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ABSTRACT

As a new mechanism to monetize web content, cryptocurrency min-
ing is becoming increasingly popular. The idea is simple: a webpage
delivers extra workload (JavaScript) that consumes computational
resources on the client machine to solve cryptographic puzzles,
typically without notifying users or having explicit user consent.
This new mechanism, often heavily abused and thus considered a
threat termed “cryptojacking”, is estimated to affect over 10 million
web users every month; however, only a few anecdotal reports exist
so far and little is known about its severeness, infrastructure, and
technical characteristics behind the scene. This is likely due to the
lack of effective approaches to detect cryptojacking at a large-scale
(e.g., VirusTotal).

In this paper, we take a first step towards an in-depth study
over cryptojacking. By leveraging a set of inherent characteristics
of cryptojacking scripts, we build CMTracker, a behavior-based
detector with two runtime profilers for automatically tracking
Cryptocurrency Mining scripts and their related domains. Sur-
prisingly, our approach successfully discovered 2,770 unique cryp-
tojacking samples from 853,936 popular web pages, including 868
among top 100K in Alexa list. Leveraging these samples, we gain a
more comprehensive picture of the cryptojacking attacks, including
their impact, distribution mechanisms, obfuscation, and attempts to
evade detection. For instance, a diverse set of organizations benefit
from cryptojacking based on the unique wallet ids. In addition, to
stay under the radar, they frequently update their attack domains
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(fastflux) on the order of days. Many attackers also apply evasion
techniques, including limiting the CPU usage, obfuscating the code,
etc.
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1 INTRODUCTION

The web has long been fueled by online advertising to power the
“free” content. Yet users are often dissatisfied with the experience,
evident by the popularity of adblockers. As an alternative monetiza-
tion mechanism, cryptocurrency mining has started to gain traction.
Due to the ease of monetization and relative non-intrusiveness of
the nature of cryptocurrency mining (not visible), it has also been
heavily abused. In particular, websites often conduct cryptocur-
rency mining without explicit user content. Several anecdotal re-
ports cover this type of abuse, named cryptojacking [25]. However,
little is known about this ongoing threat: How prevalent is it? How
does the abuse occur? Who distributes the malicious payload? How
stealthy are mining scripts, e.g., attempts to evade detection? Are
they mitigated by existing solutions? To the best of our knowledge,
this paper is the first systematic study on web cryptojacking.

To answer the above questions, the first task is to identify such
cryptojacking webpages at scale. This task has never been fully
accomplished, due to the limitation of existing identification ap-
proaches. Existing approaches to collect cryptojacking samples rely
on the assumptions that a cryptojacking web page either exhausts
the victim’s CPU resources [17], or contains explicit keywords as
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malicious payload signatures [14]. However, we observed many
counterexamples.

Our Approach. In this paper, we take a deeper look into the na-
ture of cryptojacking and target the least common denominator of
their workloads: regular, repeated, and hash-based computation.
We propose a cryptojacking detector, named CMTracker, armed
by two runtime behavior-based profilers. The first profiler, hash
based profiler, leverages the nature of a proof-of-work system that
requires heavy workload to compute hashes. We therefore moni-
tor the statistics of the script behaviors related to hash activities.
Our second profiler, stack structure based profiler, is based on the
observation that cryptocurrency mining is repeated and regular
and therefore the call stacks of the mining scripts must be periodic.
Thus, we record the runtime stacks and identify the mining pages
by looking for the hotspot of calling contexts.

In summary, we are able to collect 2,770 cryptojacking samples
from 853,936 popular web pages, including 868 among top 100K
in Alexa list. In addition, 53.9% of these identified samples would
have not been identified with current widely used detectors based
on blacklists (See Section 6.1). Besides, our approach discovers
over 260% more cryptojacking, a significant increase compared
with the latest available public reports only after 2 months (See
Section 4.2). Our manual verification over a subset of the identified
result shows that all of them are true positives, indicating that
CMTracker achieves a good performance of cryptojacking scripts
in both coverage and precision.

Measurement and Findings. Assisted by CMTracker, we first
measure the severeness of this threat (See Section 4.1). From the
2,770 cryptojacking websites detected by CMTracker, we estimate
that they affect 10 million web users per month (See Section 4.2).
By conducting a further analysis of this result, we show that cryp-
tojacking workloads cost more than 278K kWh extra power daily,
equivalent of the energy consumption of a small town with 9.3K
people. Meanwhile, attackers are estimated to earn over 59K US
dollars daily. Second, we study the infrastructure of the cryptojack-
ing attacks. Our findings show that various malicious domains are
leveraged in collaboration with each other. We empirically classify
these domains, and analyze their functionality, distribution and life
cycle. Furthermore, many domains are exclusively used in only one
cryptojacking sample, and the payloads of different samples rarely
contribute to a same beneficial attacker wallet. This indicates a
significant number of real-world attackers. In addition, the crypto-
jacking pages rapidly change their domains, rendering the existing
blacklist-based solutions ineffective. Specifically, our experiments
show that more than 20% of the cryptojacking domains last less
than nine days, while the blacklists are updated every 10 to 20 days
on average [21, 35].

Next, we study the evasion techniques applied by these crypto-
jacking pages. Our findings reveal that at least 3 types of techniques
are applied to evade currently available detection approaches, in-
cluding limiting CPU usage, code obfuscation for mining scripts
and payload hiding. These techniques raise the bar for detecting
such stealthy behaviors from different perspectives.

To the best of our knowledge, this work is the first of its kind and
provides valuable insights into what can be learned about crypto-
jacking and its damage, infrastructure, and evasion techniques. Our

work complements past measurement studies on malicious web
pages [37], and provides useful recommendations to browser-based
security enhancements [6].

Contributions. In summary, we make the following contributions
in this paper:

e We design and implement a detector, named CMTracker, to
detect cryptojacking with high precision and coverage (much
higher coverage than prior work as discussed in Section 6.2).

e By crawling and visiting the Alexa top 100K websites (and
following several links per website), CMTracker locates 2,770
cryptojacking pages. We estimate the damage of cryptojack-
ing, showing that it costs more than 278K kWh extra power
daily, and attackers are earning at least 59K US dollars daily.

e We systematically study the infrastructure of cryptojacking
attacks. For instance, we analyze various aspects of the attack
domains and the behaviors of scripts. Our results provide
valuable insights into the innerworkings and ecosystem of
cryptojacking.

