
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

1

Side Channel Attacks on GPUs
Hoda Naghibijouybari, Student Member, IEEE, Ajaya Neupane, Member,IEEE,
Zhiyun Qian, Member,IEEE, and Nael Abu-Ghazaleh, Senior Member, IEEE

Abstract—Graphics Processing Units (GPUs) are commonly integrated with computing devices to enhance the performance and
capabilities of graphical workloads. In addition, they are increasingly being integrated in data centers and clouds such that they can
be used to accelerate data intensive workloads. Under a number of scenarios the GPU can be shared between multiple applications
at a fine granularity allowing a spy application to monitor side channels and attempt to infer the behavior of the victim. For example,
OpenGL and WebGL send workloads to the GPU at the granularity of a frame, allowing an attacker to interleave the use of the GPU
to measure the side-effects of the victim computation through performance counters or other resource tracking APIs. We demonstrate
the vulnerability by implementing three end-to-end attacks. We show that an OpenGL or CUDA based spy can fingerprint websites
accurately (attack I), track user activities within the website, and even infer the keystroke timings for a password text box (attack II) with
high accuracy. The third attack demonstrates how a CUDA spy application can derive the internal parameters of a neural network model
being used by another CUDA application on the cloud. To counter these attacks, the paper suggests mitigations based on limiting the
rate of the calls, or limiting the granularity of the returned information.

Index Terms—GPU, side channels, website fingerprinting, keystroke timing attack.

F

1 INTRODUCTION

G RAPHICS Processing Units (GPUs) are integral com-
ponents to most modern computing devices, used

to optimize the performance of today’s graphics and
multi-media heavy workloads. They are also increas-
ingly integrated on computing servers to accelerate a
range of applications from domains including security,
computer vision, computational finance, bio-informatics
and many others [1]. Both these classes of applications
can operate on sensitive data [2], [3] which can be
compromised by security vulnerabilities.

Although the security of GPUs is only starting to
be explored, several vulnerabilities have already been
demonstrated [4], [5], [6], [7], [8], [9]. Luo et al. demon-
strated a timing channel from the CPU side timing a
GPU operation. In particular, they assume that the GPU
is running an encryption library, and time encryption
of chosen text blocks. The encryption run-time varies
depending on the encryption key: the memory access
patterns are key-dependent causing timing differences
due to GPU memory coalescing effects enabling a timing
side channel attack on the key. Jiang et al. [10] assume
that the attacker needs to launch the encryption kernel
on GPU and measure the whole kernel execution time
on its own process (on CPU side), which is a different
threat model than ours which investigates side channel
between two concurrent apps on the GPU. Naghibijouy-
bari et al. showed that covert channels between collud-
ing concurrently running CUDA applications (CUDA
is Nvidia’s programming language for general purpose
workloads on the GPU [11]) on a GPU may be con-

• Computer Science and Engineering Department, University of California,
Riverside. E-mail: naelag@ucr.edu

structed [8], [12]. Neither of these papers demonstrates
a general side channel attack. This paper extends our
prior work [13] which showed that indeed side channels
are present and exploitable, and demonstrated attacks
on a range of Nvidia GPUs and for both graphics and
computational software stacks and applications.

We systematically characterize the situations where a
spy can co-locate and measure side channel behavior
of a victim in both the graphics and the computational
stacks of the Nvidia family of GPUs. For OpenGL work-
loads, we discover that kernels (shader programs) can
be concurrently scheduled provided there are sufficient
resources to support them on the GPU. We also verify
that the same is true for competing CUDA workloads.
Finally, when workloads originate from both CUDA
and OpenGL, they interleave the use of the GPU at a
lower concurrency granularity (interleaving at the com-
putational kernel granularity). We discuss co-location
possibilities for each type of the attack.

Armed with the co-location knowledge, we demon-
strate a family of attacks where the spy can interleave
execution with the victim to extract side channel infor-
mation. We explore using (1) Memory allocation APIs; (2)
GPU performance counters; and (3) Time measurement
as possible sources of leakage. We show that all three
sources leak side channel information regarding the be-
havior of the victim. We successfully build three practical
and dangerous end-to-end attacks on several generations
of Nvidia GPUs. Additionally, we study possibility of
attacks on integrated GPUs and also different operating
systems.

To illustrate attacks on graphics applications, we im-
plement a web-fingerprinting attack that first detects the
browser window size and then identifies user browsing
websites with high accuracy. We show an extension to

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

2

M
em

or
y

C
on

tro
lle

r
M

em
or

y
C

on
tro

lle
r M

em
ory C

ontroller
M

em
ory C

ontroller

L2 Cache

GPC GPC

GPC GPC

SM

Raster Engine Raster Engine

Raster EngineRaster Engine

GigaThread Engine

SMSMSMSMSMSMSM

SMSMSMSMSMSMSMSM

Instruction Cache

Warp Scheduler Warp Scheduler

Dispatch UnitDispatch Unit

Register File

Core

Core

Core

Core

LD/ST

LD/ST

SFU

SFU

Shared Memory/L1 Cache

Texture Cache

Tex Tex Tex Tex

...

Polymorph Engine

GPU
SM

(a)

CUDA Application

Kernel 1 Kernel 2 . . .

...

...

...

...

...

......

...

...Thread
Blocks

...
...

... ... Warps

32

...

32

Host (CPU)

Device (GPU)

(b)
Fig. 1: GPU overview (a) Architecture; (b) Application

Input Assembler Shape Assembly Geometry
Shader

RasterizationFragment (Pixel)
Shader

Testing and
BlendingFrame buffer

Vertex Shader

Vertices

Fig. 2: Graphics processing pipeline

this attack that tracks user activity on a website, and
captures keystroke timing. We generalize the attack to
work without assuming a specific browser window size.
We also illustrate attacks on computational workloads
showing that a spy can reconstruct the internal structure
of a neural network with high accuracy by collecting side
channel information through the performance counters
on the GPU.

We explore possible mitigation to this type of at-
tack. Preventing or containing contention on GPUs by
allocating them exclusively or changing their design
could limit the leakage, but is likely impractical. Thus,
we focus on limiting the attacker’s ability to measure
the leakage. We show that solutions that interfere with
the measurement accuracy can substantially limit the
leakage and interfere with the attacker’s ability to extract
sensitive information.
Disclosure: We have reported all of our findings to
Nvidia, who published a security advisory and applied
for a vulnerability CVE string (CVE−2018−6260). We
also shared a draft of the paper with the AMD and Intel
security teams to enable them to evaluate their GPUs
with respect to such vulnerabilities.

2 GPU INTERFACES AND ARCHITECTURE

This section overviews GPU programming interfaces
and GPU architecture to explain how they are pro-
grammed, and how contention arises within them.

2.1 GPU Programming Interfaces

GPUs were originally designed to accelerate graphics
workloads. They are programmed using application
programming interfaces such as OpenGL for 2D/3D

graphics [14], or WebGL [15] within browsers. We call
OpenGL/WebGL and similar interfaces the graphics
stack of the GPU. OpenGL is accessible by any appli-
cation on a desktop with user level privileges making
all attacks practical on a desktop. In theory, a JavaScript
application may launch the attack using WebGL, but we
found that current versions of WebGL do not expose
measurement APIs that allow leakage.

