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Last week - Sorting algorithms

• Parallel quicksort
• Key: partition elements based on the pivot in parallel

• Parallel filtering/packing algorithm – 𝑂(𝑛) work and 𝑂(log 𝑛) depth

• 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth

• Parallel mergesort
• Key: merge two sorted arrays into another sorted array in parallel 

• Parallel merging algorithm – 𝑂(𝑛) work and 𝑂(log 𝑛) depth

• 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth
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Last week - Sorting algorithms

• Parallel selection sort
• 𝑂(log 𝑛) depth but 𝑂(𝑛2) work

• List ranking – random mate
• Determine in a linked list, the rank of each node

• Using randomization to filter out (on expectation) ¼ nodes in each 
round

• Reduce problem size and recursively apply the algorithm

• Expand the list back and restore the information
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Some materials are from 6.172 Performance Engineering 

of Software Systems, credits to Charles Leiserson



Why is parallelism “hard”?
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Theory Practice

Non-determinism!!



Why is parallelism “hard”?
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• Scheduling is unknown

• Relative ordering for operations is unknown

• Hard to debug
• Bugs can be non-deterministic!

• Bugs can be different if you rerun the code

• Referred to as race hazard / condition

Non-determinism!!



Race hazard can cause severe consequences
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• Therac-25 radiation therapy 
machine — killed 3 people and 
seriously injured many more 
(between 1985 and 1987). 
https://en.wikipedia.org/wiki/Therac-25

• North American Blackout of 
2003 — left 50 million people 
without power for up to a week. 
https://en.wikipedia.org/wiki/Northeast_blackout_of_2
003

• Race bugs are notoriously difficult to 
discover by conventional testing!

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
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Determinacy Races

• Definition: a determinacy race occurs when two logically 
parallel instructions access the same memory location and at 
least one of the instructions performs a write.
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direct_reduce(A, n) {
parallel_for (i=0;i<n;i++)

sum = sum + a[i];
return sum;

}
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• Definition: a determinacy race occurs when two logically 
parallel instructions access the same memory location and at 
least one of the instructions performs a write.

13

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}

sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

1

2

5

3

4

6



Types of Races 

• Suppose that instruction A and instruction B both access a 
location x, and suppose that A∥B (A is parallel to B).

• Two sections of code are independent if they have no 
determinacy races between them. 
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A B Race Type

Read Read No race

Read Write Read race

Write Read Read race

Write Write Write race



Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should 
be independent, including code executed by further in_parallel
tasks
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}



Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should 
be independent, including code executed by further in_parallel
tasks
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reduce(A, n) {
if (n == 1) return A[0];
if (n is odd) n=n+1;
parallel_for i=1 to n/2
B[i]=A[2i]+A[2i+1];

return reduce(B, n/2); 
}



Benefit of being race-free

• Scheduling is still unknown

• Relative ordering for operations is still unknown

• However, the computed value of each instruction is 
deterministic!  This is easy to debug.
• Check the correctness of the sequential execution

• Check if the parallel execution is the same as the sequential one

• Race detection: given a DAG, show all the races

• False sharing: nasty related effect 
• E.g., updating x.a and x.b in parallel is safe                                     

but can be inefficient
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Struct {
char a, b;

} x;



This is not the end…

• Consider a hash table

• A key-value pair is inserted to a random location based on the 
key

• No guarantee that no two keys will not be inserted to the 
same location
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Lock-based solution (critical section)

• Lock the memory location for each write

• A correct solution

• Very poor performance
• No guarantee for execute order

• Bad scalability (worse                                                        
performance for more cores)

• Risk of no progress

• Need better solutions

19

direct_reduce(A, n) {
parallel_for (i=0;i<n;i++) {

getLock(&sum);
sum = sum + a[i];
releaseLock(&sum);

}
return sum;

}



Atomic primitives (Lecture 2)

• Compare-and-swap (CAS): 
• bool CAS(value* p, value vold, value vnew)

• Compare the value stored in the pointer 𝑝 with value vold, if they are 
equal, try to change 𝑝’s value to vnew. If successful, return true. 
Otherwise, return false.

• Test-and-set (TAS): 
• bool TAS(bool* p) 

• Determine if the Boolean value stored at 𝑝 is false, if so, try to set it 
to true. If successful, return true. Otherwise, return false.