Roadmap. The rest of the paper is organized as follows: we first
provide background and motivation in Section 2. Then we describe
our approach to identify cryptojacking websites in Section 3. Sec-
tion 4 reveals the landscape and impact of cryptojacking, and Sec-
tion 5 describes the infrastructure of malicious miners. In Section 6
we study the evasion techniques used in cryptojacking, and we
further give four case studies in the real world in Section 7. We
provide the mitigation approaches and discussion in Section 8, and
summarize related work in Section 9. Section 10 concludes our
work.

2 BACKGROUND AND MOTIVATION

Cryptocurrrency Mining. Cryptocurrency is a type of digital
assets designed to work as a medium of exchange that uses cryptog-
raphy to secure its transactions [34]. With the growing popularity
of cryptocurrency like Bitcoin [4], they become an important type
of digital assets, and can be easily exchanged to hard cash in the
real world. To make money, hundreds of millions of people exert
their efforts to cryptocurrency mining. Successful miners obtain
new cryptocurrency as a reward through the mining process. The
nature of mining is to solve complicated mathematical problems
which requires processing a large number of hash-like computation
workload. The efficiency of mining for individuals can be improved
by employing either more powerful computing platforms (e.g., pow-
erful servers with high frequency CPU/GPU), or introducing more
computing resources (e.g., distribute the workload with multiple
PCs).

Cryptojacking. Recent reports [2, 27] showed that malicious ad-
versaries were utilizing web users’ CPU resources to mining cryp-
tocurrency by injecting malicious payloads into the compromised
websites. This new phenomenon, named cryptojacking, is on the
rise likely due to the boosting market value of cryptocurrency. For
example, as reported by Adguard [2] from November 2017, 220
cryptojacking websites have already been discovered from Alexa
top 100K list. Meanwhile, Whorunscoinhive [33] reported that the
number of websites using Coinhive (most popular cryptocurrency



mining scripts) has increased by 31.7% within only one month. Al-
though the above mentioned reports highlight the emerging threats
about cryptojacking, little has been discussed about its severeness,
infrastructure, and technical characteristics.

Although an in-depth understanding to answer such questions
in cryptojacking is very necessary, achieving this goal is by no
means trivial. To get the ground truth of cryptojacking in real
world, the first challenge is how to precisely identify those crypto-
jacking scripts in websites in a fully-automatic way. Most existing
approaches apply naive strategies to detect cryptojacking, which
can be easily evaded by cryptojackers. For example, a keyword
based search of cryptocurrency mining scripts [28] can be evaded
by simple code obfuscation techniques. As another example, al-
though cryptocurrency mining may take high CPU usage of its
hosted platform, attackers can easily configure their mining tasks
to stay under certain limit. In fact, in our research, we have already
discovered many such cases, as further discussed in Section 6 with
a set of case studies (Section 7).

Giving the above mentioned challenges in our study, we first
propose a novel approach to detect cryptojacking scripts in a fully-
automatic way, by leveraging a set of characteristics resistant to
current evasion techniques. Our approach achieves high precision
in identifying cryptojacking scripts in real world. Further, using this
approach, we are able to discover 2,770 cryptojacking scripts from
top 100K Alexa lists and their direct external links. We discovered
260% more scripts, as compared with the latest reports in 360.cn [1]
in February 2018. Additionally, the amount of cryptojacking scripts
detected by our approach is significant higher than blacklist based
approaches (See Section 6.1).

3 CRYPTOJACKING IDENTIFICATION

In this section, we depict our methodology to detect cryptojacking
websites. First, we introduce the dataset used for conducting our
large-scale study. Then we illustrate the two types of behavior-
based approaches for dynamically discovering cryptocurrency min-
ing pages. Those automatically identified websites go through a
further verification to determine whether they are indeed crypto-
jacking websites.

3.1 Sample Collection

To conduct our measurement analysis over a large-scale and real-
world dataset, we focus on most popular websites and their direct
external links (first level hyperlinks in these webpages). Specifically,
we first crawl Alexa top 100K websites and their sub-domains. The
intuition here is that malicious mining pages tend to maximize the
profit gain, by injecting malicious payload into those frequently
accessed pages. As a result, to speed up our sample collection, we
follow only the internal links (including sub-domains) from the
homepage of each website. In addition, we also follow the direct ex-
ternal links from each homepage, since some malicious miners tend
not to directly inject malicious payload to the top ranked pages, in-
stead, they “advertise” the malicious pages on the top websites, and
bait the users to visit a malicious page. Because of time and resource
limitation, we randomly accessed 20% of the internal/external links
(subject to 3 links maximum per subdomain, e.g., maps.google.com
and news.google.com). In general, following the above-mentioned
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Figure 1: Work-flow for identifying cryptojacking webpages

process, we collected a total of 853,936 webpages as our dataset for
locating cryptojacking webpages.

3.2 CMTracker Design

Figure 1 depicts our overall architecture to locate pages involved
in cryptojacking. First, we collect the above mentioned 853,936
webpage samples as the dataset for our measurement study. We
leverage Chrome Remote Interface [11] to record and profile the
visited pages by stack sampling. Second, we locate the cryptocur-
rency mining pages by leveraging two behavior-based profilers.
Then, an additional verification step is processed to exclude those
minor benign cryptocurrency mining pages (that explicitly inform
the user about the mining activities).

Note that the design of CMTracker is to efficiently detect ex-
isting cryptojacking webpages, and to provide important ground
truth for our further measurement study. We do not guarantee
to defeat all existing or future evasion techniques. Towards this
goal, our approach successfully identified nearly three times more
cryptojacking domains, compared with latest reports [2].

3.3 Automated Mining Scripts Discovery

Hash Based Profiler. The core functionality of cryptocurrency
miners is a proof-of-work system. Normally, most of their comput-
ing workloads are hashing. For example, Bitcoin-liked applies the
double SHA-256 to verify the transactions, and other cryptocur-
rency miners widely use Scrypt, which is a hash algorithm used in
cryptocurrency [5, 31]. Based on this observation, our hash-based
profiler focuses on the low-level hash functions. We annotate nine
common accessible hash library interfaces, which are identified by
a set of fixed signatures (e.g., “cryptonight_hash",‘sha256", ‘crypto")
from multiple open-sourced cryptocurrency or commercial mining
services. Then, we calculate the cumulative time of the websites
they spent on hashing to identify whether a webpage is mining.
As normal websites usually spend very little time on processing
hashing functions (e.g., as shown in Figure 2, 99% of top 100 Alexa
websites take less than 0.47% of the whole execution time for hash-
ing). On the other hand, cryptocurrency mining scripts spent most
of their time on hashing. In practice, if a webpage uses more than
10% of its execution time on hashing, our profiler reports it as a
cryptocurrency miner.
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Figure 3: Execution stack of a cryptocurrency mining sam-
ple over a period of time. The x-axis is the timeline during
execution and y-axis indicates the running threads in the
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Stack Structure Based Profiler Although the hash-based pro-
filer is straightforward and precise in identify most mining scripts,
further discovery showed that they can also be easily evaded by
cryptojacking attackers with code obfuscation techniques (Sec-
tion 6.2). As a result, we propose the stack structure based profiler
as a complementary detector.