In the past few years, GPU manufacturers have also
enabled general purpose programmability for GPUs,
allowing them to be used to accelerate data inten-
sive applications using programming interfaces such
as CUDA [11] and OpenCL [16]. We call this alter-
native interface/software stack for accessing the GPU
the computational stack. Computational GPU programs
are used widely on computational clusters, and cloud
computing systems to accelerate data intensive appli-
cations [17]. These systems typically do not process
graphics workloads at all since the machines are used as
computational servers without direct graphical output.
Nowadays, most non-cloud systems also support gen-
eral purpose computing on GPUs and are increasingly
moving towards GPU concurrent multiprogramming.

On desktops or mobile devices, general purpose pro-
grammability of GPUs requires installation the CUDA
software libraries and GPU driver. Nvidia estimates that
over 500 Million installed devices support CUDA [11],
and there are already thousands of applications available
for it on desktops, and mobile devices.

2.2 GPU Architecture Overview

Figure 1a presents an architecture overview of a typical
GPU. The GPU consists of a number of Graphical Pro-
cessing Clusters (GPCs) which include some graphics
units like raster engine and a number of Streaming
Multiprocessor (SM) cores. Each SM has several L1
caches (for the instructions, global data, constant data
and texture data). There is a globally shared L2 cache to
provide faster access to memory.

A CUDA application is launched using a CUDA run-
time and driver. The driver provides the interface to
the GPU. As demonstrated in Figure 1b, a CUDA ap-
plication consists of some parallel computation kernels
representing the computations to be executed on the
GPU. For example, a CUDA application may implement
parallel matrix multiplication in a computation kernel.
Each kernel is decomposed into blocks of threads that are
assigned to different SMs. Internally, threads are grouped
into warps of typically 32 threads that are scheduled
together using the Single Instruction Multiple Thread
(SIMT) model to process the portion of the data assigned
to this warp. The warps are assigned to one of (typically
a few) warp schedulers on the SM. In each cycle, each
warp scheduler can issue one or more instructions to the
available execution cores. Depending on the architecture,
each SM has a fixed number of various types of cores
such as single precision cores, double precision cores,

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

3

load/store cores and special functional units. The cores
are heavily pipelined making it possible to continue to
issue new instructions to them in different cycles.

The GPU memory is shared across all the SMs and is
connected to the chip using several high speed channels,
resulting in bandwidths of several hundred gigabytes
per second, but with a high latency. The impact of
the latency is hidden partially using caches, but more
importantly, the large number of warps/threads ensures
the availability of ready warps to take up the available
processing bandwidth when other warps are stalled
waiting for memory. This results in fine granularity and
frequent interleaving of executing groups of threads,
making it difficult to correlate fine-grained side channel
leakage (e.g., cache miss on a cache set) to a particular
computation source.
Graphics Pipeline: With respect to graphics workloads,
the application sends the GPU a sequence of vertices
that are grouped into geometric primitives: points, lines,
triangles, and polygons. The shader programs include
vertex shaders, geometry shaders and fragment shaders:
the programmable parts of graphics workloads that ex-
ecute on SMs on the GPU. The GPU hardware creates a
new independent thread to execute a vertex, geometry,
or fragment shader program for every vertex, every
primitive, and every pixel fragment, respectively, allow-
ing the graphics workloads to benefit from the massive
parallelism available on the GPU.

Figure 2 demonstrates the logical graphics pipeline.
The vertex shader program executes per-vertex process-
ing, including transforming the vertex 3D position into a
screen position. The geometry shader program executes
per-primitive processing and can add or drop primitives.
The setup and rasterization unit translates vector repre-
sentations of the image (from the geometric primitives
used by the geometry shader) to a pixel representation of
the same shapes. The fragment (pixel) shader program
performs per-pixel processing, including texturing, and
coloring. The output of graphics workloads consists of
the pixel colors of the final image and is computed in
fragment shader. The fragment shader makes extensive
use of sampled and filtered lookups into large 1D, 2D,
or 3D arrays called textures, which are stored in the
GPU global memory. The contention among the dif-
ferent threads carrying out operations on the image is
dependent on the image. When measuring performance
counters or memory usage, these values leak information
about the graphics workload being rendered by the GPU.

3 ATTACK SPACE
In this section, we first define three attack models based
on the placement of the spy and the victim. We then
describe the available leakage vectors in each model.

3.1 Attack Models
We consider three primary attack vectors. In all three
cases, a malicious program with normal user level per-
missions whose goal is to spy on a victim program.

• Graphics spy on a Graphics victim: attacks from a
graphics spy on a graphics workload (Figure 3, left).
Since Desktop or laptop machines by default come
with the graphics libraries and drivers installed, the
attack can be implemented easily using graphics
APIs such as OpenGL measuring leakage of a co-
located graphics application such as a web browser
to infer sensitive information.

• CUDA spy and graphics victim (Cross-Stack): on
user systems where CUDA libraries and drivers are
installed, attacks from CUDA to graphics applica-
tions are possible (Figure 3, middle).

• CUDA spy on a CUDA victim: attacks from a CUDA
spy on a CUDA workload typically on the cloud
(Figure 3, right) where CUDA libraries and drivers
are installed.

In the first attack model, we assume that the attacker
exploits the graphics stack using APIs such as OpenGL
or WebGL. In attack models 2 and 3, we assume that
a GPU is accessible to the attacker using CUDA or
OpenCL.

3.2 Available Leakage Vectors on GPUs

Prior work has shown that two concurrently executing
GPU kernels can construct covert channels using CUDA
by creating and measuring contention on a number of
resources including caches, functional units, and atomic
memory units [8]. However, such fine-grained leakage is
more difficult to exploit for a side channel attacks: the
large number of threads, and the relatively small size
of caches, makes it difficult to conduct high-precision
prime-probe or similar attacks on data caches [18].
Thus, instead of targeting fine-grained contention behav-
ior, most of our attacks focus on aggregate measures
of contention through available resource tracking APIs.
There are a number of mechanisms available to the
attacker to measure the victim’s performance. These
include: (1) the memory allocation API, which exposes
the amount of available physical memory on the GPU;
(2) the GPU hardware performance counters; and (3)
Timing operations while executing concurrently with
the victim. We verified that the memory channel is
available on Nvidia GPUs [19] on any Operating System
supporting OpenGL (including Linux, Windows, and
MacOS). Nvidia GPUs currently support performance
counters on Linux, Windows and MacOS for computing
applications [20] and on Linux and Android [21], [22]
for graphics applications. WebGL does not appear to
offer extensions to measure any of the three channels
and therefore cannot be used to implement a spy for our
attacks. Although web browsers and websites which use
WebGL (as a JavaScript API to use GPU for rendering)
can be targeted as victims in our attacks from an OpenGL
spy.
A. Measuring GPU Memory Allocation: When the GPU
is used for rendering, a content-related pattern (depend-
ing on the size and shape of the object) of memory

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

4

Graphics - Graphics
(Desktop)

CUDA - CUDA
(Cloud and Desktop)

Spy
Spy

Victim

Spy and Victim
Concurrency on GPU

Time

CUDA
AppOpenGL

App

Graphics - CUDA
(Desktop)

Victim

Computation

...
CUDA App

Screen
Rendering

Spy

CUDA
App

Victim

Screen
Rendering

performance
counters

memory utilization
(size and time)

 memory utilization &
performance counters

CUDA
Kernel

Graphics
Frame

Text

Fig. 3: Threat Models

allocations is performed on the GPU. We can probe
the available physical GPU memory using an Nvidia
provided API through either a CUDA or an OpenGL
context. Repeatedly querying this API we can track the
times when the available memory space changes and
even the amount of memory allocated or deallocated.

