Parallel Algorithms:;
Theory and Practice

CS260 - Lecture 5
Yan Gu

Deterministic
Parallelism

Last week - Sorting algorithms

 Parallel quicksort
« Key: partition elements based on the pivot in parallel
« Parallel filtering/packing algorithm - 0(n) work and 0(logn) depth
* O(nlogn) work and 0(log?n) depth

 Parallel mergesort
« Key: merge two sorted arrays into another sorted array in parallel
 Parallel merging algorithm - 0(n) work and 0(logn) depth
« O(nlogn) work and 0(log?n) depth

Last week - Sorting algorithms

 Parallel selection sort
« 0O(logn) depth but 0(n*) work

* List ranking - random mate
 Determine in a linked list, the rank of each node

« Using randomization to filter out (on expectation) ¥ nodes in each
round

« Reduce problem size and recursively apply the algorithm
« Expand the list back and restore the information

Parallel Algorithms:;
Theory and Practice

CS260 - Lecture 5
Yan Gu

Deterministic
Parallelism

CS260:
Parallel
algorithms

Lecture 5 Deterministic
Parallelism

Some materials are from 6.172 Performance Engineering c
of Software Systems, credits to Charles Leiserson

Why is parallelism “hard"?

Non-determinism!!

Why is parallelism “hard”?

Non-determinism!!

« Scheduling is unknown
 Relative ordering for operations is unknown

« Hard to debug
* Bugs can be non-deterministic!
« Bugs can be different if you rerun the code
« Referred to as race hazard / condition

Race hazard can cause severe consequences

* Therac-25 radiation therapy
machine — killed 3 people and
seriously injured many more
(between 1985 and 1987).

https://en.wikipedia.org/wiki/Therac-25

* North American Blackout of
2003 — left 50 million people
without power for up to a week.

https://en.wikipedia.org/wiki/Northeast_blackout_of_2
003

« Race bugs are notoriously difficult to
discover by conventional testing!

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

Race

Determinacy Races

 Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<n;i++)
sum = sum + a[i];
return sum;

} 7

10

Determinacy Races

 Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<2;i++)
sum = sum + a[i];
return sum;

} 7

return sum

11

Determinacy Races

 Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<2;i++)
sum = sum + a[i];
return sum;

} 7

return sum

12

Determinacy Races

 Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<2;i++)
sum = sum + a[i];
return sum;

} 7

return sum

13

Types of Races

« Suppose that instruction A and instruction B both access a
location X, and suppose that A||B (A is parallel to B).

A B RaceType

Read Read No race

Read Write Read race
Write Read Read race
Write Write Write race

« Two sections of code are independent if they have no
determinacy races between them.

14

Avoiding races

* Iterations of a parallel_for loop should be independent

- Between two in_parallel tasks, the code of the two calls should
be independent, including code executed by further in_parallel
tasks

reduce(A, n) {
if (n == 1) return A[0Q];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

} 7

15

Avoiding races

* Iterations of a parallel_for loop should be independent

- Between two in_parallel tasks, the code of the two calls should
be independent, including code executed by further in_parallel
tasks

reduce(A, n) {
if (n == 1) return A[O];
if (n is odd) n=n+1;
parallel for i=1 to n/2
B[i]=A[21]+A[2i+1];
return reduce(B, n/2);

} 74

16

Benefit of being race-free

« Scheduling is still unknown
 Relative ordering for operations is still unknown

« However, the computed value of each instruction is
deterministic! This is easy to debug.
« Check the correctness of the sequential execution
« Check if the parallel execution is the same as the sequential one

« Race detection: given a DAG, show all the races

» False sharing: nasty related effect Struct {
« E.g., updating x.a and x.b in parallel is safe hEm 2[5
but can be inefficient }oX; S
) 7

17

This i1s not the end...

e Consider a hash table

« A key-value pair is inserted to a random location based on the
key

* No guarantee that no two keys will not be inserted to the
same location

18

Lock-based solution (critical section)

* Lock the memory location for each write

« A correct solution direct_reduce(A, n) {
parallel for (i=0;i<n;i++) {
: getLock(&sum);
- Very poor performance sum = sum + a[i];
« No guarantee for execute order releaselock(&sum);
» Bad scalability (worse }
performance for more cores) return sum; '
« Risk of no progress } 7

 Need better solutions

19

Atomic primitives (Lecture 2)
« Compare-and-swap (CAS):

« bool CAS(value* p, value vold, value vnew)

« Compare the value stored in the pointer p with value vo/d, if they are
equal, try to change p’s value to vnew. If successful, return true.
Otherwise, return false.