The key observation is that cryptocurrency miners run heavy
workloads with repeated behavioral patterns revealed by their ex-
ecution stack, which can be utilized as an important tip for iden-
tifying the existence of cryptocurrency mining scripts at runtime.
Figure 3 illustrates the call stack transition of a sample mining
script. As can be seen from this figure, both the stack depth and
call chains of the mining scripts are repeated and regular. On the
contrary, Figure 4 shows that a normal webpage rarely repeats the
same calling stack for more than 5.60% of the execution time. Thus,
we profile and record the calling stack of evaluated webpages. Since
cryptocurrency mining is heavy, to avoid anything noticeable by
the user, most mining tasks won’t take place at the main thread
when loading the webpage. Instead, they prefer to create one or
more dedicated threads. Thus, if a dedicated thread repeats its call
chain periodically (in a fixed time internal), and the call chain oc-
cupies more than 30% of the whole execution time in this thread,
we report it as a cryptocurrency miner.

3.4 Cryptojacking Identification

The above steps help to automatically identify scripts which contain
cryptocurrency mining payloads, however, they are not necessarily
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Figure 4: Proportion of time spent on hot spot function from
top 100 Alexa websites

malicious. Normally, benign webpages mine the cryptocurrency
under a certain type of user agreement. As a result, for each iden-
tified webpage by one of the two profilers, we extract all textual
content and check if there exists any type of related user agreement,
based on a set of pre-defined keywords (e.g., “mining agreement").
Although this setting is a little bit coarse, it is effective enough for
us to filter out most benign webpages. Actually, our further analysis
showed that only 35 of identified webpages are benign and the rest
are indeed malicious.

3.5 Effectiveness

CMTracker identifies 2,770 domains in total that contain cryptocur-
rency mining scripts from the pre-mentioned dataset. Among them,
868 belong to Alexa top 100K websites, and the rest of 1,902 web-
pages belong to external links other than top 100K websites. We
further give a detailed analysis of this identification results, as
shown in Section 4.

To evaluate the effectiveness of CMTracker, we randomly select
a subset of identified cryptojacking samples and conduct a further
manual verification process. Specifically, we inspect 200 webpages,
to check whether they are indeed running cryptojacking scripts
without user consent. The reason why we do not evaluate CM-
Tracker with blacklists is that they are both incomplete (FNs) and
inaccurate (FPs), and cannot be used as ground truth. Our manual
verification showed that none of the identified webpages are false
positives. We believe such a high precision is a result of our conser-
vative detection thresholds (e.g., limited hash signatures and 30%
time-consuming in stack threads). This result can be considered a
lower bound of cryptojacking in the real world.

Note that we acknowledge there may be cryptojacking pages that
CMTracker misses. However, to the best of our knowledge, neither
we nor other publicly available reports showed any evidence of real
cases that can escape CMTracker’s two behavior-based detectors.

4 BREAKDOWN OF CRYPTOJACKING
SCRIPTS

In this section, we report the breakdown of 2,770 identified crypto-
jacking samples. We first show their over distribution among all
websites we detect, including a comparable analysis with other prior
reports, as well as their distribution in different webiste categories.
Then we give a coarse-grained analysis about the impact of these
cryptojacking scripts regarding the profit and energy consumption
aspects.



Domain Category | # Identified Domains # Visited domains
Top 100K 868 99,964
External Link 1,902 448,660
Total 2,770 548,624

Table 1: Cryptojacking landscape detected by CMTracker

4.1 Overall Distribution

Landscape. As can be seen from Table 1, among all top 100K Alexa
websites, CMTracker identifies 868 unique domains that contain
cryptojacking. Additionally, it also detects another 1,902 cryptojack-
ing domains by traversing all the available external links, including
448,660 distinct domains from top 100K Alexa websites. In total, our
CMTracker successfully identified 2,770 cryptojacking cases from
548,264 distinct domains. The highest ranked Alexa site hosting
cryptojacking is thepiratebay.org a rank of 125.

It is also worth noting that the number of cryptojacking cases
detected by CMTracker achieves a much higher scale, compared
with the latest available prior public reports. As shown in Table 2,
the number of identified cryptojacking domains is over 260% more
than the last public report from 360.cn [1] which was published
only two months earlier (Feb. 2018). In comparison, the report from
360.cn only detected 10% more cryptojacking websites compared
with another report from AdGuard[2], which was published four
months prior to it. As a result, we can conclude that the number of
cryptojacking cases are rapidly boosting.

# Report Name Top 100K Report Date Incremental
AdGuard 220 Nov. 2017 -
360.cn 241 Feb. 2018 10%
CMTracker 868 Apr. 2018 260%

Table 2: Comparison of latest available public reports

Websites Category # Websites with Scripts  Percentage (%)
Art and Entertainment 752 27.1
Adult 360 13.0
Internet and Telecom 323 11.7
Business 182 6.6
Game 180 6.5
Others 973 35.1
Total 2,770 100

Table 3: The distribution of cryptojacking domains based on
the category of their host websites

Categories. As shown in Table 3, among all cryptojacking domains
we discovered, nearly half of malicious samples (49%) are Art and
Entertainment and Adult websites. Among them, most provide
pirate resources (i.e. free movies or cracked games). Such types of
web contents are attractive to users who may stay for an extended
period of time while searching for resources. Compared with other
normal websites (e.g., a landing page of a company), websites in

such categories can obviously bring more profits for cryptocurrency
mining attackers.

4.2 Impact of Cryptojacking Scripts

We also measure the severeness of existing cryptojacking scripts
on the web by raising the following two research questions: First,
how many profits do these cryptojacking scripts help malicious
adversaries gain? Second, how much extra power do they cost to
earn the profits?

Domain Visitors per Month (#) Duration (s)
www.thepiratebay.org 211.47M 326
www.cinecalidad.to 34.28M 272
www.primewire.is 11.86M 449

Table 4: Sample statistics of visitors and duration from sim-
ilarweb [32]

Profits gain. The motivation of cryptocurrency miners is to gain
profits. Thus it is important to get an estimate on the scale of the
cryptojacking activities. Here, we use the following formula to
measure the profit approximately and conservatively. It is directly
borrowed from Coinhive [8], the largest web-based cryptocurrency
mining provider.

