
Parallel Algorithms:
Theory and Practice

Deterministic
Parallelism

CS260 – Lecture 5

Yan Gu

Last week - Sorting algorithms

• Parallel quicksort
• Key: partition elements based on the pivot in parallel

• Parallel filtering/packing algorithm – 𝑂(𝑛) work and 𝑂(log 𝑛) depth

• 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth

• Parallel mergesort
• Key: merge two sorted arrays into another sorted array in parallel

• Parallel merging algorithm – 𝑂(𝑛) work and 𝑂(log 𝑛) depth

• 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth

2

Last week - Sorting algorithms

• Parallel selection sort
• 𝑂(log 𝑛) depth but 𝑂(𝑛2) work

• List ranking – random mate
• Determine in a linked list, the rank of each node

• Using randomization to filter out (on expectation) ¼ nodes in each
round

• Reduce problem size and recursively apply the algorithm

• Expand the list back and restore the information

3

Parallel Algorithms:
Theory and Practice

Deterministic
Parallelism

CS260 – Lecture 5

Yan Gu

CS260:
Parallel
algorithms
Lecture 5

5

Race

Deterministic
Parallelism

Some materials are from 6.172 Performance Engineering

of Software Systems, credits to Charles Leiserson

Why is parallelism “hard”?

6

Theory Practice

Non-determinism!!

Why is parallelism “hard”?

7

• Scheduling is unknown

• Relative ordering for operations is unknown

• Hard to debug
• Bugs can be non-deterministic!

• Bugs can be different if you rerun the code

• Referred to as race hazard / condition

Non-determinism!!

Race hazard can cause severe consequences

8

• Therac-25 radiation therapy
machine — killed 3 people and
seriously injured many more
(between 1985 and 1987).
https://en.wikipedia.org/wiki/Therac-25

• North American Blackout of
2003 — left 50 million people
without power for up to a week.
https://en.wikipedia.org/wiki/Northeast_blackout_of_2
003

• Race bugs are notoriously difficult to
discover by conventional testing!

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

9

Race

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

10

direct_reduce(A, n) {
parallel_for (i=0;i<n;i++)

sum = sum + a[i];
return sum;

}

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

11

sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

12

sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

1

2

3

4

5

6

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

13

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}

sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

1

2

5

3

4

6

Types of Races

• Suppose that instruction A and instruction B both access a
location x, and suppose that A∥B (A is parallel to B).

• Two sections of code are independent if they have no
determinacy races between them.

14

A B Race Type

Read Read No race

Read Write Read race

Write Read Read race

Write Write Write race

Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should
be independent, including code executed by further in_parallel
tasks

15

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should
be independent, including code executed by further in_parallel
tasks

16

reduce(A, n) {
if (n == 1) return A[0];
if (n is odd) n=n+1;
parallel_for i=1 to n/2
B[i]=A[2i]+A[2i+1];

return reduce(B, n/2);
}

Benefit of being race-free

• Scheduling is still unknown

• Relative ordering for operations is still unknown

• However, the computed value of each instruction is
deterministic! This is easy to debug.
• Check the correctness of the sequential execution

• Check if the parallel execution is the same as the sequential one

• Race detection: given a DAG, show all the races

• False sharing: nasty related effect
• E.g., updating x.a and x.b in parallel is safe

but can be inefficient

17

Struct {
char a, b;

} x;

This is not the end…

• Consider a hash table

• A key-value pair is inserted to a random location based on the
key

• No guarantee that no two keys will not be inserted to the
same location

18

Lock-based solution (critical section)

• Lock the memory location for each write

• A correct solution

• Very poor performance
• No guarantee for execute order

• Bad scalability (worse
performance for more cores)

• Risk of no progress

• Need better solutions

19

direct_reduce(A, n) {
parallel_for (i=0;i<n;i++) {

getLock(&sum);
sum = sum + a[i];
releaseLock(&sum);

}
return sum;

}

Atomic primitives (Lecture 2)

• Compare-and-swap (CAS):
• bool CAS(value* p, value vold, value vnew)

• Compare the value stored in the pointer 𝑝 with value vold, if they are
equal, try to change 𝑝’s value to vnew. If successful, return true.
Otherwise, return false.

• Test-and-set (TAS):
• bool TAS(bool* p)

• Determine if the Boolean value stored at 𝑝 is false, if so, try to set it
to true. If successful, return true. Otherwise, return false.

• Fetch-and-add (FAA):
• integer FAA(integer* p)

• Add integer 𝑝’s value by 1, and return the old value

20

Atomic primitives (Lecture 2)

• Use CAS to implement reduce

• Relatively better performance
• Guarantee to proceed

• Implemented by hardware
(relatively faster, bad in this case)

• Main challenge:

21

direct_reduce(A, n) {
parallel_for (i=0;i<n;i++) {

old = sum;
while (!CAS(&sum, old, old+a[i]))

old = sum;
}

return sum;
}

Implementations are racy, still hard to debug!

