Android Root and its Providers:A Double-Edged Sword

Hang Zhang, Dongdong She, Zhiyun Qian
University of California, Riverside

hzhan033@ucr.edu, sdongdong@engr.ucr.edu, zhiyung@cs.ucr.edu

ABSTRACT

Android root is the voluntary and legitimate process of gain-
ing the highest privilege and full control over a user’s An-
droid device. To facilitate the popular demand, a unique
Android root ecosystem has formed where a variety of root
providers begin to offer root as a service. Even though le-
gitimate, many convenient one-click root methods operate
by exploiting vulnerabilities in the Android system. If not
carefully controlled, such exploits can be abused by malware
author to gain unauthorized root privilege.

To understand such risks, we undertake a study on a num-
ber of popular yet mysterious Android root providers focus-
ing on 1) if their exploits are adequately protected. 2) the
relationship between their proprietary exploits and publicly
available ones. We find that even though protections are
usually employed, the effort is substantially undermined by
a few systematic and sometimes obvious weaknesses we dis-
cover. From one large provider, we are able to extract more
than 160 exploit binaries that are well-engineered and up-
to-date, corresponding to more than 50 families, exceeding
the number of exploits we can find publicly. We are able
to identify at least 10 device driver exploits that are never
reported in the public. Besides, for a popular kernel vulner-
ability (futex bug), the provider has engineered 89 variants
to cover devices with different Android versions and config-
urations. Even worse, we find few of the exploit binaries can
be detected by mobile antivirus software.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—In-
vasive software

General Terms

Security, Measurement

Keywords

Android root exploit, root provider

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CCS’15, October 12-16, 2015, Denver, Colorado, USA.

@ 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813714.

1. INTRODUCTION

We are in an age when customers are not given full control
over the purchased personal mobile devices such as smart-
phones and tablets. Due to the popular demand by users,
a unique ecosystem of offering smartphone root or jailbreak
has formed. Root and jailbreak are the process of obtaining
full privilege on Android and iOS devices respectively. They
allow users to bypass restrictions set by carriers, operating
systems, and hardware manufactures. With full control over
the device, a user can uninstall bloatware, enjoy the addi-
tional functionalities by specialized apps that require root
privileges, or run paid apps for free.

Classified by whether a device is flashed, there are two
types of root methods: 1) soft root. 2) hard root. The
former refers to the case where root is obtained directly by
running a piece of software (i.e., root exploits). The latter
refers to the case where su binary is flashed externally via
an update package or ROM. Depending on the device model
and OS version, different root methods may be applicable.
For instance, due to locked bootloaders, some devices cannot
use hard root. Similarly, if a particular device has no soft-
ware or hardware vulnerabilities whatsoever, soft root would
not be possible. In practice, like any other systems, Android
devices do have a variety of vulnerabilities in various compo-
nents: kernel, driver, and application as summarized in

In this paper, we focus on the soft root as the same ex-
ploits can be potentially abused by malware authors and
therefore much more dangerous than hard root. In Android,
such root service is provided by a number of parties. Indi-
vidual developers or hackers often identify vulnerabilities,
develop, and publish exploit tools to gain fame and possibly
fortunate. However, due to the diversity of Android devices
in terms of hardware, fragmented OS versions, and vendor
customization |34], it is simply not scalable for individuals
to engineer a large number of exploits to cover a wide range
of the devices. Therefore, the business of offering root as a
service has emerged [10, |8, [13].

Interestingly, most commercial root providers are free to
use. They operate by requiring the exploit to run on an
Android device by a user voluntarily, e.g., through an one-
click root app [10, 8} [13]. Unfortunately, attackers can also
acquire such exploits easily by impersonating a regular user.
To make the problem worse, some of the large root providers
have a large repository of root exploits or even invent new
ones so they stay ahead of their competitors. This may give
attackers a strong incentive to target such providers.

In this paper, we examine the root ecosystem closely to
understand the following high-level questions: 1) How many

types and variations of Android root exploits exist pub-
licly and how they differ from the ones in commercial root
providers. 2) How difficult is it to abuse the exploits offered
by the root providers. We answer the above questions by
undertaking a series of measurement and characterization of
root exploits as well as the providers that offer them.

The contributions of the paper are the following:
e We conduct a comprehensive measurement study on An-
droid soft root methods to understand their origin and over-
all trend. We find that 1) most public Android root exploits
target the application-layer vulnerabilities that affect only
specific types of devices. 2) Although kernel vulnerabilities
are considered the most dangerous, an exploit developed on
one device may need to be adapted to work on another. 3)
As kernel vulnerabilities become rare, device drivers become
the dominating target to find root exploits.
e We analyze the security protections employed by a num-
ber of root providers on their exploits. While larger root
providers often employ more protections, we identify sys-
tematic weaknesses and flaws which substantially undermine
their effort. The result calls for better security practices on
protecting such dangerous exploits.
e We survey the availability and variety of the exploits
online versus the ones extracted from root providers which
range from large security companies to individual develop-
ers. We report that a large root provider not only keeps
“secret” exploits, but also spent significant engineering ef-
fort to polish and adapt existing exploits.

2. PUBLICLY AVAILABLE ANDROID
ROOT EXPLOITS

In this section, we attempt to exhaustively collect all pub-
licly known Android root exploits or vulnerabilities and un-
derstand their characteristics. Even though root exploits
are reported to have been used by malware in the wild al-
ready [43| 28 [19], we still lack a complete and up-to-date
picture. We are not aware of any systematic research stud-
ies on root exploits used by malware in the recent two years.
It is unclear what exploits may be currently used and which
ones are easily usable by malware, thus likely to appear in
the future. We aim to understand the question by analyz-
ing the current and publicly available resources to malware
authors.

Data sources and collection methodology. We sur-
vey a large number of public sources including academic
papers [30], research projects |1], published books [26], as
well as online knowledge base(e.g., CVE database or forum
post such as XDA forum) [9} 6l [2L[5]. Search terms includ-
ing “Android root”, “root exploit”, and “privilege escalation”
are used to locate the relevant information. Note that even
though we attempt to collect an exhaustive list based on our
expertise, it is inherently a best effort. The list eventually
leads to a dataset of 73 exploits or vulnerabilities.

In most cases, a vulnerability (with a CVE number) maps
to a corresponding exploit. However, as will be described
in §2.2] we are unable to locate publicly available exploits
for some small subset of CVEs. In many other cases, the
opposite is also possible — no CVE number is assigned but
the exploit is readily available, likely because of its limited
impact on very few device types.

We also observe that some exploits require multiple vul-
nerabilities to gain root. For instance, master key vulnera-
bility (e.g., ANDROID-8219321) only leads to system user

privilege. Additional vulnerabilities are necessary to com-
plete a root exploit [16]. In such few cases, we consider them
two separate ones. In the survey, we found 5 vulnerabilities
which can gain system privilege only and 3 vulnerabilities
which can gain root permission from system privilege (we
count them as 8 still). In addition, some exploits are related
to each other and can be considered variations of one an-
other. When it is possible to locate different CVE numbers
or vulnerabilities through the technical details, we also con-
sider them different exploits. This inclusive strategy is more
likely to lead to a more complete discovery of exploits and
vulnerabilities.

At a high level, we are able to locate enough technical
descriptions of the vulnerabilities or exploits, although they
vary significantly in detail, clarity, and availability of source
code or binaries. Perhaps expectedly, we find that the ma-
jority of the exploits are not produced by academic research.

Questions to answer. We aim to answer the following
questions from the analysis:

1. How many general vs. specific exploits exist? Intu-
itively, some exploits are more general than others, espe-
cially those exploiting kernel vulnerabilities. Some exploits
may be applicable to certain vendors only.

2. Whether the exploit source code or binaries are publicly
available? What’s the requirement to run the exploit? Can
the exploit work via a standalone app, e.g., without user
intervention or booting into recovery mode?