#Visitors X Duration X HashSpeed
Profit = Z P

X R d
Dif ficulty ewar

Variable Value Description and Source
Visitors 211.5 Num. of visitors millions/month [32]
Duration 326s Avg. stay per visit in seconds [32]
HashSpeed | 50 hash/sec Based on avg. CPU power (32.5w) 8]
Difficulty | 56.2G hash  Current diff. for mining Monero [8]
Reward $1,095 Based on the block reward of 4.74 [8]
and $221 Monero price [7]

Table 5: Values and their corresponding sources for
calculating revenue of a single cryptojacking website
www.thepiratebay.org. All statistics are collected as of May
9th, 2018.

Our revenue estimation is based on Monero, a most popular cryp-
tocurrency widely mined by cryptojacking attackers. The statistics
of these variables are acquired from different reliable sources, as
shown in Figure 5. HashSpeed is the average hashing speed of
users’ processors, Dif ficulty is the difficulty to mine a block of
cryptocurrency, Reward is the profit gain of each mined cryptocur-
rency block. For each malicious mining page we detect, we obtain
its number of visitors per month and their average stay duration
from similarweb.com [32], as a set of samples shown in Table 4. In
total, our basic approximation shows that malicious miners can
gain more than 1.7 million US Dollars, from more than 10 million
users per month.
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Figure 5: Mining participants involved in cryptojacking

Energy Consumption. We also estimate the extra energy con-
sumption that these websites cause to the web users and their
machines. Specifically, we use the following method:

Energy = Z #Visitors X Duration X Power

In here, #Visitors is the number of visitors of each identified do-
mains, Duration is the average duration that a visitor stays. Power
is the CPU Power available for mining of the browsers.

Similarly, for each malicious miner, we crawl its number of
visitors per month and their average stay duration from similar-
web.com. The average computing power of a browser is based on
50% capacity of the mainstream CPU (Intel i5, 65w [19]) in desktop
PC, which is 32.5W. In total, our experiment shows that the mali-
cious mining pages consume at least 278K kWh electricity energy
per day, which is equal to the electrical energy consumption of 9.3K
residential customers in the United States [3].

5 INFRASTRUCTURE OF MALICIOUS
MINERS

In this section, we first introduce our methodology to annotate
various parties in the process of cryptojacking. Then, we study the
infrastructure of the malicious miners from several perspectives:
first, how many attackers distributed these malicious payloads? It
could be powerful hacker groups that compromise a large number of
websites with their injected script, or it could be individual hackers
or website owners themselves who deployed the malicious payload.
Is is unclear which case it is. Interestingly, our study shows that
there is no large hacker group involved in cryptojacking based on
our domain and wallet ID analysis. Second, what is the life cycle
of the malicious mining domains? Do the attackers rapidly change
their domains?

Y Y
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Figure 6: Mining flowchart of an real-world example

5.1 Mining Participants Definition

Illustrated by Figure 5, to annotate various participants of malicious
mining, at least four parties are involved to distribute the malicious
miners. Here, we first give a detailed definition about these parties,
as listed below:

e Attacker are malicious adversaries who utilize the client ma-
chines as mining infrastructure for profit. Their scripts run-
ning on the clients are configured with their unique wallet
IDs, indicating who will receive the cryptocurrency rewards.

e Miner Deployer are domains or servers that host mining
scripts for cryptojacking. These scripts are either crafted
by attacker themselves, or copy-pasted from other public
available sources (e.g., Coinhive). The Miner Deployers can
be easily replaced by the attacker to evade detection, for
example, using an alternative mining scripts (changing from
Coinhive to Coin-have).

e Mining Pool are domains or servers that distribute mining
tasks (confirming the correct hash results), and return rev-
enue (cryptocurrency) to miners. From our analysis, we find
that mining pool and miner deployers can often be the same
party (e.g., Coinhive).

¢ Distributor are the intermediate domains that act as redi-
rectors to reach the final destination of mining scripts (this
is optional for cryptojacking). Like many redirectors such
as proxy servers, attackers usually change such domains
frequently to make sure they are not on any domain or URL
blacklist.

Given the definition of these different parties in cryptojacking,
once a victim is browsing a malicious mining page, the malicious
mining scripts should be fetched from the Miner Deployers as-
signed by Attackers. In addition, some malicious miners deploy
several levels of Distributors through domain redirection, so that
they can easily change the URL of Miner Deployers to evade
detection. Lastly, the mining tasks are assigned by the Mining
Pools, which then generate revenue to Attackers when com-
pleted. Figure 6 depicts a real-world example in an automobile
business website http://www.planete-auto-entrepreneur.com/. In this
website, malicious mining scripts that resides in Miner Deployer
gninimorenom.fi finally reached a victim’s browser through 2 redi-
rected domains by the Distributor: ad2va07tmah0123.0xcdn.com



and www.zenoviaexchange.com. Its mining script employs a Min-
ing Pool from wsI.zenoviaexchange.com. In addition, we find that
sometimes miner deployers and mining pools mining are offered
together as a one-stop shop which we call Mining Services. They
provide easy-to-use cryptocurrency mining interfaces, but charge
a commission fee from 20% to 30% of the mined cryptocurrency;
therefore, some attackers will choose to build their own private
mining services instead.

Participants Identification. In our study, these participants are
finally represented by a set of domains. To identify them, we
first record the requests of all visited webpages. The domains of
Miner Deployers can be directly identified from the request URLs
which load the detected cryptojacking scripts. If these cryptojacking
scripts are fetched by multiple requests, we consider the Attacker
employs Distributors. Thus, the domains of Distributors can be
identified from the URLs of the requests prior to the final one.

Besides, after monitoring some real-world cryptojacking samples,
we find that WebSockets are widely used in the data transformation
between cryptojacking scripts and mining pool[12]. Specifically,
since a Mining Pool uses standard WebSocket requests to commu-
nicate to the deployer, we identify the domains of Mining Pools
by domains that belong to WebSocket requests. Note that Web-
Socket could be used by other services and thus cause false positives.
Fortunately, from our manual analysis, they are in fact used only
occasionally (mostly due to online chatting). Lastly, Attackers are
identified by the parameter value of wallet_id from cryptojacking
scripts, a constant string that indicates the cryptocurrency owner
of the mining process. For example, the cryptojacking script from
Coinhive, the most popular mining service provider, sends its wallet
id through WebSocket to the Mining Pool in the first packet.

