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1 Introduction

This gives a brief introduction to Parallel Algorithms. We start by discussing cost
models, and then go into specific parallel algorithms.

2 Models

To analyze the cost of algorithms it is important to have a concrete model with a
well defined notion of costs. Sequentially the Random Access Machine (RAM) model
has served well for many years. The RAM is meant to approximate how real sequen-
tial machines work. It consists of a single processor with some constant number of
registers, an instruction counter and an arbitrarily large memory. The instructions
include register-to-register instructions (e.g. adding the contents of two registers and
putting the result in a third), control-instructions (e.g. jumping), and the ability to
read from and write to arbitrary locations in memory. For the purpose of analyzing
cost, the RAM model assumes that all instructions take unit time. The total “time” of
a computation is then just the number of instructions it performs from the start until
a final end instruction. To allow storing a pointer to memory in a register or memory
location, but disallow playing games by storing arbitrary large values, we assume that
for an input of size n each register and memory location can store Θ(log n) bits.

The RAM model is by no stretch meant to model runtimes on a real machine
with cycle-by-cycle level accuracy. It does not model, for example, that modern-day
machines have cache hierarchies and therefore not all memory accesses are equally ex-
pensive. Modeling all features of modern-day machines would lead to very complicated
models that would be hard to use and hard to gain intuition from. Although a RAM
does not precisely model the performance of real machines, it can, and has, effectively
served to compare different algorithms, and understand how the performance of the al-
gorithms will scale with size. For these reasons the RAM should really only be used for
asymptotic (i.e. big-O) analysis. Beyond serving as a cost model for algorithms that
is useful for comparisons and asymptotic analysis, the RAM has some other nice fea-
tures: it is simple, and, importantly, code in most high-level languages can be naturally
translated into the model.

In the context of parallel algorithms we would like to use a cost model that satisfies
a similar set of features. Here we use one, the MP-RAM, that we find convenient and
seems to satisfy the features. It is based on the RAM, but allows the dynamic forking
of new processes. It measures costs in terms of two quantities: the work, which is the
total number of instructions across all processes, and the depth, which is the longest
chain of sequential dependences. It may not be obvious how to map these dynamic
processes onto a physical machine which will only have a fixed number of processors.
To convince ourselves that it is possible, later we show how to design schedulers that
map the processes onto processors, and prove bounds that relate costs. In particular
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we show various forms of the following work-depth, processor-time relationship:

max

(
W

P
,D

)
≤ T ≤ W

P
+D

where W is the work, D the depth, P the processors, and T the time.

MP-RAM

The Multi-Process Random-Access Machine (MP-RAM) consists of a set of processes
that share an unbounded memory. Each process runs the instructions of a RAM—it
works on a program stored in memory, has its own program counter, a constant number
of its own registers, and runs standard RAM instructions. The MP-RAM extends the
RAM with a fork instruction that takes a positive integer k and forks k new child
processes. Each child process receives a unique integer in the range [1, . . . , k] in its first
register and otherwise has the identical state as the parent (forking process), which
has that register set to 0. All children start by running the next instruction, and the
parent suspends until all the children terminate (execute an end instruction). The
first instruction of the parent after all children terminate is called the join instruction.
A computation starts with a single root process and finishes when that root process
ends. This model supports nested parallelism—the ability to fork processes in a nested
fashion. If the root process never does a fork, it is a standard sequential program.

A computation in the MP-RAM defines a partial order on the instructions. In
particular (1) every instruction depends on its previous instruction in the same thread
(if any), (2) every first instruction in a process depends on the fork instruction of the
parent that generated it, and (3) every join instruction depends on the end instruction
of all child processes of the corresponding fork generated. These dependences define the
parital order. The work of a computation is the total number of instructions, and the
depth is the longest sequences of dependent instructions. As usual, the partial order can
be viewed as a DAG. For a fork of a set of child processes and corresponding join the
depth of the subcomputation is the maximum of the depth of the child processes, and
the work is the sum. This property is useful for analyzing algorithms, and specifically
for writing recurrences for determining work and depth.

We assume that the results of memory operations are consistent with some to-
tal order (linearization) on the instructions that preserves the partial order—i.e., a
read will return the value of the previous write to the same location in the total or-
der. The choice of total order can affect the results of a program since processes can
communicate through the shared memory. In general, therefore computations can be
nondeterministic. Two instructions are said to be concurrent if they are unordered,
and ordered otherwise. Two instructions conflict if one writes to a memory location
that the other reads or writes the same location. We say two instructions race if they
are concurrent and conflict. If there are no races in a computation, then all linearized
orders will return the same result. This is because all pairs of conflicting instructions
are ordered by the partial order (otherwise it would be a race) and hence must appear
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in the same relative order in all linearizations. A particular linearized order is to it-
erate sequentially from the first to last child in each fork. We call this the sequential
ordering.

Pseudocode Our pseudocode will look like standard sequential code, except for the
addition of two constructs for expressing parallelism. The first construct is a parallel
loop indicated with parFor. For example the following loop applies a function f to
each element of an array A, writing the result into an array B:

parfor i in [0:|A|]

B[i] := f(A[i]);

In pseudocode [s : e] means the sequence of integers from s (inclusive) to e (exclusive),
and := means array assignment. Our arrays are zero based. A parallel loop over n
iterations can easily be implemented in the MP-RAM by forking n children applying
the loop body in each child and then ending each child. The work of a parallel loop
is the sum of the work of the loop bodies. The depth is the maximum of the depth of
the loop bodies.

The second construct is a parallel do, which just runs some number of statements in
parallel. In pseudocode we use a semicolon to express sequential ordering of statements
and double bars (||) to express parallel statements. For example the following code will
sum the elements of an array.

sum(A) =
if (|A| == 1) then return A[0];
else
l = sum(A[ : |A|/2]) ‖
r = sum(A[|A|/2 : ]);
return l + r;

The || construct in the code indicates that the two statements with recursive calls to
sum should be done in parallel. The semicolon before the return indicates that the
code has to wait for the parallel calls to complete before adding the results. In our
pseudocode we use the A[s : e] notation to indicate the slice of an array between
location s (inclusive) and e (exclusive). If s (or e) is empty it indicates the slice starts
at the beginning (end) of the array. Taking a slices takes O(1) work and depth since
it need only keep track of the offsets.

The || construct directly maps to a fork in the MP-RAM, in which the first and
second child run the two statements. Analogously to parFor, the work of a || is the
sum of the work of the statements, and the depth is the maximum of the depths of the
statements. For the sum example the overall work can be written as the recurrence:

W (n) = W (n/2) +W (n/2) +O(1) = 2W (n/2) +O(1)

which solves to O(n), and the depth as

D(n) = max(D(n/2), D(n/2) +O(1) = D(n/2) +O(1)

4



which solves to O(log n).
It is important to note that parallel loops and parallel dos can be nested in an

arbitrary fashion.

Binary and Arbitrary Forking. Some of our algorithms use just binary forking
while others use arbitrary n-way forking. This makes some difference when we discuss
scheduling the MP-RAM onto a fixed number of processors. We therefore use MP2-
RAM to indicate the version that only requires binary forking to satisfy the given
bounds, and in some cases give separate bounds for MP-RAM and MP2-RAM. It is
always possible to implement n-way forking using binary forking by creating a tree of
binary forks of depth log n. In general this can increase the depth, but in some of our
algorithms it does not affect the depth. In these cases we will use parfor2 to indicate
we are using a tree to fork the n parallel calls.

Additional Instructions. In the parallel context it is useful to add some additional
instructions that manipulate memory. The instructions we consider are a test-and-
set (TS), fetch-and-add (FA), and priority-write (PW) and we discuss our model with
these operations as the TS, FA, and PW variants of the MP-RAM. A test and set(&x)

instruction takes a reference to a memory location x, checks if x is 0 and if so atomically
sets it to 1 and returns true; otherwise it returns false.

Memory Allocation. To simplify issues of parallel memory allocation we assume
there is an allocate instruction that takes a positive integer n and allocates a con-
tiguous block of n memory locations, returning a pointer to the block, and a free

instruction that given a pointer to an allocated block, frees it.

3 Some Building Blocks

Several problems, like computing prefix-sums, merging sorted sequences and filtering
frequently arise as subproblems when designing other parallel algorithms.

3.1 Scan

A scan or prefix-sum operation takes a sequence A, an associative operator ⊕, and an
identity element ⊥ and computes the sequence

[⊥,⊥⊕ A[0],⊥⊕ A[0]⊕ A[1], . . . ,⊥⊕n−2i=0 A[i]]

as well as the overall sum, ⊥ ⊕n−1i=0 A[i]. Scan is useful because it lets us compute a
value for each element in an array that depends on all previous values. We often refer
to the plusScan operation, which is a scan where ⊕ = + and ⊥ = 0.

Pseudocode for a recursive implementation of scan is given in Figure 2. The code
works with an arbitrary associative function f . Conceptually, the implementation
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Figure 1: Recursive implementation of scan.

performs two traversals of a balanced binary tree built on the array. Both traversals
traverse the tree in exactly the same way—internal nodes in the tree correspond to
midpoints of subsequences of A of size greater than one. Figure 2 visually illustrates
both traversals. Interior nodes are labeled by the element in A that corresponds to
this index.

The first traversal, scanUp computes partial sums of the left subtrees storing them
in L. It does this bottom-up: each call splits A at the middle m, recurses on each half,
writes the resulting sum from the left into L[m− 1], and returns the overall sum. The
array L of partial sums has size |A| − 1 since there are n− 1 internal nodes for a tree
with n leaves. The second traversal, scanDown, performs a top-down traversal that
passes s, the sum of elements to the left of a node, down the tree. An internal node
passes s to its left child, and passes s+ L[m] to its right child. Leafs in the tree write
the value passed to them by the parent, which contains the partial sum of all elements
to the left.

The work of scanUp and scanDown is given by the following recurrence

W (n) = 2W (n/2) +O(1)

which solves to O(n), and the depth as

D(n) = D(n/2) +O(1)

which solves to O(log n).
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scanUp(A,L, f) =
if (|A| = 1) then return A[0];
else
m = |A|/2;
l = scanUp(A[ : m], L[ : m− 1], f) ‖
r = scanUp(A[m : ], L[m : ], f);
L[m− 1] = l;
return f(l, r);

scanDown(R,L, f, s) =
if (|R| = 1) then R[0] = s; return;
else
m = |R|/2;
scanDown(R[ : m], L[ : mid− 1], s) ‖
scanDown(R[m : ], L[m : ], f(s, L[m− 1]));
return;

scan(A, f, I) =
L = array[|A| − 1];
R = array[|A|];
total = scanUp(A,L, f);
scanDown(R,L, f, I);
return 〈R, total〉;

Figure 2: The Scan function.

filter(A, p) =
n = |A|;

F = array[n];

parfor i in [0:n]

F[i] := p(A[i]);
〈X, count〉 = plusScan(F);
R = array[count];

parfor i in [0:n]

if (F[i]) then R[X[i]] := A[i];

return R;

Figure 3: The filter function.

flatten(A) =
sizes = array(|A|);
parfor i in [0:|A|]

sizes[i] = |A[i]|;

〈X, total〉 = plusScan(sizes);
R = array(total);
parfor i in [0:|A|]

off = X[i];

parfor j in [0:|A[i]|]

R[off + j] = A[i][j];

return R;

Figure 4: The flatten function.

3.2 Filter and Flatten

The filter primitive takes as input a sequence A and a predicate p and returns an
array containing a ∈ A s.t. p(a) is true, in the same order as in A. Pseudocode for
the filter function is given in Figure 3. We first compute an array of flags, F , where
F [i] = p(A[i]), i.e. F [i] == 1 iff A[i] is a live element that should be returned in
the output array. Next, we plusScan the flags to map each live element to a unique
index between 0 and count, the total number of live elements. Finally, we allocate the
result array, R, and map over the flags, writing a live element at index i to R[X[i]]. We
perform a constant number of steps that map over n elements, so the work of filter is
O(n), and the depth is O(log n) because of the plusScan.