22

Deterministic
Parallelism

High-level idea

• Some additional restrictions, but weaker than race-free

• A parallel algorithm can be racy, but the parallel
execution must match the sequential execution

•When debugging:
• First guarantee the sequential execution is correct

• Then check if the parallel execution is the same
• E.g., printing out all intermediate states

23

a b c d e f g h

24

Random Permutation

gf a e h c d b

• Generating random permutation is a fundamental building
block in parallel algorithms

• But for decades, we don’t know how to randomly permute
elements in parallel efficiently both theoretically and
pratically

Random Permutation

25

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a b c d e f g h

H[i] is randomly drawn
between 1 and i

26

Sequential Random Permutation [Durstenfeld64, Knuth69]

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a c d e f g hb

Sequential Random Permutation [Durstenfeld64, Knuth69]

27

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a c d e f g bh

28

Sequential Random Permutation [Durstenfeld64, Knuth69]

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a h c e f g bd

29

Sequential Random Permutation [Durstenfeld64, Knuth69]

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a h c e f d bg

30

Sequential Random Permutation [Durstenfeld64, Knuth69]

g

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a h c e f d b

Sequential Random Permutation [Durstenfeld64, Knuth69]

31

g

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

f a e h c d b

32

Sequential Random Permutation [Durstenfeld64, Knuth69]

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a b c d e f g h

33

Can this simple sequential algorithm be parallelized?

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a b c d e f g h

Can this simple sequential algorithm be parallelized?

34

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a h g f e c d b

35

Can this simple sequential algorithm be parallelized?

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a b c d e f g h

36

Which swaps cannot run in parallel?

H =

A =

1 2 3 4 5Iterate 6 7 8

KNUTHSHUFFLE(A, H)
for i n to 1 do

swap(A[H[i]], A[i])

1 1 2 4 2 3 4 2

a b c d e f g h

Which swaps cannot run in parallel?

37

A = a b c d e f g h

A simple parallel algorithm

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a b c d e f g h

while swaps unfinished do
par-for each swap (i, H[i]) do

if no other swaps to i and
i is the last swap to H[i]

process the swap
pack the unfinished swaps

38

A = a b c d e f g h

A simple parallel algorithm

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a b c d e f g h

while swaps unfinished do
par-for each swap (i, H[i]) do

if no other swaps to i and
i is the last swap to H[i]

process the swap
pack the unfinished swaps

39

A = a b c d e f g h

A simple parallel algorithm

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a b c d e f g h

while swaps unfinished do
parafor each swap (i, H[i]) do

R[i] max(R[i], i)
R[H[i]] max(R[H[i]], i)

parafor each swap (i, H[i]) do
if R[i] = i and R[H[i]] = i

swap(A[H[i]], A[i])
pack the swaps

40

R = 2 8 6 7 5 6 7 8

The first round

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a b c d e f g h

while swaps unfinished do
parafor each swap (i, H[i]) do

R[i] max(R[i], i)
R[H[i]] max(R[H[i]], i)

parafor each swap (i, H[i]) do
if R[i] = i and R[H[i]] = i

swap(A[H[i]], A[i])
pack the swaps

41

The first round

H =

A =

1 2 3 4 5Iterate 6 7 8

1 1 2 4 2 3 4 2

a h g f e d c b

while swaps unfinished do
parafor each swap (i, H[i]) do

R[i] max(R[i], i)
R[H[i]] max(R[H[i]], i)

parafor each swap (i, H[i]) do
if R[i] = i and R[H[i]] = i

swap(A[H[i]], A[i])
pack the swaps

42

Example of Deterministic Parallelism

• Not race-free (atomic updates needed)

• Relative ordering of the swaps is consistent with sequential execution
• When debugging, first check the sequential execution, then check if the

destinations of the swaps are the same in the parallel execution

• Execution is “deterministic”
• Output is always the same for different executions

• Input/output of each operation is always the same for different executions

• Determinism is supported by “priority updates”

43

• The number of rounds is Θ(log 𝑛) w.h.p.
• Very simple proof

• This algorithm uses 𝑂 𝑛 work and 𝑂 log 𝑛 span w.h.p., and
is optimal under certain assumptions

• Good performance in practice

Work-depth analysis for random permutation

44

• Good performance in practice
• Can outperform the sequential algorithm on 4 cores

• 8.5x faster than sequential on 40 cores

• Almost perfect self-relative speedup (35-40x)

Good practical performance

45

• Random permutation (Knuth shuffle) [SODA15, manuscript]

• List contraction [SODA15, manuscript]

• Tree contraction [SODA15, manuscript]

• Comparison sort [SPAA16a]

• Incremental convex hull [SPAA16a]

• Incremental Delaunay triangulation [SPAA16a]

• Strongly connected component [SPAA16a]

• Least-element lists [SPAA16a]