On an OpenGL application we can use
the ”NVX gpu memory info ” extension [19]
to do the attack from a graphics spy. This
extension provides information about hardware
memory utilization on the GPU. We can query
”GPU MEMORY INFO CURRENT AVAILABLE VIDM
EM NVX ” as the value parameter to glGetIntegerv.
Similarly, on a CUDA application, the provided memory
API by Nvidia is ”cudaMemGetInfo”.
B. Measuring Performance Counters: We use Nvidia
profiling tools [20] to monitor the GPU performance
counters from a CUDA spy. Table 1 summarizes some
important events/metrics tracked by the GPU catego-
rized into five general groups. Although the GPU allows
an application to only observe the counters related to
its own computational kernel, these are affected by the
execution of a victim kernel: for example, if the victim
kernel accesses the cache, it may replace the spy’s data
allowing the spy to observe a cache miss (through cache-
related counters). We note that OpenGL also offers an
interface to query the performance counters enabling
them to be sampled by a graphics-based spy.
C. Measuring Timing: It is also possible to measure the
time of individual operation in attack models where the
spy and the victim are concurrently running to detect
contention.
Leakage Vectors on Integrated GPUs: Although this
work focuses on discrete GPU side channels, we ver-
ified that similar leakage and attacks are possible on
integrated GPUs as well. In integrated GPU systems,
there is no memory API to track GPU memory utiliza-
tion, since memory is shared between CPU and GPU.
Although userspace interfaces to query performance
counters, available in almost all integrated and dis-
crete GPUs, making our attacks effective on integrated
GPUs such as Intel Graphics and Qualcomm Adreno
as well. Specifically, Intel provides an OpenGL exten-
sion ”Intel performance query” [23] to access the GPU

performance counters organized in some query types
including ”Intel GT Hardware Counters”. This query
type includes counters like stall time and read and write
memory throughput that can be affected by other co-
running applications on GPU, providing side channel
leakage.
Experimental Setup: We verified the existence of all the
reported vulnerabilities in this paper on three Nvidia
GPUs from three different microarchitecture generations:
a Tesla K40 (Kepler), a Geforce GTX 745 (Maxwell) and
a Titan V (Volta) Nvidia GPUs. We report the result
only on the Geforce GTX 745 GPU in this paper. The
experiments were conducted on an Ubuntu 16.04 distri-
bution, but we verified that the attack mechanisms are
accessible on both Windows and MacOS systems as well.
The graphics driver version is 384.11 and the Chrome
browser version is 63.0.3239.84.

TABLE 1: GPU performance counters

Category Event/Metric
Memory Device memory read/write throughput

Global/local/shared memory LD/ST throughput
L2 RD/WR transactions
Device memory utilization

Instruction Control flow, INT, FP (single/double) instructions
Instruction executed/issued, Issued/executed IPC
Issued load/store instructions
Issue stall reasons (data request,
execution dependency,texture,...)

Multiprocessor SP/DP function unit(FU) utilization
Special FU utilization
Texture FU utilization, Control-flow FU utilization

Cache L2 hit rate (texture read/write)
L2 throughput/transaction

Texture Unified cache hit rate/throughput/utilization

4 ATTACK MODELS 1 AND 2: GRAPHICS/CUDA
SPY AND GRAPHICS VICTIM

We consider the first threat model where an application
uses a graphics API such as OpenGL to spy on another
application that uses the GPU graphics pipeline (Fig-
ure 3, left).
Reverse Engineering Co-location: To understand how
two concurrent applications share the GPU, we carry out
a number of experiments to see if the two workloads can
run concurrently and to track how they co-locate. The
general approach is to issue the concurrent workloads

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

5

and measure both the time they execute using the GPU
timer register, and SM-ID they execute on (which is
also available through the OpenGL API). If the times
overlap, then the two applications colocate at the same
time. If both the time and the SM-IDs overlap, then the
applications can share at the individual SM level, which
provides additional contention spaces on the private
resources for each SM.

We launch two long running graphics applications
rendering an object on the screen repeatedly. OpenGL
developers (Khronos group) provide two extensions:
”NV shader thread group ” [19] which enable program-
mers to query the ThreadID, the WarpID and the SM-ID
in OpenGL shader codes and ”ARB shader clock ” [19]
which exposes local timing information within a single
shader invocation. We used these two extensions during
the reverse engineering phase in the fragment shader
code to obtain this information. Since OpenGL does not
provide facilities to directly query execution state, we
encode this information in the colors (R, G, B values) of
the output pixels of the shader program (since the color
of pixels is the only output of shader program). On the
application side, we read the color of each pixel from the
framebuffer using the glReadPixels() method and
decode the colors to obtain the encoded ThreadID, SM-
ID and timing information of each pixel (representing a
thread).

We observed that two graphics applications whose
workloads do not exceed the GPU hardware resources
can colocate concurrently. Only if a single kernel can
exhaust the resources of an entire GPU (extremely un-
likely), the second kernel would have to wait. Typically, a
GPU thread is allocated to each pixel, and therefore, the
amount of resources reserved by each graphics kernel
depends on the size of the object being processed by
the GPU. We observe that a spy can co-locate with
a rendering application even it renders the full screen
(Resolution 1920x1080) on our system. Because the spy
does not ask for many resources (number of threads,
shared memory, etc...), we also discover that it is able
to share an SM with the other application. In the next
two subsections, we explain implementation of two end
to end attacks on the graphics stack of GPU.

4.1 Attack I: Website Fingerprinting
The first attack implements website fingerprinting as a
victim surfs the Internet using a browser. We first present
some background about how web browsers render web-
sites to understand which part of the computation is
exposed to our side channel attacks and then describe
the attack and evaluation.
Web Browser Display Processing: Current versions of
web browsers utilize the GPU to accelerate the rendering
process. Chrome, Firefox, and Internet Explorer all have
hardware acceleration turned on by default. GPUs are
highly-efficient for graphics workload, freeing up the
CPU for other tasks, and lowering the overall energy
consumption.

As an example, Chrome’s rendering processing path
consists of three interacting processes: the renderer pro-
cess, the GPU process and User Interface (UI) process. By
default, Chrome does not use the GPU to rasterize the
web content (recall that rasterization is the conversion
from a geometric description of the image, to the pixel
description). In particular, the webpage content is ren-
dered by default in the renderer process on the CPU.
Chrome uses shared memory with the GPU process
to facilitate fast exchange of data. The GPU process
reads the CPU-rasterized images of the web content and
uploads it to the GPU memory. The GPU process next
issues OpenGL draw calls to draw several equal-sized
quads, which are each a rectangle containing the final
bitmap image for the tile. Finally, Chrome’s compositor
composites all the images together with the browser’s
UI using the GPU.