3. Whether antivirus can recognize the exploits?

2.1 Root Exploit Impact and Coverage

To understand the impact and coverage of an exploit, we
first try to identify the layer that is targeted. This is be-
cause the impact could be different depending on the layer.
For instance, if it is a vulnerable setuid program (in the ap-
plication layer) installed only a certain models of a vendor,
then its impact will be limited. We divide the layers into
four categories based on the Android Architecture:

Linux Kernel. Due to its privileged position, targeting
Linux Kernel is natural to achieve full control over an An-
droid device. In particular, a vulnerability in the kernel has
a large impact as all devices that run the vulnerable kernel
can potentially be affected. For instance, TowelRoot (CVE-
2014-3153) exploits the futezr syscall bugs to gain root access
and it is considered to affect all kernel versions before 3.14.5.
In this category, we include everything running inside kernel
except the cases described below.

Vendor-Specific Kernel or Drivers. Different from
the main kernel code that runs on almost every device,
vendors either customize the kernel (e.g., Qualcomm’s cus-
tom Linux kernel branch) or provide vendor-specific device
drivers for various peripherals (e.g., camera, sound) [42],
Such code runs inside the kernel space and the compromise
of which can also lead to full control over the device. Given
that they are produced by a single party without much open
auditing, and sometimes closed source (e.g., especially the
device drivers), the chance of them having security vulnera-
bilities can be high, as confirmed in our measurement results.
However, since not all Android devices run the same set of
customized kernel or device drivers, an exploit on a specific
customized device can only impact a subset of Android de-
vices (e.g., certain Samsung devices).

Libraries Layer. Exploits at the libraries layer target
the Android libraries or external libraries used for support-

w B
v O

M General
. Vendor-specific

B R N N W
v © un o

Number of exploits
o

-

Application Library Layer Externel Linux Kernel
Layer Drivers Layer
Android Layers

o wv

Figure 1: Number of exploits by layer

ing different applications. For instance, in ZergRush ex-
ploit (CVE-2011-3874), libsysutils used by Volume Manager
daemon (running as root) in Android is shown to have a
stack overflow vulnerability that leads to root privilege es-
calation [26]. The vulnerability in such libraries can have
a large impact because they may be embedded by multiple
programs, as long as one such program runs with root priv-
ilege and exercise the vulnerable code, a root exploit can be
successfully constructed. The ObjectInputStream vulnera-
bility (CVE-2014-7911) is another example.

Application and Application Framework Applica-
tion layer root exploits mostly include vulnerable logics in-
troduced by setuid utilities, system applications, or services.
The impact of such exploits depends on whether it is a third-
party one or not. So far, most cases are from third-parties
which indicate a limited impact. One example is a vulner-
able setuid utility that is only present on XoomFE devices
that has a command injection vulnerability [21]. Another in-
stance is a backdoor-like setuid binary shipped with certain
ZTE Android devices (CVE-2012-2949).

In general, from the highest to lowest, the order of impact
and generality of exploits would be 1) the kernel exploits,
2) the exploits targeting libraries that are used by Android
system processes, 3) exploits targeting system applications
or services, and 4) exploits against vendor-specific device
drivers, applications, and programs.

Even though we cannot accurately predict the number of
devices impacted by each exploit, the reasoning is that ker-
nel and Android system code is much more widely used than
the vendor-specific code. In addition, patches of kernel vul-
nerabilities are much harder to reach the end-user whereas
application updates can be quickly pushed out.

Breakdown by layer. As shown in Figure out of
73 exploits, there are 54 exploits that are vendor-specific
(in lighter gray) and 19 general exploits (in darker gray).
The vendor-specific ones include all device driver exploits,
and vendor-specific applications or programs. The applica-
tion layer is found to have the largest number of exploits,
although most of them are vendor-specific. The external
drivers layer has the second largest number of exploits but
all of them are vendor-specific by definition. It is expected
that the kernel layer and library layer have the smaller num-
ber of exploits which are very general and extremely dan-
gerous. The number of new kernel layer exploits occurred
each year is also relatively stable in our survey — only one
or two per year on average.

Time dimension. Another important dimension is time.
Specifically, the lifetime of vulnerability is determined by the

20
15
——Application Layer
10 ——Library Layer
Externel Drivers
5 | ——Kernel Layer
0

2009 2010 2011 2012 2013 2014 2015

Figure 2: Number of exploits by year

patch version and date. The later the discovery, the longer
the vulnerability lives and therefore a higher impact. On the
other hand, the sooner the discovery, the more quickly the
root exploits can be developed. Figure [2| shows the number
of exploits discovered in each year. As we can see, vulner-
abilities explode around year 2013 due to a large number
of vulnerabilities introduced by vendor customization at the
external drivers layer and application layer. One of the key
problems is that device files on many vendor-customized An-
droid systems have weak permissions [42], without which an
app process cannot even open these device files and launch
exploits. Such period also coincides with the increased mar-
ket share of Android and participating vendors. On the
other hand, the kernel and library layers have a relatively
stable pattern.

Obviously, with common mistakes corrected in the vendor
customization process, the number of vendor-specific vulner-
abilities will drop. However, it is always hard to predict the
new trend or classes of exploits that may surface. As long as
there is strong need from users, we believe root exploits will
still continue to exist in the foreseeable future. For instance,
at the time of writing, a new kernel-level root exploit named
PingPong root [40| is announced.

Coverage. Theoretically, a kernel vulnerability affects all
kernel versions between when the vulnerability is introduced
and when it is fixed. Therefore, a recently discovered kernel
vulnerability such as TowelRoot (CVE-2014-3153) should
have a significant coverage. However, as will be discussed
in §3] it is most often not the case. In practice, a ker-
nel exploit may depend on system configurations, address
space layout, compiler options, etc.. Therefore, to success-
fully root a device, multiple exploits are usually attempted
in both the malware [43] and the root providers.

2.2 Exploit (Source or Binary) Availability

In this section, we aim to understand how readily avail-
able the exploit source code or binaries are on the Internet
for public use. In particular, the availability is a direct in-
dication on whether malware authors can find and leverage
such exploits. Even though it is well known that malware
already start to embed root exploits that are often copied
from the public sources [43], it is unclear how many such
exploits can be located and abused.

To locate exploit source code or binaries, the method-
ology is to simply use the relevant keywords (when appli-
cable) of an exploit that typically include the CVE number
(e.g., CVE-2014-3153), the Google Bug ID (e.g., ANDROID
3176774), impacted device model, and the exploit nickname

S
v

H General
40
235 Vendor-specific
S
330
$ 25
s
g 20
R1s -
S
210
5
o y Il y
None or Reboot Adb shell User
permission interaction

Highest Requirement

Figure 3: Exploit requirement breakdown

(e.g., TowelRoot). To ensure adequate coverage, we undergo
two rounds of independent web searches.

Out of the 73 cases, we are able to locate either the source
code or binary of 68 exploits. Only 5 of them have neither
found. One of them is not available because it is only de-
scribed in a research abstract. Others are not available even
though the corresponding CVEs clearly indicate they allow
arbitrary code execution with elevated privileges. We are
not certain about the root cause but one plausible expla-
nation is that the person who discovered the vulnerability
did not release the technical details or any proof-of-concept
exploits. It is also possible that the vulnerabilities are not
generic enough to attract individual hackers to build an ex-
ploit.

Theoretically, both the binary and the source code are
valuable to malware authors. A malware can embed the
binary directly so long as it is an independent piece (e.g.,
executable or libraries) and has an easy-to-identify interface.
Of course, source code has many advantages since it can be
freely customized and improved.

Overall, there are 46 exploits with source code available,
18 of them are simple exploits that leverage weak file per-
missions and symbolic link attacks [14] which are typically
introduced by vendor customization. Such exploits can be
mostly implemented in shell scripts. The rest are written
in C (and one in Java against CVE-2014-7911). On the
other hand, there are 22 exploits with binaries available only,
which are in the following two forms: 1) PC-side scripts that
may push additional binaries onto the device and 2) apk files
that run on the device directly. There are 10 and 12 of them
respectively.

We observe that even though source code is generally more
valuable, it may not be as robust as the binaries, especially
when the source code is offered as “third-party” proof-of-
concept. Particularly, in order to accommodate different
devices and models, considerable iterations and engineering
efforts are required. For instance, TowelRoot is binary only
and it has evolved over three major revisions supporting
different devices. The available source code, however, is just
proof-of-concept and is written by other developers [4].

To summarize, malware will likely be able to integrate
most of the exploits, even if some may have limited coverage.