Many sequential iterative algorithms are already parallel

0

2

3

4

6

5

1

47

• Random permutation (Knuth shuffle) [SODA15, manuscript]

• List contraction [SODA15, manuscript]

• Tree contraction [SODA15, manuscript]

• Comparison sort [SPAA16a]

• Incremental convex hull [SPAA16a]

• Incremental Delaunay triangulation [SPAA16a]

• Strongly connected component [SPAA16a]

• Least-element lists [SPAA16a]

Many sequential iterative algorithms are already parallel

0

2

3 4

6

5

1

48

Round 1

Round 2

Round 3

Round 4

• Random permutation (Knuth shuffle) [SODA15, manuscript]

• List contraction [SODA15, manuscript]

• Tree contraction [SODA15, manuscript]

• Comparison sort [SPAA16a]

• Incremental convex hull [SPAA16a]

• Incremental Delaunay triangulation [SPAA16a]

• Strongly connected component [SPAA16a]

• Least-element lists [SPAA16a]

If the required
number of rounds
is small (relative to

input size), then
there is lots of
parallelism!

Many sequential iterative algorithms are already parallel

𝑂 log 𝑛
rounds w.h.p.
for all these
problems!

Simple, efficient both theoretically and practically

49

0

2

3 4

6

5

1

50

Wrap up

Determinacy races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

51

sum = 0

r0 = sum

r0 += a[0]

sum = r0

r1 = sum

r1 += a[1]

sum = r1

return sum

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + a[i];
return sum;

}

Types of races

• Suppose that instruction A and instruction B both access a
location x, and suppose that A∥B (A is parallel to B).

• Two sections of code are independent if they have no
determinacy races between them.

52

A B Race Type

Read Read No race

Read Write Read race

Write Read Read race

Write Write Write race

Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the two calls should
be independent, including code executed by further in_parallel
tasks

53

Benefit of being race-free

• Scheduling is still unknown

• Relative ordering for operations is still unknown

• However, the computed value of each instruction is
deterministic! This is easy to debug and reason.
• Check the correctness of the sequential execution

• Check if the parallel execution is the same as the sequential one

54

Atomic primitives (Lecture 2)

• Compare-and-swap (CAS):
• bool CAS(value* p, value vold, value vnew)

• Compare the value stored in the pointer 𝑝 with value vold, if they are
equal, try to change 𝑝’s value to vnew. If successful, return true.
Otherwise, return false.

• Test-and-set (TAS):
• bool TAS(bool p)

• Determine if the Boolean value stored at 𝑝 is false, if so, try to set it
to true. If successful, return true. Otherwise, return false.

• Fetch-and-add (FAA):
• integer FAA(integer* p)

• Add integer 𝑝’s value by 1, and return the old value

55

Deterministic Parallelism

• Not race-free (atomic updates needed)

• Relative ordering of the operations is consistent with sequential
execution
• When debugging, first check the sequential execution, then check if the

destinations of the swaps are the same in the parallel execution

• Execution is “deterministic”
• Output is always the same for different executions

• Input/output of each operation is always the same for different executions

• Determinism is supported by “priority updates”

56

Determinism is transitive

• If all subcomponents in an algorithm are race-free, then this
algorithm is race-free

• If all subcomponents in an algorithm are deterministic, then
this algorithm is deterministic

57

Parallel thinking

• When taking CS 141, 218 (classic algorithm courses) or reading CLRS, an
algorithm is a list of operations

• Quicksort?

• Mergesort?

• Red-black tree? (teach splay tree or treap)

• Suffix-tree? (don’t teach it in the courses)

• Algorithms become complicated in the parallel setting, so this is no
longer a good abstraction

58

Parallel thinking

• Consider subroutines as primitives / functions / building blocks. An
algorithm is the combination of a set of subroutines

• Quicksort: find a pivot, apply partition (rely on filter (rely on scan (rely
on reduce))), then recurse

• Mergesort: first solve two subproblems, then use parallel merge

• Red-black tree: don’t use RB-tree, use P-tree that is based on join

• Suffix-tree: design a parallel primitive to merge two trees

• Often use divide-and-conquer or reduce or similar techniques for
inductively solving the subproblems with smaller sizes

• Conceptually simpler to understand

• Properties are transitive (race-free, deterministic, persistence, etc.)

59

Software Crisis

• In 1960s, programming was in assembly language

60

Software Crisis

• In 1980s, programmers realized that it is almost impossible to
writing very long C code

• New concept of OOP and programming languages

61

New Software Crisis caused by Parallelism

• Algorithms and programming become even more
sophisticated

• Non-determinism can be a huge problem even for very simple
applications
• Hard to debug

• Hard to guarantee correctness

• Use ideas from PL and algorithm research
• Functional programming

• Race, deterministic parallelism

62

Homework 2

• HW 2 out tonight

• Due Feb 19th – You have 3 weeks

63