The flatten primitive takes as input a nested sequence A (a sequence of sequences)
and returns a flat sequence R that contains the sequences in A appended together. For
example, flatten([[3, 1, 2], [5, 1], [7, 8]]) returns the sequence [3, 1, 2,
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// finds which of k blocks contains v, returning block and offset

findBlock(A, v, k) =
stride = (end-start)/size;
result = k;

parfor i in [0:k-1]

if (A[i*stride] < v and A[(i+1)*stride] > v)
then result = i;

return (A[i*stride, (i+1)*stride], i*stride);

search(A, v, k) =
(B, offset) = findBlock(A, v, min(|A|, k));
if (|A| <= k) then return offset;

else return offset + search(B, v, k);

Figure 5: The search function.

5, 1, 7, 8].
Pseudocode for the flatten function is given in Figure 4. We first write the size of

each array in A, and plusScanto compute the size of the output. The last step is to
map over the A[i]’s in parallel, and copy each sequence to its unique position in the
output using the offset produced by plusScan.

3.3 Search

The sorted search problem is given a sorted sequence A and a key v, to find the position
of the greatest element in A that is less than v. It can be solved using binary search
in O(log |A|) work and depth. In parallel it is possible to reduce the depth, at the cost
of increasing the work. The idea is to use a k-way search instead of binary search.
This allows us to find the position in O(logk |A|) rounds each requiring k comparisons.
Figure 5 shows the pseudocode. Each round, given by findBlock, runs in constant
depth. By picking k = nα for 0 < α ≤ 1, the algorithm runs in O(nα) work and O(1/α)
depth. This algorithm requires a k-way fork and is strictly worse than binary search
for the 2MP-RAM.

Another related problem is given two sorted sequences A and B, and an integer k,
to find the k smallest elements. More specifically kth(A,B, k) returns locations (la, lb)
in A and B such that la + lb = k, and all elements in A[: la] ∪ B[: lb] are less than all
elements in A[la :] ∪ B[lb :]. This can be solved using a dual binary search as shown
in Figure 6. Each recursive call either halves the size of A or halves the size of B and
therefore runs in in O(log |A|+ log |B|) work and depth.

The dual binary search in Figure 6 is not parallel, but as with the sorted search
problem it is possible to trade off work for depth. Again the idea is to do a k-way
search. By picking k evenly spaced positions in one array it is possible to find them in
the other array using the sorted search problem. This can be used to find the sublock
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kthHelp(A, aoff, B, boff, k) =
if (|A| + |B| == 0) then return (aoff,boff);
else if (|A| == 0) then return (aoff, boff + k);
else if (|B| == 0) then return (aoff + k, boff);
else
amid = |A|/2; bmid = |B|/2;

case (A[amid] < B[bmid], k > amid + bmid) of
(T,T) ⇒ return kthHelp(A[amid+1:], aoff+amid+1, B, boff, k-amid-1);
(T,F) ⇒ return kthHelp(A, aoff, B[:bmid], boff, k);
(F,T) ⇒ return kthHelp(A, aoff, B[bmid+1:], boff+bmid+1, k-bmid-1);
(F,F) ⇒ return kthHelp(A[:amid], aoff, B, boff, k);

kth(A, B, k) =return kthHelp(A, 0, B, 0, k);

Figure 6: The kth function.

of A and B that contain the locations (la, lb). By doing this again from the other
array, both subblocks can be reduced in size by a factor of k. This is repeated for
logk |A| + logk |B| levels. By picking k = nα this will result in an algorithm taking
O(n2α) work and O(1/α2) depth. As with the constant depth sorted array search
problem, this does not work on the 2MP-RAM.

3.4 Merge

The merging problem is to take two sorted sequences A and B and produces as output
a sequence R containing all elements of A and B in a stable, sorted order. Here we
describe a few different algorithms for the problem.

Using the kth function, merging can be implemented using divide-and-conquer as
shown in Figure 7. The call to kth splits the output size in half (within one), and then
the merge recurses on the lower parts of A and B and in parallel on the higher parts.
The updates to the output R are made in the base case of the recursion and hence the
merge does not return anything. Letting m = |A| + |B|, and using the dual binary
search for kth the cost recurrences for merge are:

W (m) = 2W (m/2) +O(logm)

D(m) = D(m/2) +O(logm)

solving to W (m) = O(m) and D(m) = O(log2m). This works on the 2MP-RAM. By
using the parallel version of kth with α = 1/4, the recurrences are:

W (m) = 2W (m/2) +O(n1/2)

D(m) = D(m/2) +O(1)

solving to W (m) = O(m) and D(m) = O(logm). This does not work on the 2MP-
RAM.
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merge(A,B,R) =
case (|A|, |B|) of

(0, ) ⇒ copy B to R; return;
( , 0) ⇒ copy A to R; return;
otherwise ⇒
m = |R|/2;
(ma,mb) = kth(A,B,m);
merge(A[ : ma], B[ : mb], R[ : m]) ‖
merge(A[ma : ], B[mb : ], R[m : ]);
return;

Figure 7: 2-way D&C merge.

mergeFway(A,B,R, f) =
% Same base cases
otherwise ⇒
l = (|R| − 1)/f(|R|) + 1;
parfor i in [0 : f(|R|)]
s = min(i× l, |R|);
e = min((i+ 1)× l, |R|);
(sa, sb) = kth(A,B, s);
(ea, eb) = kth(A,B, e);
mergeFway(A[sa : ea], B[sb : eb], R[s : e]);

return;

Figure 8: f(n)-way D&C merge.

The depth of parallel merge can be improved by using a multi-way divide-and-
conquer instead of two-way, as showin in Figure 8. The code makes f(n) recursive
calls each responsible for a region of the output of size l. If we use f(n) =

√
n, and

using dual binary search for kth, the cost recurrences are:

W (m) =
√
m W (

√
m) +O(

√
m logm)

D(m) = D(
√
m) +O(logm)

solving to W (n) = O(n) and D(n) = O(logm). This version works on the 2MP-RAM
since the parFor can be done with binary By using f(n) =

√
n and the parallel version

of kth with α = 1/8, the cost recurrences are:

W (m) =
√
m W (

√
m) +O(m3/4)

D(m) = D(
√
m) +O(1)

solving to W (n) = O(n) and D(n) = O(log logm).

Bound 3.1. Merging can be solved in O(n) work and O(log n) depth in the 2MP-RAM
and O(n) work and O(log log n) depth on the MP-RAM.

We note that by using f(n) = n/ log(n), and using a sequential merge on the
recursive calls gives another variant that runs with O(n) work and O(log n) depth on
the 2MP-RAM. When used with a small constant, e.g. f(n) = .1×n/ log n, this version
works well in practice.

3.5 K-th Smallest

The k-th smallest problem is to find the k-smallest elemennt in an sequences. Fig-
ure 9 gives an algorithm for the problem. The peformance depends on how the pivot
is selected. If it is selected uniformly at random among the element of A then the
algorithm will make O(log |A| + log(1/ε)) recursive calls with probability 1 − ε. One
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kthSmallest(A, k) =
p = selectPivot(A);
L = filter(A, λx.(x < p));
G = filter(A, λx.(x > p));
if (k < |L|) then

return kthSmallest(L, k);
else if (k > |A| − |G|) then

return kthSmallest(G, k − (|A| − |G|));
else return p;

Figure 9: kthSmallest.

selectPivotR(A) = A[rand(n)];

selectPivotD(A, l) =
l = f(|A|);
m = (|A| − 1)/l + 1;
B = array[m];
parfor i in [0 : m]
s = i× l;
B[i] = kthSmallest(A[s : s+ l], l/2);

return kthSmallest(B,m/2);

Figure 10: Randomized and deterministic
pivot selection.

way to analyze this is to note that with probability 1/2 the pivot will be picked in
the middle half (between 1/4 and 3/4), and in that case the size of the array to the
recursive call be at most 3/4|A|. We call such a call good. After at most log4/3 |A|
good calls the size will be 1 and the algorithm will complete. Analyzing the number of
recursive calls is the same as asking how many unbiased, independent, coin flips does
it take to get log4/3 |A| heads, which is bounded as stated above.

In general we say an algorithm has some property with high probability (w.h.p.) if
for input size n and any constant k the probability is at least 1− 1/nk. Therefore the
randomized version of kthSmallest makes O(log |A|) recursive calls w.h.p. (picking
ε = 1/|A|k). Since filter has depth O(log n) for an array of size n, the overall depth
is O(log |A|2) w.h.p.. The work is O(|A|) in expectation. The algorithm runs on the
2MP-RAM.

It is also possible to make a deterministic version of kthSmallest by picking the
pivot more carefully. In particular we can use the median of median method shown
in Figure 10. It partitions the array into blocks of size f(|A|), finds the median of
each, and then finds the median of the results. The resulting median must be in the
middle half of values of A. Setting f(n) = 5 gives a parallel version of the standard
deterministic sequential algorithm for kthSmallest. Since the blocks are constant size
we don’t have to make recursive calls for each block and instead can compute each
median of five by sorting. Also in this case the recursive call cannot be larger than
7/10|A|. The parallel version therefore satisifies the cost recurrences:

W (n) = W (7/10n) +W (1/5n) +O(n)

D(m) = D(7/10n) +D(1/5n) +O(1)

which solve to W (n) = O(n) and D(n) = O(nα) where α ≈ .84 satisfies the equation(
7
10

)α
+
(
1
5

)α
= 1.

The depth can be improved by setting f(n) = log n, using a sequential median for
each block, and using a sort to find the median of medians. Assuming the sort does
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O(n log n) work and has depth Dsort(n) this gives the recurrences:

W (n) = W (3/4n) +O((n/ log n) log(n/ log n)) +O(n)

D(m) = D(3/4n) +O(log n) +Dsort(n)

which solve to W (n) = O(n) and D(n) = O(Dsort(n) log n). By stopping the re-
cursion of kthSmallest when the input reaches size n/ log n (after O(log log n) re-
cursive calls) and applying a sort to the remaining elements improves the depth to
D(n) = O(Dsort(n) log log n).

4 Sorting

A large body of work exists on parallel sorting under different parallel models of com-
putation. In this section, we present several classic parallel sorting algorithms like
mergesort, quicksort, samplesort and radix-sort. We also discuss related problems like
semisorting and parallel integer sorting.

4.1 Mergesort

Parallel mergesort is a classic parallel divide-and-conquer algorithm. Pseudocode for
a parallel divide-and-conquer mergesort is given in Figure 11. The algorithm takes
an input array A, recursively sorts A[:mid] and A[mid:] and merges the two sorted
sequences together into a sorted result sequence R. As both the divide and merge steps
are stable, the output is stably sorted. We compute both recursive calls in parallel, and
use the parallel merge described in Section 3 to merge the results of the two recursive
calls. The work of mergesort is given by the following recurrence:

W (n) = 2W (n/2) +O(n)

which solves to O(n log n), and the depth as

D(n) = D(n/2) +O(log2 n)

which solves to O(log3 n). The O(n) term in the work recurrence and the O(log2 n)
term in the depth recurrence are due to the merging the results of the two recursive
calls.