2.3 Exploit Requirements

Even if an exploit source or binary can be found, one
still needs to understand the requirement to run them. For
instance, an exploit may require an adb shell setup through
a PC connection — since only processes running as shell

Root exploit AVG|Lookout|Norton|Trend Micro
exploid(2010)

Zimperlich(2010) X X
Gingerbreak(2011) | X X X X
BurritoRoot(2012) | X X X

Poot(2013) X
LGPwn(2013) X X

WeakSauce(2014) | X X

Framaroot(2014) X X

Towelroot(2014) X X X X

PingPong root(2015) X

Figure 4: Detection results of mobile antivirus

user can perform the exploit. In other cases, an exploit may
require user interactions (e.g., booting into recovery mode
at least once to trigger the vulnerable code).

To understand the exploit requirements, we perform two
steps: 1) locate technical reports or tutorials published ei-
ther by the exploit authors or other interested parties |21].
2) if 1) is not available, we attempt to read the exploit source
code or script, which will typically contain such information.
It turns out the two steps can cover most exploits.

From the technical details of the exploits and source code,
we are able to identify the following major requirements
(from the most rigid to the least):

e Requiring user interactions. This category have few
cases. One case is asking the user to download an app and
manually interrupt the installation [7]. One is asking the
user to boot into recovery at least once [18]. Another is
asking the user to manually put the device into “battery
saving” mode [12]. The last asks the user to open a vendor-
specific app and hit a button [15]. Intuitively, exploits in
this category are difficult to be used by malware authors to
fully automate the exploit.

¢ Requiring adb shell through a PC connection. For
some exploits, adb shell connection is required because of the
following most common reasons: 1) The exploit can success-
fully modify a setting in local.prop which enables root for
adb shell only. 2) The exploit needs to write to a file owned
by group shell and group-writable (not world-writable) [14].
3) The exploit targets the adb daemon process that requires
the attack process to run with shell user. For instance, the
Rage Against the Cage exploit [11] targets the vulnerability
of adb daemon’s missing check on return value of setuid().
e Reboot. Generally, many root exploits require at least
one reboot. For instance, a symbolic link attack would
allow an attacker to delete a file owned by system with
weak permission, e.g., /data/sensors/AMI304_Config.ini,
to setup a link at the same location to a protected file,
e.g., /data/local.prop. After a reboot, the corresponding
init scripts would attempt to change the permission of the
original file (i.e., /data/sensors/AMI1304_Config.ini) to
world-writable, which in reality changes the permission of
the linked file (i.e., /data/local.prop).

e None or permission. The exploits in this category
have no hard requirements, however, some of them may re-
quire certain Android permissions like READ_LOGS in or-
der for the process owner to be placed in certain user group.

If an exploit has multiple requirements, we will only count
the most rigid one (e.g., one exploit needs both adb shell and
reboot will fall into “adb shell” category). The results are

summarized in Figure 6 of them require user interactions.
17 of them require adb shell through a PC connection. 6 of
them require rebooting the device. The rest 44 do not have
any hard requirements, in which 5 do require certain An-
droid permissions. Most exploits are vendor-specific, how-
ever, there are 4 and 15 general exploits in “Adb shell” and
“None or permission” categories, respectively.

Correlating with the 68 exploits that have source code
or binaries, there are 39 available exploits that need only
reboot, permission, or none and can potentially be abused
in a malware silently gaining root access.

2.4 Root Exploits Detection by Anti-Virus

Since root exploits can be potentially abused by malware
to gain the highest privilege, we expect they are of high
priority to antivirus software. To verify the hypothesis, we
download 21 root exploits in the form of 10 apk files or ARM
ELF executables. In order for the antivirus to recognize a
malicious app, when there is a lack of apk file, we package
the ARM ELF executables into a simple Android app (stored
in the libs folder). Since some source code is only proof-of-
concept, we decide to use the binary only for experiment.

We downloaded 4 antivirus software from the Google
Play: AVG AntiVirus Free 4.3.1.1.213361, Lookout Secu-
rity and Antivirus (lookout) 9.18.1, Norton Mobile Security
V3.10.0.2361, Trend Micro Mobile Security V6.0.1.2050.

We use a Galaxy S3 phone to carry out the experiment in
the early May of 2015. We install the antivirus software one
at a time and never keep two or more running simultaneously
to prevent potential conflicts. The antivirus software all
have real-time protection enabled and will pop up a window
when they believe a malware or suspicious app is detected.

Table 4] shows the results with exploits ordered by year.
Note that in the case of Framaroot, 12 exploits are packed
in the same apk, and only one row is shown to represent
them. As we can see, most exploit binaries are flagged by
more than one antivirus software, which is expected as most
of them are well-known root exploits.

There is one exploit, exploid that cannot be recognized.
Poot and PingPong root are detected by one antivirus
only, indicating that some exploits can still fly under the
radar(The reason may be that our samples are different from
those used by malware). Interestingly, the very recent Ping-
Pong root exploit, published a few days ago at the time of
writing (early May 2015), is already detected by Trend Mi-
cro, indicating that they are specifically sensitive about the
publicly available exploits.

In contrast, as will be shown in the exploit binaries
engineered by large root providers are surprisingly “clean” as
all major antivirus software have difficulty detecting them.

3. ADAPTATION OF ROOT EXPLOITS

Android is well known for its fragmentation due to carrier
and vendor customization |34]. On one hand, the availabil-
ity of a large number of customized Android devices allow
greater market penetration. On the other hand, the diver-
sity of Android devices makes it extremely difficult to write
robust root exploits that work on devices with varying ap-
plication/kernel configurations and settings.

It is known that many exploits require adaptations to work
across devices. In fact, it is believed that adaptations di-
rectly discourage the malware authors to use certain exploits
(e.g., zergrush and mempodroid) in the wild [28§].

Typically, an exploit needs specific environment to work.
Difference in CPU, kernel version, OS version may cause a
failure. In memory corruption based exploits, requiring the
knowledge of absolute or relative memory addresses of cer-
tain key data structures are common reasons why adaptation
may be necessary. For instance, in the exploits against CVE-
2014-4322, the address of a kernel symbol needs to be deter-
mined which differs across devices. Note that a bruteforce
approach will not work as it may crash the system jumping
to an undesirable address. In rare cases such as Exynos-
abuse, adaptations may not be necessary. This exploit can
access arbitrary physical memory through a vulnerable de-
vice driver and overwrite kernel data to gain root privilege.
Instead of using a hard-coded static address, the exploit can
search from the beginning of kernel space to locate the tar-
get kernel symbol. Of course, such a special vulnerability
allowing the whole kernel space access is unlikely to occur
and is limited to certain device type only. In general, kernel
exploits require substantial adaptation, as is demonstrated
through the case study below.

3.1 CVE-2014-3153 (Futex bug)

base Linux Kernel 3.4 base Linux kernel 3.4 base Linux kernel 3.0
sendmmsg recvmmsg sendmmsg
frame 1 (evil_parameter) frame 1 (evil_parameter) frame 1 (evil_parameter)
frame 2 frame 2 frame 2
frame N frame N frame N
target J hit target x miss target x miss
frame N+1 frame N+1 frame N+1

Figure 5: CVE-2014-3153: kernel stack overwrite by invok-
ing system calls

The futex kernel vulnerability is reported to affect all ker-
nel versions prior to Jun 3rd 2014 and its first exploited
by TowelRoot. It was originally designed to root Verizon
Galaxy S5, then modified to be compatible with more de-
vices, including ATT Galaxy S5,Galaxy S4 Active, Nexus
5. Although it claims to possibly work on every android de-
vice with a vulnerable kernel, a slight variation of hardware
platform or kernel versions may cause this exploit with high
precision requirement to fail. To cover more devices, it adds
a feature named mod strings for users to modify 5 differ-
ent exploit variables. We explain one of the key variables,
system call, in detail below.

