can cause memory corruption attacks, our paper

focuses on the opposite end of the spectrum where it is not even

clear what input crossing the trust boundary should be considered

sensitive and therefore checked:

• Unstructured. Unlike Android permission

checks that rely on system-defined interfaces,

e.g. Context.checkCallingOrSelfPermission() and

Binder.getCallingUid(), sensitive input validations in

system services are difficult to identify. In fact, as illustrated

in Figure 1, any input parameter to a public method of a

service can potentially lead to a sensitive input validation (a

conditional statement involving the check of a parameter).

• Ill-defined. Unlike permission validations, which are well

documented by the Android permission model [13], no pub-

licly available sources define how sensitive input validations

should be carried out in Android services. Thus, it is un-

clear whether an input needs to go through validation and

whether it is done correctly.

• Fragmented. Sensitive input validations are dispersed in a

large number of Java classes. For example in Android 7.0 , our

evaluation shows that they are scattered widely in 173 dif-

ferent Java classes, while Android permission enforcements

are clustered in 6 classes. Moreover, even in the same service

method, sensitive input validations are commonly scattered

in various execution paths, restricting system operations in

a fine-grained manner.

Despite the importance of sensitive input validations in Android

services, their design and usage have not been well thought out,

evidenced by its ad-hoc nature outlined above. By attempting to

summarize and identify flaws related to sensitive input validations,

we make two observations as below (which are detailed in §3).

• Confusions about system security model. Android ser-

vices sometimes incorrectly trust data from apps without any

validation. Interestingly, we even find sensitive input valida-

tions sometimes misplaced in the Android SDK (which runs

as the same process of the app), demonstrating a complete

misunderstanding of the trust model.

• Weakened validations in customized system images.
In the Android ecosystem, system services are often cus-

tomized to provide added value. During the process of cus-

tomization, we find common problems where the sensitive

input validations may become weakened.

By designing a general machine learning technique to identify

sensitive input validations as well as using static analysis to identify

their problematic uses, we develop Invetter and evaluate it on both
Android AOSP system images and third-party customized images.

According to our analysis of 4 AOSP images and 4 third-party

customized images, we find at least 20 exploitable vulnerabilities.

For example, we show that a zero-permission app (running in the

background) can stealthily launch phishing attacks, steal a user

password stored in another app, and sometimes delete the entire

“system” directory. Many of these cases are demonstrated in our

anonymous video: https://youtu.be/erLY_OMi4kQ.

Contributions. The contributions of our work are summarized as

follows.

• Our work is the first to systematically analyze, identify, and

report the scale of sensitive input validations inside Android

system services and their potential flaws.

• From analyzing and summarizing the flaws of sensitive input

validations, we develop a fully-functional tool Invetter to
automatically discover their problematic uses, which we plan

to open source.

• We evaluate our tool on 4 AOSP images, from Android 5.0

to 8.0, and find 20 exploitable vulnerabilities in total, many

of which are confirmed by the corresponding vendors.

2 BACKGROUND
In this section, we provide necessary background for understanding

how the Android system services work, and how input validations

are performed in Android framework.

2.1 Android System Services
The Android framework consists of more than one hundred system

services which provide support for accessing various system re-

sources, such as retrieving user location, sending SMS, and checking

network connectivity. Since these services are part of the Android

framework, their execution environment enjoys more privilege and

are separated from apps. For example, the system service media

is executed in a system process called media_server. Commonly,

system services should be registered to the ServiceManager, so that

they can be accessed by apps or other services.

Each system service can be accessed via a set of pre-defined

public interfaces. These interfaces are commonly declared using

Android Interface Definition Language (AIDL). During the compi-

lation process of Android framework, interfaces declared by AIDL

are compiled into two sets of Java classes, the Stubs and the Proxies,
to act as a channel between services and their clients (which can

be apps or other services). Specifically, Stubs are extended by the

services to implement their functionalities, and Proxies encapsulate
the remote-process communication (RPC) logic to facilitate easy

access by the clients.

Figure 2 depicts this process. To initiate a request to a service, the

client must first send a query to the Android ServiceManager, which
maintains a mapping between services and their corresponding

Binder objects. Using the Binder object returned by the ServiceM-
anager, requests can be served using the interfaces defined by the

Proxies. ServiceManager has no way of forbidding apps from forging

their inputs, thus in principle it should not trust any apps-supplied

data.

Additionally, on top of the Proxies abstraction, Android SDK

provides a set of Managers as wrappers that provide another layer
of APIs which are even simpler for developers to use. Different

from the service code, Managers execute in the same process as

the running app, so malicious developers can reimplement and

overwrite them. Thus, system services cannot trust any security

validation in such app-controlled code.

https://youtu.be/erLY_OMi4kQ

Figure 2: The Binder-based RPC between system service and
its client.

2.2 Sensitive Input Validations in Android
Services

Sensitive input validation acts as a critical part on the security

of Android services. Commonly, input validation looks like the

following: a piece of input data is compared against a set of pre-

defined expectations, or cross-validated with trusted data source,

and some subsequent actions will be taken based on the outcome of

the comparison. Note that not all input validations are for security

purposes, e.g., checking the format of input or whether there is

a null pointer. In this paper, we are more interested in security-

focused validations.

In Android, we summarize them in two forms: (1) verify the iden-

tity/property of input sender, or (2) restrict the usage of sensitive

resources. For (1), typically the identities/properties can be either

well-known: uid, pid, package name, or obscure: token, cert, and so

on. For (2), an example is the URIs used as keys to access system

content providers which can be restricted by checking the scope of

the URI supplied by an app.

3 OBSERVATION: INSECURE INPUT
VALIDATIONS

By analyzing the existing sensitive input validations, we observed

two sources of insecure input validations:

Confusions About System Security Model. As described in §2,

system services enjoy more privilege, e.g. a system uid compared

to apps and should not blindly trust any data sent from an app.

However, we observed that many system services not only trust

app-supplied data from Managers (wrappers provided by SDK),

but also misplace sensitive input validations in the Managers code.
For example, Figure 3 illustrates a mistaken trust of app-supplied

data. Since apps can bypass the Managers and forge their inputs

to system services (address and prefixLength in this example), the

security check does not operate as expected. This allows any app

to insert new VPN server addresses into the system, which can

potentially redirect all of the device’s traffic to an attacker without

authorization.

Weakened Validations In Customized System Images. In the

Android ecosystem, system services are often customized to pro-

vide added value. During the process of customization, the input

Android SDK

public addAddress(InetAddress , int){

 securityCheck(,);

 return getService().addVpnAddress

 (.getHostAddress(),);

}

}

Android Framework

public addVpnAddress(String , int){

Android APP

RPCRPC

Figure 3: An input validation in Android SDK.

public setRingerModeExternal(,) {

if(wouldeToggleZenMode()&&

 checkCallerIsSystemOrSamePackage()&&

 checkAccessPolicy()){

throw new SecurityException(...)

}

setRingerMode(, ,)

public setRingerModeExternal(,){

setRingerMode(, ,)

}

}

(a) Code in AOSP

(b) Code customized by Xiaomi

Android Framework

Android Framework

Figure 4: An input validation in Android Audio Service is
removed in customized image.

validations may become weakened.Within the 4 customized images

we studied, 35 system services are modified, with 41 input valida-

tions affected. Figure 4 depicts an example of weakened sensitive

input validation. Since the customized image of Xiaomi removed the

check before invoking setRingerMode(), any app is free to change

the ringer mode arbitrarily (e.g., silent or vibrate).

