LiveDroid: Identifying and Preserving Mobile
App State in Volatile Runtime Environments

Umar Faroog, Zhijia Zhao, Manu Sridharan, and lulian Neamtiu*

University of California, Riverside, *New Jersey Institute of Technology

UC

RIVERSIDE

New Jersey Institute
of Technology




Volatile Runtime Environment

* Unlike traditional applications, mobile apps suffer frequent restarts

Scenario 1: Runtime Config. Changes Scenario 2: High Memory Pressure

( s rotate phone
* attach keyboard
* change language

. ..

Current activity is destroyed The whole app (process) is killed
2

VM remaining memory




Volatile Runtime Environment

initial state changed Restart
A

]
]
n u
v ]
]
save X restore x
onSaveInstanceState() onRestoreInstanceState()

State Issues: state lost, unresponsiveness, Ul malfunctioning, app crashes
[MobiSys’18 by Farooq etl.]




Example Issue: Selected Account Lost

“selectedAccountUuid”
is not saved and restored

g Unread Configuration =

Account
Gmail

The account for which the unread count
should be displayed

Folder count
Display the unread count of only a 0

Folder count

Display the unread count of only a [
single folder




Example Issue: User selections lost

GUI properties
are not saved and restored

We just need a few quick things
before getting you started.

before gettin

Country Country

United States N Afghanistan <
English (United States) - (&3 92l &g yall dSlanll) dyy ol
Age Gender Age Gender

25 Other v 25| Male v




Existing Work

[OOPSLA’16 by Shan et. al]
- Save and restore all mutable activity fields; ignore GUI elements
- Detect inconsistent data saving and restoring

[MobiSys’18 by Farooq et. al]

- Prevent activity restarting during configuration changes
- App may still get restarted due to low memory

Open Questions:

Q1: How to identify the necessary state that needs to preserve?

Q2: How to automatically save and restore the state?




This Work

extract Static Analysis
— . .
(identify state)

S

Necessary Instance State
(NISTATE)

~ =

Runtime Module
(save/restore)




Necessary Instance State (NISTATE)

 NISTATE: data that are necessary to preserve to maintain the feeling

that the app is always running

* Two Key Requirements:

Initial State changed Restart State accessed

T I

x was modified X will be used




Static NISTATE Analysis

Past _!_

What variables may be modified? What variables will be used?

void onClickl () { void onClick2 () {
. this.w = this.x + 2;
this.v = this.u + 1; this.y = this.v + this.w;

} }

May-Modify Analysis Entry-Liveness Analysis

NISTATE = MOD (N LIVE
{this.v} = {this.v} ] {this.x, this.v}




Analysis Details: Callbacks Modeling

Created é

Sta rted g

Resumed ,,
Paused

Stopped h

“~
/ \
v \
/ / A
i { !
/ / ;

Destroyed

(a) lifecycle

Pre-Interaction
onCreate(), onStart(), onResume()

skip

1sed

Interaction

onClick(), onCheckedChanged(),
onlLocationChanged(), ...

MOD and LIVE

Post Interaction
onPause(), onStop(), onDestroy()

LIVE

(b) callback modeling (c) static analysis

10




Analysis Details: Complexities

* GUI elements defined in layout files (XML)

- unlike Java variable, user can “read” and “modify” GUI elements directly
- referred to as “External State”

e Aliases Alias Analysis &% Runtime Checking (Alias Grounding)

- need to preserve for correctnesse.g., 1f (this.a == this.b)
- duplicate saving and restoring

* Field/object sensitivity

11




This Work

extract Static Analysis
— . .
(identify state)

S

Necessary Instance State
(NISTATE)

~ =

Runtime Module insert
_
(save/restore)




Runtime: Save/Restore NISTATE

.. save restore ..
primitive —— — primitive

) serialize ) i deserialize )
object “ >string — — string — object

//Save primitive

//Save object
s.putlInt ("int x", this.x);

s.putString ("obj b", gson.todson(this.b));

//Restore primitive

//Restore object
this.x = s.getInt("int x");

String str = s.getString("obj b");
this.b = gson.fromdson(str, B.class);

13



Runtime: Alias Grounding

* Verifies statically identified aliases for correctness

* Less data to save/restore

//Save alias
if(this.a.b == this.b)

s.putBoolean ("a b=b", true); //save alias
else

s.putString ("obj a b", gson.toJson(this.a.b)); //save object

14




Runtime: Other Complexities

 Save/restore GUI properties
//Save GUI elements

TextView view = findViewById(R.id.text time);
s.putString ("text time", view.getText());

 Save/restore parital objects and private fields

15



Implementation

* Static Analyzer
* Built on Soot and FlowDroid: backward inter-procedural analysis

* IDE Plugin
* Android Studio Plugin, and takes in NISTATE (in XML report)

* Interactively generates code as developers direct

* Patching Tool
» Soot-based binary patching tool, takes in NISTATE (in XML report)
* Automatically injects code

16




Evaluation: Methodology

e Two Groups of Android Apps (from F-Droid/Github)

‘ Group-L ‘ Group-S
# Apps 966 36
# Activities 4,808 469
A
" N

K-9, LeafPic, RDP Remote Desktop, etc.
(highly popular ones)

* Devices: PC(3.5GHz CPU and 16 GB RAM)
Nexus 5X (Android 8.0)




Evaluation: Results

Applicability (Group-L)

* 452 apps (46.8%) with non-empty external state
* 322 apps (33.2%) with non-empty internal state

Efficiency & Effectiveness (Group-S)

* Analysis finishes within 1 minute (30/36)

* Internal state is only 1.5% of [OOPSLA’16]
- Reduces state saving by 16.6X on average
- Reduces state restoring by 9.5X on average




Evaluation: Results

State Issues (Group-S)

* 231/393 access paths (primitives/objects) are not saved/restored in 21 apps

* Contributated to 46 new state issues

» 7.9% false positives (due to unrealizable paths, coarse-grained Ul analysis, etc.)
 All the new issues are fixed by LiveDroid




I ———————y

Takeaway

 States of mobile apps are destroyed in volatile runtime environments
* Developers required to find the app state and save/restore it

* This work defines necessary instance state (NISTATE)

* designs and develops LiveDroid:
- Statically identifies NISTATE
- Automatically save and restore NISTATE at Runtime

e Github: https://eithub.com/ucr-riple/LiveDroid

20



https://github.com/ucr-riple/LiveDroid

