
LiveDroid: Identifying and Preserving Mobile
App State in Volatile Runtime Environments

Umar Farooq, Zhijia Zhao, Manu Sridharan, and Iulian Neamtiu*
University of California, Riverside, *New Jersey Institute of Technology

Volatile Runtime Environment

• Unlike traditional applications, mobile apps suffer frequent restarts

2

remaining memory

Scenario 2: High Memory PressureScenario 1: Runtime Config. Changes

• rotate phone
• attach keyboard
• change language
• …

Current activity is destroyed The whole app (process) is killed

Volatile Runtime Environment

3

x = 1 write
x

Initial State changed Restart

save x restore x

State Issues: state lost, unresponsiveness, UI malfunctioning, app crashes

State accessed

read
x

[MobiSys’18 by Farooq etl.]

onSaveInstanceState() onRestoreInstanceState()

Example Issue: Selected Account Lost

4

“selectedAccountUuid”
is not saved and restored

Example Issue: User selections lost

5

GUI properties
are not saved and restored

Existing Work

[OOPSLA’16 by Shan et. al]
- Save and restore all mutable activity fields; ignore GUI elements
- Detect inconsistent data saving and restoring

[MobiSys’18 by Farooq et. al]
- Prevent activity restarting during configuration changes
- App may still get restarted due to low memory

6

Open Questions:

Q1: How to identify the necessary state that needs to preserve?

Q2: How to automatically save and restore the state?

APP

This Work

7

Necessary Instance State
(NISTATE)

insertRuntime Module
(save/restore)

Static Analysis
(identify state)

extract

APP

Necessary Instance State (NISTATE)

• NISTATE: data that are necessary to preserve to maintain the feeling
that the app is always running

• Two Key Requirements:

8
x was modified

x = 1 write
x

Initial State changed Restart State accessed

read
x

x will be used

Static NISTATE Analysis

9

void onClick2() {
this.w = this.x + 2;
this.y = this.v + this.w;

}

void onClick1() {
…
this.v = this.u + 1;

}

Past Future

May-Modify Analysis Entry-Liveness Analysis

What variables may be modified? What variables will be used?

NISTATE = MOD ⋂ LIVE
{this.v} {this.v} {this.x, this.v}⋂=

Analysis Details: Callbacks Modeling

Pre-Interaction
onCreate(), onStart(), onResume()

Interaction
onClick(), onCheckedChanged(),
onLocationChanged(), ...

Post Interaction
onPause(), onStop(), onDestroy()

skip

MOD and LIVE

LIVE

(a) lifecycle (b) callback modeling (c) static analysis

Started

Stopped

Created

Destroyed

Resumed

Paused

10

Past
Future

Analysis Details: Complexities

• GUI elements defined in layout files (XML)
- unlike Java variable, user can “read” and “modify” GUI elements directly
- referred to as “External State”

• Aliases
- need to preserve for correctness e.g., if(this.a == this.b)
- duplicate saving and restoring

• Field/object sensitivity

11

UI Property Analysis

Alias Analysis + Runtime Checking (Alias Grounding)

APP

This Work

12

Necessary Instance State
(NISTATE)

insertRuntime Module
(save/restore)

Static Analysis
(identify state)

extract

APP

Runtime: Save/Restore NISTATE

13

Bundleprimitive

//Save primitive
s.putInt("int_x", this.x);

Bundleobject string

//Save object
s.putString("obj_b", gson.toJson(this.b));

save
primitive

string objectdeserialize

restore

serialize

//Restore primitive
this.x = s.getInt("int_x");

//Restore object
String str = s.getString("obj_b");
this.b = gson.fromJson(str, B.class);

Runtime: Alias Grounding

• Verifies statically identified aliases for correctness
• Less data to save/restore

//Save alias

if(this.a.b == this.b)

s.putBoolean("a_b=b", true); //save alias
else

s.putString("obj_a_b", gson.toJson(this.a.b)); //save object

14

Runtime: Other Complexities

• Save/restore GUI properties

• Save/restore parital objects and private fields

15

//Save GUI elements
TextView view = findViewById(R.id.text_time);
s.putString("text_time", view.getText());

Implementation

• Static Analyzer
• Built on Soot and FlowDroid: backward inter-procedural analysis

• IDE Plugin
• Android Studio Plugin, and takes in NISTATE (in XML report)
• Interactively generates code as developers direct

• Patching Tool
• Soot-based binary patching tool, takes in NISTATE (in XML report)
• Automatically injects code

16

Evaluation: Methodology

17

Group-L Group-S
Apps 966 36

Activities 4,808 469

• Two Groups of Android Apps (from F-Droid/Github)

K-9, LeafPic, RDP Remote Desktop, etc.
(highly popular ones)

• Devices: PC (3.5GHz CPU and 16 GB RAM)
Nexus 5X (Android 8.0)

Evaluation: Results

18

Applicability (Group-L)

• 452 apps (46.8%) with non-empty external state

• 322 apps (33.2%) with non-empty internal state

Efficiency & Effectiveness (Group-S)

• Analysis finishes within 1 minute (30/36)

• Internal state is only 1.5% of [OOPSLA’16]
- Reduces state saving by 16.6X on average
- Reduces state restoring by 9.5X on average

Evaluation: Results

19

State Issues (Group-S)

• 231/393 access paths (primitives/objects) are not saved/restored in 21 apps

• Contributated to 46 new state issues
• 7.9% false positives (due to unrealizable paths, coarse-grained UI analysis, etc.)
• All the new issues are fixed by LiveDroid

Takeaway

• States of mobile apps are destroyed in volatile runtime environments
• Developers required to find the app state and save/restore it

• This work defines necessary instance state (NISTATE)
• designs and develops LiveDroid:

- Statically identifies NISTATE
- Automatically save and restore NISTATE at Runtime

• Github: https://github.com/ucr-riple/LiveDroid

20

https://github.com/ucr-riple/LiveDroid