On the other side, over 203 new customized services are in-

troduced in these images, together with 326 new sensitive input

validations. We find even more suable and interesting confusion

cases. For instance, shown in Figure 5, Qualcomm introduces a new

service called CNEService. Although its privileged interfaces are

designed to be available to only its vendor-supplied system apps,

it cannot be guaranteed at all (i.e., the packageName parameter is

completely untrusted).

4 METHODOLOGY
This section introduces our methodology to discover insecure input

validations in Android. We will give an insight that guides our

if (isSystemPackageName()){

}

Android Framework

ICNEManager.updatePolicy(,);

public int updatePolicy(, String) {

 // do Sensitive Operation

}

Vendor APP

RPC

Figure 5: An input validation in system service which trusts
the inputs from less privileged apps.

system design, the overall picture of our system, followed by each

component in detail.

4.1 Insights and Workflow
In an ideal world where we have the labels of all the sensitive in-

puts (parameters of public service methods), all we need to do is to

identify the absence of validations against those inputs. In practice,

unfortunately, such labels are never provided by developers and

at best have to be inferred which is generally an open problem.

Therefore, we take a different approach — instead of relying on

identifying all sensitive inputs and their missing validations, we can

look for existing sensitive input validations that are misplaced or

incomplete, which is a much more tractable problem. The assump-

tion is that the probability that a sensitive input is never validated

anywhere in the entire Android codebase is small, and hence we

argue that locating existing sensitive input validations and their

insecure uses can still capture a significant fraction of the related

vulnerabilities. We admit that this assumption is difficult to validate

as the ground truth of the total number of vulnerabilities is hard to

obtain.

Invetter operates in three steps, as illustrated in Figure 6. First,

Invetter thoroughly extracts system services along with their public

interfaces from a given Android image, and recognizes all input

validations using a structural analysis. Second, these extracted vali-

dations are passed into our learning module to recognize a subset

of them that are “sensitive input” validations. It is worth noting

that even though locating existing sensitive input validations is a

simpler problem than identifying all sensitive inputs in the world,

the very problem is still challenging. This is because (as discussed

in § 1), sensitive input validations in Android are unstructured,

ill-defined, and fragmented, and no simple structural patterns can

capture them. Finally, we look for insecure input validations based

on our observations introduced in §3. These reported cases are

then considered as candidate vulnerabilities, which will be further

verified by security analysts.

4.2 Extracting Input Validation Structures
Since input validation is the centerpiece of our analysis, we need

to automatically identify and study input validations in Android

framework, which is a challenging problem; this is because they

are neither performed through pre-defined system interfaces, nor

identifiable via fixed APIs like permission checks.

We leverage the inherent structural characteristics in input vali-

dations. Specifically, different from general branching statements,

an input validation not only compares the input with other data,

but also terminates its normal execution immediately when the

validation fails. For example, a SecurityException can be thrown as

a termination action. Figure 7 illustrates two input checks from

the Android framework, in which one (a) is an input validation

and the other (b) is a normal branching. In Figure 7.(a), the system

service verifies the uid of the calling app, and throws an exception

to stop the execution of the system methods when the validation

fails. In comparison, Figure 7.(b) only aims to handle different kinds

of input and select the corresponding handler method.

Based on this observation, we need to understand which set of

termination actions are typically taken if a validation fails. To reiter-

ate, the first requirement of input validation is that the input must

be propagated to a comparison statement through data flow and

compared against some pre-configured values or results dynami-

cally retrieved from other APIs. Then, different actions are taken

based on the comparison result. After analyzing a handful of real-

world input validations in Android, we summarize the following

four kinds of termination actions:

• Throw exception. A straightforward way to show that the

client fails in the input validation is throwing a specific excep-

tion, such as SecurityException and IllegalArgumentException.
• Return constant. System services use some pre-defined

constants to indicate that caller fails in input validation,

which will be returned in the termination actions.

• Log and return. Logging information is useful in monitor-

ing the running of the system. In termination actions, they

commonly log some information about the illegal input and

then return.

• Recycle and return. In some cases, before the exit of execu-

tion, public interfaces need to recycle the previous allocated

resources.

In some cases, some input validations are simply data format

checks, e.g., a Null object check. Since this kind of validation does

not lead to serious security consequences (other than perhaps crash-

ing the system service if missing), we choose to exclude this kind of

validations in our framework and focus on other non-DoS-related

vulnerabilities, e.g., privilege escalation or privacy breach.

By recognizing the termination actions, we can identify input

validations with the following four steps: First, for a given system

method, we obtain all conditional statements in the method body.

Second, we identify the conditions that involve variables related to

the method input (via data flow analysis). Third, we apply the filter

to eliminate data format related validations. Finally, our analysis en-

sures that each recognized validation has a termination action. Our

results described in §6.1 show that this approach can identify 800

input validations in Android services with only 71 false positives.

4.3 Learning Sensitive Input Validations
Unfortunately, no structural patterns can tell sensitive input valida-

tions from other less sensitive ones. A precise and complete analysis

would require inferring the semantic significance of the input vari-

ables in terms of how they are processed in the service and what

kinds of operations they authorize. We consider this analysis to

Structural

Analysis

Learning based

Recognition

System

Images

Input

Validation

 Sensitive Input

Validation

Vulnerability

Discovery

Vulnerability

Report

Insecure Input

Validation Model

Figure 6: The overall architecture of Invetter.

boolean securityViolation = ai.uid != 0

&& ai.uid != Process.SYSTEM_UID

 if (securityViolation) {

 String msg = "Requesting code from " + ai.packageName

+ " (with uid " + ai.uid + ")";

 throw new SecurityException(msg);

}

 String action = intent.getAction();

 if (ACTION_PASSWORD_CHANGED.equals(action)) {

 onPasswordChanged(context, intent);

} else if (ACTION_PASSWORD_FAILED.equals(action)) {

 onPasswordFailed(context, intent);

} else if (ACTION_PASSWORD_SUCCEEDED.equals(action)) {

 onPasswordSucceeded(context, intent);

} else if ...

(a) Input Validation

(b) Functionality check (not an input validation)

Figure 7: Code snippets of input checks within Android
framework.

be infeasible as it requires a significant knowledge base describing

what operations in the system are sensitive, which itself is difficult

to obtain.

We take a drastically different approach through machine learn-

ing. The idea is to take advantage of the fact we can label a much

smaller set of sensitive input validations as training samples, and

have the machine learning automatically learn the rest.

We first present a strawman approach, which does not quite

work. In Figure 5, we illustrate a simple example where a sensitive

variable “packageName” is validated to check the identity of the

caller package. One might imagine a natural language processing

based technique to infer the meaning/sensitiveness of an English

word. However, Android framework manages plenty of system

resources, and uses a diverse set of variable names to represent dif-

ferent pieces. It is almost impossible to determine the sensitiveness

of such domain-specific names without a complete understanding

of Android framework.

Instead, Invetter chooses to use the association rule mining tech-

nique [28] to automatically discover additional input validations

that are likely also sensitive based on their co-occurrence with

known sensitive input validations. The intuition here is sensitive

input validations are often co-located in the same service meth-

ods. Taking the “packageName” and “uid” as an example, Android

framework often uses them together to verify an app’s identity (See

Figure 9). They are thus likely to be positively correlated in terms

of their sensitiveness. Our detailed approach is introduced below.