The system call variable specifies one of the four possible
system calls utilizable to carry out part of the exploit. The
context is that the attack sets up a pointer in kernel heap
to point to a kernel stack address that is subject to over-
write by a system call. As shown in Figure [5| an attacker
needs to pass a malicious parameter to a system call, which
will be copied into the kernel stack, and hope that it will
eventually land on the target address in kernel stack. De-
pending on the exact kernel version and configuration, there
are two obstacles: 1) the target stack address may be differ-
ent relative to the base stack address. 2) the depth that the
malicious system call parameter reaches can also be differ-
ent. We illustrate such obstacles in the figure. In the first
case, the parameter of syscall sendmmsg() can be success-
fully placed to overwrite the target stack address. In the
second case, however, due to the wrong syscall chosen, the

Name Components |Devices supported (claimed)
Root Genius| PC/MOBI 20,000+
360 Root | PC/MOBI 20,000+
TIRoot PC/MOBI 10,000+
King Root | PC/MOBI 10,000+
SRSRoot PC 7,000+
Baidu Root | PC/MOBI 6,000+
Root Master| PC/MOBI 5,000+
Towelroot MOBI N/A
Framaroot MOBI N/A

I PC:PC-side software MOBI:Android app
Table 1: Root Providers List

parameter may fail to hit the target address. In the third
case, the same syscall sendmmsg() is chosen, but due to ker-
nel version difference, the reached depth is different, missing
the target. Due to the above difficulties, Towelroot suggests
users try different syscalls in combination with other vari-
ables to hope that the target address will be hit.

It practice, we have tried the Towelroot on 3 devices that
we can get our hands on, all with a vulnerable kernel built
prior to Jun 3rd, 2014, yet Towelroot fails to root 2 of them.

4. ROOT PROVIDERS OVERVIEW

As alluded before, there exist a large number of root
providers, ranging from ones developed by individuals to
large companies. In this section, we aim to study them in the
following aspects: 1) survey different types of root providers
and understand how they operate. 2) characterize the pro-
tection strength on the carried dangerous root exploits. 3)
measure the extracted providers’ exploits and understand
their relationship with the publicly available ones.

In general, the discrepancy of the available resources be-
tween small and large providers is likely a key factor in decid-
ing the above aspects. There are a number of popular root
providers which contain both the largest and newest ones as
listed in Table [We confirm that the larger providers do
offer a much more comprehensive set of exploits, however,
even though present, the corresponding protections are sub-
stantially far from being adequate. In fact, we find serious
weaknesses that allow us to extract and study a large portion
of the exploit binaries from one large provider.

We study 7 out of the 9 providers in depth and anonymize
their names for security concerns, as shown in Table [2]

Methodology and collected results. We collect in-
formation of three main categories: 1) Public information
about each provider, e.g., number of devices that they claim
to support, whether it has a PC-side program and/or an in-
dependent Android app, as shown in Table 2) Exploit
information including the location of the binaries (e.g., on
a remote backend or local), and the quantity of them. 3)
Protection employed by root providers to prevent the ex-
ploit binaries from being reverse engineered and abused by
others. This gives a rough estimate on the level of difficulty
to extract the valuable exploits for malicious purposes. The
information collected in 2) and 3) requires understanding of
the inner workings of providers via reverse engineering.

Root provider architecture. From all the providers we
studied, a common architecture is depicted in Figure[§} The
service is typically through either a PC-side program and/or
an independent Android one-click root app. The former can
control a device via the ADB interface and thus utilize both

\\
1 Prowde dewce information
T \

2, Obtaln explons \e
ADB Link
‘ 1 Prowde dewce mformatlon v

-
2. Obtain explmts Onlme/LocaI store

Figure 6: General Root Architecture

ADB-related exploits like “rage against the cage” and others
launched directly on the Android device. The latter Android
app can operate independently to execute root exploits.

The main program logic involves three key steps:

STEP 1: Collect device information such as model name,
kernel and Android version, hardware platform and so on.

STEP 2: Based on the information, obtain proper exploits
from either remote servers or local store.

STEP 3: Execute the chosen exploits on the device to gain
root permission.

As shown in Table[I] the providers are sorted by their cov-
erage. It is obvious that all larger root providers are com-
prehensive in offering both the PC-side program and the in-
dependent Android app, whereas smaller providers typically
offer exploits in one way or the other.

Number of exploits. Here we focus on the exploits that
can be launched directly through the Android app, since
they are much more likely to be abused once stolen by at-
tackers. In Table [2| we list the number of exploit binaries
we are able to locate for each provider. It is surprising to see
that the number goes over one hundred for the largest one.
In addition, the number is only a lower bound as there can
be others that we are not able to find (See for details
on how to locate the exploits). Such number is significantly
higher than what we can find from public sources, highlight-
ing the potential risk of being targeted by attackers. Note
that we sort the table by the number of exploits we can find,
yet it does not correspond to the same order presented in
Table [I} therefore, not revealing the provider names.

We do realize that different providers may organize their
exploits differently into binaries. One binary could corre-
spond to a single exploit with or without its variants. There-
fore, simply counting the number of exploit binaries can be
biased. In we offer a more comprehensive analysis on the
exploits and compare them with the publicly available ones.

Protection Strength. Perhaps expectedly, we observe
that larger root providers with more exploits tend to employ
stronger protection of their products, and smaller providers
usually employ little to no protection. For instance, as
shown in Table provider 1 and 2 not only protect the
Android one-click root apps, but also introduce tamper-
detection and encryption in their exploit binaries (typi-
cally in native code) to prevent them from being stolen and
abused. In addition, the network communication to retrieve
exploits from its remote store is also encrypted. In contrast,
provider 6 and 7 only equip some basic protection in their ex-
ploits, which is easy to bypass. In the study we also find that
some larger providers will integrate small providers’ apps or
exploit binaries directly, this observation again reflects the

NO. Exploits Protection
Store Amount Store PC-side | Device-side | Exploits
1 LOC/OL 160+ OL A ANP* COPS
2 LOC/OL 60+ OL/LOC N/A NO CS
3 LOC 40+ LOC None ANP S
4 LOC 20+ LOC N/A (@) CS
5 LOC 20+ None P N/A None
6 LOC 10+ None N/A None C
7 LOC <10 None N/A None O
Tx

Table 2: Root Providers Measurement Result.

: Not true for its app from a special channel
OL:Online LOC:Local N/A:Not applicable or studied. A:Anti-debug

C:Tamper-detection N:Code Protection with JNI. O:Obfuscation P:Packing S:String Encryption.

lack of protection for small root providers which are usu-
ally individual hobbyists. Unfortunately, as we will show
in §5.1] the seemingly strong protections in large providers
can in fact be broken down fairly quickly due to several se-
vere weaknesses we identify.

PC-side vs Device-side Protection. It is important to
realize the PC-side program and independent Android app
contain duplicate functionality of reading device information
and retrieving exploits from local or remote store. Therefore,
as long as either one has a weak protection, the procedure
can be revealed and exploits maliciously retrieved. Indeed,
security is only as strong as its weakest link.

Interestingly, we observe the protection strength is in-
deed typically inconsistent. Compared to PC, Android
has a much shorter history which results in fewer avail-
able commercial-grade protection methods, e.g., VM-based
protection [23]. This is supported by our finding that
most providers have weaker protections on its Android app
compared to its PC counterparts, even though they usu-
ally throw in a number of protections, hoping that they
are strong enough (e.g., ProGuard). On the other hand,
provider 3 does employ a stronger commercial protection
solution called Bangcle on its Android app, yet it has no
protection whatsoever on its PC program. The result is
summarized in Table[2} In the cases of a “N/A”, it indicates
that we did not study it since the other side can already be
successfully reverse engineered.

Besides above observation, extra opportunities exist where
inconsistently protected software may be distributed. First,
older versions and newer versions of the same software may
implement the same core functionality, but stronger protec-
tions are added only to the newer versions. For instance,
we observe an old version of an Android one-click root app
from a provider has significantly weaker protection than the
new ones. Second, in rare cases, some root providers may
share code with each other, yet one version may have much
weaker protection than others. We observe one such case
among the providers - the involved two providers have a
cooperating relationship.

S. CASE STUDIES
MECHANISMS

Given the competitiveness of the providers is purely deter-
mined by the variety and quality of the engineered exploits,
they should be highly security minded, whether individual
hackers or large companies who even offer security products.
We expect to see best practices in protecting their code.
However, even when strong protection is indeed employed,
we identify some critical (and some obvious) flaws which
greatly undermine the effort. In the end, we are able to seize

OF PROTECTION

virtually all exploit binaries offered by the root providers. In
this section, based on the number of exploits, we divide the
providers into three categories. From each category we will
choose representative providers for detailed study, aiming to
locate flaws and weaknesses in their protection methods.