The parallel merge from Section 3 can be improved to run in O(n) work and O(log n)
depth which improves the depth of this implementation to O(log2 n). We give pseu-
docode for the merge with improved depth in Figure 8. The idea is to recurse on√
n subproblems, instead of just two subproblems. The i’th subproblem computes the

ranges [as, ae] and [bs, be] s.t. A[as:bs] and B[bs:be] contain the i
√
n to the

(i + 1)
√
n’th elements in the sorted sequence. The work for this implementation is

given by the recurrence

W (m) =
√
m(W (

√
m)) +O(

√
m logm)
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mergesort(A) =
if (|A| == 1) then return A;

else
mid = |A|/2;

l = mergesort(A[:mid]) ‖
r = mergesort(A[mid:]);
return merge(l, r);

Figure 11: Parallel mergesort.

quicksort(A) =
if (|A| == 1) then return A;

else
p = select_pivot(A);
e = filter(A, λx.(x = p));
l = quicksort(filter(A, λx.(x < p))) ‖
r = quicksort(filter(A, λx.(x > p)));
return flatten([l, e, r]);

Figure 12: Parallel quicksort.

which solves to O(m) and the depth by

D(m) = D(
√
m) +O(logm)

which solves to O(logm). The O(logm) term in the depth is for the binary search.
Note that if we use binary-forking, we can still fork O(

√
m) tasks within in O(logm)

depth without increasing the overall depth of the merge.

4.2 Quicksort and Samplesort

Pseudocode for a parallel divide-and-conquer quicksort is given in Figure 12. It is
well known that for a random choice of pivots, the expected time for randomized
quicksort is O(n log n). As the parallel version of quicksort performs the exact same
calls, the total work of this algorithm is also O(n log n) in expectation. The depth of
this algorithm can be preciscely analyzed using, for example, Knuth’s technique for
randomized recurrences. Instead, if we optimistically assume that each choice of pivot
splits A approximately in half, we get the depth recurrence:

D(n) = D(n/2) +O(log n)

which solves to O(log2 n). The O(log n) term in the depth recurrence is due to the
calls to filter and flatten.

Practically, quicksort has high variance in its running time—if the choice of pivot
results in subcalls that have highly skewed amounts of work the overall running time
of the algorithm can suffer due to work imbalance. A practical algorithm known as
samplesort deals with skew by simply sampling many pivots, called splitters (c·p or

√
n

splitters are common choices), and partitioning the input sequence into buckets based
on the splitters. Assuming that we pick more splitters than the number of processors
we are likely to assign a similar amount of work to each processor. One of the key
substeps in samplesort is shuffling elements in the input subsequence into buckets.
Either the samplesort or the radix-sort that we describe in the next section can be
used to perform this step work-efficiently (that is in O(n) work).
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4.3 Radix sort

Radix sort is a comparison based sort that performs very well in practice, and is com-
monly used as a parallel sort when the maximum integer being sorted is bounded.
Unlike comparison-based sorts, which perform pairwise comparisons on the keys to de-
termine the output, radix-sort interprets keys as b-bit integers and performs a sequence
of stable sorts on the keys. As each of the intermediate sorts is stable, the output is
stably sorted 1

Pseudocode for a single bit at-a-time parallel bottom-up radix sort (sorts from the
least-significant to the most-significant bit) is given in Figure 13. The code performs
b sequential iterations, each of which perform a stable sort using a split operation.
split takes a sequence A, and a predicate p and returns a sequence containing all
elements not satisfying p, followed by all elements satisfying p. split can be imple-
mented stably using two plusScans. As we perform b iterations, where each iteration
performs O(n) work O(log n) depth, the total work of this algorithm is O(bn) and the
depth is O(b log n). For integers in the range [0, n], this integer sort which sorts 1-bit
at a time runs in O(n log n) work and O(log2 n) depth, which is not an improvement
over comparison sorting.

Sequentially, one can sort integers in the range [0, nk] in O(kn) time by chaining
together multiple stable counting sorts (in what follows we assume distinct keys for
simplicity, but the algorithms generalize to duplicate keys as expected). The algorithm
sorts log n bits at a time. Each log n bit sort is a standard stable counting sort,
which runs in O(n) time. Unfortunately, we currently do not know how to efficiently
parallelize this algorithm. Note that the problem of integer sorting keys in the range
[0, nk] is reducible to stably sorting integers in the range [0, n]. The best existing work-
efficient integer sorting algorithm can unstably sort integers in the range [0, n logk n)]
in O(kn) work in expectation and O(k log n) depth with high probability [17].

Using the same idea as the efficient sequential radix-sort we can build a work-
efficient parallel radix sort with polynomial parallelism. We give psueodocode for this
algorithm in Figure 14. The main substep is an algorithm for stably sorting ε log n bits
in O(n) work and n1−ε depth. Applying this step 1/ε times, we can sort keys in the
range [1, n] in O(n) work and n1−ε depth. At a high level, the algorithm just breaks
the array into a set of blocks of size n1−ε, computes a histogram within each block for
the nε buckets, and then transposes this matrix to stably sort by the buckets.

We now describe the algorithm in Figure 14 in detail. The algorithm logically breaks
the input array into nε blocks each of size n1−ε. We allocate an array H, initialized to
all 0, which stores the histograms for each block. We first map over all blocks in
parallel and sequentially compute a histogram for the nε buckets within each block.
The sequential histogram just loops over the elements in the block and increments
a counter for the correct bucket for the element (determined by ε log n bits of the
element). Next, we perform a transpose of the array based on the histograms within
each block. We can perform the transpose using a strided-scan with +; a strided scan

1Stable sorting is important for chaining multiple sorts together over the same sequence.
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radix_sort(A, b) =
for i in [0:b]

A = split(A, lambda x.(x >> i) mod 2);

Figure 13: Parallel radix sort (one bit at-a-time).

just runs a scan within each bucket across all blocks. The outputs of the scan within
each bucket are written to the array for the num blocks’th block, which we refer to as
all bkts in the code. We plusScan this array to compute the start of each bucket in
the output array. The last step is to map over all blocks again in parallel; within each
block we sequentially increment the histogram value for the element’s bucket, add the
previous value to the global offset for the bucket to get a unique offset and finally write
the element to the output. Both of the parfors perform O(n) work and run O(n1−ε)
depth, as the inner loop sequentially processes O(n1−ε) elements. The strided scan
can easily be performed in O(n) work and O(log n) depth. Therefore, one radix step

can be implemented in O(n) work and O(n1−ε) depth. As the radix sort code just
calls radix step a constant number of times, radix sort also runs in O(n) work and
O(n1−ε) depth. We can sort keys in the range [1, nk] in O(kn) work and O(kn1−ε)
depth by just running radix sort on log n bits at a time.

4.4 Semisort

Given an array of keys and associated records, the semisorting problem is to compute a
reordered array where records with identical keys are contiguous. Unlike the output of
a sorting algorithm, records with distinct keys are not required to be in sorted order.
Semisorting is a widely useful parallel primitive, and can be used to implement the
shuffle-step in MapReduce, compute relational joins and efficiently implement parallel
graph algorithms that dynamically store frontiers in buckets, to give a few applications.
Gu, Shun, Sun and Blelloch [12] give a recent algorithm for performing a top-down
parallel semisort. The specific formulation of semisort is as follows: given an array
of n records, each containing a key from a universe U and a family of hash functions
h : U → [1, . . . , nk] for some constant k, and an equality function on keys, f : U ×U →
bool, return an array of the same records s.t. all records between two equal records
are other equal records. Their algorithms run in O(n) expected work and space and
O(log n) depth w.h.p. on the TS-MP-RAM.

5 Graph Algorithms

In this section, we present parallel graph algorithms for breadth-first search, low-
diameter decomposition, connectivity, maximal independent set and minimum span-
ning tree which illustrate useful techniques in parallel algorithms such as random-
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radix_step(A, num_buckets, shift_val) =
get_bkt = lambda x.(x >> shiftval) mod num_buckets);
block_size = floor(|A| / num_buckets);
num_blocks = ceil(|A| / block_size);
H = array(num_buckets * (num_blocks+1), 0);
parfor i in [0:num_blocks]

i_hist = H + i*num_buckets;

for j in [i*block_size, min((i+1)*block_size, |A|)]
i_hist[get_bkt(A[j])]++;

strided_scan(H, num_buckets, num_blocks+1);
all_bkts = array(H + num_blocks*num_buckets, num_buckets);
plus_scan(all_bkts, all_bkts);

R = array(|A|);
parfor i in [0:num_blocks]

i_hist = H + i*num_buckets;

for j in [i*block_size, min((i+1)*block_size, |A|)]
j_bkt = get_bkt(A[j]);
bkt_off = i_hist[j_bkt]++;

global_off = all_bkts[j_bkt];

R[global_off + bkt_off] = A[j];

return R;

radix_sort(A, num_buckets, b) =
n_bits = log(num_buckets);
n_iters = ceil(b / n_bits);
shift_val = 0;

for iters in [0:n_iters]

A = radix_step(A, num_buckets, shift_val);
shift_val += n_bits;

return A;

Figure 14: A parallel radix sort with polynomial depth.
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edge_map(G, U, update) =
nghs = array(|U|, <>);
parfor i in [0, |U|]

v = U[i];

out_nghs = G[v].out_nghs;

update_vtx = lambda x.update(v, x);
nghs[i] = filter(out_nghs, update_vtx);

return flatten(nghs);

Figure 15: edge map.

ization, pointer-jumping, and contraction. Unless otherwise specified, all graphs are
assumed to be directed and unweighted. We use deg−(u) and deg+(u) to denote the in
and out-degree of a vertex u for directed graphs, and deg(u) to denote the degree for
undirected graphs.

5.1 Graph primitives

Many of our algorithms map over the edges incident to a subset of vertices, and return
neighbors that satisfy some predicate. Instead of repeatedly writing code perform-
ing this operation, we express it using an operation called edge map in the style of
Ligra [19].

edge map takes as input U , a subset of vertices and update, an update function and
returns an array containing all vertices v ∈ V s.t. (u, v) ∈ E, u ∈ U and update(u, v) =
true. We will usually ensure that the output of edge map is a set by ensuring that
a vertex v ∈ N(U) is atomically acquired by only one vertex in U . We give a simple
implementation for edge map based on flatten in Figure 15. The code processes all
u ∈ U in parallel. For each u we filter its out-neighbors and store the neighbors v
s.t. update(u, v) = true in a sequence of sequences, nghs. We return a flat array by
calling flatten on nghs. It is easy to check that the work of this implementation is
O(|U |+

∑
u∈U deg+(u)) and the depth is O(log n).

We note that the flatten-based implementation given here is probably not very
practical; several papers [6, 19] discuss theoretically efficient and practically efficient
implementations of edge map.

5.2 Parallel breadth-first search

One of the classic graph search algorithms is breadth-first search (BFS). Given a graph
G(V,E) and a vertex v ∈ V , the BFS problem is to assign each vertex reachable from
v a parent s.t. the tree formed by all (u, parent[u]) edges is a valid BFS tree (i.e.
any non-tree edge (u, v) ∈ E is either within the same level of the tree or between
consecutive levels). BFS can be computed sequentially in O(m) work [11].
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BFS(G(V, E), v) =
n = |V|;

frontier = array(v);
visited = array(n, 0); visited[v] = 1;

parents = array(n, -1);
update = lambda (u, v).

if (!visited[v] && test_and_set(&visited[v]))
parents[v] = u;

return true;

return false;

while (|frontier| > 0):
frontier = edge_map(G, frontier, update);

return parents;

Figure 16: Parallel breadth-first search.

We give pseudocode for a parallel algorithm for BFS which runs in O(m) work and
O(diam(G) log n) depth on the TS-MP-RAM in Figure 16. The algorithm first creates
an initial frontier which just consists of v, initializes a visited array to all 0, and a
parents arrray to all −1 and marks v as visited. We perform a BFS by looping while
the frontier is not empty and applying edge map on each iteration to compute the next
frontier. The update function supplied to edge map checks whether a neighbor v is
not yet visited, and if not applies a test-and-set. If the test-and-set succeeds, then we
know that u is the unique vertex in the current frontier that acquired v, and so we set
u to be the parent of v and return true, and otherwise return false.