4.3.1 Grouping input validations for association rule mining. One
important requirement in association rule mining is that we need to

observe enough samples/occurrences of any given variable. How-

ever, if we treat each unique variable name separately, we may end

up with cases such as variables flag1 and flag2which each appear
only one time respectively in the code base, disallowing effective

association rule mining. Our intuition is that if the variables share

a common term (or prefix/suffix), they must be semantically related

and we can simply group them together. To do so, we go through a

series of steps:

Word splitting and stemming. Normally input parameters are

letter-case separated words. For example, ‘componentName’ can

be separated as ‘component’ and ‘name’, and ‘groupOwnerAddress’

can be separated as ‘group’, ‘owner’, and ‘address’. Based on this

approach, we split such long words into separated words. Further-

more, for each separated word, Invetter attempts to further identify

a single common root or base word. For example, words like ‘types’

and ‘subtype’ stemmed from the base word ‘type’, and the prefix

‘m’ of words ‘mflag’ and ‘mname’ should be removed also. To find

the base word, Invetter splits words by iteratively matching the

maximum length word inWordNet [19] until the input word cannot

be further split, and discards the remaining. After this step, Invetter

obtains the root words of each input parameter.

Variable name normalization.We can obtain a normalized name

by merging the root words of each input parameter. However, even

though word splitting and stemming are applied, meaningless quali-

fiers are unavoidable, skewing the final name. For example, variable

‘linkaddress’ is split into ‘link’ and ‘address’, while both ‘address’

and the qualifier ‘link’ are treated as root words. To remove the qual-

ifiers, Invetter calculates the occurrence frequency of each pair of

words. If two words often occur simultaneously, we only retain the

more popular word. After this step, we can group variables based

on their normalized names, which will facilitate the association

rule mining.

4.3.2 Learning new sensitive input validations. In total, we obtained

over 1132 input validation groups after the above step. However,

without a priori knowledge, it is not clear whether a validation

involves any sensitive input. Fortunately, we observed that devel-

opers tend to enforce similar input validations in adjacent places.

For example, in Figure 9, various sensitive input validations are en-

forced nearby. Thus, we can figure out a small number of sensitive

input validation groups, and discover other related groups.

Figure 8: The Initial seeds and expanded groups for recog-
nizing sensitive input validations.

Seeds of sensitive input validations. As described in §2.2, only

the input validations which verify the user identity, or restrict the

usage of sensitive resources, are considered sensitive. Thus, we

curated the list of input validation groups in Figure 8 as the initial

seeds.

Association rule mining.We expand the sensitive input valida-

tion sets by conducting the association rule mining. First, we calcu-

late the distance between each pair of input validations. Specifically,

if two input validations occur on two basic blocks with a common

edge, we consider these input validations adjacent to each other.

Then, if two input validation groups contain three adjacent pairs,

we associate these groups together (number chosen empirically).

Finally, starting with the seeds, we collect all the associated groups

iteratively until no more new group can be discovered. Figure 8

shows the partial list after expansion. As we can see, the technique

is effective in discovering a large number of groups of sensitive

input validations.

4.4 Vulnerability Discovery
Invetter operates from two independent perspectives: by searching

for incorrect/insecure sensitive input validations in each Android

Figure 9: An example for nearby input validations.

APK

termination

Framework

(a) Incorrectly trusting app-supplied data

(packageNames.contains

(event.getPackageName()))

event

(crafted)

APK

App Code
Check

SDK Manager

Framewrok
bypass

RPC call

(b) Incorrectly trusting code in the app process

(c) Weakened sensitive input validation in customized images

AOSP
Framework

Customized
Implemenetation

Check

APK param

Figure 10: Types of security flaws in sensitive input valida-
tion.

system image; and by comparing inconsistent security enforcement

between different images. In this section, we first describe our

intra-image analysis followed by the inter-image analysis.

4.4.1 Intra-image analysis. Based on our observation in §3, we rea-

son about other possible incorrect assumptions that affect sensitive

input validation. We summarize them as illustrated in Figure 10.(a)

and (b).

Incorrectly trusting app-supplied data. Some services validate

the caller identity based on input parameters that can be easily

manipulated by untrusted apps. Clearly, the input parameters can

be originated from untrusted apps and cannot be trusted for sensi-

tive input validation. Based on the expanded input validations in

Figure 8, an sensitive input validation is considered vulnerable if

it verifies an app-supplied sensitive data, and our learning based

sensitive input validation analysis reveals that it is applied to check

the identity of the caller.

Incorrectly trusting code in the app process. Unlike permis-

sion checks which never occur in the application process itself,

input validations are actually quite often misplaced due to their

unstructured nature. Specifically, we find that the collection of

Managers in the Android SDK (see Figure 2) that run inside the

application processes often acts as a proxy that packages data from

the app and forwards them to Android service processes. During

the data packaging process, these Managers also conduct input

validations (many of which are sensitive).

We consider a case vulnerable when sensitive input validations

are performed in the Android SDK and yet the Android services

do not perform the same sensitive input validations (if both sides

perform the same sensitive input validations then it is still secure).

The scope of Android SDK includes not only the public interfaces,

but also those that are labeled by @hide or @SystemApi, since apps
can access these hidden interfaces with reflection.

4.4.2 Inter-image analysis. Given the set of input validations, we

locate the corresponding public interfaces that deploy these vali-

dations. To locate the weakened sensitive input validations during

vendor customization, we figure out inconsistent sensitive input

validations between AOSP and customized images, as illustrated

in Figure 10.(c). We first group the public interfaces of different

system images, based on similarities in their method behaviors.

Specifically, we borrow the techniques from [36] that represent a

method behavior based on its data dependency graphs. We deter-

mine two methods to be similar when the similarity score is higher

than 0.7. Specifically, the threshold is determined empirically from a

small-scale experiment where we apply our inconsistent validation

detection with AOSP as baseline to 4 third party images with three

different thresholds (0.6, 0.7 and 0.8). As illustrated in Figure 11,

0.7 is the largest threshold that Invetter can find similar but not

identical methods. Anything above (e.g., 0.8) is too strict and can

find only unmodified methods. Then, by comparing the enforced

validations inside each group, Invetter reports inconsistent access

controls among different system images.

Note that it is insufficient to simply look at the class names and

method names to determine similarity. The reason is that many

vendor-customized services introduce new system services, which

achieve similar functionalities as AOSP services yet with reduced

security. We suspect that this is often times for reasons of conve-

nience — it may be complex to change the existing AOSP services

directly.

5 IMPLEMENTATION
We implement Invetter on an open source static analysis framework,

Soot [24], with about 12,000 lines of Java code, which we plan

to open source. Our implementation follows the same workflow

as illustrated in Figure 6. In this section, we discuss a few major

technical issues in implementing Invetter.

Extracting system services. The third-party system images are

commonly not open-source. Thus, to analyze their code, Invetter

uses Java bytecode as input. As the first step of our analysis, we

extract Java classes from system images for analyzing. For a specific

system image, Invetter first dumps all dex, odex, and oat files from it.

Then, by using oatTodex, Invetter translates oat files and odex files

into dex files. Next, the dex files can be processed by a tool dexTojar,
which translates them into jar files, in which the corresponding

Java class files are zipped. Invetter uses the Java bytecode extracted

from the jar files as the analysis target.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Xiaomi Note2

HuaWei Mate9

HuaWei P9

Samsung S6

In
co

ns
is

te
nc

y
be

tw
ee

n
si

m
ila

r m
et

ho
ds

True Positive
False Positive

Figure 11: The results of evaluating different thresholds in
inter-image analysis. The three columns present the results
under different thresholds (0.8, 0.7, and 0.6 respectively).

IBinder iBinder = ServiceManager.getService("accessibility");

IAccessibilityManager service =

 IAccessibilityManager.Stub.asInterface(iBinder);

Figure 12: An example of client-side code for building a
Binder-based RPC connection to a system service.