As depicted in Section [4] there are three steps in the root
procedure. By reversing how each step is performed, one
can easily steal all exploit files and run them in any piece
of malware to gain root privilege. Even the most difficult
provider only took a graduate student, who is not a profes-
sional hacker, about one month of part-time work to finish,
which is far less than expected for such a highly sensitive ser-
vice. For reference, it took a professional Symantec research
group about six months to figure out the basic structure and
behavior of Stuxnet [27], which is a piece of state-sponsored
malware created to attack industrial control systems. In the
rest of the section, we will describe the protection methods
and the weaknesses in each step for different root providers
in detail.

5.1 Large Root Providers

Provider P1 (we will refer provider n in Table |2| to Pn)
is one of the largest root providers currently with over a
hundred exploit binaries. Its service is provided by either the
PC-side program or the Android app. The most critical part
in P1’s architecture is an online exploit store. To update the
service, P1 simply needs to add new exploits to the store.
For a given device, only a selected subset is downloaded and
attempted.

Protection Methods.

STEP 1: Provide device information. P1 encrypts the
gathered device information such as Android device model
and kernel version before sending them out to a remote
server with a combination of standard encryption algo-
rithms. Similar protection is also widely used by other large
root providers to secure their online exploit stores.

STEP 2: Obtain exploits. After receiving encrypted de-
vice information, P1 servers first return a file which is an
array of exploit descriptors. Each descriptor contains elabo-
rate information about a specific exploit including an inter-
nal exploit identifier, a download link, and comments such
as the affected devices. Related exploit binaries can then
be fetched based on its descriptor. The descriptor file is en-
crypted with the same algorithm as in STEP 1. Besides,
each file URL is encoded in a random string to prevent ex-
haustive crawling. A similar “descriptor file mechanism” can
also be observed for P2, but with a different format.

STEP 3: Apply exploits. P1 encapsulates each exploit
into a separate Linux dynamically linked shared object file
(.s0). These library files share a common interface of entry

point and thus can be executed, in a uniform fashion, one
after another. Such files are downloaded every time when
the PC-side program or the Android app is run. It is obvious
that such files have to be protected in order to prevent mis-
use. We encounter the following: 1) The code is obfuscated
by redundant instructions 33| and a custom re-arrangement
procedure of the ELF binary to destroy the header and pre-
vent disassembling. 2) A custom packing method scrambles
the actual exploit code. 3) Most constant strings are en-
crypted. 4) There is a tamper-detection in every exploit
file to ensure that the exploit can only be launched by an
authentic P1 product (its own Android app), based on the
app’s embedded signature or the package name.

Security Flaws. Unfortunately, there exist a number
of flaws that substantially undermine the strength of the
protection employed by P1. We highlight them below:

e Inconsistent protection for the same Android app ob-
tained through different channels. After studying P1 for a
while, we realize that there are in fact two ways to get its
Android app: 1) Download from P1 official website or other
third-party app markets directly (Google Play prohibits such
apps to be published). 2) Obtain the copy from the PC-
side program’s download cache. This is possible since the
PC-side program will download and install the app to the
connected device automatically if none is detected.

Surprisingly, the apps from these two channels behave ex-
actly the same on mobile devices, yet there is a world of
difference in their protections. The one downloaded from
the official website is well protected with main “Classes.dex”
encrypted and packed. This is an effective practice found
in some commercial solutions (e.g., Bangcle). The one
obtained through the PC-side program, in contrast, does
not include any protection whatsoever. Considering that
Android apps tend to update frequently with only minor
changes, if the core encryption logic remains the same in
future versions, an attacker can misuse it for a long period
of time to continually extract new exploits developed by the
provider. This flaw effectively reveals all encryption algo-
rithms used in STEP 1 and STEP 2.

e Custom obfuscation procedure leaked through online se-
curity contest held by the provider itself. P1 employs some
obfuscation methods such as a custom redundant instruc-
tion pattern and ELF header scrambling, these methods are
in fact exposed in an online security contest. By simply
reading the answers provided by the crowd, all details are
revealed, including the obfuscation pattern and the way to
restore metadata in the ELF header. Once the obfuscation
is understood, remaining protections in STEP 8 are much
less effective.

e Discrepancy in protection strength of device-side and
PC-side software. Similar to what is discussed in §4] the
unprotected Android app of P1 obviate the need to deal with
the PC-side program protection such as anti-debug. The
opposite occurs in P3 where unprotected PC-side program
enables us to ignore its well-protected Android app.

o Leave informative names of critical functions untrans-
formed. Root providers often employ standard crypto-
graphic and compression algorithms (e.g., AES) to protect
the code and data. However, if such obfuscation logic leaves
its function and variable names untransformed (e.g., a func-
tion named “md5” or a variable named “AESKey”), one can
immediately recognize the algorithm and reverse the obfus-
cation. Such form of leakage exists in both SMALI and ARM

native code of P1 and many other root providers, which un-
dermines their protection drastically. This flaw impacts all
three steps of P1.

e Vulnerable tamper-detection mechanism Signature or
package name based tamper-detection can be found in many
providers’ exploit files. However, the detection is executed
only one time at the beginning, which makes it easy to by-
pass — modifying one conditional jump suffices and works
in all cases. Scattered and repeated tamper detection will
substantially raise the protection level in STEP 3.

To verify that all P1’s protections are successfully by-
passed, we develop a piece of proof-of-concept Android mal-
ware which can fetch and run the root exploits as well as
successfully obtaining root privilege on a few tested devices,
including HT'C One V and Sony Ericsson ST18i. In theory,
this malware can leverage the full capacity of P1 since it
can use all current and future exploits P1 maintains, as long
as the procedure remains the same. Although we did not
include the exploits that can only be launched from the PC
program, they can also be downloaded and used the same
way.

5.2 Medium Root Providers

We choose P4, a popular moderate-sized provider to study
in this section. Different from P1, P4 stores all its exploits
locally. Although there are some protection for the local
store, it is overall much weaker than P1’s protection. It only
took us three days to obtain all P4’s exploits and bypass the
protection mechanism, which will be described below.

Protection Methods

STEP 1: Provide device information. Since all P4’s ex-
ploits are stored locally, there is no need to send device in-
formation to any remote server. All device information is
gathered locally and will then be used to guide the selection
of proper exploits.

STEP 2: Obtain exploits. As soon as a specific exploit is
considered proper for current device, P4 will fetch it from
the local store. There are two layers of protection in this
process: First, inside the Android app, MD5-based name
transformation procedure is used to map an internal exploit
name to the corresponding obscured file name in local store.
Second, actual exploit binaries are compressed in gzip, while
no informative file suffix can be seen.

STEP 3: Apply exploits. P4’s exploits are all ELF exe-
cutables. Similar to P1, there is also a package name based
tamper-detection mechanism in each exploit binary. Be-
sides, although no packing and obfuscation techniques are
employed, all strings are encrypted and there are no infor-
mative function names.

Security Weaknesses

o Weak protection for the device-side app. Unlike P1,
even the original apk downloaded directly from P4’s offi-
cial website has little protection — only some basic class
and function name obfuscation is used. The major body
of SMALI code is still highly readable and has given out all
detailed functional and encryption/decryption logic involved
in STEP 1 and STEP 2. For instance, reference strings such
as “md5” are not encrypted, which dramatically accelerates
the reverse engineering progress.

e Debug output turned on in ELF binaries. The exploit
binaries will output decoded strings (e.g., path of a vul-
nerable device driver) directly to the console. Obviously
the developers forgot to turn off the debug option carelessly

and this mistake significantly eases the task of locating the
string decode and tamper-detection procedures. The pro-
tection in STEP 3 is thus greatly weakened. Unfortunately,
besides P4, we also find informative debug output in other
providers’ exploit binaries.