5.3 Low-diameter decomposition

Many useful problems, like connectivity and spanning forest can be solved sequentially
using breadth-first search. Unfortunately, it is currently not known how to efficiently
construct a breadth-first search tree rooted at a vertex in polylog(n) depth on general
graphs. Instead of searching a graph from a single vertex, like BFS, a low-diameter
decomposition (LDD) breaks up the graph into some number of connected clusters s.t.
few edges are cuts, and the internal diameters of each cluster are bounded (each cluster
can be explored efficiently in parallel). Unlike BFS, low-diameter decompositions can
be computed efficiently in parallel, and lead to simple algorithms for a number of other
graph problems like connectivity, spanners and hop-sets, and low stretch spanning
trees.

A (β, d)-decomposition partitions V into clusters, V1, . . . , Vk s.t. the shortest path
between two vertices in Vi using only vertices in Vi is at most d (strong diameter)
and the number of edges (u, v) where u ∈ Vi, v ∈ Vj, j 6= i is at most βm. Low-
diameter decompositions (LDD) were first introduced in the context of distributed
computing [4], and were later used in metric embedding, linear-system solvers, and
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parallel algorithms. Sequentially, LDDs can be found using a simple sequential ball-
growing technique [4]. The algorithm repeatedly picks an arbitrary uncovered vertex v
and grows a ball around it using breadth-first search until the number of edges incident
to the current frontier is at most a β fraction of the number of internal edges. As each
edge is examined once, this results in an O(n+m) time sequential algorithm. One can
prove that the diameter of a ball grown in this manner is O(log n/β).

Miller, Peng and Xu [15] give a work-efficient randomized algorithm for low-diameter
decomposition based on selecting randomly shifted start times from the exponential dis-
tribution. Their algorithm works as follows: for each v ∈ V , the algorithm draws a
start time, δv, from an exponential distribution with parameter β. The clustering is
done by assigning each vertex u to the center v which minimizes d(u, v)− δv. We will
sketch a high-level proof of their algorithm, and refer the reader to [15, 21] for related
work and full proofs.

Recall that the exponential distribution with a rate parameter λ. Its probability
density function is given by

f(x, λ) =

{
λe−λx if x ≥ 0

0 otherwise

The mean of this distrubtion is 1/λ. The LDD algorithm makes use of the memoryless
property of the exponential distribution, which states that if X ∼ Exp(β) then

Pr[X > m+ n|X ≥ m] = Pr[X > n]

This algorithm can be implemented efficiently using simultaneous parallel breadth-
first searches. The initial breadth-first search starts at the vertex with the largest start
time, δmax. Each v ∈ V “wakes up” and starts its BFS if bδmax− δvc steps have elapsed
and it is not yet covered by another vertex’s BFS. Ties between different searches can
be deterministically broken by comparing the δv’s. Alternately, we can break the ties
non-deterministically which increases the number of cut edges by a constant factor in
expectation, leading to an (2β,O(log n/β)) decomposition in the same work and depth.

Figure 19 shows pseudocode for the Miller-Peng-Xu based on breaking ties deter-
ministicaly. The algorithm computes a (β,O(log n/β)) decomposition in O(m) work
and O(log2 n) depth w.h.p. on the TS-MP-RAM. We first draw independent samples
from Exp(β) and compute S, the start time for each vertex. The array C holds a tu-
ple containing the shifted distance and the cluster id of each vertex, which are both
initially ∞. In each round, we add all vertices that have a start time less than the
current round and are not already covered by another cluster to the current frontier, F.
Next, we compute the next frontier by performing two edge maps. The first edge map

performs a priority-write the fractional bits of the start time of the cluster center for
u ∈ F to an unvisited neighbor v ∈ N(u). The second edge map checks whether u
successfully acquired its neighbor, v, and sets the cluster-id of v to the cluster-id of v
if it did, returning true to indicate that v should be in the output vertex subset.
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We first argue that the maximum radius of each ball is O(log n/β) w.h.p. We can
see this easily by noticing that the starting time of vertex v is δmax − δv, and as each
start time is ≥ 0, all vertices will have “woken up” and started their own cluster after
δmax rounds. Next, we argue that the probability that all vertices haven’t woken up
after c logn

β
rounds can be made arbitrarily small. To see this, consider the probability

that a single vertex picks a shift larger than c logn
β

:

Pr[δv >
c log n

β
] = 1−Pr[δv ≤

c log n

β
] = 1− (1− e−c logn) =

1

nc

Now, taking the union bound over all n vertices, we have that the probability of any
vertex picking a shift larger than c logn

β
is:

Pr[δmax >
c log n

β
] ≤ 1

nc−1

and therefore

Pr[δmax ≤
c log n

β
] ≥ 1− 1

nc−1

The next step is to argue that at most βm edges are cut in expectation. The MPX
paper gives a rigorous proof of this fact using the order statistics of the exponential
distribution. We give a shortened proof-sketch here that conveys the essential ideas of
the proof. The proof will show that the probability that an arbitrary edge e = (u, v) is
cut is < β. Applying linearity of expectation across the edges then gives that at most
βm edges are cut in expectation.

First, we set up some definitions. Let c be the ‘midpoint’ of the edge (u, v), where
the (u, c) and (v, c) edges each have weight 0.5. Now, we define the shifted distance
dv to the midpoint c from v ∈ V as dv = δmax − δv + distG(v, c). That is, the shifted
distance is just the start time of the vertex plus the distance to c. Clearly, the vertex
that minimizes the shifted distance to c is vertex which acquires c. The center which
acquires c can also be written as maxv∈V ρv where ρv = δv − distG(v, c). Let ρ̂i be the
value of the i’th largest ρi.

Next, notice that the edge (u, v) is cut exactly when the difference between largest
ρ̂n and ρ̂n−1 (the largest ρv and second largest ρv) is less than 1. We can bound this
probability by showing that the difference ρ̂n − ρ̂n−1 is also an exponential distribu-
tion with parameter β (this can be shown by using the memoryless property of the
exponential distribution, see Lemma 4.4 from [15]). The probability is therefore

Pr[ρ̂n − ρ̂n−1 < 1] = 1− e−β < β

where the last step uses the taylor series expansion for ex.
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LDD(G(V, E), beta) =
n = |V|; num_finished = 0;

E = array(n, lambda i.Exp(beta));
C = array(n, -1);
parfor i in [0:n]

C[i] = v in V minimizing (d(v, i) - E[v]);
return C;

Figure 17: Low-diameter decomposition.

LDD(G(V, E), beta) =
n = |V|; num_finished = 0;

E = array(n, lambda i.return Exp(beta));
S = array(n, lambda i.return max(E) - E[i]);
C = array(n, (infty, infty));
num_processed = 0; round = 1;

while (num_processed < n)
F = F ∪ {v in V | S[v] < round, C[v] == infty};

num_processed += |F|;

update = lambda (u,v).
cluster_u = C[u].snd;

if (C[v].snd == infty)
writeMin(&C[v].fst, frac(S[cluster_u]));

return false;

edge_map(G, F, update);
check = lambda (u,v).
cluster_u = C[u].snd;

if (C[v].fst == frac(S[cluster_u]))
C[v].snd = cluster_u;

return true;

return false;

F = edge_map(G, F, check);
round++;

return C;

Figure 18: Deterministic low-diameter decomposition.
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Connectivity(G(V, E), beta) =
L = LDD(G, beta);
G’(V’,E’) = Contract(G, L);
if (|E’| == 0)

return L

L’ = Connectivity(G’, beta)
L’’ = array(n, lambda v.return L’[L[v]];);
return L’’;

Figure 19: Parallel connectivity.

5.4 Connectivity

6 Parallel Binary Trees

In this section, we present some parallel algorithms for balanced binary trees. The
methodology in this section is based on an algorithmic framework called join-based
algorithms [7]. join is a primitive defined for each balancing scheme. All the other tree
algorithms deal with rebalancing and rotations through join, and thus can be generic
in code across multiple balancing schemes.

The function join(TL, e, TR) for a given balancing scheme takes two balanced binary
trees TL, TR balanced by that balancing scheme, and a single entry e as inputs, and
returns a new valid balanced binary tree, that has the same entries and the same
in-order traversal as node(TL, e, TR), but satisfies the balancing criteria. We call the
middle entry e the pivot of the join.

6.1 Preliminaries

A binary tree is either a nil-node, or a node consisting of a left binary tree Tl, an entry
e, and a right binary tree Tr, and denoted node(Tl, e, Tr). The entry can be simply
a key, or a key-value pair. The size of a binary tree, or |T |, is 0 for a nil-node and
|Tl| + |Tr| + 1 for a node(Tl, e, Tr). The weight of a binary tree, or w(T ), is one more
than its size (i.e., the number of leaves in the tree). The height of a binary tree, or
h(T ), is 0 for a nil-node, and max(h(Tl), h(Tr)) + 1 for a node(Tl, e, Tr). Parent, child,
ancestor and descendant are defined as usual (ancestor and descendant are inclusive of
the node itself). A node is called a leaf when its both children are nil-nodes . The left
spine of a binary tree is the path of nodes from the root to a leaf always following the
left tree, and the right spine the path to a leaf following the right tree. The in-order
values (also referred to as the symmetric order) of a binary tree is the sequence of
values returned by an in-order traversal of the tree. When the context is clear, we use
a node u to refer to the subtree Tu rooted at u, and vice versa.

A balancing scheme for binary trees is an invariant (or set of invariants) that is true
for every node of a tree, and is for the purpose of keeping the tree nearly balanced. In
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Notation Description
|T | The size of tree T
h(T ) The height of tree T

ĥ(T ) The black height of an RB tree T
w(T ) The weight of tree T (i.e, |T |+ 1)
p(T ) The parent of node T
k(T ) The key of node T
lc(T ) The left child of node T
rc(T ) The right child of node T

expose(T ) 〈lc(T ), k(T ), rc(T )〉

Table 1: Summary of notation.

this section we consider four balancing schemes that ensure the height of every tree of
size n is bounded by O(log n).

AVL Trees [3]. AVL trees have the invariant that for every node(Tl, e, Tr), the height
of Tl and Tr differ by at most one. This property implies that any AVL tree of size n
has height at most logφ(n+ 1), where φ = 1+

√
5

2
is the golden ratio.

Red-black (RB) Trees [5].. RB trees associate a color with every node and maintain
two invariants: (the red rule) no red node has a red child, and (the black rule) the
number of black nodes on every path from the root down to a leaf is equal. All nil-
nodes are always black. Unlike some other presentations, we do not require that the
root of a tree is black. Although this does not affect the correctness of our algorithms,
our proof of the work bounds requires allowing a red root. We define the black height
of a node T , denoted ĥ(T ) to be the number of black nodes on a downward path from
the node to a leaf (inclusive of the node). Any RB tree of size n has height at most
2 log2(n+ 1).

Weight-balanced (WB) Trees. WB trees are defined with parameter α (also called

BB[α] trees) [16] maintain for every T = node(Tl, e, Tr) the invariant α ≤ w(Tl)
w(T )

≤ 1−α.

We say two weight-balanced trees T1 and T2 have like weights if node(T1, e, T2) is weight
balanced. Any α weight-balanced tree of size n has height at most log 1

1−α
n. For

2
11
< α ≤ 1− 1√

2
insertion and deletion can be implemented on weight balanced trees

using just single and double rotations [16, ?]. We require the same condition for our
implementation of join, and in particular use α = 0.29 in experiments. We also denote
β = 1−α

α
, which means that either subtree could not have a size of more than β times

of the other subtree.

Treaps. [18] Treaps associate a uniformly random priority with every node and main-
tain the invariant that the priority at each node is no greater than the priority of its
two children. Any treap of size n has height O(log n) with high probability (w.h.p).

The notation we use for binary trees is summarized in Figure 1.
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6.2 The join Algorithms for Each Balancing Scheme

Here we describe algorithms for join for the four balancing schemes we defined in
Chapter 6.1, as well as define the rank for each of them. We will then prove they are
joinable. For join, the pivot can be either just the data entry (such that the algorithm
will create a new tree node for it), or a pre-allocated tree node in memory carrying
the corresponding data entry (such that the node may be reused, allowing for in-place
updates).