A critical technical challenge for Invetter is to extract a com-

plete list of system services. At runtime, all system services register

themselves to Android ServiceManager so that the system can start

all available services when initialized. However, there is no direct

way to obtain the service list statically. Related work [26] searches

the specific register interfaces, such as addService in ServiceMan-
ager. But in this way, only services registered in Java code can be

extracted. Unfortunately, we find that many system services are

registered to the system in native code. Additionally, smartphone

vendors may customize their own service managers and register

methods. Thus the system services in customized images cannot

be completely identified with this approach.

We propose another approach based on the observation that

if a system service is available to use, there should be some code

in the system (e.g., Android SDK) that visits its public interfaces.

Specifically, we identify a system service by finding one of its clients

in the Java bytecode, that is, recognizing a client-side Proxy for

Android Binder-based RPC. Figure 12 depicts an example of this.

Besides, we also use the register interfaces as a supplement.

Extracting public interfaces. For each system service we find,

we extract all its app-accessible public interfaces. Specifically, two

kinds of public interfaces are considered in this paper. First, as

aforementioned, methods declared by AIDL are public interfaces of

services. Thus, they are extracted as targets of our analysis. Second,

public interfaces documented by Android SDK are also extracted.

These interfaces are APIs (of various Managers) executed in app-

controlled processes (see Figure 2). We utilize these interfaces to

find misplaced validations described in §3.

Constructing control flow graph. Since Invetter conducts its

analysis based on the control flow graph of Android framework,

complete and precise call graph and control flow graph are essential

for our approach. Invetter uses inter-procedure analysis to achieve

better coverage and accuracy, thus it requires both intra-procedure

information about how the execution flows inside the methods, and

inter-procedure call information. To construct complete call graphs

and control flow graphs, we first leverage the approach proposed

in Axplorer [5], to connect the callers and their callees of asynchro-

nous or implicit function calls. Besides, we utilize Spark, to generate

points-to and class-hierarchy information, and to recognize possible

referenced object types for each method call.

Conducting path-sensitive analysis. Path-sensitive analysis is
often prohibitively expensive to apply in complex systems. Invetter

requires inter-procedure analysis to cover inter-method execution

paths, which further expands the search space. While there are

many systemmethods that are relatively simple and can be handled,

some methods have complicated control flow graph and generate

plenty of execution paths.

To overcome this problem, we reduce the execution paths by

applying several optimizations illustrated in Figure 13. First, given

a basic block, if none of its instructions (or its descendant nodes’

instructions) is data/control dependent on the service input, and it

is not dominated by any permission, then it is ignored by Invetter.

For example, we do not analyze node C in Figure 13. Second, if a

basic block is dominated by a system level privileged permission

validation, Invetter ignores this node. For example, node A in Fig-

ure 13 will not be further analyzed. We manually checked the logic

of 21 interfaces checking privileged permissions, and found that all

of them rely on the secure input provided by the system (e.g. uid

from system interface Binder.getCallingUid()). Thus, this optimiza-

tion do not introduce false negatives to Invetter. Besides, all normal

conditional jumps recognized in §4 are also ignored in our analysis.

After the optimizations, we obtain a simplified control flow graph

which contains less paths to be analyzed.

6 EVALUATION
In this section, we evaluate Invetter’s effectiveness, efficiency, and

accuracy by applying it to 8 different Android system images, in-

cluding 4 versions of AOSP (5.0, 6.0, 7.0, 7.1), and 4 system images

customized by 3 different vendors (Samsung S6, XiaoMi Note2,

HuaWei P9, and HuaWei Mate9). Additionally, since Android 8.0

utilizes a new dex file format, called vdex, and currently no tool

can extract Java byte code from vdex files, thus we cannot apply

Invetter to this version of Android. However, some vulnerabilities

reported on the other Android versions still affect Android AOSP

8.0 and some other 3rd party Android images including Xiaomi

Mix2(Android 8.0) and Huawei P10(Android 8.0). When applicable,

we test our exploit programs against Android 8.0.

We also present some vulnerabilities identified by our approach

as case studies. Our static analysis framework is running on a Cen-

tOS 7 server, with four 8-core 2.0GHz CPUs and 192 GB memory.

A
B

C

B

Original Control Flow Graph

 Path Optimization

Simplified Control Flow Graph

Check System-level

Permission

Check App-level

Permission or

depend on input

Check App-level

Permission or

depend on input

Maybe

missing

validation

Figure 13: An example of optimizations for path-sensitive
analysis.

Android Image #Service #Public #Classes

(Version) interfaces

AOSP(7.1) (105)118 2126 19425

AOSP(7.0) (103)115 2072 15524

AOSP(6.0) (89)103 1786 15166

AOSP(5.0) (87)96 1562 12179

Huawei Mate9(7.0) (131)156 2292 20100

Huawei P9(7.0) (118)139 1756 18608

XiaoMi Note2(6.0) (100)126 2077 21961

Samsung S6(5.0) (191)214 3584 18933

Table 1: The statistics of system services in differentAndroid
system images. In the second column, the number in the
parentheses are system services covered by Kratos [26] and
the other number is Invetter’s result.

Statistics of analysis target. Our 8 target Android system images

are summarized in Table 1. As we can see, the number of system ser-

vices increases dramatically from Android 5.0 to 7.1, which leads to

an increasing demand of security validations. Additionally, though

both Huawei P9 and Huawei Mate 9 are based on the same Android

version (7.0) and come from the same vendor, they have different

numbers of services. It indicates the level of service customizations

is fairly intense; even a same vendor may need to distinguish their

own products. Moreover, standing out from other vendors, Samsung

adds the most number of new services and public interfaces.

To illustrate the effectiveness of Invetter to extract system ser-

vices, we also compare the number of system services covered by

Invetter to the number reported in Kratos [26]. As presented in Ta-

ble 1, by applying our new method to find system services through

the client-side code (discussed in §5), Invetter covers more services

than Kratos. After manually verifying these newly found services,

we confirm that all these services are valid Android system services

and should be included in our analysis.

Efficiency. To illustrate the efficiency of Invetter, we summarize

Invetter’s analysis time on different Android images. For a specific

Android Image (Version) C1 C2 C3

AOSP(7.1) 27 8 -

AOSP(7.0) 24 7 -

AOSP(6.0) 23 6 -

AOSP(5.0) 20 5 -

Huawei Mate9(7.0) 27 5 9

Huawei P9(7.0) 25 5 26

XiaoMi Note2(6.0) 28 7 14

Samsung S6(5.0) 35 6 41

Table 2: The number of possible insecure validations in dif-
ferent Android images. These results are categorized by: in-
correctly trusting app-supplied data(C1), incorrectly trust-
ing code in the app process(C2), and weakened validation in
customized system services(C3).

Android image, Invetter needs about 85 minutes to generate an anal-

ysis report. Besides, the analysis time of Invetter is mostly consumed

in the structure analysis phase, which applies an inter-procedure

path-sensitive data-flow analysis. Since the whole analysis process

can be finished in 11.8 hours for 8 Android images, we consider the

execution time of our tool acceptable.

6.1 Tool Accuracy
After recognizing access controls used in the 8 tested system images,

Invetter finds 1865 input validations used in Android framework

(only 643 of them (34.48%) are protected by app-level permissions,

and the remaining can be exploited without permission granted).

We randomly select 800 (100 each for 8 system images) of them

and find 71 false positives by manually checking. After manual

inspection, we find that not all branches which return constants

belong to input validations (e.g., some hard code constant returns).