Experimental Setup. To understand the infrastructure of mali-
cious miners, we randomly select some samples from our results,
and conduct further investments to study the distribution of the
participants and the life cycle of different miners. Actually, because
the limitation of our computing server, we can only continuously
monitor 1,000 samples. Besides, we re-visit these samples every 3
days and study the life cycle of each sample. We detail the findings
of this part in the following section.

5.2 Mining Participants Distribution

To understand who is responsible for the cryptojacking in websites,
we study the distributions of different mining participants. Actually,
we count the occurrence of Miner Deployer, Distributor and Mining
Pool on the first day of our experiment. As a result, we obtain two
findings.

Observation 1: Most malicious miners are not centrally con-
trolled.

Figure 7 depicts the distribution of either Miner Deployers,
Distributors, or Mining Pools. Surprisingly, most participant do-
mains (60% Mining Pools, 81% Distributors and 80% Miner De-
ployers) occur in no more than three malicious samples. In contrast,
only a small proportion (15% Mining Pools, 8% Distributors and
9% Miner Deployers) are spotted in over 10 webpages. This result
invalidates the hypothesis that malicious miners are controlled
centrally, thus limiting the effectiveness of blacklists.
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Observation 2: Mining services and advertisers facilitate
most cryptojacking websites.

A further analysis is applied to the frequently used domains.
Table 6 shows the most common domains for Miner Deployers
and Mining Pools respectively. Among them, Coinhive, together
with Netflare, and Directprimal, are cryptocurrency mining ser-
vices, According to their descriptions, they are designed to provide
alternatives to micro payments, artificial wait time in online games,
intrusive ads and dubious marketing tactics. By investigating these
platforms, we find their terms of service quite vague, and almost
none of them claims that miners should request users’ agreement.
Note that even these mining services often come with a hefty com-
mission fee (from 20% to 30%), more than 57.2% of the websites
choose these services for convenience.

Interestingly, Zenoviaexchange used to be an advertising service
provider. We also notice that many other cryptojacking attacks are
also initiated by advertising services. For example, adstour.com,
freecontent.loan, and popads.net mine cryptocurrency without any



Miner Deployers Mining Pools Overlap

Domain Number % Number % Number %
1 coinhive.com v 442 44.2 | 4/ 518 51.8 | +/ 442 44.2
2 advisorstat.space vV 75 75 |« 75 75 |+ 75 7.5
3 minescripts.info* v 33 3.3 - - - -
4 netflare.info* - - Y 33 33 - -
5 directprimal.comt - -1y 21 2.1 - -
6 | zenoviaexchange.com | 4/ 13 1.3 |+ 13 1.3 |+ 13 1.3
7 cryptoloot.prot v 12 1.2 - - - -
8 Others 425 42.5 340 34.0 - -

Table 6: Top Miner Deployer and Mining Pool domains and their intersection. Domains marked by * or 1 belong to a same

service provider

user notification. Compared to regular ads, malicious mining is
more stealthy and apparently profitable, thus attracting the atten-
tion of traditional advertising services. To get a sense of how many
advertising services conduct cryptojacking, we check easylist [13]
(a filter list that contains advertisement domains and URLs) against
our results and find that 20% of the cryptojacking domains are
marked as advertisements. We further investigate the overlapping
domains between Miner Deployers and Mining Pools. Surpris-
ingly, once a cryptojacking website utilizes a popular mining service
(i.e. coinhive.com, minescriptsinfo, and cryptoloot.pro) as the Miner
Deployer, they, without exception, also adopt the same service as
their Mining Pool. This observation also applies to the advertising
services (zenoviaexchange.com). We further analyze these Miner
Deployers and notice that they all provide a default Mining Pool
service.

To distribute the URLs of the Miner Deployers, 231 malicious
miners apply at least one or more levels of Distributors. Figure 6
shows a real-world example. In this case, the cryptojacking webpage
fetches a distributor, and cascadingly fetches another. Then, the
URL of the Miner Deployer is loaded in the second distributor. We
summarize the length of distributor chains in Figure 8. More than
80 samples use multiple distributors to fetch the address of Miner
Deployers, and an extreme case adopts a chain of four domains.

5.3 Distribution of Wallet IDs

Our results above reveal that the distribution of various mining par-
ticipants (Miner Deployers, Distributors, and Mining Pools) is
sparse, i.e., only a few domains are heavily used in many malicious
samples. These heavily utilized domains (e.g., Coinhive), as depicted
in Section 5.2, are mostly cryptocurrency mining services. From
this information alone though, it is difficult to know who are abus-
ing these services. Thus, we further study the beneficiaries of the
malicious miners.

Observation 3: A significant number of attackers benefit
from abusing cryptocurrency mining services.

To identify the beneficiaries, we utilize a programming pattern of
Coinhive where the malicious payload should explicitly specify the
beneficial wallet id. Specifically, we analyze the malicious scripts
and extract the wallet ids automatically. As depicted in Figure 9, a
wallet ID is commonly associated with less than three malicious
webpages. In addition, Coinhive discourages collecting profits from
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Figure 9: Distribution of the Coinhive wallet IDs

multiple wallets, and prohibits the reward claim of wallets with
small value. Thus, it is likely that many malicious samples are de-
ployed by a single party. Only a few wallet IDs are associated with a
large number of cryptojacking pages. An extreme case is Piratebay,
a famous illegal online index of digital content (i.e. pirate enter-
tainment media and software). Although it was already reported to
abuse user browsers since September 2017 [18], we still witness 43
samples that contribute to its wallets.

5.4 Life Cycle of the Malicious Miners

Observation 4: The malicious samples disappear or update
frequently.

Figure 10 shows the life cycles of the cryptojacking pages. Among
our evaluated samples, about 20% vanish in less than 9 days. This
result illustrates that the malicious miners typically have short life
cycles. In addition, to better understand their update frequency, we
look into the domains of Miner Deployers, Mining Pools, or Dis-
tributors. As shown in Table 7, despite those disappeared samples,
the live samples frequently change their domains. Specifically, over
21% Miner Deployers migrated to new domains in only nine days.
Even though at a lower frequency, we find that Distributors also
migrate. Interestingly, blacklists do not target distributor domains
even though they rarely change (See Section 6.1).