As mentioned in the introduction and the beginning of this chapter, join fully
captures what is required to rebalance a tree and can be used as the only function that
knows about and maintains the balance invariants. For AVL, RB and WB trees we
show that join takes work that is proportional to the difference in rank of the two trees.
For treaps the work depends on the priority of k. All the join algorithms are sequential
so the span is equal to the work. We show in this thesis that the join algorithms for
all balancing schemes we consider lead to optimal work for many functions on maps
and sets.

6.2.1 AVL Trees

1 joinRightAVL(Tl, k, Tr) {

2 (l, k′, c) = expose(Tl);
3 if h(c) ≤ h(Tr) + 1 then {

4 T ′ = node(c, k, Tr);
5 if h(T ′) ≤ h(l) + 1 then return node(l, k′, T ′);
6 else return rotateLeft(node(l, k′, rotateRight(T ′)));
7 } else {

8 T ′ = joinRightAVL(c, k, Tr);
9 T ′′ = node(l, k′, T ′);
10 if h(T ′) ≤ h(l) + 1 then return T ′′; else return rotateLeft(T ′′); }}

11 join(Tl, k, Tr) {

12 if h(Tl) > h(Tr) + 1 then return joinRightAVL(Tl, k, Tr);
13 else if h(Tr) > h(Tl) + 1 then return joinLeftAVL(Tl, k, Tr);
14 else return node(Tl, k, Tr); }

Figure 20: The join algorithm on AVL trees – joinLeftAVL is symmetric to
joinRightAVL.

For AVL trees, we define the rank as the height, i.e., r(T ) = h(T ). Pseudocode
for AVL join is given in Figure 20 and illustrated in Figure 21. Every node stores
its own height so that h(·) takes constant time. If the two trees Tl and Tr differ by
height at most one, join can simply create a new node(Tl, e, Tr). However if they differ
by more than one then rebalancing is required. Suppose that h(Tl) > h(Tr) + 1 (the
other case is symmetric). The idea is to follow the right spine of Tl until a node c for
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which h(c) ≤ h(Tr) + 1 is found (line 3). At this point a new node(c, e, Tr) is created to
replace c (line 4). Since either h(c) = h(Tr) or h(c) = h(Tr) + 1, the new node satisfies
the AVL invariant, and its height is one greater than c. The increase in height can
increase the height of its ancestors, possibly invalidating the AVL invariant of those
nodes. This can be fixed either with a double rotation if invalid at the parent (line 6)
or a single left rotation if invalid higher in the tree (line 10), in both cases restoring
the height for any further ancestor nodes. The algorithm will therefore require at most
two rotations, as we summarized in the following lemma.

Lemma 6.1. The join algorithm in Figure 20 on AVL trees requires at most two
rotations.

Step 1: connect Step 2: rebalance 
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Figure 21: An example for join on AVL trees – An example for join on AVL
trees (h(Tl) > h(Tr) + 1). We first follow the right spine of Tl until a subtree of height
at most h(Tr) + 1 is found (i.e., T2 rooted at c). Then a new node(c, k, Tr) is created,
replacing c (Step 1). If h(T1) = h and h(T2) = h+ 1, the node p will no longer satisfy
the AVL invariant. A double rotation (Step 2) restores both balance and its original
height.

Lemma 6.2. For two AVL trees Tl and Tr, the AVL join algorithm works correctly,
runs with O(|h(Tl)−h(Tr)|) work, and returns a tree satisfying the AVL invariant with
height at most 1 + max(h(Tl), h(Tr)).

Proof. Since the algorithm only visits nodes on the path from the root to c, and only
requires at most two rotations (Lemma 6.1), it does work proportional to the path
length. The path length is no more than the difference in height of the two trees since
the height of each consecutive node along the right spine of Tl differs by at least one.
Along with the case when h(Tr) > h(Tl) + 1, which is symmetric, this gives the stated
work bounds. The resulting tree satisfies the AVL invariants since rotations are used
to restore the invariant. The height of any node can increase by at most one, so the
height of the whole tree can increase by at most one.

6.2.2 Red-black Trees

Tarjan describes how to implement the join function for red-black trees [?]. Here
we describe a variant that does not assume the roots are black (this is to bound the
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1 joinRightRB(Tl, k, Tr) {

2 if (r(Tl) = br(Tr)/2c × 2) then return node(Tl, 〈k, red〉 , Tr); else {

3 (L′, 〈k′, c′〉 , R′)=expose(Tl);
4 T ′ = node(L′, 〈k′, c′〉,joinRightRB(R′, k, Tr));
5 if (c′=black) and (color(rc(T ′)) = color(rc(rc(T ′)))=red) then {

6 set rc(rc(T ′)) as black;

7 return rotateLeft(T ′);
8 } else return T ′; }}

9 joinRB(Tl, k, Tr) {

10 if Tl has a larger black height then {

11 T ′ =joinRightRB(Tl, k, Tr);
12 if (color(T ′)=red) and (color(rc(T ′))=red) then return node(lc(T ′), 〈k(T ′), black〉 , rc(T ′));
13 else return T ′;

14 } else if Tr has a larger black height then {

15 T ′ =joinLeftRB(Tl, k, Tr);
16 if (color(T ′)=red) and (color(lc(T ′))=red) then return node(lc(T ′), 〈k(T ′), black〉 , rc(T ′));
17 else return T ′;

18 } else {

19 if (k is a increase-2 node) then
20 return node(Tl, 〈k, black〉 , Tr);
21 else if (color(Tl)=black) and (color(Tr)=black)
22 return node(Tl, 〈k, red〉 , Tr);
23 else return node(Tl, 〈k, black〉 , Tr); }

24 }

Figure 22: The join algorithm on red-black trees – The join algorithm on red-
black trees. joinLeftRB is symmetric to joinRightRB.

increase in rank by union). The pseudocode is given in Figure 22. We store at every
node its black height ĥ(·). Also, we define the increase-2 node as a black node, whose
both children are also black. This means that the node increases the rank of its children
by 2. In the algorithm, the first case is when ĥ(Tr) = ĥ(Tl). Then if the input node
is a increase-2 node, we use it as a black node and directly concatenate the two input
trees. This increases the rank of the input by at most 2. Otherwise, if both root(Tr)
and root(Tl) are black, we create red node(Tl, e, Tr). When either root(Tr) or root(Tl)
is red, we create black node(Tl, e, Tr).

The second case is when ĥ(Tr) < ĥ(Tl) = ĥ (the third case is symmetric). Similarly
to AVL trees, join follows the right spine of Tl until it finds a black node c for which
ĥ(c) = ĥ(Tr). It then creates a new red node(c, k, Tr) to replace c. Since both c and Tr
have the same height, the only invariant that can be violated is the red rule on the root
of Tr, the new node, and its parent, which can all be red. In the worst case we may
have three red nodes in a row. This is fixed by a single left rotation: if a black node
v has rc(v) and rc(rc(v)) both red, we turn rc(rc(v)) black and perform a single left
rotation on v, turning the new node black, and then performing a single left rotation
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on v. The update is illustrated in Figure 23. The rotation, however can again violate
the red rule between the root of the rotated tree and its parent, requiring another
rotation. Obviously the triple-red issue is resolved after the first rotation. Therefore,
expect the bottommost level, a triple-red issue does not happen. The double-red issue
might proceed up to the root of Tl. If the original root of Tl is red, the algorithm may
end up with a red root with a red child, in which case the root will be turned black,
turning Tl rank from 2ĥ−1 to 2ĥ. If the original root of Tl is black, the algorithm may
end up with a red root with two black children, turning the rank of Tl from 2ĥ− 2 to
2ĥ− 1. In both cases the rank of the result tree is at most 1 + r(Tl).

We note that the rank of the output can increase the larger rank of the input trees
by 2 only when the pivot is an increase-2 node and the two input trees are balanced
both with black roots. In general we do not need to deal with the increase-2 nodes
specifically for a correct join algorithm. We define the increasing-2 nodes for the
purpose of bounding the cost of some join-based algorithms.

Lemma 6.3. For two RB trees Tl and Tr, the RB join algorithm works correctly, runs
with O(|ĥ(Tl)− ĥ(Tr)|) work, and returns a tree satisfying the red-black invariants and
with black height at most 1 + max(ĥ(Tl), ĥ(Tr)).

Proof. The base case where h(Tl) = h(Tr) is straight-forward. For symmetry, here we
only prove the case when h(Tl) > h(Tr). We prove the proposition by induction.

We first show the correctness. As shown in Figure 23, after appending Tr to Tl, if p
is black, the rebalance has been done, the height of each node stays unchanged. Thus
the RB tree is still valid. Otherwise, p is red, p’s parent g must be black. By applying
a left rotation on p and g, we get a balanced RB tree rooted at p, except the root p
is red. If p is the root of the whole tree, we change p’s color to black, and the height
of the whole tree increases by 1. The RB tree is still valid. Otherwise, if the current
parent of p (originally g’s parent) is black, the rebalance is done here. Otherwise a
similar rebalance is required on p and its current parent. Thus finally we will either
find the current node valid (current red node has a black parent), or reach the root,
and change the color of root to be black. Thus when we stop, we will always get a
valid RB tree.

Since the algorithm only visits nodes on the path from the root to c, and only
requires at most a single rotation per node on the path, the overall work for the
algorithm is proportional to the depth of c in Tr. This in turn is no more than twice
the difference in black height of the two trees since the black height decrements at least
every two nodes along the path. This gives the stated work bounds.

For the rank, note that throughout the algorithm, before reaching the root, the black
rule is never invalidated (or is fixed immediately), and the only invalidation occurs on
the red rule. If the two input trees are originally balanced, the rank increases by at
most 2. The only case that the rank increases by 2 is when k is from an increase-2
node, and both root(Tr) and root(Tl) are black.

If the two input tree are not balanced, the black height of the root does not change
before the algorithm reaching the root (Step 3 in Figure 23). There are then three

27



cases:

1. The rotation does not propagate to the root, and thus the rank of the tree remains
as max(ĥ(Tl), ĥ(Tr)).

2. (Step 3 Case 1) The original root color is red, and thus a double-red issue occurs
at the root and its right child. In this case the root is colored black. The black
height of the tree increases by 1, but since the original root is red, the rank
increases by only 1.

3. (Step 3 Case 1) The original root color is black, but the double-red issue occurs
at the root’s child and grandchild. In this case another rotation is applied as
shown in Figure 23. The black height remains, but the root changed from black
to red, increasing the rank by 1.
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Figure 23: An example of join on red-black trees – An example of join on red-
black trees (ĥ = ĥ(Tl) > ĥ(Tr)). We follow the right spine of Tl until we find a black
node with the same black height as Tr (i.e., c). Then a new red node(c, k, Tr) is created,
replacing c (Step 1). The only invariant that can be violated is when either c’s previous
parent p or Tr’s root d is red. If so, a left rotation is performed at some black node.
Step 2 shows the rebalance when p is red. The black height of the rotated subtree (now
rooted at p) is the same as before (h+ 1), but the parent of p might be red, requiring
another rotation. If the red-rule violation propagates to the root, the root is either
colored red, or rotated left (Step 3).
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1 joinRightWB(Tl, k, Tr) {

2 (l, k′, c)=expose(Tl);
3 if (balance(|Tl|, |Tr|) then return node(Tl, k, Tr)); else {

4 T ′ = joinRightWB(c, k, Tr);
5 (l1, k1, r1) = expose(T ′);
6 if like(|l|, |T ′|) then return node(l, k′, T ′);
7 else if (like(|l|, |l1|)) and (like(|l|+ |l1|, r1)) then return rotateLeft(node(l, k′, T ′));
8 else return rotateLeft(node(l, k′,rotateRight(T ′))); }}

9 joinWB(Tl, k, Tr) {

10 if heavy(Tl, Tr) then return joinRightWB(Tl, k, Tr);
11 else if heavy(Tr, Tl) then return joinLeftWB(Tl, k, Tr);
12 else return node(Tl, k, Tr); }

Figure 24: The join algorithm on weight-balanced trees – joinLeftWB is sym-
metric to joinRightWB.