Since our tool recognizes all constant-returning branches as input

validation, we mistakenly report such cases as input validations.

From the 1865 input validations, Invetter finds 749 sensitive input

validations after learning.

After the phase of vulnerability discovery, Invetter locates 103

possibly insecure ones in total by searching for the patterns dis-

cussed in §3. The results are shown in Table 2. We manually verify

these insecure access controls, and find that among these reports, 86

are true positives. Some seemingly sensitive input validations in the

end do not yield any sensitive subsequent actions (e.g., returning a

true/false status). Unfortunately, it is extremely challenging to eval-

uate the completeness (i.e., false negatives) of our approach because

the codebase of Android framework is too huge to inspect manually

(more than 100,000 conditional branches). This is a common limita-

tion of similar static analysis tools (e.g. Kratos [26], AceDroid [33]).

As an empirical evidence from a small scale experiment on 5 An-

droid services (including StatusBarManagerService, MmsService-

Brokers$BinderService, LocationManagerService, TextServiceMan-

agerService, MediaSessionService$SessionManagerImpl) in AOSP

7.1, we manually identify their sensitive input validations as well as

insecure input validations. These results are all successfully identi-

fied by Invetter. Thus, we believe that the coverage is decent.

Category Android Framework Android SDK

Verify caller identity 189 30

Restrict usage of

50 72

sensitive resources

Security irrelevant

258 130

validations

Total 497 232

Table 3: The categorization of input validations.

6.2 Categorization of Identified Input
Validations

To better understand the input validations of Android framework

and the validations applied to the Android SDK, we conduct a

measurement study in this section of all the manually checked

input validations. Table 3 illustrates their distributions. About 36%

of input validations in Android framework and 12% of validations

in Android SDK are used to verify the caller’s identities such as

uid, package name, or whether it holds a critical permission. Most

of these validations are critical security checks, thus bypassing

them may cause serious consequences. Besides, about 10% of the

input validations in Android framework and 31% of validations in

Android SDK are designed to restrict the usage of sensitive system

resources. For example, check whether the type of a given message

is permitted. Bypassing these checks can also lead to security flaws,

although less likely compared to the identity checks. Thus, in total,

more than 40% of the input validations in Android are used to

ensure the secure usage of sensitive resources.

6.3 Tool Effectiveness
From all the 86 identified insecure sensitive input validations

(true positives mentioned earlier), we further hope to understand

whether these cases are actually exploitable. For our purposes, we

manually investigated them and indeed confirm there exist a large

number of exploitable vulnerabilities. Admittedly we may not have

done an extensive job in analyzing these cases, and there may be

cases that are difficult to trigger but can become exploitable with

more efforts. Therefore our estimate of exploitable vulnerabilities

is only a lower bound.

After our analysis, we confirm at least 20 exploitable vulnera-

bilities, presented in Table 4. They range from privilege escalation,

privacy leakage, to clearance of system files, etc. Among them,

11 input validations incorrectly check the caller’s identity using

app-supplied data. One of them is illustrated in §3, as shown in

Figure 5. Another example is that an app-supplied userId is used to

verify the identity of the caller. Furthermore, for one case, we find

a counterpart of native service which is properly protected, while

its Java-level wrapper service is left unprotected. A regular app di-

rectly accessing the native service will be denied, yet accessing the

Java service allows indirect access to the native service, effectively

a confused deputy example.

Besides, one access control is misplaced only in the Android SDK

(and not in Android services). Interestingly, there are 4 other similar

cases that do not seem exploitable at the moment but nevertheless

it is a potential problem.

Class Name

Affected Frameworks

Attack Detail

AOSP Third Part Rom

Vendor

XM XM HW HW HW SU

Reply

5.0 6.0 7.0 7.1 8.0 N2 M2 M9 P9 P10 S6

AccessibilityManagerService • • • • • • • • • • • A1 interrupt all accessibility services N

NetworkManagerService • • • • • • A1 modify VPN configurations N

AccessibilityManager ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ A1 expose all hidden interfaces to user N

Window ManagerService • • • • • • A1 create phishing toast window F

AccessibilityManagerService • • • • • • • • • • • A1 send arbitrary accessibility event N

InputManagerService • • • • • • • • • • • A1 send crafted physical key event N

MediaSessionService • • • • • • • • • • • A1 send crafted media key event N

DropBoxManagerService • • • • • • • • • • • A2 clear kernel logs N

Atfwd# • • • A1 send arbitrary keyword/touch event, N

erase sdcard content,etc.

CNEService# • • • A1 modify the wifi spot connection policy N

MiuiInitServer ⊗ ⊗ A1 do factory reset for the pre-install apps C

AudioServer ⊗ A1 mute the device F

AudioServer ⊗ ⊗ A1 add or remove bluetooth device C

WhetstoneActivity ⊗ A1 modify system white list N

ManagerService

Regionalization Server ⊗ ⊗ A1 delete arbitrary file under system dir C

HwAttestationServer • • A1 obtain the unique id of mobile device F

HwPhoneServer ⊗ ⊗ A3 obtain the cell location of mobile device C

HwAttestationServer ⊗ ⊗ ⊗ A3 obtain the public keys stored on the device C

HwSysResManagerService • • A1 allocate arbitrary memory C

Device* ⊗ A1 store arbitrary MMS on the device C

Table 4: The exploitable vulnerabilities exposed by Invetter. We show the effect of these vulnerabilities in different versions
of AOSP, as well as XiaoMi Note2(XMN2, Android6.0), XiaoMi Mix2(XMM2, Android8.0), HuaWei Mate9(HWM9, Androi7.0),
HuaWei P9(HWP9, Android6.0), HuaWei P10(HWP10, Android8.0), and Samsung S6(SUS6, Android5.0). These vulnerabilities
can be categorized by: incorrectly trusting app-supplied data(•), incorrectly trusting code in the app process(◦) and weakened
validation in customized system services(⊗). By exploiting these vulnerabilities, attackers can conduct privilege escalation
attacks(A1), log overflow attacks(A2), and private leakage attacks(A3). The 5th column provides the details about each vul-
nerability. The row labeled with * can also be located by Kratos [26]. Since Atfwd(labeled with #) is hidden by the SEAndroid
policy, its vulnerabilities can be exploited only if SEAndroid is disabled or 3rd-party vendor modifies the policy. We submit-
ted these vulnerabilities to Google and other corresponding vendors. The last column lists the status, with C stands for this
vulnerability has been confirmed, N stands for we have notified them and currently not received their responses, and F stands
for it has been fixed in the latest version of Android image.

Finally, we find all four studied customized system images

weaken the security enforcements when theymodify old or add new

services, resulting in 10 exploitable vulnerabilities. In fact, we find

that in most of the cases, vendors barely put any security checks

in their new service code, suggesting that third-party vendors are

less security-conscious overall compared to Google.

6.4 Case Study
We now choose a subset of the 20 cases to explain how the vul-

nerabilities manifest themselves and how they can be exploited.

For interested readers, our anonymous demonstration video can

be found at https://youtu.be/erLY_OMi4kQ. We are in the process

of responsibly disclosing the details to Google and other related

third-party vendors.