5.3 Small Root Providers

Small providers typically have only the device-side An-
droid app, besides, they usually contain few but highly spe-
cialized exploits. In our survey, P6 and P7 are classified as
small providers, both of their Android apps simply invokes
the native exploit binary and the entire procedure has no
protection. For the exploit binaries, although there are cer-
tain protections such as code obfuscation and tamper detec-
tion, they are generally primitive and easy to spot and by-
pass. Interestingly, the lack of effective defenses also makes
it possible for larger root providers to take small providers’
exploits and integrate them directly into their own products,
as we observed in two larger providers.

6. CHARACTERIZATION AND CASE
STUDIES OF EXPLOITS

As shown in Table [2] several top providers offer a large
selection of root exploits. In this section, we dissect the 167
unique exploits from the largest provider P1 by beginning
with the methodology to collect the exploits.

Exploits Collection Methodology. To download ex-
ploits from P1’s online database, we need to provide suffi-
cient information of different device models to P1’s remote
server (See Figure @ Without access to a large number of
real Android devices, we resort to online sources and factory
images publicly available [42]. After crawling several such
websites, we collect 5742 sets of device information and 2458
unique phone models with kernel ranging from 2.6.32.9 to
3.10.30 and Android version from 2.3.4 to 5.0.2. The list
covers all mainstream manufacturers such as SAMSUNG,
HTC, and SONY. They allow us to download 167 unique
exploit binaries. Note that large providers claim to support
over 10,000 or 20,000 Android device models and therefore
the number of exploits we obtained may be far smaller than
the actual number. Nevertheless, 167 unique exploit samples
are still impressive from only 2458 phone models.

6.1 Breakdown of Exploits

Families of exploits. We hypothesize that these binaries
are of high value to attackers since the number appears to be
much larger than what we can find publicly. However, there
is an important caveat that multiple binary files may simply
be variations and adaptations of the same core exploit. In
order to perform a fair comparison, we need a way to group
similar binaries into families. Fortunately, the decrypted
descriptor files returned from P1’s server, as mentioned in
Section[5.1] have an internal naming scheme to identify each
exploit. An example of the internal name is exploit98-3.2-v1,
in which “98” is used to number the exploit type, “3.2” is a
specific kernel version, and “v1” indicates that this exploit is
the 1st variation of an original exploit. Based on the naming
scheme, we estimate that 59 different families exist, which
is more than the 37 abusable public exploits still (See .
From the naming schemes, we can also estimate the current
size of P1’s exploit families to be in the hundreds.

Based on the knowledge gained from the public exploits
targeting different layers, we analyze P1’s exploit binaries

and its logic, e.g., system calls and their parameters, we can
classify a large portion of them into two main categories:
20 families belonging to kernel layer, typically featured with
the use of vulnerable system calls such as futex (CVE-2014-
3153) and perf_event_open (CVE-2013-2094), and 37 fam-
ilies belonging to driver layer, featured with operations on
vulnerable device files such as /dev/exynos_mem. The re-
maining 2 families are difficult to classify. In the kernel
layer, we have identified 17 families that can be mapped to
publicly available exploits, but are unable to fully analyze
the other 3. According to the exploit descriptors, we cannot
locate the exploit for most affected devices from any pub-
lic sources. For the driver layer exploits, we recognize 22
families as already published, but surprisingly, as we will
discuss later, the remaining 15 families are potentially new
exploits. Interestingly, we did not encounter any application
layer exploits that typically check the existence of a process
by name or a well-known file path.

New Driver-Layer Exploits. We identify 37 families
of driver exploits, All driver layer exploits have the standard
behavior of open() on a vulnerable device file in the form of
/dev/file followed by ioctl() or other syscalls on the file. We
differentiate the device file name as kernel’s built-in device
or vendor-specific device and include the latter only. Even
though many of them match existing exploits, we do find 15
new exploit families targeting 10 vulnerable unique device
names. We are able to locate the unique device file name
to specific devices which match the affected device models
in P1’s own exploit file descriptor. The affected devices in-
clude popular brands like SAMSUNG and some new models
released less than a year ago. Due to security reasons we do
not reveal the vulnerable device file names. Interestingly,
in a recent research [42], it is suggested that vendor cus-
tomizations of Android introduce considerable driver-layer
vulnerabilities (no root exploit is discovered however). In
our study, we find that such vulnerabilities can in fact lead
to root privilege escalation. In retrospect, now that kernel
exploits are harder and harder to come by with the latest
OS security technology in place, it is natural to target the
drivers to develop new exploits.

Adaptation. The most noticeable exploit family in P1’s
database is the one with 89 variants. By reverse engineering
the exploit files we identified the family as implementations
of CVE-2014-3153, the well-known “futex” kernel vulnera-
bility. This confirms the need of adaptation of exploits as
discussed in §3] To understand why this many variants are
developed, we analyze the intended kernel version targeted
by the 89 exploits and find 14 different kernel versions are
targeted. Even for the same kernel version, P1 will apply
different variants according to the kernel “build informa-
tion” (e.g., [#1 SMP PREEMPT Wed May 15 23:25:44 KST
2013]). The result is summarized in Table |3} P1 has covered
most major linux kernel versions used by Android. For some
popular versions such as “3.4.0”, there exist more variants.
Beside the adaptation for kernel versions, from the exploit
descriptors, we also see that some variants specifically de-
signed for certain device manufactures such as SAMSUNG
and HUAWEI. The rest of the exploit families do not have
many variants, e.g., 42 families have only one binary.

Overall, we are impressed by the scale at which exploits
are engineered by P1. It will be extremely difficult for an
individual to match the amount of resources and engineering
effort. We believe similar high impact kernel-level vulnera-

Kernel Version |2.6.32.9]2.6.35.7{3.0.15|3.0.16|3.0.31

3.0.8

3.4.0{3.4.39|3.4.43|3.4.5|3.4.67|3.10.0{3.10.9|3.10.30

Variants Count 2 2 1 1 3

10

21 8 1 9 2 1

I The calculation is based on our own collection, actual amount of P1’s variants may be larger.

Table 3: P1’s adaptation for CVE-2014-3153 (based on kernel version)

bility such as CVE-2015-3636 (currently pioneered as Ping-
Pong Root) may be of similar value and require substantial
adaptation effort. It is reported that the root exploit affects
many latest Android devices such as Samsung Galaxy S6
and HTC One (M9) and the list is growing.

Timeline to add new exploits. As we have shown, ex-
ploits from large commercial root providers largely overlap
with publicly available ones. One important metric indicat-
ing the competitiveness of the providers is the time it took
from the date original exploits were first published to the
date that they are incorporated. Even though there is no
comprehensive data, we do have a unique data point on the
latest PingPong root exploit, which was first published in
May 2015. The same exploit is incorporated in P1 roughly
two to three months later. We note that PingPong root is
techinically intrisnic and involved. It is impressive that the
provider has finished reverse engineering, developing, and
testing of the exploit within such a short period. In fact,
the incorporation happened before the full technical detail
of the exploit is released and any proof-of-concept code is
available. This demonstrates that commercial root providers
are capable and swift, which is another reason why they may
become targets of attackers.

6.2 Interaction with Advanced Security
Mechanism

In 109 out of 167 P1’s exploits (including all “futex” ex-
ploits), we observe special treatment for SELinux, which
forms the base of the advanced Android security mecha-
nisms such as SEAndroid [37] and Knox [17]. To support
fine-grained mandatory access control, SELinux introduced
the concept of “security context” whereby a process running
as root may still be subject to restrictions imposed by the
policies on the “context” it is running as. This effectively
eliminates the powerful root in the traditional Linux. How-
ever, in AOSP, SELinux policy in Android 4.4 and below
generally make the app domain either permissive or uncon-
fined. Unless customized by vendors such as Samsung, it
means that SELinux is effectively “disabled”. Furthermore,
even when SELinux policies are configured to be enforcing,
as is done since Android 5.0 (AOSP), kernel-layer exploits
can subvert SELinux easily by overwriting the related kernel
data structures, given SELinux operates under the assump-
tion that the kernel is intact. Specifically, almost in all cases
of the 109 exploits, they overwrite not only the uid but also
the sid and osid so that the security context effectively be-
comes “init”, which is the most privileged one and is able
to access almost all system resources. After that, they will
write to /proc/sel f /attr/current to change its string repre-
sentation of security context to “w:r:init:s0”.