Miner Deployer Distributor Mining Pool
Duration Unchanged Migrated Vanish | Unchanged Migrated Vanish Added | Unchanged Migrated Vanish
Day 0 - Day 3 868 77 55 209 4 18 10 920 25 55
Day 3 - Day 6 823 88 34 195 8 20 9 889 22 34
Day 6 - Day 9 752 46 113 129 7 76 3 773 25 113
Day 9 - Day 12 697 73 28 113 8 18 4 742 28 28
Day 12 - Day 15 604 69 97 74 6 45 9 652 21 97

Table 7: Life cycle of various participant domains. For each types of domains, we calculate: 1)how many domains keep un-
changed; 2) how many domains migrate to a new URL; 3) how many domains vanish; 4) how many domains are newly added
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Figure 10: Life cycle of samples. About 1/3 samples vanish
in 15 days

6 DETECTION AND EVASION TECHNIQUES

Some browser extensions claim to block the cryptojacking scripts
(e.g., through a dynamically updated blacklist of malicious do-
mains) [2, 22, 26, 36], and a few anti-virus engines detect mali-
cious javascripts. The question is whether they can protect users
from this threat effectively? It is especially questionable given that
cryptojacking participants can also apply evasion techniques. Un-
derstanding the evasion patterns of the attackers is important to
guide an effective detection/protection solution. This section an-
alyzes the cryptojacking attacks from two perspectives: first, we
evaluate how effective the state-of-the-art detectors are. Then, we
analyze the evasion techniques and show their effect on anti-virus
engines.

6.1 Effectiveness of Blacklists

Observation 5: State-of-the-art mitigations, for example,
blacklists, are insufficiently to locate cryptojacking in time.

To the best of our knowledge, the most popular mitigations
currently deployed are based on blacklists. In this section, we
collect two popular blacklists, and evaluate their effectiveness.
One is NoCoin [22], the most popular cryptojacking blocker in
Github.com (with 1,469 user favorites). Another widely used black-
list is MinerBlock [36], which has 369 user favorites. As illustrated
by Table 8, less than 51% malicious attacks are detected. Since
multiple cryptojacking participant domains need to collaborate
to complete a malicious mining progress, as long as one of them
on a chain is detected, the entire operation is thwarted. Surpris-
ingly, as shown in Table 8, all blacklists focus on Miner Deployers
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Figure 11: Impact of a blacklist update that occurs on
MinerBlock. The hits of the old blacklist and the updated
one are presented separately. The blacklist updates at the
ninth day of our experiment

or Mining Pools, while none of them detects the Distributors.
However, our experiments above show that malicious attackers
rarely change their Distributors. Thus, it could be an effective
solution to add Distributors to the blacklists. Interestingly, we no-
tice that NoCoin is actually less effective than MinerBlock, which
does not match their respective popularity. In addition, the Github
logs show that these blacklists are typically updated every 10 to
20 days [21, 35], which is slower than the cryptojacking domains.
Figure 11 illustrates the impact of blacklist update. The results show
that although the update improves the coverage of the MinerBlock
blacklist, the overall detection rate is still unsatisfactory because of
the high churn of cryptojacking domains as described previously
(with many domains vanishing or migrating).

6.2 Evasion Techniques

Among the 1,000 tracked samples in Section 5, we manually an-
alyzed 100 cryptojacking websites, and list the overall results in
Table 9. We find three evasion techniques commonly applied: First,



NoCoin MinerBlock
Day Deployer Hit Distributor Hit  Pool Hit Overall Hit Deployer Hit  Distributor Hit Pool Hit Overall Hit
0 6.3% (10/159)  0.0% (0/64)  6.1% (6/98) 26.0% (61/235) | 20.1% (32/159)  0.0% (0/64)  24.5% (24/98) 46.0% (108/235)
3 4.8% (8/168) 0.0% (0/56)  6.5% (6/93) 29.8% (75/252) | 16.7% (28/168)  0.0% (0/56)  22.6% (21/93) 44.9% (113/252)
6 4.5% (6/132) 0.0% (0/52)  6.4% (6/94) 25.4% (50/197) | 20.5% (27/132)  0.0% (0/52)  21.3% (20/94)  43.2% (85/197)
9 5.1% (6/117) 0.0% (0/43)  5.6% (5/90)  26.3% (46/175) | 20.5% (24/117)  0.0% (0/43)  16.7% (15/90)  43.4% (76/175)
12 6.8% (7/103) 0.0% (0/46)  5.4% (5/92) 30.5% (47/154) | 23.3% (24/103)  0.0% (0/46)  16.3% (15/92)  48.7% (75/154)
15 7.2% (6/83) 0.0% (0/35)  6.0% (5/84) 35.9% (46/128) | 26.5% (22/83)  0.0% (0/35)  15.5% (13/84)  50.8% (65/128)
Average 5.8% 0.0% 6.0% 29.0% 21.3% 0.0% 19.5% 46.1%

Table 8: Effectiveness of blacklists. The results of two popular blacklists are presented in two separate blocks. For each blacklist,
the first three columns show its detection rates on Miner Deployers, Distributors, and Mining Pools separately, and the fourth
column shows the detection rates of end-to-end cryptojacking operations (we consider an operation to be blocked as long as

one of the domains in the operation is blocked)

Evasion Techniques Category Used in Samples #

Limiting CPU Usage 56
Code Obfuscation 26
Payload Hiding 43
Total 100

Table 9: Statistics of evasion techniques
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Figure 12: The distribution of CPU usage

most mining pages avoid taking 100% of the CPU resources. Sec-
ond, many malicious pages obfuscate the malicious payload. Finally,
some pages hide malicious code into a popular 3rd party library. In
the following, we go through each of these evasion techniques.

Limiting CPU Usage. To maximize the profit gain, some cryp-
tojacking webpages exhaust the CPU resources. However, users
may experience obvious lags when visiting such pages. Also, such
a behavior is extremely easy to detect by automated methods.
Perhaps unsurprisingly, most cryptojacking scripts do not go
full speed. As depicted in Figure 12, most of the cryptojacking sam-
ples (70%) set such an attribute, named “throttle”, and the throttle
values vary from 90% to an extremely low number, 3%. Considering
that the average CPU usage of a webpage is 5% [24], it is quite
difficult to detect such a sample by only its CPU utilization. Since
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Figure 13: The distribution of mining threads. The results
are collected on a Ubuntu 16.04 server, with four 8-core 2.0
GHz CPU and 32 GB memory

state-of-the-art processors have multiple cores, it is also common
for cryptojacking scripts to take advantage of them with multiple
threads. However, like exhausting the usage of a single processor,
the creation of too many threads may also degrade the performance
of a victim’s browser. Thus, many samples not only set the throttle
value for a single thread workload, but also limit the number of
threads. Figure 13 illustrates the distribution of core utilization in
cryptojacking samples. Only less than 20% of the samples use a
single thread, indicating that most attacks execute the workload in
parallel. Among them, only about 52% malicious pages exhaustedly
create as many mining threads as the number of processors, that is,
48% malicious pages restrict the number of mining threads.