6.2.3 Weight Balanced Trees

For WB trees r(T ) = log2(w(T )) − 1. We store the weight of each subtree at every
node. The algorithm for joining two weight-balanced trees is similar to that of AVL
trees and RB trees. The pseudocode is shown in Figure 24. The like function in
the code returns true if the two input tree sizes are balanced based on the factor of
α, and false otherwise. If Tl and Tr have like weights the algorithm returns a new
node(Tl, e, Tr). Suppose |Tr| ≤ |Tl|, the algorithm follows the right branch of Tl until
it reaches a node c with like weight to Tr. It then creates a new node(c, r, Tr) replacing
c. The new node will have weight greater than c and therefore could imbalance the
weight of c’s ancestors. This can be fixed with a single or double rotation (as shown
in Figure 25) at each node assuming α is within the bounds given in Section 6.1.

Lemma 6.4. For two α weight-balanced trees Tl and Tr and α ≤ 1 − 1√
2
≈ 0.29, the

weight-balanced join algorithm works correctly, runs with O(|log(w(Tl)/w(Tr))|) work,
and returns a tree satisfying the α weight-balance invariant.

The proof of this lemma can be found in ??. Notice that this upper bound is the
same as the restriction on α to yield a valid weighted-balanced tree when inserting a
single node. Then we can induce that when the rebalance process reaches the root, the
new weight-balanced tree is valid. The proof is intuitively similar as the proof stated
in [16, ?], which proved that when 2

11
≤ α ≤ 1 − 1√

2
, the rotation will rebalance the

tree after one single insertion. In fact, in the join algorithm, the “inserted” subtree
must be along the left or right spine, which actually makes the analysis easier.

6.2.4 Treaps

The treap join algorithm (as in Figure 26) first picks the key with the highest pri-
ority among k, k(Tl) and k(Tr) as the root. If k is the root then the we can return
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Figure 25: An illustration of single and double rotations possibly needed to
rebalance weight-balanced trees – In the figure the subtree rooted at u has become
heavier due to joining in Tl and its parent v now violates the balance invariant.

1 joinTreap(Tl, k, Tr) {

2 if prior(k, k1) and prior(k, k2) then return node(Tl, k, Tr) else {

3 (l1, k1, r1)=expose(Tl);
4 (l2, k2, r2)=expose(Tr);
5 if prior(k1, k2) then return node(l1, k1,joinTreap(r1, k, Tr));
6 else return node(joinTreap(Tl, k, l2),k2, r2); }}

Figure 26: The join algorithm on treaps – prior(k1, k2) decides if the node k1 has
a higher priority than k2.

node(Tl, k, Tr). Otherwise, WLOG, assume k(Tl) has a higher priority. In this case
k(Tl) will be the root of the result, lc(Tl) will be the left tree, and rc(Tl), k and Tr
will form the right tree. Thus join recursively calls itself on rc(Tl), k and Tr and uses
result as k(Tl)’s right child. When k(Tr) has a higher priority the case is symmetric.
The cost of join is therefore the depth of the key k in the resulting tree (each recursive
call pushes it down one level). In treaps the shape of the result tree, and hence the
depth of k, depend only on the keys and priorities and not the history. Specifically, if
a key has the tth highest priority among the keys, then its expected depth in a treap is
O(log t) (also w.h.p.). If it is the highest priority, for example, then it remains at the
root.

Lemma 6.5. For two treaps Tl and Tr, if the priority of k is the t-th highest among
all keys in Tl∪{k}∪Tr, the treap join algorithm works correctly, runs with O(log t+1)
work in expectation and w.h.p., and returns a tree satisfying the treap invariant.
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Function Work Span
insert , delete, update, find , first , last ,

O(log n) O(log n)range, split , join2 , previous , next , rank ,
select , up to, down to
union, intersection, difference O

(
m log

(
n
m

+ 1
))

O(log n logm)
map, reduce, map reduce, to array O(n) O(log n)

build , filter O(n) O(log2 n)

Table 2: The core join-based algorithms and their asymptotic costs – The
cost is given under the assumption that all parameter functions take constant time to
return. For functions with two input trees (union, intersection and difference), n is
the size of the larger input, and m of the smaller.

6.3 Algorithms Using join

Split

1 split(T, k) {

2 if T = ∅ then
3 return (∅,false,∅);
4 (L,m,R) = expose(T );
5 if k = m then return (L,true,R);
6 if k < m then {

7 (TL, b, TR) = split(L, k);
8 return (TL,b,join(TR,m,R)); }

9 (TL, b, TR) = split(R, k);
10 return (join(L,m, TL), b, TR); } }

join2

1 split_last(T ) { // split_first is symmetric

2 (L, k,R) = expose(T );
3 if R = ∅ then return(L, k);
4 (T ′, k′) = split_last(R);
5 return (join(L, k, T ′),k′); }

6 join2(Tl,Tr) {

7 if Tl = ∅ then return Tr;
8 (T ′, k) = split_last(Tl);
9 return join(T ′, k, Tr);

10 }

Figure 27: split and join2 algorithms – They are both independent of balancing
schemes.

The join function, as a subroutine, has been used and studied by many researchers
and programmers to implement more general set operations. In this section, we describe
algorithms for various functions that use just join. The algorithms are generic across
balancing schemes. The pseudocodes for the algorithms in this section is shown in
Figure 29. Beyond join the only access to the trees we make use of is through expose,
which only read the root. main set operations, which are union, intersection and
difference, are optimal (or known as efficient) in work. The pseudocode for all the
algorithms introduced in this section is presented in Figure 30.

6.3.1 Two Helper Functions: split and join2

We start with presenting two helper functions split and join2 . For a BST T and key
k, split(T, k) returns a triple (Tl, b, Tr), where Tl (Tr) is a tree containing all keys in T

31



that are less (larger) than k, and b is a flag indicating whether k ∈ T . join2 (Tl, Tr)
returns a binary tree for which the in-order values is the concatenation of the in-order
values of the binary trees Tl and Tr (the same as join but without the middle key).
For BSTs, all keys in Tl have to be less than keys in Tr.

Although both sequential, these two functions, along with the join function, are
essential for help other algorithms to achieve good parallelism. Intuitively, when pro-
cessing a tree in parallel, we recurse on two sub-components of the tree in parallel
by split ing the tree by some key. In many cases, the splitting key is just the root,
which means directly using the two subtrees of natural binary tree structure. After
the recursions return, we combine the result of the left and right part, with or without
the middle key, using join or join2 . Because of the balance of the tree, this framework
usually gives high parallelism with shallow span (e.g., poly-logarithmic).

Split.. As mentioned above, split(T, k) splits a tree T by a key k into Tl and Tr, along
with a bit b indicating if k ∈ T . Intuitively, the split algorithm first searches for k in T ,
splitting the tree along the path into three parts: keys to the left of the path, k itself (if
it exists), and keys to the right. Then by applying join, the algorithm merges all the
subtrees on the left side (using keys on the path as intermediate nodes) from bottom to
top to form Tl, and merges the right parts to form Tr. Writing the code in a recursive
manner, this algorithm first determine if k falls in the left (right) subtree, or is exactly
the root. If it is the root, then the algorithm straightforwardly returns the left and
the right subtrees as the two return trees and true as the bit b. Otherwise, WLOG,
suppose k falls in the left subtree. The algorithm further split the left subtree into TL
and TR with the return bit b′. Then the return bit b = b′, the Tl in the final result will
be TL, and Tr means to join TR with the original right subtree by the original root.
Figure 28 gives an example.
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Split 𝑇𝑇 with key 42: 

, 𝑏𝑏 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Figure 28: An example of split in a BST with key 42 – We first search for 42 in
the tree and split the tree by the searching path, then use join to combine trees on the
left and on the right respectively, bottom-top.

The cost of the algorithm is proportional to the rank of the tree, as we summarize
and prove in the following theorem.

Theorem 6.1. The work of split(T, k) is O(h(T )) for AVL, RB, WB trees and treaps.

Proof Sketch. We only consider the work of joining all subtrees on the left side. The
other side is symmetric. Suppose we have l subtrees on the left side, denoted from
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bottom to top as T1, T2, . . . Tl. We consecutively join T1 and T2 returning T ′2, then join
T ′2 with T3 returning T ′3 and so forth, until all trees are merged. The overall work of
split is the sum of the cost of l − 1 join functions.

We now use an AVL tree as an example to show the proof. Recall that each join
costs time O(|h(Ti+1)−h(T ′i )|), and increase the height of Ti+1 by at most 1. Also h(T ′i )
is achieved by joining Ti and T ′i−1. Considering Ti is a subtree in Ti+1’s sibling, and thus

h(T ′i ) is no more than h(Ti+1) + 2. The overall complexity is
∑l

i=1 |h(Ti+1)− h(T ′i )| ≤∑l
i=1 h(Ti+1)− h(T ′i ) + 2 = O(h(T )).
For RB and WB trees, the proof is similar to the above proof for AVL trees, but

only changes join cost based on the difference in black-height or log of weight, instead
of height.

For treaps, each join uses the key with the highest priority since the key is always
on a upper level. Hence by Lemma 6.5, the complexity of each join is O(1) and the
work of split is at most O(h(T )).

Join2.. As stated above, the join2 function is defined similar to join without the
middle entry. The join2 algorithm first choose one of the the input trees, and extract its
last (if it is Tl) or first (if it is Tr) element k. The two cases take the same asymptotical
cost. The extracting process is similar to the split algorithm. The algorithm then uses
k as the pivot to join the two trees. In the code shown in Figure 27, the split last
algorithm first finds the last element k (by following the right spine) in Tl and on the
way back to root, joins the subtrees along the path. We denote the result of dropping
k in TL as T ′. Then join(T ′, k, Tr) is the result of join2 . Unlike join, the work of
join2 is proportional to the rank of both trees since both split and join take at most
logarithmic work.

Theorem 6.2. The work of T =join2(Tl, Tr) is O(r(Tl) + r(Tr)) for all joinable trees.

The cost bound holds because split last and join both take work asymptotically no
more than the larger tree rank.

6.4 Set-set Functions Using join

In this section, we will present the join-based algorithm on set-set functions, including
union, intersection and difference. Many other set-set operations, such as symmetric
difference, can be implemented by a combination of union, intersection and difference
with no extra asymptotical work. We will start with presenting some background of
these algorithms, and then explain in details about the join-based algorithms. Finally,
we show the proof of their cost bound.

Background. The parallel set-set functions are particularly useful when using parallel
machines since they can support parallel bulk updates. As mentioned, although sup-
porting efficient algorithms for basic operations on trees, such as insertion and deletion,
are rather straightforward, implementing efficient bulk operations is more challenging,
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Union

union(T1,T2) {

if T1 = ∅ then return T2;
if T2 = ∅ then return T1;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = union(L1,L2) ‖

Tr = union(R1,R2);
return join(Tl,k2,Tr);

}

Intersection

intersect(T1,T2) {

if T1 = ∅ then return ∅;
if T2 = ∅ then return ∅;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = intersect(L1,L2) ‖
Tr = intersect(R1,R2);

if b then return join(Tl,k2,Tr);
else return join2(Tl,Tr); }

Difference

difference(T1,T2) {

if T1 = ∅ then ∅;
if T2 = ∅ then T1;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = difference(L1,L2) ‖
Tr = difference(R1,R2);

return join2(Tl,Tr);
}

Figure 29: join-based algorithms for set-set operations – They are all indepen-
dent of balancing schemes. The syntax S1||S2 means that the two statements S1 and
S2 can be run in parallel based on any fork-join parallelism.

especially considering parallelism and different balancing schemes. For example, com-
bining two ordered sets of size n and m ≤ n in the format of two arrays would take
work O(m+n) using the standard merging algorithm in the merge sort algorithm. This
makes even inserting an single element into a set of size n to have linear cost. This is
because even most of the chunks of data in the input remain consecutive, the algorithm
still need to scan and copy them to the output array. Another simple implementation
is to store both sets as balanced trees, and insert the elements in the smaller tree into
the larger one, costing O(m log n) work. It overcomes the issue of redundant scanning
and copying, because many subtrees in the larger tree remain untouched. However,
this results in O(n log n) time, for combining two ordered sets of the same size, while
it is easy to make it O(n) by arrays. The problem lies in that the algorithm fails to
make use of the ordering in the smaller tree.