We note that WebGL enables websites and browsers
to use GPU for whole rendering pipeline, making our
attacks effective for all websites that use WebGL [15]. For
websites that do not use WebGL, Chrome does not use
the GPU for rasterization by default, but there is an op-
tion that users can set in the browser to enable GPU ras-
terization.1 If hardware rasterization is enabled, all poly-
gons are rendered using OpenGL primitives (triangles
and lines) on the GPU. GPU accelerated drawing and
rasterization can offer substantially better performance,
especially to render web pages that require frequently
updated portions of screen. As a result, the Chromium
Project’s GPU Architecture Roadmap [24] seeks to enable
GPU accelerated rasterization by default in Chrome in
the near future. For our attacks we assume that hardware
rasterization is enabled but we also report the experi-
mental results without enabling GPU rasterization.
Launching the Attack: In this attack, a spy has to be
active while the GPU is being used as a user is browsing
the Internet. In the most likely attack scenario, a user
application uses OpenGL from a malicious user level
App on a desktop, to create a spy to infer the behavior
of a browser process as it uses the GPU. However,
a CUDA (or OpenCL) spy is also possible assuming
the corresponding driver and software environment is
installed on the system, enabling Graphics-CUDA side
channel attack described later in this section.
Probing GPU Memory Allocation: The spy probes the
memory API to obtain a trace of the memory allocation
operations carried out by the victim as it renders differ-
ent objects on a webpage visited by the user.

We observe that every website has a unique trace in
terms of GPU memory utilization due to the different
number of objects and different sizes of objects being
rendered. This signal is consistent across loading the
same website several times and is unaffected by caching.
To illustrate the side channel signal, Figure 4 shows
the GPU memory allocation trace when Google and

1. GPU rasterization can be enabled in chrome://flags
for Chrome and in about:config through setting the
layers.acceleration.force-enabled option in Firefox.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

6

0 10 20 30 40 50
Memory Allocation Event

0

1000

2000

3000

4000

5000

S
iz

e
(K

B
)

Google.com

(a)

0 20 40 60 80 100 120
Memory Allocation Event

0

1000

2000

3000

4000

5000

S
iz

e
(K

B
)

Amazon.com

(b)

Fig. 4: Website memory allocation on GPU (a) Google;
(b) Amazon

Amazon websites are being rendered. The x-axis shows
the allocation events on the GPU and the y-axis shows
the size of each allocation.

We evaluate the memory API attack on the front pages
of top 200 websites ranked by Alexa [25]. We collect data
by running a spy as a background process, automatically
browsing each website 10 times and recording the GPU
memory utilization trace for each run.
Classification We leverage machine learning algorithms
to classify the traces to infer which websites the victim is
likely to have visited. We first experimented with using
time-series classification through dynamic time warping,
but the training and classification complexity was high.
Instead, we construct features from the full time series
signal and use traditional machine learning classifica-
tion, which also achieved better accuracy. In particu-
lar, we compute several statistical features, including
minimum, maximum, mean, standard deviation, slope,
skew and kurtosis, for the series of memory allocations
collected through the side channel when a website is
loading. We selected these features because they are easy
to compute and capture the essence of the distribution
of the time series values. The skew and kurtosis capture
the shape of the distribution of the time series. Skew
characterizes the degree of asymmetry of values, while
the Kurtosis measures the relative peakness or flatness of
the distribution relative to a normal distribution [26]. We
computed these features separately for the first and the
second half of the time series recorded for each website.
We further divided the data in each half into 3 equal
segments, and measured the slope and the average of
each segment. We also added the number of memory
allocations for each website, referred as “memallocated”,
into the feature vector representing a website. This pro-
cess resulted in the feature set consisting of 37 features.

We then used these features to build the classifica-
tion models based on three standard machine learn-
ing algorithms, namely, K Nearest Neighbor with 3
neighbors (KNN-3), Gaussian Naive Bayes (NB), and
Random Forest with 100 estimators (RF). We evaluate
the performance of these models to identify the best
performing classifier for our dataset. For this and all
classification experiments we validated the classification
models using standard 10-fold cross-validation method

(which separates the training and testing data in every
instance).

As performance measures of these classifiers, we com-
puted the precision (Prec), recall (Rec), and F-measure
(FM) for machine learning classification models. Prec
refers to the accuracy of the system in rejecting the
negative classes while the Rec is the accuracy of the
system in accepting positive classes. Low recall leads
to high rejection of positive instances (false negatives)
while low precision leads to high acceptance of nega-
tive instances (false positives). FM represents a balance
between precision and recall.

TABLE 2: Memory API based website fingerprinting
performance (200 Alexa top websites): F-measure (%),
Precision (%), and Recall (%)

FM Prec Rec
µ (σ) µ (σ) µ (σ)

NB 83.1 (13.5) 86.7(20.0) 81.4 (13.5)
KNN3 84.6 (14.6) 85.7 (15.7) 84.6(14.6)
RF 89.9 (11.1) 90.4 (11.4) 90.0 (12.5)

Table2 shows the classification results. The random
forest classifier achieves around 90% accuracy for the
front pages of Alexa 200 top websites. Note that if we
launch our memory API attack on browsers with default
configuration (we do not enable GPU rasterization on
browser), we still obtain a precision of 59%.
Website fingerprinting from CUDA Spy using perfor-
mance counters We also demonstrate a threat model
where a spy from the computational stack attacks a
victim carrying out graphics operations. This attack is
possible on a desktop or mobile device that has CUDA
or openCL installed, and requires only user privileges. In
our prior work [13], we reported a detailed explanation
of our reverse engineering method to identify co-location
of Spy and Victim and implementing the attack. In this
subsection, we briefly discuss the attack and the results.
On a CUDA spy application, we launch a large number
of consecutive CUDA kernels, each of which accesses
different sets of the texture cache using different warps
simultaneously at each SM. We run our spy and collect
performance counter values with each kernel using the
Nvidia profiling tools (which are user accessible) while
the victim is browsing webpages. Again, we use machine
learning to identify the fingerprint of each website using
the different signatures observed in the performance
counters. We evaluate this attack on 200 top websites
on Alexa, and collect 10 samples for each website. The
average precision of the random forest classifier model
on correctly classifying the websites is 93.0% (f-measure
of 92.7%), which represents excellent accuracy in website
fingerprinting.

4.2 Attack II: Password Textbox Identification and
Keystroke Monitoring
After detecting the victim’s visited website and a specific
page on the website, we can extract additional finer-

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

7

grained information on the user activity. By probing
the GPU memory allocation repeatedly, we can detect
the pattern of user typing (which typically causes re-
rending of the textbox). More specifically, from the same
signal, it contains (1) the size of memory allocation by
the victim, which we use to identify whether it is a
username/password textbox (e.g., versus a bigger search
textbox); (2) the inter-keystroke time which allows us to
extract the number of characters typed and even infer
the characters using timing analysis.

As an example, we describe the process to infer
whether a user is logging in by typing on the password
textbox on facebook, as well as to extract the inter-
keystroke time of the password input. Since the GPU
is not used to render text in the current default options,
each time the user types a character, the character itself
is rendered by the CPU but the whole password textbox
is uploaded to GPU as a texture to be rasterized and
composited. In this case, the monitored available mem-
ory will decrease with a step of 1024KB (the amount of
GPU memory needed to render the password textbox
on facebook), leaking the fact that a user is attempting
to sign in instead of signing up (where the sign-up
textboxes are bigger and require more GPU memory to
render). Next, by monitoring the exact time of available
memory changes, we infer inter-keystroke time. The
observation is that while the sign-in box is active on
the website, waiting for user to input username and
password, the box is re-rendered at a refresh rate of
around 600 ms. However, if a new character is typed, the
box is immediately re-rendered (resulting in a smaller
interval). This effect is shown in Figure 5, where the X-
axis shows the observed nth memory allocation events
while the Y-axis shows the time interval between the
current allocation event and the previous one (most of
which are 600ms when a user is not typing). We can
clearly see six dips in the figure corresponding to the
6 user keystrokes, and the time corresponding to these
dips can be used to calculate inter-keystroke time.