Code Obfuscation for Mining Scripts. 26 of the 100 analyzed
samples obfuscate their code to hide their malicious intent. Fig-
ure 14 illustrates a real-world example. The malicious payload is
decoded at Line 3, and executed at Line 10. Such an evasion tech-
nique hinders manual analysts or static analysis from understand-
ing the malicious payload. Interestingly, only 16 samples obfuscate
the entire mining payload. There are 10 other samples that sim-
ply obfuscate the mining pool domain (not the logic itself). As a
result, code obfuscation is frequently applied to the payload that
distributes the malicious domains.

Payload Hiding. Instead of injecting malicious payload directly to
the cryptojacking webpages, some attacks choose to hide their ma-
licious code in 3rd party libraries. For example, attackers frequently



Category With evasion techniques w/o evasion techniques Total
# VTI./CMTracker VT.Cov. | VT./CMTracker VT. Cov. | VT./CMTracker V.. Cov.
Redirected/Forwarded Pages (Distributor) 5/19 26.3% 45/81 55.5% 50/100 50.0%
Cryptojacking Scripts Pages (Deployer) 4/16 25.0% 67/84 89.7% 71/100 71.0%
Cryptojacking Website Pages 11/39 28.2% 33/61 54.1% 44/100 44.0%

Table 10: Effectiveness of anti-virus engines. The three blocks depict results on three sets of cryptojacking samples respectively.
For each block, the first column shows the the number of detected samples by either VirusTotal or CMTracker, while the second
column highlights the detection rate of the anti-virus engines. As a conservative estimation, if any of the anti-virus engines
on VirusTotal reports a given sample as either malicious or suspicious, we consider it detected by the anti-virus engines

1 # (a) Source code in cryptojacking web-pages

3 document.write(unescape(
)5
4
5 # (b) After decoding:
6
7 <script src=

></script>
8 <script>
9 var miner = new CoinHive.Anonymous ( );
10 miner.start(); $coinhive
11 </script>

Figure 14: An example of code obfuscation

Index page

# Some Benign Code
<script type="text/javascript'
sre=/js/jquery.min.js'>
</script>
# Some Benign Code

Injected jQuery Library

# Original jQuery Library Code

miner.start() |malicious payload

Overall, they are still insufficient in detecting cryptojacking
webpages and are comparable to the effectiveness of blacklists (as
show in Table 8).

Note that although these evasion techniques help many crypto-
jacking scripts escape detection, our behavior-based profilers can
still catch them. This, in turn, indicates that CMTracker is much
more effective than today’s best available tools for discovering cryp-
tojacking websites. The results reported by CMTracker serve as an
ideal ground truth for in-depth measurement study.

7 CASE STUDIES FOR VARIOUS TYPES OF
MINERS

In this section, we show four typical cases about cryptojacking
webpages. The first case shows the most aggressive miner that
makes full use of available resources. The second case shows a
typical example where the malicious miner intentionally hides itself
to avoid being noticed. The third case shows a stealthy miner that
applies multiple evasion techniques to maximize its profit. The last
case shows an adaptive miner which employs a platform-dependent
mechanism for distributing its mining tasks. All these case studies
demonstrate that although cryptojacking is clearly in the process
of applying more and more sophisticated strategies.

1 # Many Normal Code
. . 1 2 # Malicious Payload (Repeat 10 lines)
Figure 15: A code hiding example 3 var _oxd1d168=[ } i
[| 4 var _0x7e5874=[ R ,

inject their attack code into their own version of jQuery.js, which
is a widely used JavaScript library [20]. As illustrated in Figure 15,
the malicious code is appended to the original jQuery code, which
gets triggered automatically when the jQuery is loaded.

Observation 6: Evasion techniques are effective against anti-
virus engines

Our experiments above characterize several types of evasion
techniques from the real-world cryptojacking webpages. Then, our
further investigation uploads all the samples to VirusTotal, and
observe whether the evasion techniques are effective against the
anti-virus engines. Table 10 reveals that the evasion techniques
effectively decrease the detection rate of these engines. Specifically,
although about 44% cryptojacking websites can be detected by at
least one anti-virus engines, the detection rate drops to 28% when
considering only the scripts with evasion techniques are applied.
The drop also applies to Miner Deployers and Distributors.

Figure 16: Malicious payload in bookstore.investmentu.com

Case 1: Most Aggressive Miner. As previously discussed in Sec-
tion 6, at the current stage, about 30% of our identified cryptojacking
scripts exhaust the CPU resources completely to maximize prof-
its. One example is https://bookstore.investmentu.com, an online
bookstore. When a user visits this website, after a few seconds,
the cryptojacking script in bookstore.js invoke all its miners using
32 threads on our test machine with 100% CPU usage. It has an
even more aggressive behavior to escalate its priority if there are
multiple browser tabs (processes) that are mining cryptocurrencies
concurrently. Specifically, in Line 3 of Figure 17, the cryptojacking
script uses “CoinHive. FORCE_EXCLUSIVE_TAB” to block other



tabs from mining. Interestingly, none of the 67 anti-malware en-
gines in VirusTotal reports this website as a suspicious one.

Case 2: Stealthy Miner. Some of our identified cryptojacking
samples already take actions to avoid user attention. The most
straightforward way is to limit the resource consumption. A good
example is http:/filikulamo.to/, an online video streaming website
which provides pirate video copies. Since the core function of this
website is video playing which already takes more than 30% of the
CPU usage, it takes only about 10% of the CPU for mining, which
is very difficult for users to notice.

Case 3: Robust Miner. As discussed in Section 5, the whole pro-
cess of cryptocurrency mining relies on the collaboration of mul-
tiple participants, including Miner Deployers, Distributors, as
well as Mining Pools. If any of its parts becomes invalid (e.g., a
URL for loading mining script is blocked by AdBlocker), the opera-
tion will fail. To overcome this uncertainty, http://dlight.ir/ employs
two different mining services (Coinhive and Crypto-Loot) to do its
mining concurrently. As a result, any single failure does not kill the
other mining operation.