Similarly, we also observe modifications to Linux “pro-
cess capability” related kernel data structures such as
cap_ef fective to OxFFFFFFFF. Since process capabilities
in Linux share the same threat model as SELinux, it is not
hard to imagine that they can be subverted in the same way.

When compared with public proof-of-concept exploit
source code, we rarely find such level of care in dealing with
the additional restrictions set by SELinux and process ca-
pabilities.

AVG | Lookout | Norton | Trend Micro
Original | N N N N
Unpacked | N N N 13
Bypassed | N N N N

1 N:No threat detected
2 All anti-virus at newest version when testing.

Table 4: Anti-Virus Test Results on P1’s exploits
6.3 Anti-Virus Test

Since the root exploits are highly sensitive and may be
leveraged by various Android malware, it is expected that
anti-virus software on Android platform can identify most
of them, including the ones implemented by root providers.
We select the same 4 representative Android anti-virus prod-
ucts to test P1l’s 167 exploits. Because originally down-
loaded exploits from P1’s database have packed the actual
exploit code and employed a tamper-detection mechanism,
we crafted 3 different versions for every exploit: 1) Origi-
nal exploit fetched directly from P1’s servers, with packing
and tamper-detection on. 2) Unpacked exploit, which will
expose all actual exploit logic to anti-virus products. 3)
Re-packed exploit with tamper-detection disabled. The last
version can be highly dangerous since it can be utilized freely
by malware that can unpack and execute at run time.

To test the antivirus software, we embed all exploit files
of one version at a time in a self-developed Android app to
trigger the proper scan. We test one antivirus software at a
time. If a message is prompted that the app is safe to open,
it indicates the antivirus software fails to detect any exploit
in the app, and we uninstall the antivirus and install the
next. If an alert is given flagging our app as malicious, we
attempt to identify which subset of exploits are flagged by
embedding one exploit file at a time and retest.

The test results are shown in Table [4] It is disappointing
to see that no packed exploit is detected by any antivirus
software. It is likely due to the custom obfuscation imple-
mented by the provider that is not recognized. However,
even for the unpacked ones, only Trend Micro can recognize
13 out of 167 exploit files as malicious. It is worth men-
tioning that the highly dangerous futex exploits as well as
the PingPong root exploit are not caught by any antivirus
software. This contrasts with the result in §2.4] where the
public PingPong root exploit is in fact detected by Trend
Micro. This suggests 1) P1’s implementation of PingPong
root is sufficiently different; 2) Trend Micro uses some kind
of signature-based detection that is not effective at catching
variants of the same exploit. Overall, the result shows that
the state-of-the-art security products on Android platform
still cannot address root exploits effectively. Worse, packing
and obfuscation can easily evade detection.

7. RELATED WORK

Android malware analysis. Android malware detec-
tion and analysis attracted much attention of research in
the past few years (43}, 32| |44} [22]. The Android Malware
Genome Project [43] has offered a public dataset of Android
malware from year 2010 to 2012. The analysis covers behav-
iors from privacy invasion, financial charges, remote control,

to root exploits embedded in the malware. In the ANDRU-
BIS [32] project, a more recent malware set of 400K samples
collected between 2012 and 2014 is examined. It gives a more
up-to-date view, yet little discussion is on malware carrying
root exploits. Other sources include Contagio minidump |[3]
and VirusTotal [20]. DroidRanger [44] and DREBIN |[22] at-
tempt to detect Android malware by leveraging a carefully
selected set of features.

So far, no evidence has shown that a single piece of mal-
ware embeds a large number of root exploits, likely because
of the engineering challenge, e.g., many exploits need to be
adapted to work on specific device models. In our study, it
is alarming to see the potential that malware can abuse the
root provider logic to achieve this goal.

Android root exploits and defense. While a com-
prehensive characterization of Android root exploits is lack-
ing, point studies have shown that root exploits were indeed
abused by malware in the wild [44, 43]. As described in
the Android Malware Genome Project [43], 36.7% of 1260
malware samples had embedded at least one root exploit.

Root providers present a unique position in computer his-
tory that they legitimately collect and distribute a large
number of fresh root exploits. In theory, all commercial
root providers should provide adequate protections on the
exploits. In practice, unfortunately, as long as one of the
providers fails to achieve that, malware authors can success-
fully “steal” the well engineered, adapted, and tested exploits
against a diverse set of Android devices.

The development of Android comes with much improve-
ment in Security. SeAndroid was shown to be effective
against many root exploits that target user-level applica-
tions [37]. Research proposals use dynamic behaviors such
as system calls and other events to detect root exploits |44}
29, [35]. Unfortunately, none of them is bullet-proof. For in-
stance, new exploits such as TowelRoot and PingPong Root
are not impacted by SeAndroid since they exploit kernel-
layer vulnerabilities directly. In addition, the more expen-
sive dynamic analysis techniques require root privilege to
operate which limits their applicability and not to mention
its impact on battery life.

Reverse engineering and anti-reverse engineering.
Anti-reverse engineering aims at transforming a program
into a semantically equivalent one yet much more difficult
to comprehend and reverse engineer [25| 24]. Encryption,
packing, symbol stripping, instruction reordering, etc. are
commonly used obfuscation techniques against reverse engi-
neering [24]. The key used to encrypt the code can either be
embedded directly in the binary or burned onto the hard-
ware [23,38]. Most programs simply embed the key directly
in its binary, including the famous STUXNET [27] and the
binaries in root providers, as there is little support from the
hardware to encrypt and decrypt instructions on the fly in
general-purpose computing systems [38]. In addition, a dif-
ferent program binary encrypted with a different key needs
to be distributed for every machine, which can be costly and
complex to manage. More advanced techniques such as VM-
based software protection [23] also exist. They dramatically
increase the cost of reverse engineering by employing custom
instruction set architectures.

In response to such anti-reverse engineering and obfus-
cation techniques, deobfuscation techniques are also devel-
oped [31}, |36}, [23]. It is not clear when such arms race will
end as fundamentally the code under protection has to run

physically on a machine controlled by the adversary. In a
recent work, Zeng et al. proposes to use trace-oriented pro-
gramming to implement binary code reuse [41]. The idea is
that as long as the execution trace is observed and recorded
at runtime, they can be extracted and reused. In principle,
such ideas can be applied to extract obfuscated root exploit
code. However, it is not sufficient as the self-verification
logic still needs to be identified and removed.

On Android, the situation is not much different except
some advanced obfuscation tools such as custom-VM-based
protections are not yet available. As most large root
providers need to protect both PC-side software and device-
side app, the obfuscation strength is determined by the
weaker side.

8. DISCUSSION AND CONCLUSION

Ethics. The study on root providers can be controversial.
We study them because of two reasons: 1) root provider is a
unique product in history that has unique characteristics. 2)
Although legitimate, the functionality is implemented by ex-
ploiting vulnerabilities of the target system, which presents
significant security risks. The goal of our research is to
understand and characterize the risk that well-engineered
exploits from the root providers can be stolen and easily
repackaged in malware. By studying the protection mecha-
nisms employed by root providers, we aim to quantify their
strength and point out areas of weaknesses.

To protect the root providers, in the paper, we intention-
ally anonymize their names when detailed results are shown.
Further, we plan to release our findings to the corresponding
root providers and device vendors.

Android-side root vs. PC-side root. In this study,
we cover in detail mostly the root exploits implemented di-
rectly on Android devices. Most large root providers in fact
offer both PC-side as well as Android-side root methods.
The reason we focus on Android-side root is its risk of being
abused by malware. It is worth mentioning that, as demon-
strated by recent studies |39], a compromised PC can infect
the mobile devices connected to it. Under such threats, the
PC-side root exploits also become dangerous and are subject
to abuse by PC malware. We leave this for future study.

Conclusion. In this paper, for the first time, we uncover
the mysterious Android root providers. We find they not
only make significant efforts to incorporate and adapt exist-
ing exploits to cover more devices, but also craft new ones
to stay competitive. However, these well-engineered exploits
are not well protected, it is extremely dangerous if they fall
in the wrong hands. This may also trigger a public policy/le-
gal discussion on whether to regulate such companies that
manufacture up-to-date exploits that are freely distributed.

Acknowledgments

Research was sponsored by the Army Research Labora-
tory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation here on.