« Test—-and-set (TAS):
« bool TAS(bool* p)

« Determine if the Boolean value stored at p is false, if so, try to set it
to true. If successful, return true. Otherwise, return false.

* Fetch-and-add (FAA):
* integer FAA(integer* p)
« Add integer p’s value by 1, and return the old value

20

Atomic primitives (Lecture 2)

« Use CAS to implement reduce

 Relatively better performance
« Guarantee to proceed

* Implemented by hardware
(relatively faster, bad in this case)

« Main challenge:

direct reduce(A, n) {
parallel for (i=0;i<n;i++) {
old = sum;

while (!CAS(&sum, old, old+a[i]))

old = sum;

}

return sum;

}

.

Implementations are racy, still hard to debug!

21

Deterministic
Parallelism

High-level idea

* Some additional restrictions, but weaker than race-free

A parallel algorithm can be racy, but the parallel
execution must match the sequential execution

* When debugging:
 First guarantee the sequential execution is correct

* Then check if the parallel execution is the same
« E.g., printing out all intermediate states

23

Random Permutation

Random Permutation

flalelg|hjc|d|Db

- Generating random permutation is a fundamental building
block in parallel algorithms

« But for decades, we don’t know how to randomly permute
elements in parallel efficiently both theoretically and
pratically

Sequential Random Permutation [Durstenfeld64, Knuth69]

UTISHUTLEGL, 1)
fori<ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 7 3

H=|1|1|2|4[2|3|4]|2

A= |a|b|c|d|je|f|lg|h

R

Sequential Random Permutation [Durstenfeld64, Knuth69]

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[H[1]], A[i])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a|b|c|d|e | ftT|g]lh

N~

Sequential Random Permutation [Durstenfeld64, Knuth69]

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a h|jc|d|le|fT|g]|b

Sequential Random Permutation [Durstenfeld64, Knuth69]

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a h|lc|d|e|fT|g]|b

"~

Sequential Random Permutation [Durstenfeld64, Knuth69]

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= a|lh|jc|gle| T |d|Db

Sequential Random Permutation [Durstenfeld64, Knuth69]

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a|lh|jc|gle| T |d|Db

ALV LN

Sequential Random Permutation [Durstenfeld64, Knuth69]

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |t |laje|lg|/h|c|d]|Db

Can this simple sequential algorithm be parallelized?

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[H[1]], A[i])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a|b|c|d|e | ft|g]lh

A o

Can this simple sequential algorithm be parallelized?

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[H[1]], A[i])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a|b|c|d|e | ft|g]lh

Can this simple sequential algorithm be parallelized?

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a | h|ig|ft|le|jc|d]|Db

Which swaps cannot run in parallel?

KNUTHSHUFFLE(A, H)
fori < ntoido
swap(A[H[1]], Al1])

lterate 1 2 3 4 5 6 !

H= 111242 3|4

A= |a | blc|d|e| f]|g

\NANR—

Which swaps cannot run in parallel?

KNUTHSHUFFLE(A, H)
fori < ntoido

swap(A[H[1]], A[i])

lterate 1 2 3 4 5 6 ! 8

H= 111242 |3|4 |2

A= |a|b|c|d|e | ft|g]lh

S

A simple parallel algorithm

e 1 2 2 a4 < s 7 g |whileswapsunfinished do

par-for each swap (i, H[1]) do
if no other swapstoiand

A= alblcld el flgl h 11s the last swap to H[1]

RANK J process the swap

pack the unfinished swaps

H= 11121423 4|2

A simple parallel algorithm

e 1 2 2 a4 < s 7 g |whileswapsunfinished do

par-for each swap (i, H[1]) do
if no other swapstoiand

A= alblcld el flgl h 11s the last swap to H[1]