Hidden interfaces left by the microchip manufacturer (priv-
ilege escalation). Atfwd is a system app provided by the mi-

crochip manufacturer Qualcomm, and pre-installed on many

Qualcomm-based Android devices. Atfwd registers a system ser-

vice called AtCmdFwd, which accepts various commands through

app-accessible interfaces. Specifically, the commands accepted by

AtCmdFwd are illustrated in Table 5. Although it is designed to

reject commands from non-system apps, we show that due to an

insecure input validation, a malicious app can fake its identify. As

a result, malware can arbitrarily inject commands such as push

physical buttons, or trigger motions on the touch screen. Addi-

tionally, we notice that due to a similar insecure input validation,

AtCmdFwd exposes some sensitive system operations, for example,

erase the external/internal storage or reboot/shutdown the device.

Surprisingly, we are unable to locate the user of these exported in-

terfaces and unsure why they are pre-installed everywhere. Luckily,

in recent updates of SEAndroid policies, Atfwd becomes inaccessi-

ble to regular apps. However, its vulnerabilities can be exploited

if SEAndroid is disabled (in a lower version of Android), if a 3rd-

party vendor misconfigures the policy, or if an unrelated system

process is compromised first which can then reach the service. Our

https://youtu.be/erLY_OMi4kQ

Command Event Handler Description

+CKPD AtCkpdCmd

Send an arbitrary

key/button press event

+CTSA AtCtsaCmd

Send a touch screen

motion event

+CFUN AtCfunCmd Reboot the device

+CRSL AtCrslCmd

Set audio stream

volume

+CMAR AtCmarCmd

Erase the

external/internal storage

CSS AtCssCmd

Get default display

settings

$QCPWRDN AtQcpwrdnCmd Shutdown the device

Table 5: Commands accepted by AtCmdFwd. The first col-
umn shows the command tokens accepted by the system
service, and the second column presents the corresponding
event handler triggered by the commands. The final column
describes the effect of each command.

demonstration video shows that the interfaces can be utilized in a

zero-permission app.

Sending arbitrary accessibility event (privilege escalation).
Accessibility service is commonly registered to AccessibilityMan-
agerService by apps, providing convenience to assist the mobile

user’s operations, such as auto-filling data (e.g., password) or touch-

ing a point on the screen. Although accessibility services are origi-

nally designed to assist users with disabilities, it is not limited to

this purpose. For example, many UI testing frameworks use acces-

sibility service to gain access to specific app views, such as the

uiautomater in Android framework. Besides, some apps use acces-

sibility services to provide sensitive functionalities, such as reading

content of user’s current view, or alerting the user.

Interestingly, we find the input validation used in Accessibili-
tyManagerService is vulnerable. By exploiting this vulnerability,

a malicious app can deliver arbitrary accessibility events to any

targeted accessibility service. For example, we can target Notifi-

cation Check [7], a popular app used to manage various notifica-

tions on your phone. This app registers an Accessibility Service,

which allows it to listen for the arrival of notifications, i.e., accessi-

bility events with type TYPE_NOTIFICATION_STATE_CHANGED
dispatched by AccessibilityManagerService. With the event injection

capability, a malicious app can deliver crafted events to Notifica-
tion Check for phishing. Likewise, by sending a forged event to

the accessibility service which auto-fills user password, malware

can steal user password stored in this app, causing severe informa-

tion leakage. To emphasize, as the vulnerability lies in the system

framework AccessibilityManagerService, any app that registers their
app-specific service with it can become vulnerable. We tested the

vulnerability in the latest Android (8.0) and 3rd party Android

images. We confirm that it is still present.

Stealthy phishing attack (privilege escalation). The Android
OS provides a convenient functionality for developers to popup

a message on the screen, called Toast. When a toast is displayed,

it only fills the amount of space required for the message and

the current top activity remains visible and interactive. Originally,

the layout of Toast window is fixed (like a notification to user)

and cannot be customized by apps. However, Invetter finds an

interface in WindowManagerService which allows a malware to

create crafted Toast message with arbitrary scope of view space. As

a result, a malware can completely customize the toast window (e.g.,

a transparent TextField that captures the user input), and display it

on top of an arbitrary app. This is because there are two separated

paths based on different inputs that can popup a toast window. One

path requires the caller must have a SYSTEM_ALERT_WINDOW
permission. However, the other one does not apply any validation,

leading to the vulnerability introduced above. We confirm this

vulnerability with an exploitation on Nexus 6 (AOSP 7.0), which

can popup a phishing window without the user noticing.

Controlling themedia player (privilege escalation).MediaSes-
sionService provides a method named dispathchMediaKeyEvent that
allows apps to send out media key events to control the current

running media player, such as stopping a media file or playing an-

other. This method is originally designed as a hidden method since

it is labeled as@hide in Android SDK. Normally, a developer can

not call this method in his app. However, since the Android SDK is

executed in app’s process, an app can overwrite the manager side

RPC code, and invoke this method anyways by creating its own me-

dia key event. MediaSessionService conducts a verification to make

sure the input key event is a kind of media key events, after that it

clears the caller’s identity in Binder by calling clearCallingIdentity,
which means that the sender of the media key event is erroneously

set to system. This insecure validation allows an attacker to create

various kinds of media key events to control the current running

media player. As an exploitation experiment, we select two popular

media players in China, NetEaseMusic and QQMusic as targets. Both
of them can be controlled by the malicious app we developed.

Forcing factory reset (privilege escalation). In the system im-

age of XiaoMi Note 2, Invetter discovers a sensitive service inter-

face, called doFactoryReset, which is not protected by any access

controls. This method resides in the customized system service

MiuiInitServer. Doing factory reset is a system level behavior that

should be protected with critical enforcements, and commonly, it

can only be accessed by pre-installed system apps. Actually, AOSP

has a similar method called factoryReset, which requires a privileged
permission (CONNECTIVITY_INTERNAL). However, Invetter finds
that no check is performed in XiaoMi’s system image and any app

can access it without any restriction. In this case, we identify a

weakened access control in the newly added system services by a

third-party vendor, which demonstrates that customized system

images may weaken the original security enforcements of Android.

Clearing Android Kernel Log (Log overflow). DropBoxMan-
agerService(DBMS) is a persistent, system-wide, blob-oriented log-

ging service of Android (not to be confused with the file sharing app

which is also called Dropbox). Commonly it is used for recording

chunks of data from various sources, such as application crashes,

kernel log records, etc. Invetter reports a public interface, add, in
this service which does not enforce any permission check. It only

conducts sensitive input validation based on the untrusted app-

supplied data. This makes it possible for a malicious app to access

this interface, although it is designed for system only. The app can

fake the log information to mislead security analysts who use the

log reports, or even can erase the original system logs with fake

data. This is because DBMS uses a fixed-length queue to manage

logs in a system directory, and old data is discarded directly when

the maximal size reaches.

Deleting system files (privilege escalation). To prevent less

privileged apps from accessing files stored by high privileged sys-

tem/app processes, the Android sandbox separately stores app files

in their own app’s directory. As a result, only privileged apps or

system can access the sensitive resources. However, Invetter re-

ports a unprotected public interface, called deleteFileUnderDir, in
a customized system service RegionalizationService from XiaoMi

Note 2. Using this interface, the caller can delete arbitrary files

owned by the current running process. Since this system service is

executed in the system process, the caller client can delete system

files by calling it. Since this critical interface is not protected by any

permission or secure input validation, malicious apps can trigger

the file deletion whenever the service is running. This vulnerability

is not acknowledged in our testing device due to an incompatibility,

but confirmed by our in-depth code review.

7 DISCUSSION

Native code. Since Invetter is implemented based on Soot, which

cannot analyze the native code of Android, Invetter currently can-

not find vulnerabilities inside Android native services. We manually

checked the native services in Android framework, and find that

only 15 services are not analyzed by Invetter, e.g., Camera Service.