0 5 10 15 20 25
Memory Allocation Event

100

200

300

400

500

600

700

T
im

e
In

te
rv

al
s

(m
s)

Facebook sign-in

Fig. 5: Timing memory allocations: 6-character password

Prior work has shown that inter-arrival times of
keystrokes can leak information about the actually char-
acters being typed by the user [27]. To demonstrate that
our attack can measure time with sufficient precision to
allow such timing analysis, we compare the measured
inter-keystroke time to the ground truth by instrument-
ing the browser code to capture the true time of the

-0.1 -0.05 0 0.05 0.1
Normalized error

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

P
ro

ba
bi

lit
y

de
ns

ity

Fig. 6: Error distribution of inter-keystroke time

key presses. We compute the normalized error as the
difference between the GPU measured interval and the
ground truth measured on the CPU side. Figure 6 shows
the probability density of the normalized measurement
error in an inter-keystroke timing measurement with
250 key presses/timing samples. We observe that the
timing is extremely accurate, with mean of the observed
error at less than 0.1% of the measurement period, with
a standard deviation of 3.1% (the standard deviation
translates to about 6ms of absolute error on average,
with over 70% of the measurements having an error of
less than 4ms). Figure 7 shows the inter-keystroke timing
for 25 pairs of characters being typed on the facebook
password bar (the character a followed by each of b to
z), measured through the side channel as well as the
ground truth. The side channel measurements (each of
which represents the average of 5 experiments) track the
ground truth accurately.

0 5 10 15 20 25
Sample key-pairs

100

150

200

250

300

350

400

In
te

r-
ke

ys
tr

ok
e

tim
e

(m
s)

 Ground Truth
GPU

Fig. 7: Keystroke timing: Ground Truth vs. GPU

5 ATTACK MODEL 3: CUDA SPY AND VICTIM

To construct the side channel between two computing
applications, multiprogramming (the ability to run mul-
tiple programs at the same time) on the GPUs is needed
to enable the spy to run alongside the victim. Mod-
ern GPUs support multiprogramming through multiple
hardware streams with multi-kernel execution using a
multi-process service (MPS) [28], which allows execution
of concurrent kernels from different processes on the
GPU. MPS is already supported on GPUs with hardware
queues such as the Hyper-Q support available on Kepler
and newer microarchitecture generations from Nvidia.
Multi-process execution eliminates the overhead of GPU

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

8

context switching and improves the performance, espe-
cially when the GPU is underutilized by a single process.
The trends in newer generations of GPUs is to expand
support for multiprogramming; for example, the recent
Volta architecture provides hardware support for 32-
concurrent address spaces/page tables on the GPU. All
three Nvidia GPUs we tested support MPS.

We assume that the two applications are launched
to the same GPU. Co-location of attacker and victim
VMs on the same cloud node is an orthogonal problem
investigated in prior works [29], [30]. Although the
model for sharing of GPUs for computational workloads
on cloud computing systems is still evolving, it can cur-
rently be supported by enabling the MPS control daemon
which start-ups and shut-downs the MPS server. The
CUDA contexts (MPS clients) will be connected to the
MPS server by MPS control daemon and funnel their
work through the MPS server which issues the kernels
concurrently to the GPU provided there is sufficient
hardware resources to support them.

Once colocation of the CUDA spy with the victim
application is established, similar to graphics-computing
channel, a spy CUDA application can measure con-
tention from the victim application. For example, it
may use the GPU performance counters to extract some
information about concurrent computational workloads
running on GPU.
Attack III: Neural Network Model Recovery: In this
attack model, a spy computational application, perhaps
on a cloud, seeks to co-locate on the same GPU as
another application to infer its behavior. For the victim,
we choose a CUDA-implemented back-propagation al-
gorithm from the Rodinia application benchmark [31]; in
such an application, the internal structure of the neural
network can be a critical trade secret and the target
of model extraction attacks. This attack is a proof of
concept attack, and we believe that we can extend the
same principles to explore general model extraction on
arbitrary machine learning models.

We use prior results of reverse engineering the hard-
ware schedulers on GPUs [8] to enable a CUDA spy to
co-locate with a CUDA victim on each SM. We launch
several hundred consecutive kernels in spy to make
sure we cover one whole victim kernel execution. These
numbers can be scaled up with the length of the victim.
To create contention in features tracked by hardware
performance counters, the spy accesses different sets of
the cache and performs different types of operations on
functional units. When a victim is running concurrently
on the GPU and utilizing the shared resources, depend-
ing on number of input layer size, the intensity and
pattern of contention on the cache, memory and func-
tional units is different over time, creating measurable
leakage in the spy performance counter measurements.
We collect one vector of performance counter values
from each spy kernel.
Data Collection and Classification: We collect profiling
traces of the CUDA based spy over 100 kernel executions

(at the end of each, we measure the performance counter
readings) while the victim CUDA application performs
the back-propagation algorithm with different size of
neural network input layer. We run the victim with input
layer size varying in the range between 64 and 65536
neurons collecting 10 samples for each input size.

As before, we segment the time-series signal and
create a super-feature based on the minimum, maximum,
slope, average, standard deviation, skew and kurtosis
of each signal, and train classifiers (with 10-fold cross
validation to identify the best classifiers for our data set).
Feature selection: We used information gain of each
feature to sort them according to the importance and
selected the top 20 features to build a classifier. Table 3
summarizes the most top ranked features selected in
the classification and Figure 8 shows the information
gain of the top features. We expected that cache and
memory related features are most affected by concur-
rently running kernels. ”Issue stall” is also important
as it measures contention from the victim on functional
units and memory.

TABLE 3: Top ranked counters for classification

GPU Performance Counter Features
Device memory write transactions skew, sd, mean, kurtosis
Fb subp0/1 read sector2 skew, kurtosis
Unified cache throughput(bytes/sec) skew, sd
Issue Stall skew, sd
L2 subp0/1/2/3 read/write misses3 kurtosis

Fig. 8: Information gain of top features

TABLE 4: Neural Network Detection Performance

FM % Prec % Rec %
µ (σ) µ (σ) µ (σ)

NB 80.0 (18.5) 81.0 (16.1) 80.0 (21.6)
KNN3 86.6 (6.6) 88.6 13.1) 86.3 (7.8)
RF 85.5 (9.2) 87.3 (16.3) 85.0 (5.3)

Table 4 reports the classification results for identifying
the number of neurons through the side channel attack.
Using KNN3, we are able to identify the correct number
of neurons with high accuracy (precision of 88.6% and f-
measure 86.6%), demonstrating that side channel attacks
on CUDA applications are possible.