RANK J process the swap

pack the unfinished swaps

H= 11121423 4|2

A simple parallel algorithm

e 1 o s 4 ¢ s 7 s |whileswapsunfinished do
parafor each swap (i1, H[1]) do
R[1] € max(R[1], 1)

a-Talolclalelilaln R[H[i]] ¢ max(R[H]], i)
R AN J parafor each swap (i, H[1]) do
if R[1]=1and R[HI[i]] =1
A= |a|b|c|d|e|f|g]|h swap(A[H[1]], Al1])

M pack the swaps

The first round

lterate

1

1 2141213142
a c|d|e|f|glh
2 6| /75678

while swaps unfinished do

parafor each swap (i1, H[1]) do
R[i] € max(R][i], 1)
R[HI1]] € max(R[H]1]], 1)

parafor each swap (i1, H[1]) do
if R[i] =iand R[H[i]] =1

swap(A[H[1]], A[1])
pack the swaps

The first round

lterate

H =

A =

1

2

3

4

5

1

1

2

A

2

while swaps unfinished do

parafor each swap (i1, H[1]) do
R[i] € max(R][i], 1)
R[HI1]] € max(R[H]1]], 1)

parafor each swap (i1, H[1]) do
if R[i] =iand R[H[i]] =1

swap(A[H[1]], A[1])
pack the swaps

Example of Deterministic Parallelism

* Not race-free (atomic updates needed)

 Relative ordering of the swaps is consistent with sequential execution

« When debugging, first check the sequential execution, then check if the
destinations of the swaps are the same in the parallel execution

« Execution is “deterministic”
« Output is always the same for different executions
* Input/output of each operation is always the same for different executions

« Determinism is supported by “priority updates”

43

Work-depth analysis for random permutation

« The number of rounds is ©(logn) w.h.p.
« Very simple proof

 This algorithm uses 0(n) work and O0(logn) span w.h.p., and
is optimal under certain assumptions

« Good performance in practice

Good practical performance

Times for random permutation on 1 billion elements

1000 ¢ 1
/UT C
©
O - |
3
@ 100 p-oeee E
@ - T 3
o S
E - T
8 10 e E
[o T e]
= parallelRandPerm ----------
s serialRandPerm

1 | | | | | |
1) 4 8 16 3240 40h

Number of threads

« Good performance in practice
« Can outperform the sequential algorithm on 4 cores
« 8.5x faster than sequential on 40 cores
« Almost perfect self-relative speedup (35-40x)

Many sequential iterative algorithms are already parallel

« Random permutation (Knuth shuffle) sobais, manuscript
e List contraction [sopai1s, manuscript]

 Tree contraction [sopAis, manuscript]

« Comparison sort [spaaieal

* Incremental convex hull [spaaiea;

* Incremental Delaunay triangulation (spaaisa;
 Strongly connected component [spaaieal

« Least-element lists spaaisal

ORONONORONONO

Many sequential iterative algorithms are already parallel

« Random permutation (Knuth shuffle) sobais, manuscript
e List contraction [sopai1s, manuscript]
 Tree contraction [sopAis, manuscript]
« Comparison sort [spaaieal Round 2
* Incremental convex hull [spaaiea;

* Incremental Delaunay triangulation (spaaisa;

 Strongly connected component [spaaieal Round 4
« Least-element lists spaaisal

Round 1

Round 3

Many sequential iterative algorithms are already parallel

« Random permutation (Knuth shuffle) sobais, manuscript
e List contraction [sopais, manuscript]
* Tree contraction [sopais, manuscript]

» Comparison sort [spaaieal O(logn)
rounds w.h.p.
* Incremental convex hull (spaaieal for all these

 Incremental Delaunay triangulation ;spa Problems
 Strongly connected component [spaaieal
« Least-element lists ispaaisa)

Simple, efficient both theoretically and practically

Determinacy races

 Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

direct reduce(A, n) {
parallel for (i=0;i<2;i++)
sum = sum + a[i];
return sum;

} 7

return sum

ol

Types of races

« Suppose that instruction A and instruction B both access a
location X, and suppose that A||B (A is parallel to B).

A B RaceType

Read Read No race

Read Write Read race
Write Read Read race
Write Write Write race

« Two sections of code are independent if they have no
determinacy races between them.

