DISCUSSION CLASS WEEK 7

CS 141 F20




INTRO TO PALINDROME

= A word, phrase, or sequence that reads the same backward as forward

®  madam, 1991, 11,5,a,cc

= All strings of length |(one) is a palindrome



FUNCTION

bool isPalindrome(string str)
1 n = str.length

2 1i=1, j=n

3 while i < j

4 if str[i] != str[j]
5 return false
6 i++, j--

return true

" Time complexity??



GENERALIZED FUNCTION

bool isPalindrome(string str, int start, int end)

1 i = start, j = end

2 while i < j

3 if str[i] != str[j]
4 return false

5 i++, j--

return true

= Time complexity??



BUILDING PALINDROME

= madam is palindrome, then ada would be a palindrome too

= Opposite is true too.

= Adding same chars to both ends of a palindrome would still be a palindrome

= P is a palindrome, then aPa would be a palindrome too. (P is palindrome of length >=0)



PROBLEM DEFINITION

= Given a string, find the length of the longest palindrome
" madam =5
= babad = 3 (bab, aba)
" dbabad = 3 (bab, aba)
= cbbd = 2 (bb)
= a=|

" ac=1(ac)



NAIVE SOLUTION

" |terate over starting and ending position and check if it’s a palindrome

int longestPalindrome(String str)

n = str.length, ans =1
for 1 =1 to n
for j = i+1 to n
if (isPalindrome(str, i, j))
ans = max(ans, j-i+1)
return ans
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= Time complexity??
= Can we make things better?



A BETTER NAIVE SOLUTION

= [f we already found a palindrome of length x, we only would need to check for palindrome for length > x

int longestPalindrome(String str)

n = str.length, ans =1
for i =1 to n
for j = i+ans to n
if (isPalindrome(str, i, j))
ans = max(ans, j-i+1)
return ans
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BETTER IDEA??

= [f we know all the palindrome of size x, we can easily check for palindromes of x+2 with O(1)
= Know = Memorization

"  Finding answers of bigger palindrome easier with smaller palindrome. Bottom-up approach



FORMING DP

Base Cases
= All strings of length |(one) is a palindrome

= Let’s find all palindromes of length 2

Recurrence

® Let’s find palindromes of length x using palindromes of length x-2



MEMORIZATION

" How do we store the palindromes?

= 2d array signifying starting and ending points

= if (isPalindrome(str, i, j) == true) => mem[i][]j] = 1

= mem[x][y] = mem[x+1][y-1] & str[x] == str[y]



DP ALGORITHM

int longestPalindrome(string str)

1 n = str.length, ans =1

2 mem[n][n] = {@0}//2d array initialized
3 for i=1ton

4 mem[i][i] =1

5 for i =2 ton

6 if str[i]== str[i-1]

7 mem[i-1][i] = 1

8 for len = 3 to n

9 for 1 =1 to n

10 j =1+ len -1

11 if (str[i] == str[j] && mem[i+1][j-1])
12 mem[i][j] = 1

13 ans = len

return ans



= A graph G=(V,E) consists of vertices (V, |V|=n) and edges (E, |E|=m) that connect vertices together



TYPES OF GRAPHS

®  Directed and Undirected graphs

" Weighted and Unweighted graphs

= Connected graphs

= Bipartite graphs

= Acyclic graphs



UNDIRECTED GRAPHS

= No direction in edges
= An edge can be traversed in both ways

= E.g., Facebook friends, most roads, most flights




DIRECTED GRAPH

= Direction on edges .

= An edge can be traversed in one direction

= E.g., Twitter follows, code flow analysis




WEIGHTED GRAPH

= Vertices and/or edges can be assigned weights

" Weights can be cost, capacity, etc.

= E.g,road network, computer network
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For simplicity, most graph algorithms assume the graph is connected. Otherwise, we can run connectivity first,
and work on each component.

Disconnected
Graph

Connected
Graph




BIPARTITE GRAPH

= A graph where the vertices can be partitioned into two subsets:

= No edges within a subset and all the edges are between two subsets

= Usually, vertices in two subsets have different meanings

= E.g,students and courses, courses and classrooms, jobs and applicants

Bipartite Graph




s

Cyclic Graph Acyclic Graph  Directed Acyclic Graph (DAG)



GRAPH REPRESENTATIONS

= Adjacency matrix:

Use a 2D matrix ADJ of size n x n

If there is an edge between vertices a and b, ADJ[a][b]= wqa,» (for unweighted graphs ADJ[a][b]=1)

If there is not an edge between a and b, ADJ[a][b]=0
= Takes too much space (O(n?))
= Adjacency list:
= Create n singly linked lists, whose root nodes correspond to vertices in the graph

= Each linked list holds all neighboring vertices of the vertex represented by the root node



COMPRESSED SPARSE ROW

= Adjacency matrix stores unnecessary information: too sparse!!
=  We only need to know when there is an edge, we can infer the other case from non-existence of an edge

= |dea:
= Only store the existing edge information in an array Edges

®  Keep an extra array, Offset, which indicates which location to look in the Edges array for searching a specific vertex’s

neighbors
Vertex IDs I-_____ e a Q
Offset ‘0
(NENENCNERCNCACNCA o
8 9 5 1 5 3 2 4 3 5 6 | 2 4 4 '



GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
0 0 0 0 0 0

= Start from |
® Mark | as visited

" Next,add 2 and 5 to the queue (visit them next)

2345 l6
I 0 0 0 0 0



GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I 0 0 0 0 0

= Pick 2 (Pop 2 from queue)
= Mark 2 as visited

= Add 3 to the queue

2345 l6
I I 0 0 0 0




GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I 0 0 0 0

® Pick 5
® Mark 5 as visited

= Add 4 to the queue

2345 l6
I I 0 0 I 0
3 4



GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I 0 0 I 0

= Pick 3

® Mark 3 as visited

2345 l6
I I I 0 I 0
4



GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I I 0 I 0

= Pick 4
= Mark 4 as visited

= Add 6 to the queue

2345 l6
I I I I I 0
6



GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I I I I 0

= Pick 6
® Mark 6 as visited

= Queue is empty, we are done




GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
0 0 0 0 0 0

= Start from |
® Mark it as visited

® Put 5,2 in stack

2345 l6
I 0 0 0 0 0



GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I 0 0 0 0 0

= Visit 2 (Pop 2 from stack)
®  Mark it as visited

= Put 3 in stack

2345 l6
I I 0 0 0 0
3.5 |



GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I I 0 0 0 0

= Visit 3
®  Mark it as visited

= Put4in stack

2345 l6
I I I 0 0 0
405



GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I I I 0 0 0

= Visit 4
®  Mark it as visited

= Put 6 in stack

2345 l6
I I I I 0 0
6 s | |



GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I I I I 0 0

= Visit 6

® Mark it as visited

2345 l6
I I I I 0 I




GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

1 J2 /3 4 |5 |6
I I I I 0 I
® Visit 5

® Mark it as visited

= Stack is empty, we are done




QUESTIONS??