2. Number of read requests sent to sub-partition 0/1 of all the DRAM
units

3. Accumulated read/write misses from L2 cache for slice 0/1/2/3
for all the L2 cache units

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

9

Attack in interleaved kernel execution model: In case
that MPS is not activated on Desktop GPUs or is not the
multiprogramming model on the cloud for concurrent
running of spy and victim, kernels from two applica-
tions are scheduled based on time-sliced scheduling and
context switching. We studied this scenario for machine
learning models that launch several sequential GPU
kernels and we launch a large number of very short spy
kernels (each doing some memory and functional units
operations) to make sure that spy and victim kernels are
interleaving. We observed that per kernel performance
counters read by spy kernels are affected by victim
model parameters, since this context switching causes
performance penalty (specifically on cache and memory
related features) on the following kernel, enabling the
spy to extract information from victim application.

6 ROBUSTNESS TO WINDOW SIZES

In attacks on the graphics stack, the size of the window
being rendered affects the side channel signal leaked to
the attacker. We checked the robustness of the classi-
fication on the website fingerprinting attack described
earlier, which was evaluated under the assumption that
the browser used the full screen. However, users may
browse websites in the browser of different screen sizes.
Hence, to make our website fingerprinting attack robust,
we have to generalize the attack across various window
sizes.

Robustness analysis: We discover that changing the
window size results in a similar signal with different
amplitude for a few websites, and for the responsive
websites that have dynamic content or do not scale with
window size, there is some variance in the memory allo-
cation signal (e.g., some objects missing due to a smaller
window). We collected data for seven different window
sizes, including some standard sizes of iPhone, iPad,
Laptop and Desktop. These window sizes are 320*568,
600*800, 800*600, 1024*768, 1440*900, 1680*1050 and full
screen (1920*1080). To measure the robustness of our
classification model on different window sizes, we , first,
trained the model on full-screen window dataset and
tested on other window sizes. We observed a decrease
in the precision of a Random Forest classifier to less
than 10% for top 100 Alexa websites. Thus, the attack
described thusfar is not robust to change in the window
size.

To make our attack robust to a size of a window,
we introduce a new attack that estimates the size of
the browser window. The intuition is that the intensity
of the signal increases with the size of the window as
more objects that are larger are drawn. After detecting
the window size, the correct classifier (trained at that
window size) is used for website fingerprinting. We
describe this attack in the remainder of this section.

Detecting window sizes: We computed several features,
including minimum, maximum, slope, variation, kurto-
sis, and skew from the memory allocations associated

with the Alexa top 100 websites loaded in the given
browser window size. We then trained a model with
Random Forest classifier on these features to detect the
size of the browser window. We evaluated the per-
formance of our model using 10-fold cross-validation.
The performance metrics, viz., f-measure, precision, and
recall, of the model, are listed in Table 5. To identify the
prominent features in the memory allocations represent-
ing the window sizes, we computed the information gain
on each feature. We observe the maximum, the variation,
and the skew of the memory allocations as the top-three
features representing different window sizes.

TABLE 5: Window size prediction performance: F-
measure (%), Precision (%), and Recall (%)

FM Prec Rec
µ µ µ

320 568 94 96 95
600 800 95 96 96
800 600 93 94 93
1024 768 95 97 96
1440 900 96 98 97
1680 1050 97 92 95
FullScreen 99 97 98

Website Fingerprinting: Similar to the implementation
of website fingerprinting on the full-screen browser, we
trained a Random Forest classifier to model websites
browsed in a specific window size. We evaluate perfor-
mance with 10-fold cross validation. The classification
results are presented in Table 6. With this improvement,
we believe that the attacks become robust to changes in
window size.

TABLE 6: Website fingerprinting performance on differ-
ent window sizes (100 Alexa top websites): F-measure
(%), Precision (%), and Recall (%)

FM Prec Rec
µ (σ) µ (σ) µ (σ)

320 568 93 (0.07) 93 (0.07) 93 (0.06)
600 800 92 (0.09) 92 (0.09) 91 (0.08)
800 600 93 (0.07) 92 (0.08) 92 (0.05)
1024 768 95 (0.06) 94 (0.07) 94 (0.05)
1440 900 94 (0.07) 94 (0.09) 94 (0.07)
1680 1050 94 (0.06) 94 (0.08) 94 (0.05)
Full Screen 94 (0.07) 94 (0.09) 93 (0.06)

7 ATTACK MITIGATION

The attack may be mitigated completely by removing
the shared resource APIs such as the memory API and
the performance counters. Since legitimate applications
need these APIs, rather than removing them, our goal
is to weaken the signal that the attacker gets. In the
future, GPU scheduling algorithms may be developed
to create separation between workloads or to decorrelate
the observed contention from the sensitive data operated
on by the application. Xu et al. [32] proposed a GPU-
specific intra-SM partitioning scheme to isolate con-

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

10

tention between victim and spy and eliminate contention
based channels after detection.

We evaluate reducing the leakage by either (1) Rate
limiting: reducing the frequency that an application can
use an API such as the memory API or the performance
counters; and (2) Precision limiting: limit the granularity
of the reported information.

We retrain the machine learning model with the leak-
age data obtained with the defenses in place on the Alexa
top 50 websites. The classification precision decreases
with rate limiting defense as shown in Figure 9a, and
with reducing the granularity in Figure 9b. Reducing
the query rate to two queries per second reduces pre-
cision but retains classification success of around 40%.
In contrast, decreasing the granularity to 8192KB, the
accuracy will be significantly decreased to about 7%. By
combining the two mentioned approaches, using 4096KB
granularity and limiting the query rate we can further
decrease the precision to almost 4%, as demonstrated
in Figure 9c. While reducing precision, we believe these
mitigations retain some information for legitimate appli-
cations to measure their performance, while preventing
side channel leakage across applications.

Although we evaluate the defense only for the website
fingerprinting attack, we believe the effect will be similar
for the other attacks, since they are also based on the
same leakage sources. We also believe similar defenses
can mitigate performance counter side channels.

8 RELATED WORK

We organize the discussion of related work into two
different groups: (1) Related work to our attacks; and
(2) Covert and side channel attacks on GPUs.
Related Work to Our Attacks: Different attack vec-
tors have been proposed for website fingerprinting.
Panchenko et al. [33] and Hayes et al. [39] capture traffic
generated via loading monitored web pages. Felten and
Schneider [40] utilize browser caching and construct
a timing channel to infer the victim visited websites.
Jana and Shmatikov [34] use the procfs filesystem in
Linux to measure the memory footprints of the browser.
Then they detect the visited website by comparing the
memory footprints with the recorded ones. Weinberg
et al. [41] presented a user interaction attack (victim’s
action on website leaks its browsing history) and a
timing side channel attack for browser history sniff-
ing. Table 7 compares the classification accuracy of our
memory based and performance counter based attacks
to other previously published website-fringerprinting
attacks. All attacks, other than [4] which uses leftover
memory, exploit side channel leakage. Although there
are differences in terms of the number of websites con-
sidered, and the browser that is attacked, our attacks are
among the most accurate.

Some of the principles used in our attack have also
been leveraged by other researchers. Goethem et al. [42]
and Bortz et al. [43] propose cross-site timing attacks

on web browsers to estimate the size of cross-origin
resources or provide user information leakage from
other site. [44] and [45] propose timing channels by
measuring the time elapsed between frames using a
JavaScript API.These attacks are difficult currently since
most browsers have reduced the timer resolution elimi-
nating the timing signal used by the attacks. Gulmezoglu
et al. [37] proposed a side channel on per-core/per-
process CPU hardware performance counters (which are
limited in number).