[23]

[24]

REFERENCES

Android Vulnerabilities — All vulnerabilities.
http://androidvulnerabilities.org/all.html.
Beating up on Android.
http://titanium.immunityinc.com/infiltrate/
archives/Android_Attacks.pdf.

Contagio minidump.
http://contagiominidump.blogspot.com.
CVE-2014-3153 aka towelroot.
https://github.com/timwr/CVE-2014-3153.

Don’t Root Robots: Breaks in Google’s Android
Platform.
https://jon.oberheide.org/files/bsidesl1-
dontrootrobots.pdf.

Exploit DB database. https://exploit-db.com/.
How To Root An AT&T HTC One X.
http://rootzwiki.com/topic/26320-how-to-root-
an-att-htc-one-x-this-exploit-supports-185/.
iRoot, Retrieved on May 10, 2015.
http://www.mgyun.com/m/en.

It’s Bugs All the Way Down.
http://vulnfactory.org/.

One Click Root for Android, Retrieved on May 10,
2015. http://www.oneclickroot.com/.

Rage Against the Cage. http://stealth.openwall.
net/xSports/RageAgainstTheCage.tgz.

Razr Blade Root.
http://vulnfactory.org/public/razr_blade.zip.
Root Genius, Retrieved on May 10, 2015.
http://wuw.shuame.com/en/root/.

Root the Droid 3. http://vulnfactory.org/blog/
2011/08/25/rooting-the-droid-3/.

[Root] ZTE z990g Merit (An avail variant).
http://forum.xda-
developers.com/showthread.php?7t=1714299.
[Root/Write Protection Bypass] MotoX (no unlock
needed). http://forum.xda-developers.com/moto-
x/orig-development/root-write-protection-
bypass-motox-t2444957.

Samsung Knox. https://www.samsungknox.com/.
TacoRoot.
https://github.com/Cunninglogic/TacoRoot.
Virus Profile: Exploit/MempoDroid.B.
http://home.mcafee.com/virusinfo/virusprofile.
aspx7key=1003986.

VirusTotal. https://www.virustotal.com/.

Xoom FE: Stupid Bugs, and More Plagiarism.
http://vulnfactory.org/blog/2012/02/18/x00om-
fe-stupid-bugs-and-more-plagiarism/.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon,
and K. Rieck. DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket. In
NDSS, 2014.

A. Averbuch, M. Kiperberg, and N. Zaidenberg.
Truly-Protect: An Efficient VM-Based Software
Protection. Systems Journal, IEEE, 2013.

C. Collberg, C. Thomborson, and D. Low. A
Taxonomy of Obfuscating Transformations. Technical
report, The University of Auckland, 1997.

[25]

(26]

27]
(28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

37]

(38]

39]

(40]

(41]

42]

(43]

(44]

C. S. Collberg and C. Thomborson. Watermarking,
Tamper-proffing, and Obfuscation: Tools for Software
Protection. IEEE Trans. Softw. Eng., 2002.

J. J. Drake, Z. Lanier, C. Mulliner, P. O. Fora, S. A.
Ridley, and G. Wicherski. Android Hacker’s Handbook.
Wiley, 2014.

N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet
Dossier. Technical report, Symanetic, 2011.

D. Guido and M. Arpaia. The Mobile Exploit
Intelligence Project. Blackhat EU, 2012.

Y. J. Ham, W.-B. Choi, and H.-W. Lee. Mobile Root
Exploit Detection based on System Events Extracted
from Android Platform. In SAM, 2013.

X. Hei, X. Du, and S. Lin. Two Vulnerabilities in
Android OS Kernel. In ICC, 2013.

C. Kruegel, W. Robertson, F. Valeur, and G. Vigna.
Static Disassembly of Obfuscated Binaries. In Proc. of
USENIX Security Symposium, 2004.

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer.
Andrubis - 1,000,000 Apps Later: A View on Current
Android Malware Behaviors. In BADGERS, 2014.

C. Linn and S. Debray. Obfuscation of Executable
Code to Improve Resistance to Static Disassembly. In
CCS, 2003.

OpenSignal. Android Fragmentation Visualized.
http://opensignal.com/reports/2015/08/android-
fragmentation/, 2015.

Y. Park, C. Lee, C. Lee, J. Lim, S. Han, M. Park, and
S.-J. Cho. RGBDroid: A Novel Response-Based
Approach to Android Privilege Escalation Attacks. In
LEET, 2012.

R. Rolles. Unpacking Virtualization Obfuscators. In
WOOT, 2009.

S. Smalley and R. Craig. Security Enhanced (SE)
Android: Bringing Flexible MAC to Android. In
NDSS, 2013.

J. I. Torrey. HARES: Hardened Anti-Reverse
Engineering System. Technical report, Assured
Information Security, Inc., 2015.

T. Wang, Y. Jang, Y. Chen, S. Chung, B. Lau, and
W. Lee. On the Feasibility of Large-Scale Infections of
iOS Devices. In Proc. of USENIX Security
Symposium, 2014.

W. Xu. Ah! Universal Android Rooting is Back.
Blackhat, 2015.

J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and
D. Xu. Obfuscation Resilient Binary Code Reuse
Through Trace-oriented Programming. In CCS, 2013.
X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang.
The Peril of Fragmentation: Security Hazards in
Android Device Driver Customizations. In IEEFE
Security and Privacy, 2014.

Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In IEEE Security and
Privacy, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You,
Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In NDSS,
2012.

http://androidvulnerabilities.org/all.html
http://titanium.immunityinc.com/infiltrate/archives/Android_Attacks.pdf
http://titanium.immunityinc.com/infiltrate/archives/Android_Attacks.pdf
http://contagiominidump.blogspot.com
https://github.com/timwr/CVE-2014-3153
https://jon.oberheide.org/files/bsides11-dontrootrobots.pdf
https://jon.oberheide.org/files/bsides11-dontrootrobots.pdf
https://exploit-db.com/
http://rootzwiki.com/topic/26320-how-to-root-an-att-htc-one-x-this-exploit-supports-185/
http://rootzwiki.com/topic/26320-how-to-root-an-att-htc-one-x-this-exploit-supports-185/
http://www.mgyun.com/m/en
http://vulnfactory.org/
http://www.oneclickroot.com/
http://stealth.openwall.net/xSports/RageAgainstTheCage.tgz
http://stealth.openwall.net/xSports/RageAgainstTheCage.tgz
http://vulnfactory.org/public/razr_blade.zip
http://www.shuame.com/en/root/
http://vulnfactory.org/blog/2011/08/25/rooting-the-droid-3/
http://vulnfactory.org/blog/2011/08/25/rooting-the-droid-3/
http://forum.xda-developers.com/showthread.php?t=1714299
http://forum.xda-developers.com/showthread.php?t=1714299
http://forum.xda-developers.com/moto-x/orig-development/root-write-protection-bypass-motox-t2444957
http://forum.xda-developers.com/moto-x/orig-development/root-write-protection-bypass-motox-t2444957
http://forum.xda-developers.com/moto-x/orig-development/root-write-protection-bypass-motox-t2444957
https://www.samsungknox.com/
https://github.com/CunningLogic/TacoRoot
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=1003986
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=1003986
https://www.virustotal.com/
http://vulnfactory.org/blog/2012/02/18/xoom-fe-stupid-bugs-and-more-plagiarism/
http://vulnfactory.org/blog/2012/02/18/xoom-fe-stupid-bugs-and-more-plagiarism/
http://opensignal.com/reports/2015/08/android-fragmentation/
http://opensignal.com/reports/2015/08/android-fragmentation/

	Introduction
	Publicly Available Android Root Exploits
	Root Exploit Impact and Coverage
	Exploit (Source or Binary) Availability
	Exploit Requirements
	Root Exploits Detection by Anti-Virus

	Adaptation of Root Exploits
	CVE-2014-3153 (Futex bug)

	Root Providers Overview
	Case Studies of Protection Mechanisms
	Large Root Providers
	Medium Root Providers
	Small Root Providers

	Characterization and Case Studies of Exploits
	Breakdown of Exploits
	Interaction with Advanced Security Mechanism
	Anti-Virus Test

	Related Work
	Discussion and Conclusion
	References