1 # Cryptojacking Payload

2 if (!miner.isMobile()) {

3 miner.start(CoinHive.FORCE_EXCLUSIVE_TAB);

4}

5 # Mobile Filter

[3 Miner.prototype.isMobile = function() {

7 return /mobile|Android|webOS|iPhone|iPad|iPod|
IEMobile|Opera Mini/i.test(navigator.
userAgent)

8 3

Figure 17: Malicious payload and mobile filter in
http://www.planetatvonlinehd.com/dark-temporada-1/

Case 4: Platform-dependent Adaptive Miner. We also observed
that some cryptojacking miners employ a platform-dependent
adaptive mining strategy to achieve a good trade-off between
its revenue and exposure risk. Due to the limited power of CPU
on mobile platforms, mining cryptocurrency in mobile browsers
is unrealistic. At the same time, this can also create a negative
browsing experience and expose suspicious activities to users.
As a result, some cryptocurrency miners explicitly disable their
mining scripts on mobile platforms. A sample code snippet of
http://www.planetatvonlinehd.com/dark-temporada-1/ is shown in
Figure 17.

The above case studies illustrate a set of notable and interesting
cases that employ different mechanisms in the process of crypto-
jacking. These cases indicate that like many previous discovered
malicious scripts, cryptojacking is evolving towards more sophisti-
cated techniques and operating infrastructures.

8 MITIGATION AND DISCUSSION

Our work studies cryptojacking, a widespread and serious issue
that affects millions of users. To mitigate this new threat, this sec-
tion provides some recommendations to browser developers and
cryptocurrency mining services.

Behavior-based cryptojacking detection. This paper proposes
a behavior-based approach to detect cryptojacking. Proven by our
experiments, this method can effectively detect cryptojacking web-
pages. Thus, both browser extensions and anti-virus engines can
leverage such an approach to detect and block cryptojacking pages.
A possible obstacle to applying this technique is its performance
overhead. However, to detect a cryptojacking page, our profilers
require only a short time to collect the runtime behavior of a page.
During our experiments, CMTracker monitors each webpage for
less than three seconds. A crowdsourcing-based solution can amor-
tize the cost.

Cryptocurrency mining services with explicit user notifica-
tion. Our study reveals that some cryptocurrency mining services,
such as Coinhive, are abused to launch cryptojacking in large scale.
We observed that cryptocurrency mining services have not paid
enough attention to avoid abuses. For example, the cryptocurrency
mining scripts are executed without any user notification, and un-
fortunately users do not have an option to turn off mining when visit
cryptojacking webpages. Given that more than half of webpages
use popular cryptocurrency mining services such as Coinhive, we
argue that the mining services should take more responsibilities re-
garding the notification to the web users (e.g. a popup window), and
disable the mining process if the user chooses to deny its request.

9 RELATED WORK

Cryptocurrrency Security. With the rapid development of cryp-
tocurrency ecosystem, cryptocurrency security has brought more
and more attention by researchers. However, most of the existing
studies focused on building a more secure ecosystem, by improving
the design, architecture of cryptocurrency (e.g., Bitcoin). For ex-
ample, Eleftherios et al.[23] proposed a novel Byzantine consensus
protocol which leverages scalable collective signing to commit Bit-
coin transactions irreversibly within seconds. Their design brings
more efficiency for Bitcoin transactions without sacrificing its se-
curity guarantees. Some work focused on identifying threats and
opportunities of mitigations in the cryptocurrency’s architecture.
Eyal et al.[16] presented a new type of attack for Bitcoin mining.
They found that collusion can allow miners obtain more revenue
than their fair share, and it can lead the Bitcoin system into a decen-
tralized cryptocurrency. Reid et al.[30] studied the anonymity of
Bitcoin system. They found that a mining pool may trigger a costly
distributed denial-of-service (DDoS) attack to lower the expected
success outlook of a competing mining pool. Further, Johnson et
al.[15] explored the trade-off between these strategies with a series
of game-theoretical models of competition between two pools of
varying sizes. In comparison, our work is more focused on a partic-
ular real-world security threat of cryptocurrency. The most related
work in this topic is Plohmann et al.[29] where they studied the
security incident of a miner botnet. However, their research is not
in the web context which is a much larger-scale problem that has
not been analyzed.

Malicious JavaScript Detection. Our measurement study for
cryptojacking are mainly based on techniques for JavaScript code
analysis. Existing related studies usually adopt either static or dy-
namic analysis to identify the characteristics of malicious JavaScript.



For dynamic analysis, JS. JSAND[9] extracted features of four differ-
ent aspects (redirection, deobfuscation, environmental context and
exploitation). They employed Naive Bayes based approach to detect
JavaScript malware samples that automatically distribute them-
selves on the victim machines through background downloading.
For static analysis, Curtsinger et al. [10] presented ZOZZLE, a tool
that predicates benign or malicious JavaScript code by extracting
features associated with the program’s abstract syntax tree (AST).
Specifically, part of the research focused on detecting malicious
advertisement scripts by utilizing some unique characteristics (e.g.,
advertiser ID). For example, Zarras et al. [37] studied the safety of
the advertisements and how users may be exposed to malicious con-
tent and their sources. However, the above-mentioned approaches
are not directly applicable to our research, due to the unique charac-
teristics of cryptocurrency mining. In comparison, our hash-based
and stack structure based profiler (Section 3) are more efficient and
precise in detecting cryptocurrency mining scripts dynamically.
Meanwhile, we acknowledge that our research can further benefit
from existing approaches for improving the coverage or precision
for identifying malicious mining scripts at a larger scale.

10 CONCLUSION

This paper conducts the first systematic study on the scale and im-
pact of cryptojacking attacks. To support automatically recognizing
malicious behaviors, we design CMTracker which out-performs the
state-of-the-art detectors, with two behavior-based runtime profil-
ers. We collect 2,770 malicious samples from 853,936 popular web
pages, and our manual verification over a subset shows that they
are all true positives. We estimate the real-world damage of this
threat to over 10 million web users and 278K kWh extra power daily,
equivalent of the energy consumption of a small town with 9.3k
people. We measure the organization, life cycle, and technical de-
tails of cryptojacking webpages. Our results show that a significant
number of attackers benefit from such attacks, and existing mitiga-
tion solutions are ineffective in blocking cryptojacking. In addition,
three types of common evasion approaches by cryptojacking web-
pages are discovered. Finally, we believe the study will prompt us to
rethink existing mitigation mechanisms and propose new solutions
against future threats like this. Besides, to facilitate further research
in cryptojacking, we release CMTracker source code and crypto-
jacking websites list at https://github.com/deluser8/cmtracker.
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