• Fetch-and-add (FAA):
• integer FAA(integer* p)

• Add integer 𝑝’s value by 1, and return the old value
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Atomic primitives (Lecture 2)

• Use CAS to implement reduce

• Relatively better performance
• Guarantee to proceed

• Implemented by hardware                                                                
(relatively faster, bad in this case)

• Main challenge:
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direct_reduce(A, n) {
parallel_for (i=0;i<n;i++) {

old = sum;
while (!CAS(&sum, old, old+a[i]))

old = sum;
}

return sum;
}

Implementations are racy, still hard to debug!
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Deterministic 
Parallelism



High-level idea

• Some additional restrictions, but weaker than race-free

• A parallel algorithm can be racy, but the parallel 
execution must match the sequential execution

•When debugging:
• First guarantee the sequential execution is correct

• Then check if the parallel execution is the same
• E.g., printing out all intermediate states

23



a b c d e f g h
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Random Permutation 



gf a e h c d b

• Generating random permutation is a fundamental building 
block in parallel algorithms

• But for decades, we don’t know how to randomly permute 
elements in parallel efficiently both theoretically and 
pratically

Random Permutation 
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H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a b c d e f g h

H[i] is randomly drawn 
between 1 and i

26

Sequential Random Permutation [Durstenfeld64, Knuth69]
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Sequential Random Permutation [Durstenfeld64, Knuth69]
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g

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do
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1 1 2 4 2 3 4 2

f a e h c d b
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Sequential Random Permutation [Durstenfeld64, Knuth69]
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Can this simple sequential algorithm be parallelized?
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Can this simple sequential algorithm be parallelized?
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Which swaps cannot run in parallel?
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A = a b c d e f g h

A simple parallel algorithm

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a b c d e f g h

while swaps unfinished do
par-for each swap (i, H[i]) do

if no other swaps to i and
i is the last swap to H[i]

process the swap
pack the unfinished swaps
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A = a b c d e f g h

A simple parallel algorithm

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a b c d e f g h

while swaps unfinished do
par-for each swap (i, H[i]) do

if no other swaps to i and
i is the last swap to H[i]

process the swap
pack the unfinished swaps
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A = a b c d e f g h

A simple parallel algorithm

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a b c d e f g h

while swaps unfinished do
parafor each swap (i, H[i]) do

R[i] max(R[i], i)
R[H[i]] max(R[H[i]], i)

parafor each swap (i, H[i]) do
if R[i] = i and R[H[i]] = i

swap(A[H[i]], A[i])
pack the swaps
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R = 2 8 6 7 5 6 7 8

The first round

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2
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parafor each swap (i, H[i]) do
if R[i] = i and R[H[i]] = i

swap(A[H[i]], A[i])
pack the swaps
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The first round

H =
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a h g f e d c b

while swaps unfinished do
parafor each swap (i, H[i]) do
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if R[i] = i and R[H[i]] = i

swap(A[H[i]], A[i])
pack the swaps
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Example of Deterministic Parallelism

• Not race-free (atomic updates needed)

• Relative ordering of the swaps is consistent with sequential execution
• When debugging, first check the sequential execution, then check if the 

destinations of the swaps are the same in the parallel execution

• Execution is “deterministic”
• Output is always the same for different executions

• Input/output of each operation is always the same for different executions

• Determinism is supported by “priority updates”

43



• The number of rounds is Θ(log 𝑛) w.h.p.
• Very simple proof

• This algorithm uses 𝑂 𝑛 work and 𝑂 log 𝑛 span w.h.p., and 
is optimal under certain assumptions

• Good performance in practice

Work-depth analysis for random permutation
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• Good performance in practice
• Can outperform the sequential algorithm on 4 cores

• 8.5x faster than sequential on 40 cores 

• Almost perfect self-relative speedup (35-40x)

Good practical performance
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• Random permutation (Knuth shuffle) [SODA15, manuscript]

• List contraction [SODA15, manuscript]

• Tree contraction [SODA15, manuscript]

• Comparison sort [SPAA16a]

• Incremental convex hull [SPAA16a]

• Incremental Delaunay triangulation [SPAA16a]

• Strongly connected component [SPAA16a]

• Least-element lists [SPAA16a]

Many sequential iterative algorithms are already parallel
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• Random permutation (Knuth shuffle) [SODA15, manuscript]

• List contraction [SODA15, manuscript]

• Tree contraction [SODA15, manuscript]

• Comparison sort [SPAA16a]

• Incremental convex hull [SPAA16a]

• Incremental Delaunay triangulation [SPAA16a]

• Strongly connected component [SPAA16a]

• Least-element lists [SPAA16a]

If the required 
number of rounds 
is small (relative to 

input size), then 
there is lots of 
parallelism!