Since the code base of these services are relatively low, we believe

the impact is small because Invetter can find most system services

in the Android framework. Besides, as discussed in §5, we proposed

an approach to find Java byte code clients of services, including

the native ones. Thus, although we still cannot analyze the native

services, we can analyze and find insecure code within the Java

clients of native services, which cannot be achieved by the existing

approaches.

Inferring sensitive inputs. It is an open problem to automatically

infer sensitive inputs crossing a trust boundary in any large soft-

ware (e.g., user-to-kernel and app-to-service). However, in more

limited scenarios, inferring sensitive data has been considered and

studied using various techniques. For example, TaintDroid [8] labels

the return value of a hand-curated list of Android APIs as sensitive

(e.g., getLastKnownLocation(). UIPicker [21] and SUPOR [16] use

learning-based approaches to identify sensitive inputs through UI.

Similar to our idea, they first manually label some sensitive UI el-

ements (e.g., input boxes) and then use machine learning to infer

other sensitive ones via co-location analysis. Unlike UI elements,

the scale and complexity of sensitive inputs in programs are much

more challenging. Specifically, we are not aware of any good learn-

ing strategies (e.g., by co-location or co-occurrence) that can be

generally applied. This is why instead of learning “sensitive inputs”,

we choose to learn “sensitive input validations” — as the latter can

be learned by co-occurrence.

Recommendations for implementing secure validations.
This paper reveals vulnerabilities caused by insecure input vali-

dations. By comparing insecure and secure input validation imple-

mentations, we recommend that sensitive input validation should

be performed in the following way: First, all the data derived from

Android apps, including Android SDK, should not be trusted. To

validate the app identity, system controlled app signatures (e.g.

information managed by the Binder mechanism) should be used.

Besides, any system level access controls should not be placed in

user apps or Android SDK. Then, vendor customization should

be more careful when modifying system services, so that not to

remove sensitive input validation.

8 RELATEDWORK
In this section, we review related prior research and compare our

work with those studies.

Vulnerability detection in Android. The problem of security

vulnerabilities in Android has been extensively studied. Unixdo-

main [27] and ION [35] study the Android socket and low-level

heap interfaces, and report unprotected public interfaces by finding

missing permission validations. ASV [15] discovered a design trait

in the concurrency control mechanism of Android system server,

which may be vulnerable to DOS attacks. Besides, IntentScope [17]

shows that some Android components, e.g. services, accept inter-

component access from other components, e.g. apps, and because

some components mis-configured their intent filters, they can be

accessed by unauthorized apps. This paper also discuss access con-

trol of Android framework. Moreover, Zhang [37] shows that in

Android, after the app is uninstalled, some app data is not com-

pletely removed, causing privacy leakage. These works focus on a

specific vulnerability pattern, e.g. concurrency bugs. Different from

the work above, this paper focuses on input validation problems in

Android framework.

Additionally, some works focus on discussing the explicit permis-

sion based access control mechanism of Android. Felt [10] shows

that pre-installed apps can access critical system resources, mean-

while they may open interfaces that accept requests from low priv-

ileged apps. Since the access control in these apps may be weak,

low privileged malicious apps can utilize them as a step stone to

access high privileged resources. Kratos [26] compares the permis-

sion enforcement along different calling stacks of Android system

services, and finds vulnerabilities ranging from privilege escalation

to DoS. Besides, AceDroid [33] focuses on the inconsistent permis-

sion enforcement introduced by different vendors. Similar to our

purpose, buzzer [6] also aims to find incorrect input validations

in Android services, but unfortunately, we find that most of their

works are done manually, and only several vulnerabilities which

crash the services can be detected automatically. Gu, et al. [31] does

not formally define sensitive input validations and relies on a set of

manually-created lists of sensitive APIs. In addition, their system

reports 22 vulnerabilities but only 3 are related to incorrect sensi-

tive input validations (many are repeated invocations of APIs that

crash the system which is beyond our scope). By carefully studying

the 3 reported input validations, we notice that 2 of them are also

located by Invetter (one is listed in Table 4, and the other is dis-

carded during manual verification because of the low severeness),

and the remaining one was already fixed by Google. In this paper,

we discuss incorrect security forced input validations in Android

services, and weakened access controls in customized Android im-

ages. Our systematical approach reveals 86 vulnerabilities, among

which 20 are confirmed exploitable, from 8 Android images. To

the best of our knowledge, they are not systematically studied in

existing work.

Weakened access controls in Android customizations. The
security risks introduced by the customization of Android system

images are also studied before. Prior researches [1, 9, 10] focus

on the pre-installed apps in Android factory images and report

the presence of several kinds of the vulnerabilities, such as over-

privileged, permission re-delegation, hanging attribute references,

etc. Unlike these works, this paper focuses on the vulnerabilities

inside Android system services.

Other related studies [2, 11, 14, 30] find that customized system

images modify security configurations, and incorrect modifications

bring in security vulnerabilities. Like these papers, we also discuss

weakened security enforcement in customized images. However,

we focus on identifying insecure validations inside Android system

services, which requires deep understanding of the service code.

Static analysis on Android.We detect the vulnerabilities in An-

droid framework by using static analysis. Techniques serving the

similar purpose have been extensively studied [2, 4, 5, 26]. As one

of the most popular techniques used to analyze Android framework

as well as apps, static taint analysis monitors the data propagation

along Android framework as well as apps [3, 12, 18, 23, 29, 34]. They

answer the question of what data(source) flows into what destina-

tion(sink). Their use of static analysis techniques and source/sink

flow control is an important concept in our work. We use static

taint analysis to track the propagation of service input. PScout [4]

and Axplorer [5] use static analysis to enumerate all permission

checks in the Android framework and map all the permission us-

age to the corresponding system methods. Although they reveal

what permissions are enforced in a given method, they cannot find

missing validations. A similar work is Kratos, which finds missing

security validations by comparing permission enforcement along

different calling stacks. However, since its analysis is built on top

of the call graph, it cannot find finer-grained inconsistencies which

can be revealed in this paper. Besides, none of the above approaches

can identify incorrect sensitive input validation.

Other input validations. The traditional input validation stud-

ies mainly focus on the web apps (SQL injection) and programs

that are not memory-safe (C/C++ programs and OS kernel). For

example, Mokhov, et al [20] studies the vulnerabilities in Linux

kernel, with regards to two input validation errors: buffer over-

flow and boundary condition error. Scholte, et al. [25] studies the

evolution of input validations vulnerabilities in web apps. They

find that these vulnerabilities have not changed significantly and

most of them result from the missing check of structural input

strings. Yamaguchi, et al. [32] uses code property graph to char-

acterize known vulnerability types in Linux kernel, such as buffer

overflow, integer overflow, format string vulnerability and memory

corruption. In particular, these vulnerabilities rely on a small set

of well-defined sensitive input (e.g. user-space pointers) as input

to static taint analysis. However, our paper focuses on the oppo-

site end of the spectrum where we are not even clear what input

should be considered sensitive. Different from the above studies

that focus on well-known sensitive input, our paper focuses on the

sensitive input validations in Android system services, which are

unstructured, ill-defined and fragmented.

9 CONCLUSION
In this work, we make the first attempt to systematically study the

input validations used in Android framework. We propose Invetter,

a static analysis framework which focuses on the sensitive input

validations in the Android framework and in the customized third-

party system services. We demonstrate the effectiveness of our

approach by applying Invetter on 4 versions of Android AOSP

framework, and another 4 third-party vendors’ Android images.