The lower bound for comparison-based algorithms for union, intersection and dif-
ference for inputs of size n and m ≤ n, and returning an ordered structure2, is
log2

(
m+n
n

)
= Θ

(
m log

(
n
m

+ 1
))

(
(
m+n
n

)
is the number of possible ways n keys can

be interleaved with mkeys). The bound is interesting since it shows that implementing
insertion with union, or deletion with difference, is asymptotically efficient (O(log n)
time), as is taking the union of two equal sized sets (O(n) time).

Brown and Tarjan first matched these bounds, asymptotically, using a sequential
algorithm based on red-black trees [10]. Adams later described very elegant algorithms
for union, intersection, and difference, as well as other functions based on join [1, 2].
Adams’ algorithms were proposed in an international competition for the Standard ML
community, which is about implementations on “set of integers”. Prizes were awarded
in two categories: fastest algorithm, and most elegant yet still efficient program. Adams
won the elegance award, while his algorithm is almost as fast as the fastest program
for very large sets, and was faster for smaller sets. Because of the elegance of the

2By “ordered structure” we mean any data structure that can output elements in sorted order
without any further comparisons—e.g., a sorted array, or a binary search tree.
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algorithm, at least three libraries use Adams’ algorithms for their implementation of
ordered sets and tables (Haskell [14] and MIT/GNU Scheme, and SML). Indeed the
join-based algorithm that will be introduced later in this section is based on Adams’
algorithms. Blelloch and Reid-Miller later show that similar algorithms for treaps [9],
are optimal for work (i.e. Θ

(
m log

(
n
m

+ 1
))

), and are also parallel. Later, Blelloch
et al. [7] extend Adams’ algorithms to multiple balancing schemes and prove the cost
bound.

Algorithms. union(T1, T2) takes two BSTs and returns a BST that contains the union
of all keys. The algorithm uses a classic divide-and-conquer strategy, which is parallel.
At each level of recursion, T1 is split by k(T2), breaking T1 into three parts: one with
all keys smaller than k(T2) (denoted as L1), one in the middle either of only one key
equal to k(T2) (when k(T2) ∈ T1) or empty (when k(T2) /∈ T1), the third one with all
keys larger than k(T2) (denoted as R1). ger) than k(T1). Then two recursive calls to
union are made in parallel. One unions lc(T2) with L1, returning Tl, and the other one
unions rc(T2) with R1, returning Tr. Finally the algorithm returns join(Tl, k(T2), Tr),
which is valid since k(T2) is greater than all keys in Tl are less than all keys in Tr.

The functions intersection (T1, T2) and difference (T1, T2) take the intersection and
difference of the keys in their sets, respectively. The algorithms are similar to union in
that they use one tree to split the other. However, the method for joining and the base
cases are different. For intersection, join2 is used instead of join if the root of the first
is not found in the second. Accordingly, the base case for the intersection algorithm is
to return an empty set when either set is empty. For difference, join2 is used anyway
because k(T2) should be excluded in the result tree. The base cases are also different
in the obvious way.

The cost of the algorithms described above can be summarized in the following
theorem.

Theorem 6.3. For AVL, RB, WB trees and treaps, the work and span of the algo-
rithm (as shown in Figure 29) of union, intersection or difference on two balanced

BSTs of sizes m and n (n ≥ m) is O
(
m log

( n
m

+ 1
))

(in expectation for treaps) and

O(log n logm) respectively (w.h.p. for treaps).

The work bound for these algorithms is optimal in the comparison-based model. In
particular considering all possible interleavings, the minimum number of comparisons
required to distinguish them is log

(
m+n
n

)
= Θ

(
m log

(
n
m

+ 1
))

[13]. A generic proof of
Theorem 6.3 working for all the four balancing schemes can be found in [7]. The span
of these algorithms can be reduced to O(logm) for weight-balanced trees even on the
binary-forking model [8] by doing a more complicated divide-and-conquer strategy.

6.5 Other Tree algorithms Using join

Insert and Delete. Instead of the classic implementations of insert and delete, which
are specific to the balancing scheme, we define versions based purely on join, and hence
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Build

1 build_sorted(S, i, j) {

2 if i = j then return ∅;
3 if i+ 1 = j then
4 return singleton(S[i]);
5 m = (i+ j)/2;
6 L = build’(S, i,m) ‖
7 R = build’(S,m+ 1, j);
8 return join(L, S[m], R); }

9 build(S,m) {

10 (S2, m2) = sort_rm_dup(S, m);
11 build_sorted(S2,0,m2);}

Filter

1 filter(T,f) {

2 if T = ∅ then return ∅;
3 (L,e,R) = expose(T );
4 L′ = filter(L,f) ‖
5 R′ = filter(R,f);
6 if f(e) then
7 return join(L′,e,R′);
8 else join2(L′,R′); }

Map and Reduce

1 map_reduce(T, g′, f ′, I ′) {

2 if T = ∅ then return I ′;
3 〈L, k, v,R〉 = expose(T );
4 L′ = MapReduce(L, g′, f ′, I ′) ‖
5 R′ = MapReduce(R, g′, f ′, I ′);
6 return f ′(L′, f ′(g′(k, v), R′)); }

Range

1 range(T, l, r) {

2 (T1,T2) = split(T, l);
3 (T3,T4) = split(T2,r);
4 return T3; }

Foreach Index

1 foreach_index(T, φ, s) {

2 if (t = ∅) return;
3 (L, e,R) = expose(T );
4 left = size(L);
5 L = foreach_index(L, φ, s); ‖
6 R = foreach_index(R, φ, s+1+left);
7 φ(e, left);}

Insertion

1 insert(T, e) {

2 if T = ∅ then return singleton(e);
3 〈L, e′, R〉 = expose(T );
4 if k(e) = k(e′) then return T;

5 if k(e) < k(e′) then
6 return join(insert(L, e), e′, R);
7 return join(L, e′, insert(R, e)); } }

Deletion

1 delete(T, k) {

2 if T = ∅ then return ∅;
3 〈L, e′, R〉 = expose(T );
4 if k < k(e′) then return join(delete(L, k), e′, R);
5 if k(e′) < k then return join(L, e′, delete(R, k));
6 return join2(L,R); }

Multi-insertion

1 multi_insert_s(T, A, m) {

2 if (T = ∅) return build(A, m);
3 if (m = 0) return t;

4 〈L, e,R〉 = expose(T );
5 b = binary_search(A, m, k(e));
6 d = (b < m) and (k(A[b]) > k(e));
7 L = multi_insert_s(r→lc, A, b) ‖
8 R = multi_insert_s(r→rc, A+b-d, m-b-d);
9 return concat(L, e, R); }

10 multi_insert(t, A, m) {

11 (A2, m2) = sort_rm_dup(A, m);
12 return multi_insert_sorted(t, A2, m2);}

Figure 30: Pseudocode of some join-based functions – They are all independent
of balancing schemes. The syntax S1||S2 means that the two statements S1 and S2 can
be run in parallel based on any fork-join parallelism.

independent of the balancing scheme.
We present the pseudocode in Figure 30 to insert an entry e into a tree T . The
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base case is when t is empty, and the algorithm creates a new node for e. Otherwise,
this algorithm compares k with the key at the root and recursively inserts e into the
left or right subtree. After that, the two subtrees are joined again using the root node.
Because of the correctness of the join algorithm, even if there is imbalance, join will
resolve the issue.

The delete algorithm is similar to insert , except when the key to be deleted is
found at the root, where delete uses join2 to connect the two subtrees instead. Both
the insert and the delete algorithms run in O(log n) work (and span since sequential).

One might expect that abstracting insertion or deletion using join instead of spe-
cializing for a particular balance criteria has significant overhead. In fact experiments
show this is not the case—and even though some extra metadata (e.g., the reference
counter), the join-based insertion algorithm is only 17% slower sequentially than the
highly-optimized C++ STL library [20].

Theorem 6.4. The join-based insertion algorithm cost time at most O(log |T |) for an
AVL, RB, WB tree or a treap.

Proof Sketch. The insertion algorithm first follow a path in the tree to find the right
location for k, and then performs O(log n) join algorithms. Each join connects T1 and
T2 ∪ {k}, where T1 and T2 were originally balanced with each other. For any of the
discussed balancing schemes, the cost of the join is a constant. A more rigorous proof
can be shown by induction.

Theorem 6.5. The join-based deletion algorithm cost time at most O(log |T |) for an
AVL, RB, WB tree or a treap.

Proof Sketch. The proof is similar to the proof of Theorem 6.4. The only exception is
that at most one join2 algorithm can be performed. This only adds an extra O(log n)
cost.

Build. A balanced binary tree can be created from a sorted array of key-value pairs
using a balanced divide-and-conquer over the input array and combining with join.
To construct a balanced binary tree from an arbitrary array we first sort the array by
the keys, then remove the duplicates. All entries with the same key are consecutive
after sorting, so the algorithm first applies a parallel sorting and then follows by a
parallel packing. The algorithm then extracts the median in the de-duplicated array,
and recursively construct the left/right subtree from the left/right part of the array,
respectively. Finally, the algorithm uses join to connect the median and the two
subtrees. The work is then O(Wsort(n) +Wremove(n) + n) and the span is O(Ssort(n) +
Sremove(n) + log n). For work-efficient sort and remove-duplicates algorithms with
O(log n) span this gives the bounds in Table 2.

Bulk Updates. We use multi insert and multi delete to commit a batch of write
operations. The function multi insert(T,A,m) takes as input a tree root t, and the
head pointer of an array A with its length m.
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We present the pseudocode of multi insert in Figure 30. This algorithm first sorts
A by keys, and then removes duplicates in a similar way as in build . We then use a
divide-and-conquer algorithm multi insert s to insert the sorted array into the tree.
The base case is when either the array A or T is empty. Otherwise, the algorithm uses
a binary search to locate t’s key in the array, getting the corresponding index b in A.
d is a bit denoting if k appears in A. Then the algorithm recursively multi-inserts A’s
left part (up to A[b]) into the left subtree, and A’s right part into the right subtree.
The two recursive calls can run in parallel. The algorithm finally concatenates the
two results by the root of T . A similar divide-and-conquer algorithm can be used for
multi delete, using join2 instead of join when necessary.

Decoupling sorting from inserting has several benefits. First, parallel sorting is
well-studied and there exist highly-optimized sorting algorithms that can be used.
This simplifies the problem. Second, after sorting, all entries in A that to be merged
with a certain subtree in T become consecutive. This enables the divide-and-conquer
approach which provides good parallelism, and also gives better locality.

The total work and span of inserting or deletion an array of length m into a tree
of size n ≥ m is O

(
m log

(
n
m

+ 1
))

and O(logm log n), respectively [7]. The analysis
is similar to the union algorithm.

Range. range extracts a subset of tuples in a certain key range from a tree, and
output them in a new tree. The cost of the range function is O(log n). The pure range
algorithm copies nodes on two paths, one to each end of the range, and using them as
pivots to join the subtrees back. When the extracted range is large, this pure range
algorithm is much more efficient (logarithmic time) than visiting the whole range and
copying it.