52

Avoiding races

* Iterations of a parallel_for loop should be independent

- Between two in_parallel tasks, the code of the two calls should
be independent, including code executed by further in_parallel
tasks

53

Benefit of being race-free

« Scheduling is still unknown
 Relative ordering for operations is still unknown

« However, the computed value of each instruction is
deterministic! This is easy to debug and reason.
« Check the correctness of the sequential execution
« Check if the parallel execution is the same as the sequential one

o4

Atomic primitives (Lecture 2)
« Compare-and-swap (CAS):

« bool CAS(value* p, value vold, value vnew)

« Compare the value stored in the pointer p with value vo/d, if they are
equal, try to change p’s value to vnew. If successful, return true.
Otherwise, return false.

« Test—-and-set (TAS):
« bool TAS(bool p)

« Determine if the Boolean value stored at p is false, if so, try to set it
to true. If successful, return true. Otherwise, return false.

* Fetch-and-add (FAA):
* integer FAA(integer* p)
« Add integer p’s value by 1, and return the old value

55

Deterministic Parallelism

* Not race-free (atomic updates needed)

 Relative ordering of the operations is consistent with sequential
execution

« When debugging, first check the sequential execution, then check if the
destinations of the swaps are the same in the parallel execution

« Execution is “deterministic”
« Output is always the same for different executions
« Input/output of each operation is always the same for different executions

« Determinism is supported by “priority updates”

56

Determinism is transitive

« If all subcomponents in an algorithm are race-free, then this
algorithm is race-free

* If all subcomponents in an algorithm are deterministic, then
this algorithm is deterministic

¥

Parallel thinking

« When taking CS 141, 218 (classic algorithm courses) or reading CLRS, an
algorithm is a list of operations

* Quicksort?

« Mergesort?

« Red-black tree?
 Suffix-tree?

« Algorithms become complicated in the parallel setting, so this is no
longer a good abstraction

58

Parallel thinking

« Consider subroutines as primitives / functions / building blocks. An
algorithm is the combination of a set of subroutines

« Quicksort: find a pivot, apply partition (rely on filter (rely on scan (rely
on reduce))), then recurse

« Mergesort: first solve two subproblems, then use parallel merge
« Red-black tree: don’t use RB-tree, use P-tree that is based on join
 Suffix-tree: design a parallel primitive to merge two trees

« Often use divide-and-conquer or reduce or similar techniques for
inductively solving the subproblems with smaller sizes

« Conceptually simpler to understand
* Properties are transitive (race-free, deterministic, persistence, etc.)

59

Software Crisis

* In 1960s, programming was in assembly language

start:

mov sstart ,8rls
| mov Sl”,‘!’lﬁ
il loop:

mov Srl5,%rl14 for (int i = 1; i <=V - 1; i++) {
B . for (int j = 9; j < E; j++) {
Pind out 11 index 1 int u = gr‘aph—}edge[j].sr‘(:;

mov %rld,?raA int v = graph->edge[j].dest;

mov 90, %rdx

int weight = graph->edge[]j].weight;
if (dist[u] != INT MAX &R dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;

1 div. %rl2

’ / :';:.._' e (=1 ile.ji

mov Srdx,%rl3 ¥
add $0x30,%rl3 ¥
¥ mov %rl3b,msg+
Check 1f there 15 a ter
cmp $0,%rax
je noTens

60

Software Crisis

* In 1980s, programmers realized that it is almost impossible to
writing very long C code

for (int 1 = 1; i <=V - 1; i++) {
for (int j = 9; j < E; j++) {
int u = graph->edge[j].src;
int v = graph->edge[j].dest;
int weight = graph->edge[]j].weight;
if (dist[u] != INT MAX &R dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;

* New concept of OOP and programming languages

61

New Software Crisis caused by Parallelism

 Algorithms and programming become even more
sophisticated

 Non-determinism can be a huge problem even for very simple
applications
« Hard to debug
« Hard to guarantee correctness

« Use ideas from PL and algorithm research

« Functional programming
« Race, deterministic parallelism

62

Homework 2
« HW 2 out tonight

 Due Feb 19th - You have 3 weeks

63