Many sequential iterative algorithms are already parallel

𝑂 log 𝑛
rounds w.h.p.     
for all these 
problems!

Simple, efficient both theoretically and practically
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Wrap up



Determinacy races

• Definition: a determinacy race occurs when two logically 
parallel instructions access the same memory location and at 
least one of the instructions performs a write.
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sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}



Types of races 

• Suppose that instruction A and instruction B both access a 
location x, and suppose that A∥B (A is parallel to B).

• Two sections of code are independent if they have no 
determinacy races between them. 
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A B Race Type

Read Read No race

Read Write Read race

Write Read Read race

Write Write Write race



Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should 
be independent, including code executed by further in_parallel
tasks
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Benefit of being race-free

• Scheduling is still unknown

• Relative ordering for operations is still unknown

• However, the computed value of each instruction is 
deterministic!  This is easy to debug and reason.
• Check the correctness of the sequential execution

• Check if the parallel execution is the same as the sequential one
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Atomic primitives (Lecture 2)

• Compare-and-swap (CAS): 
• bool CAS(value* p, value vold, value vnew)

• Compare the value stored in the pointer 𝑝 with value vold, if they are 
equal, try to change 𝑝’s value to vnew. If successful, return true. 
Otherwise, return false.

• Test-and-set (TAS): 
• bool TAS(bool p) 

• Determine if the Boolean value stored at 𝑝 is false, if so, try to set it 
to true. If successful, return true. Otherwise, return false.

• Fetch-and-add (FAA):
• integer FAA(integer* p)

• Add integer 𝑝’s value by 1, and return the old value
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Deterministic Parallelism

• Not race-free (atomic updates needed)

• Relative ordering of the operations is consistent with sequential 
execution
• When debugging, first check the sequential execution, then check if the 

destinations of the swaps are the same in the parallel execution

• Execution is “deterministic”
• Output is always the same for different executions

• Input/output of each operation is always the same for different executions

• Determinism is supported by “priority updates”
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Determinism is transitive

• If all subcomponents in an algorithm are race-free, then this 
algorithm is race-free

• If all subcomponents in an algorithm are deterministic, then 
this algorithm is deterministic
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Parallel thinking

• When taking CS 141, 218 (classic algorithm courses) or reading CLRS, an 
algorithm is a list of operations

• Quicksort?

• Mergesort?

• Red-black tree? (teach splay tree or treap)

• Suffix-tree? (don’t teach it in the courses)

• Algorithms become complicated in the parallel setting, so this is no 
longer a good abstraction
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Parallel thinking

• Consider subroutines as primitives / functions / building blocks.  An 
algorithm is the combination of a set of subroutines 

• Quicksort: find a pivot, apply partition (rely on filter (rely on scan (rely 
on reduce))), then recurse

• Mergesort: first solve two subproblems, then use parallel merge

• Red-black tree: don’t use RB-tree, use P-tree that is based on join

• Suffix-tree: design a parallel primitive to merge two trees

• Often use divide-and-conquer or reduce or similar techniques for 
inductively solving the subproblems with smaller sizes

• Conceptually simpler to understand

• Properties are transitive (race-free, deterministic, persistence, etc.)
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Software Crisis

• In 1960s, programming was in assembly language
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Software Crisis

• In 1980s, programmers realized that it is almost impossible to 
writing very long C code 

• New concept of OOP and programming languages
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New Software Crisis caused by Parallelism

• Algorithms and programming become even more 
sophisticated

• Non-determinism can be a huge problem even for very simple 
applications
• Hard to debug 

• Hard to guarantee correctness

• Use ideas from PL and algorithm research
• Functional programming

• Race, deterministic parallelism
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Homework 2

• HW 2 out tonight

• Due Feb 19th – You have 3 weeks
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