Finally, Invetter reports 20 exploitable vulnerabilities which can

lead to various kinds of attacks, such as privilege escalation and

privacy leakage. Actually, most of these attacks do not require

any permission and can be conducted by any app installed on the

victim’s mobile device. Our findings show that a critical way to well

implement the access control should both consider the Android

permission and the inputs.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful

comments that helped improve the quality of the paper. This work

was supported in part by the National Natural Science Foundation

of China (U1636204, 61602121, U1736208, 61602123), the National

Program on Key Basic Research (NO. 2015CB358800). Yuan Zhang

was supported in part by the Shanghai Sailing Program under Grant

16YF1400800. Min Yang is corresponding author of Shanghai Insti-

tute of Intelligent Electronics & Systems, and Shanghai Institute for

Advanced Communication and Data Science, and was supported in

part by the K.C.Wong education foundation, Hong Kong.

REFERENCES
[1] Aafer, Y., Zhang, N., Zhang, Z., Zhang, X., Chen, K., Wang, X., Zhou, X., Du,

W., and Grace, M. Hare hunting in the wild android: A study on the threat of

hanging attribute references. In CCS (2015).
[2] Aafer, Y., Zhang, X., andDu,W.Harvesting inconsistent security configurations

in custom android roms via differential analysis. In USENIX (2016).

[3] Arzt, S., Rasthofer, S., Fritz, C., SPRIDE, E.-B.-E., Bartel, A., Klein, J., Traon,

Y.-L., Octeau, D., and McDaniel, P. Flowdroid: Precise context, flow, field,

object-sensitive and lifecycle-aware taint analysis for android apps. In Acm
Sigplan Notices (2014).

[4] Au, K.-W.-Y., Zhou, Y., Huang, Z., and Lie, D. Pscout: analyzing the android

permission specification. In CCS (2012).
[5] Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., and Weisgerber,

S. On demystifying the android application framework: Re-visiting android

permission specification analysis. In USENIX (2016).

[6] Cao, C., Gao, N., and Peng, L. Towards analyzing the input validation vulnera-

bilities associated with android system services. In ACSAC (2015).

[7] Durkin, S. Notification check, 2014. https://play.google.com/store/apps/details?

id=com.sndurkin.notificationcheck.

[8] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., and

Sheth, A. N. Taintdroid: An information-flow tracking system for realtime

privacy monitoring on smartphones. In OSDI (2010).
[9] Felt, A.-P., Chin, E., Hanna, S., Song, D., and Wagner, D. Android permissions

demystified. In CCS (2011).
[10] Felt, A.-P., Wang, H. J., and Moshchuk, A. Permission re-delegation: Attacks

and defenses. In USENIX (2011).

[11] Gallo, R., Hongo, P., and Dahab, R. Security and system architecture: Compar-

ison of android customizations. InWISEC (2015).

[12] Gibler, C., Crussell, J., Erickson, J., and Chen, H. Androidleaks: Automatically

detecting potential privacy leaks in android applications on a large scale. In Trust
(2012).

[13] Google. Operating system market share, 2018.

https://developer.android.com/guide/topics/permissions/index.html.

[14] Grace, M., Zhou, Y., Wang, Z., and Jiang, X. Systematic detection of capability

leaks in stock android smartphones. In NDSS (2012).
[15] Huang, H., Zhu, S., Chen, K., and Liu, P. From system services freezing to

system server shutdown in android: All you need is a loop in an app. In CCS
(2015).

[16] Huang J, Li Z, X. X. e. a. Supor: Precise and scalable sensitive user input detection

for android apps. In USENIX (2015).

[17] Jing, Y., Ahn, G.-J., Doupe, A., and Yi, J.-H. Checking intent-based communica-

tion in android with intent space analysis. In CCS (2016).
[18] Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. CHEX: Statically Vetting Android

Apps for Component Hijacking Vulnerabilities. In CCS (2012).
[19] Miller, G. A. Wordnet: A lexical database for english. In Communications of the

ACM (1995).

[20] Mokhov S A, LaverdiereMA, B. D. Taxonomy of linux kernel vulnerability solu-

tions. In Innovative Techniques in Instruction Technology, E-learning, E-assessment,
and Education. Springer (2008).

[21] Nan Y, Yang M, Y. Z. e. a. Uipicker: User-input privacy identification in mobile

applications. In USENIX (2015).

[22] NetMarketShare. Operating system market share, 2017.

https://www.netmarketshare.com/operating-system-market-

share.aspx?qprid=8&qpcustomd=1&qpsp=2017&qpnp=1 &qptimeframe=Y.

[23] Octeau, D., McDaniel, P., Jha, S., Bartel, A., and Bodden, E. Effective inter-

component communication mapping in android with epicc: An essential step

towards holistic security analysis. In USENIX (2013).

[24] research group, S. Soot, 2017. https://github.com/Sable/soot.

[25] Scholte T, Balzarotti D, K. E. Quo vadis? a study of the evolution of input

validation vulnerabilities in web applications. In International Conference on
Financial Cryptography and Data Security. Springer (2011).

[26] Shao, Y., Ott, J., Chen, Q. A., Qian, Z., and Mao, Z. M. Kratos: Discovering

Inconsistent Security Policy Enforcement in the Android Framework. In NDSS
(2016).

[27] Shao, Y., Ott, J., Jia, Y.-J., Qian, Z., and Mao, Z. The misuse of android unix

domain sockets and security implications. In CCS (2016).
[28] Tan, P.-N., Michael, S., and Kumar, V. Introduction to data mining. In Addison-

Wesley (2005).

[29] Wei, F., Roy, S., Ou, X., et al. Amandroid: A Precise and General Inter-

Component Data Flow Analysis Framework for Security Vetting of Android

Apps. In CCS (2014).
[30] Wu, L., Grace, M., Zhou, Y., Wu, C., and Jiang, X. The impact of vendor

customizations on android security. In CCS (2013).
[31] Yacong, G., Yao, C., and LingYun, Y. Exploiting android system services through

bypassing service helpers. In SecureComm (2016).

[32] Yamaguchi, F., Golde, N., Arp, D., and Rieck, K. Modeling and discovering

vulnerabilities with code property graphs. In Security and Privacy (SP), 2014 IEEE
Symposium on (2014), IEEE, pp. 590–604.

[33] Yousra, A., Jianjun, H., and Yi, S. Acedroid: Normalizing diverse android access

control checks for inconsistency detection. In NDSS (2018).
[34] Yuhong, N., Zhemin, Y., and XiaoFeng, W. Finding clues for your secrets:

Semantics-driven, learning-based privacy discovery in mobile apps. In NDSS
(2018).

[35] Zhang, H., She, D., and Qian, Z. Android ion hazard: The curse of customizable

memory management system. In CCS (2016).
[36] Zhang, M., and Duan, Y. Semantics-aware android malware classification using

weighted contextual api dependency graphs. In CCS (2014).
[37] Zhang, X., Ying, K., Aafer, Y., Zhenshen, Q., and Wenliang, D. Life after app

uninstallation: Are the data still alive? data residue attacks on android. In NDSS
(2016).

	Abstract
	1 Introduction
	2 Background
	2.1 Android System Services
	2.2 Sensitive Input Validations in Android Services

	3 Observation: Insecure Input Validations
	4 Methodology
	4.1 Insights and Workflow
	4.2 Extracting Input Validation Structures
	4.3 Learning Sensitive Input Validations
	4.4 Vulnerability Discovery

	5 Implementation
	6 Evaluation
	6.1 Tool Accuracy
	6.2 Categorization of Identified Input Validations
	6.3 Tool Effectiveness
	6.4 Case Study

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