Filter. The filter(t, φ) function returns a tree with all tuples in T satisfying a predicate
φ. This algorithm filters the two subtrees recursively, in parallel, and then determines
if the root satisfies φ. If so, the algorithm uses the root as the pivot to join the two
recursive results. Otherwise it calls join2 . The work of filter is O(n) and the depth is
O(log2 n) where n is the tree size.

Map and Reduce. The function map reduce(T, fm, 〈fr, I〉) on a tree t (with data type
E for the tuples) takes three arguments and returns a value of type V ′. fm : E 7→ V ′

is the a map function that converts each stored tuple to a value of type V ′. 〈fr, I〉 is a
monoid where fr : V ′ × V ′ 7→ V ′ is an associative reduce function on V ′, and I ∈ V ′ is
the identity of fr. The algorithm will recursively call the function on its two subtrees
in parallel, and reduce the results by fr afterwards.

7 Other Models and Simulations

In this section we consider some other models (currently just the PRAM) and discuss
simulation results between models. We are particularly interested in how to simulate
the MP-RAM on a machine with a fixed number of processors. In particular we consider
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the scheduling problem, which is the problem of efficiently scheduling processes onto
processors.

7.1 PRAM

The Parallel Random Access RAM (PRAM) model was one of the first models con-
sidered for analyzing the cost of parallel algorithms. Many algorithms were analyzed
in the model in the 80s and early 90s. A PRAM consists of p processors sharing a
memory of unbounded size. Each has its own register set, and own program counter,
but they all run synchronously (one instruction per cycle). In typical algorithms all
processors are executing the same instruction sequence, except for some that might be
inactive. Each processor can fetch its identifier, an integer in [1, . . . , p]. The PRAM
differes from the MP-PRAM in two important ways. Firstly during a computation it
always has a fixed number of processors instead of allowing the dynamic creation of
processes. Secondly the PRAM is completely synchronous, all processors working in
lock-step.

Costs are measured in terms of the number of instructions, the time, and the number
of processors. The time for an algorithm is often a function of the number of processors.
For example to take a sum of n values in a tree can be done in O(n/p + log p) time.
The idea is to split the input into blocks of size n/p, have processor i sum the elements
in the ith block, and then sum the results in a tree.

Since all processors are running synchronously, the types of race conditions are
somewhat different than in the MP-RAM. If there is a reads and a writes on the same
cycle at the same location, the reads happen before the writes. There are variants
of the PRAM depending on what happens in the case of multiple writes to the same
location on the same cycle. The exclusive-write (EW) version disallows concurrent
writes to the same location. The Arbitrary Concurrent Write (ACW) version assumes
an arbitrary write wins. The Priority Concurrent Write (PCW) version assumes the
processor with highest processor number wins. There are asynchronous variants of the
PRAM, although we will not discuss them.

7.2 The Scheduling Problem

We are interested in scheduling the dynamic creation of tasks implied by the MP-RAM
onto a fixed number of processors, and in mapping work and depth bounds onto time
bounds for those processors. This scheduling problem can be abstracted as traversing
a DAG. In particular the p processor scheduling problem is given a DAG with a single
root, to visit all vertices in steps such that each step visits at most p vertices, and no
vertex is visited on a step unless all predecessors in the DAG have been visited on a
previous step. This models the kind of computation we are concerned with since each
instruction can be considered a vertex in the DAG, no instruction can be executed
until its predecessors have been run, and we assume each instruction takes constant
time.
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Our goal is to bound the number of steps as a function of the the number of vertices
w in a DAG and its depth d. Furthermore we would like to ensure each step is fast.
Here we will be assuming the synchronous PRAM model, as the target, but most of
the ideas carry over to more asynchronous models.

It turns out that in general finding the schedule with the minimum number of steps
is NP-hard [?] but coming up with reasonable approximations is not too hard. Our
first observation is a simple lower bound. Since there are w vertices and each step can
only visit p of them, any schedule will require at least w/p steps. Furthermore since
we have to finish the predecessors of a vertex before the vertex itself, the schedule will
also require at least d steps. Together this gives us:

Observation 7.1. Any p processor schedule of a DAG of depth d and size w requires
at least max(w/p, d) steps.

We now look at how close we can get to this.

7.3 Greedy Scheduling

A greedy scheduler is one in which a processor never sits idle when there is work to do.
More precisely a p-greedy schedule is one such that if there are r ready vertices on a
step, the step must visit min(r, p) of them.

Theorem 7.1. Any p-greedy schedule on a DAG of size w and depth d will take at
most w/p+ d steps.

Proof. Let’s say a step is busy if it visits p vertices and incomplete otherwise. There
are at most bw/pc busy steps, since that many will visit all but r < p vertices. We
now bound the number of incomplete steps. Consider an incomplete step, and let
j be the first level in which there are unvisited vertices before taking the step. All
vertices on level j are ready since the previous level is all visited. Also j < p since this
step is incomplete. Therefore the step will visit all remaining vertices on level j (and
possibly others). Since there are only d levels, there can be at most d incomplete steps.
Summing the upper bounds on busy and incomplete steps proves the theorem.

We should note that such a greedy schedule has a number of steps that is always
within a factor of two of the lower bound. It is therefore a two-approximation of the
optimal. If either term dominates the other, then the approximation is even better.
Although greedy scheduling guarantees good bounds it does not it does not tell us how
to get the ready vertices to the processors. In particular it is not clear we can assign
ready tasks to processors constant time.

7.4 Work Stealing Schedulers

We now consider a scheduling algorithm, work stealing, that incorporates all costs.
The algorithm is not strictly greedy, but it does guarantee bounds close to the greedy
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1 workStealingScheduler(v) =
2 pushBot(Q[0], v);
3 while not all queues are empty

4 parfor i in [0 : p]
5 if empty(Q[i]) then % steal phase
6 j = rand([0 : p]);
7 steal[j] = i;
8 if (steal[j] = i) and not(empty(Q[j]) then
9 pushBot(Q[i],popTop(Q[j]))

10 if (not(empty(Q[i])) then % visit phase
11 u = popBot(Q[i]);
12 case (visit(u)) of
13 fork(v1, v2) ⇒ pushBot(Q[i], v2); pushBot(Q[i], v1);
14 next(v) ⇒ pushBot(Q[i], v);

Figure 31: Work stealing scheduler. The processors need to synchronize between line 7
and the next line, and between the two phases.

bounds and allows us to run each step in constant time. The scheduler we discuss is
limited to binary forking and joining. We assume that visiting a vertex returns one
of three possibilities: fork(v1, v2) the vertex is a fork, next(v) if it has a single ready
child, or empty if it has no ready child. Note that if the child of a vertex is a join
point a visit could return either next(v) if the other parent of v has already finished
or empty if not. Since the two parents of a join point could finish simultaneously, we
can use a test-and-set (or a concurrent write followed by a read) to order them.

The work stealing algorithm (or scheduler) maintains the ready vertices in a set of
work queues, one per processor. Each processor will only push and pop on the bottom
of its own queue and pop from the top when stealing from any queue. The scheduler
starts with the root of the DAG in one of the queues and the rest empty. Pseudocode
for the algorithm is given in Figure 31. Each step of the scheduler consists of a steal
phase followed by a visit phase. During the steal phase each processor that has an
empty queue picks a random target processor, and attempts to “steal” the top vertex
from its queue. The attempt can fail if either the target queue is empty or if someone
else tries a steal from the target on the same round and wins. The failure can happen
even if the queue has multiple vertices since they are all trying to steal the top. If
the steal succeeds, the processor adds the stolen vertex to its own queue. In the visit
phase each processor with a non-empty queue removes the vertex from the bottom of
its queue, visits it, and then pushes back 0, 1 or 2 new vertices onto the bottom.

The work stealing algorithm is not completely greedy since some ready vertices
might not be visited even though some processors might fail on a steal. In our analysis
of work stealing we will use the following definitions. We say that the vertex at the
top of every non-empty queue is prime. In the work stealing scheduler each join node
is enabled by one of its parents (i.e., put in its queue). If throughout the DAG we just
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include the edge to the one parent, and not the other, what remains is a tree. In the
tree there is a unique path from the root of the DAG to the sink, which we call the
critical path. Which path is critical can depend on the random choices in the scheduler.
We define the expanded critical path (ECP) as the critical path plus all right children
of vertices on the path.

Theorem 7.2. Between any two rounds of the work stealing algorithm on a DAG G,
there is at least one prime vertex that belongs to the ECP.

Proof. (Outline) There must be exactly one ready vertex v on the critical path, and
that vertex must reside in some queue. We claim that all vertices above v it in that
queue are right children of the critical path, and hence on the expanded critical path.
Therefore the top element of that queue is on the ECP and prime. The right children
property follows from the fact that when pushing on the bottom of the queue on a
fork, we first push the right child and then the left. We will then pop the left and the
right will remain. Pushing a singleton onto the bottom also maintains the property, as
does popping a vertex from the bottom or stealing from the top. Hence the property
is maintained under all operations on the queue.

We can now prove our bounds on work-stealing.

Theorem 7.3. A work-stealing schedule with p processors on a binary DAG of size w
and depth d will take at most w/p+O(d+ log(1/ε)) steps with probability 1− ε.

Proof. Similarly to the greedy scheduling proof we account idle processors towards the
depth and busy ones towards the work. For each step i we consider the number of
processors qi with an empty queue (these are random variables since they depend on
our random choices). Each processor with an empty queue will make a steal attempt.
We then show that the number of steal attempts S =

∑∞
i=0 qi is bounded by O(pd +

p ln(1/ε)) with probability 1− ε. The work including the possible idle steps is therefore
w +O(pd+ p ln(1/ε)). Dividing by p gives the bound.

The intuition of bounding the number of steal attempts is that each attempt has
some chance of stealing a prime node on the ECP. Therefore after doing sufficiently
many steal attempts, we will have finished the critical path with high probability.

Consider a step i with qi empty queues and consider a prime vertex v on that step.
Each empty queue will steal v with probability 1/p. Therefore the overall probability
that a prime vertex (including one on the critical path) is stolen on step i is:

ρi = 1−
(

1− 1

p

)qi
>
qi
p

(
1− 1

e

)
>
qi
2p
,

i.e., the more empty queues, the more likely we steal and visit a vertex on the ECP.
Let Xi be the indicator random variable that a prime node on the ECP is stolen

on step i, and let X =
∑∞

i=0Xi. The expectation E[Xi] = ρi, and the expectation

µ = E[X] =
∞∑
i=0

ρi >

∞∑
i=0

qi
2p

=
S

2p
.
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If X reaches 2d the schedule must be done since there are at most 2d vertices on the
ECP, therefore we are interested in making sure the probability P [X < 2d] is small.
We use the Chernoff bounds:

P [X < (1− δ)µ] < e−
δ2µ
2 .

Setting (1− δ)µ = 2d gives δ = (1− 2d/µ). We then have δ2 = (1− 4d/µ+ (2d/µ)2) >
(1− 4d/µ) and hence δ2µ > µ− 4d. This gives:

P [X < 2d] < e−
µ−4d

2 .

This bounds the probability that an expanded critical path (ECP) is not finished,
but we do not know which path is the critical path. There are at most 2d possible
critical paths since the DAG has binary forking. We can take the union bound over
all paths giving the probability that any possible critical path is not finished is upper
bounded by:

P [X < 2d] · 2d < e−
µ−4d

2 · 2d = e−
µ
2
+d(2+ln 2).

Setting this to ε, and given that µ > S
2p

, this solves to:

S < 4p(d(2 + ln 2) + ln(1/ε)) ∈ O(pd+ p ln(1/ε)).

The probability that S is at most O(pd+ p ln(1/ε))) is thus at least (1− ε). This gives
us our bound on steal attempts.

Since each step of the work stealing algorithm takes constant time on the ACW
PRAM, this leads to the following corrolary.

Corollary 7.1. For a binary DAG of size w and depth d, and on a ACW PRAM with
p processors, the work-stealing scheduler will take time

O(w/p+ d+ log(1/ε))

with probability 1− ε.
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