Leakage through the keystroke timing pattern is also
a known effect which has been exploited as a user
authentication mechanism [46], [47]. Keystroke timing
has also been used to compromise/weaken passwords
[27] or compromise user privacy [48]. Lipp et al. [49] pro-
pose a keystroke interrupt-timing attack implemented in
JavaScript using a counter as a high resolution timer. Our
attack provides an accurate new leakage of keystroke
timing to unauthorized users enabling them to imple-
ment such attacks.
Side Channel Attacks on GPUs: This work is the first
that explores side channels due to contention between
two GPU applications. It is also the only GPU attack to
compromise graphics applications; prior works consider
CUDA applications only. Jiang et al. [10] conduct a
timing attack on a CUDA AES implementation. The at-
tack exploits the difference in timing between addresses
generated by different threads as they access memory:
if the addresses are coalesced such that they refer to
the same memory block, they are much faster than
uncoalesced accesses which require several expensive
memory operations. The same group [50] presented
another timing attack on table-based AES encryption.
They found correlation between execution time of one
table lookup of a warp and a number of bank conflicts
generated by threads within the warp. The attacks re-
quire the spy to be able to trigger the launch of the
victim kernel. The self-contention exploited in the first
attack [10] cannot be used for a side-channel between
two concurrent applications. Luo et al. study a power
side channel attack on AES encryption executing on
a GPU [6]. This attack requires physical access to the
GPU to measure the power. Naghibijouybari et al. [8]
construct three types of covert channels between two
colluding CUDA applications. We use their results for
reverse engineering the co-location of CUDA workloads
in our third attack on the neural network application.
The fine-grained timing information that they use in a
covert channel by enforcing regular contention patterns
is too noisy to exploit for side-channel attacks due to the
large number of active threads.

This paper extends our prior work [13] which demon-
strated three end-to-end side channel attacks on Nvidia
GPUs: Website fingerprinting, keystroke monitoring and,
neural network model extraction attack. In this paper, we
generalize website fingerprinting attack across different
window sizes, so that the attacker utilizes a side channel
signal to detect the browser window size, before imple-

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

11

Baseline 1000/s 200/s 100/s 20/s 5/s 2/s

Query rate

0

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
pr

ec
is

io
n

(%
)

(a)

Baseline 512KB 1024KB 2048KB 4096KB 8192KB

Granularity

0

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
pr

ec
is

io
n

(%
)

(b)

Baseline 1000/s 200/s 100/s 20/s 5/s 2/s

Query rate

0

10

20

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
pr

ec
is

io
n

(%
)

(c)

Fig. 9: Classification precision with (a) Rate limiting; (b) Granularity limiting; (c) Rate limiting at 4MB granularity

TABLE 7: Classification accuracy comparison of website-fingerprinting attacks on Alexa top websites

Attack Vector Accuracy (%) # of Websites Browser
Mem-based attack side channel (GPU memory API) 90.4 (94) 200 (100) Chrome
PC-based attack side channel (GPU performance counters) 93 200 Chrome
[33] side channel (traffic analysis) 92.52 100 Tor
[34] side channel (memory footprint via procfs) 78 100 Chrome
[35] side channel (LLC) 82.1 (88.6) 8 Safari (Tor)
[36] side channel (shared event loop) 76.7 500 Chrome
[37] side channel (CPU performance counters) 84 30 Chrome
[38] side channel (iOS APIs) 68.5 100 Safari
[4] leftover memory on GPU 95.4 100 Chrome

menting website fingerprinting attack. We also study the
feasibility of attacks on integrated GPUs such as Intel
Graphics and portability of attacks to other operating
systems. In neural network model extraction attack, we
analyze the top features in classification and also dis-
cuss possibility of attack in interleaved kernel execution
model.

9 CONCLUDING REMARKS

In this paper, we explore side channel attacks among
applications concurrently using the Graphical Process-
ing Unit (GPU). We reverse engineer how applications
share of the GPU for different threat models and also
identify different ways to measure leakage. We demon-
strate a series of end-to-end GPU side channel attacks
covering the different threat models on both graphics
and computational stacks, as well as across them. Our
attacks demonstrate that side channel vulnerabilities
are not restricted to the CPU. Any shared component
within a system can leak information as contention arises
between applications that share a resource. Given the
wide-spread use of GPUs, we believe that they are an
especially important component to secure.

The paper also considered possible defenses. We pro-
posed a mitigation based on limiting the rate of access to
the APIs that leak the side channel information. Alterna-
tively (or in combination), we can reduce the precision of
this information. We showed that such defenses substan-
tially reduce the effectiveness of the attack, to the point
where the attacks are no longer effective. Finding the
right balance between utility and side channel leakage
for general applications is an interesting tradeoff to study
for this class of mitigations.

ACKNOWLEDGEMENT
The work in this paper is supported by the National
Science Foundation under Grant No.:CNS-1619450.

REFERENCES
[1] W. mei Hwu, GPU Computing Gems, 1st ed. Elsevier, 2011.
[2] A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi, “Design of a

parallel aes for graphic hardware using the cuda framework,” in
IEEE International Symposium on Parallel & Distributed Processing,
ser. IPDPS’09. Rome Italy: IEEE, 2009.

[3] R. C. Detomini, R. S. Lobato, R. Spolon, and M. A. Cavenaghi,
“Using gpu to exploit parallelism on cryptography,” in 6th Iberian
Conference on Information Systems and Technologies, ser. CISTI’11.
Chaves Portugal: IEEE, 2011.

[4] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpage rendered
on your browser by exploiting gpu vulnerabilities,” in IEEE
Symposium on Security and Privacy, ser. SPI’14. San Jose CA USA:
IEEE, 2014, pp. 19–33.

[5] R. D. Pietro, F. Lombardi, and A. Villani, “Cuda leaks: Informa-
tion leakage in gpu architecture,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 15, no. 1, 2016.

[6] C. Luo, Y. Fei, P. Luo, S. Mukherjee, and D. Kaeli, “Side-channel
power analysis of a gpu aes implementation,” in 33rd IEEE
International Conference on Computer Design, ser. ICCD’15, 2015.

[7] Z. Zhu, S. Kim, Y. Rozhanski, Y. Hu, E. Witchel, and M. Silberstein,
“Understanding the security of discrete gpus,” in Proceedings of the
General Purpose GPUs, ser. GPGPU’10, 2017.

[8] H. Naghibijouybari, K. Khasawneh, and N. Abu-Ghazaleh, “Con-
structing and characterizing covert channels on gpus,” in Proc.
International Symposium on Microarchitecture (MICRO), 2017.

[9] Z. Yao, Z. Ma, A. Sani, and A. Chandramowlishwaran, “Sugar:
Secure GPU acceleration in web browsers,” in Proc. International
Conference on Architecture Support for Operating Systems and Pro-
gramming Languages (ASPLOS), 2018.

[10] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery
timing attack on a gpu,” in IEEE International Symposium on High
Performance Computer Architecture, ser. HPCA’16. Barcelona Spain:
IEEE, 2016, pp. 394–405.

[11] “CUDA, Nvidia,” 2018, https://developer.nvidia.com/cuda-
zone/.

[12] H. Naghibijouybari and N. Abu-Ghazaleh, “Covert channels on
gpgpus,” IEEE Computer Architecture Letters, vol. 16, no. 1, pp.
22–25, 2016.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2944624, IEEE
Transactions on Dependable and Secure Computing

12

[13] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18, 2018, pp. 2139–2153.

[14] “OpenGL Overview, Khronos Group,” 2018,
https://www.khronos.org/opengl/.

[15] “WebGL Overview, Khronos Group,” 2018,
https://www.khronos.org/webgl/.

[16] “OpenCL Overview, Khronos Group,” 2018,
https://www.khronos.org/opencl/.

[17] “GPU Cloud Computing, Nvidia,” 2018,
https://www.nvidia.com/en-us/data-center/gpu-cloud-
computing/.

[18] M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel, “A
high-resolution side-channel attack on last-level cache,” in 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016,
pp. 1–6.

[19] “OpenGL Extenstion, Khronos Group,” 2018,
https://www.khronos.org/registry/OpenGL/index gl.php.

[20] “NVIDIA Profiler User’s Guide,” 2018,
http://docs.nvidia.com/cuda/profiler-users-guide/index.html.

[21] “Linux Graphics Debugger, Nvidia,” 2018,
https://developer.nvidia.com/linux-graphics-debugger.

[22] “Tegra Graphics Debugger, Nvidia,” 2018,
https://developer.nvidia.com/tegra-graphics-debugger.

[23] “OpenGL Extension, Intel,” 2018,
https://www.khronos.org/registry/OpenGL/extensions/INTEL/
INTEL performance query.txt.

[24] “GPU Architecture Roadmap, The Chromium Projects,”
2018, https://www.chromium.org/developers/design-
documents/gpu-accelerated-compositing-in-chrome/gpu-
architecture-roadmap.

[25] “Alexa Top Sites,” 2018, https://www.alexa.com/topsites.
[26] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Feature-based

classification of time-series data,” International Journal of Computer
Research, vol. 10, no. 3, pp. 49–61, 2001.

[27] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. USENIX Security Symposium,
2001.

[28] “Multi-Process Service, Nvidia,” 2018,
https://docs.nvidia.com/deploy/pdf/CUDA Multi Process Service

Overview.pdf.
[29] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,

get off of my cloud: exploring information leakage in third-
party compute clouds,” in Proc. ACM conference on Computer and
communications security, ser. CCS’09, Chicago, Illinois, USA, 2009,
pp. 199–212.

[30] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. L. Porta, P. Mc-
Daniel, and L. Marvel, “Malicious co-residency on the cloud:
Attacks and defense,” in IEEE Conference on Computer Commu-
nications, ser. INFOCOM’17, 2017, pp. 1–9.

[31] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proceedings of the 2009 IEEE International Symposium on
Workload Characterization, ser. IISWC ’09, 2009, pp. 44–54.

[32] Q. Xu, H. Naghibijouybari, S. Wang, N. Abu-Ghazaleh, and
M. Annavaram, “Gpuguard: Mitigating contention based side
and covert channel attacks on gpus,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19. New
York, NY, USA: ACM, 2019, pp. 497–509. [Online]. Available:
http://doi.acm.org/10.1145/3330345.3330389

[33] A. panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,
K. Wehrle, and T. Engel, “Website fingerprinting at internet scale,”
in 23rd Internet Society (ISOC) Network and Distributed System
Security Symposium (NDSS 2016), 2016.

[34] S. Jana and V. Shmatikov, “Memento: Learning secrets from
process footprints,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy, ser. SP ’12, 2012, pp. 143–157.

[35] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript
and their implications,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15,
2015, pp. 1406–1418.

[36] P. Vila and B. Kopf, “Loophole: Timing attacks on shared event
loops in chrome,” in 26th USENIX Security Symposium (USENIX
Security 17), Vancouver, BC, 2017, pp. 849–864.

[37] B. Gulmezoglu, A. Zankl, T. Eisenbarth, and B. Sunar, “Perfweb:
How to violate web privacy with hardware performance events,”
in Computer Security – ESORICS 2017. Cham: Springer Interna-
tional Publishing, 2017, pp. 80–97.

[38] X. Zhang, X. Wang, X. Bai, Y. Zhang, and X. Wang, “Os-level side
channels without procfs: Exploring cross-app information leakage
on ios,” in Proceedings of the Symposium on Network and Distributed
System Security, 2018.

[39] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable
website fingerprinting technique,” in USENIX Security Symposium,
2016, pp. 1187–1203.

[40] E. W. Felten and M. A. Schneider, “Timing attacks on web
privacy,” in Proceedings of the 7th ACM Conference on Computer
and Communications Security, ser. CCS ’00, 2000, pp. 25–32.

[41] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history
via user interaction and side channel attacks,” in Proceedings of
the 2011 IEEE Symposium on Security and Privacy, ser. SP ’11, 2011,
pp. 147–161.

[42] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, 2015, pp. 1382–1393.

[43] A. Bortz and D. Boneh, “Exposing private information by timing
web applications,” in Proceedings of the 16th International Conference
on World Wide Web, ser. WWW ’07, 2007, pp. 621–628.

[44] P. Stone, “Pixel Perfect Timing Attacks with HTML5,” 2013,
https://www.contextis.com/resources/white-papers/pixel-
perfect-timing-attacks-with-html5.

[45] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-origin pixel
stealing: timing attacks using css filters,” in ACM Conference on
Computer and Communications Security, 2013, pp. 1055–1062.

[46] F. Monrose and A. Rubin, “Authentication via keystroke dynam-
ics,” in ACM International Conference on Computer and Communica-
tion Security (CCS), 1997.

[47] A. Peacock, X. Ke, and M. Wilkerson, “Typing patterns: A key to
user identification,” IEEE Security and Privacy, vol. 2, pp. 40–47,
2004.

[48] P. Chairunnanda, N. Pham, and U. Hengartner, “Privacy: Gone
with the typing! identifying web users by their typing patterns,”
in IEEE International Conference on Privacy, Security, Risk and Trust,
Oct. 2011, pp. 974–980.

[49] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and
S. Mangard, “Practical keystroke timing attacks in sandboxed
javascript,” in Computer Security – ESORICS 2017, S. N. Foley,
D. Gollmann, and E. Snekkenes, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 191–209.

[50] Z. H. Jiang, Y. Fei, and D. Kaeli, “A novel side-channel timing
attack on gpus,” in Proceedings of the on Great Lakes Symposium on
VLSI, ser. VLSI’17, 2017, pp. 167–172.

Hoda Naghibijouybari is a PhD student in the Department of Computer
Science and Engineering at the University of California, Riverside. Her
research interests are in architecture support for security, including GPU
security, and side channel attacks and defenses.

Ajaya Neupane is a Postdoctoral Researcher at the University of
California Riverside. His interests are in network and system security.
He received his PhD in Computer and Information Sciences from the
University of Alabama at Birmingham in 2017.

Zhiyun Qian is an associate professor in the Computer Science and
Engineering department at the University of California Riverside. His
research interest is on system and network security. He received the
PhD degree in Computer Science and Engineering from University of
Michigan in 2012.

Nael Abu-Ghazaleh is a Professor in the Computer Science and
Engineering department and the Electrical and Computer Engineering
department at the University of California at Riverside. His research
interests are in the areas of computer architecture support for security,
parallel discrete event simulation, networking and mobile computing. He
received his PhD from the University of Cincinnati in 1997.

