DISCUSSION CLASS WEEK 7

CS 141 F20

INTRO TO PALINDROME

= A word, phrase, or sequence that reads the same backward as forward

® madam, 1991, 11,5,a,cc

= All strings of length |(one) is a palindrome

FUNCTION

bool isPalindrome(string str)
1 n = str.length

2 1i=1, j=n

3 while i < j

4 if str[i] != str[j]
5 return false
6 i++, j--

return true

" Time complexity??

GENERALIZED FUNCTION

bool isPalindrome(string str, int start, int end)

1 i = start, j = end

2 while i < j

3 if str[i] != str[j]
4 return false

5 i++, j--

return true

= Time complexity??

BUILDING PALINDROME

= madam is palindrome, then ada would be a palindrome too

= Opposite is true too.

= Adding same chars to both ends of a palindrome would still be a palindrome

= P is a palindrome, then aPa would be a palindrome too. (P is palindrome of length >=0)

PROBLEM DEFINITION

= Given a string, find the length of the longest palindrome
" madam =5
= babad = 3 (bab, aba)
" dbabad = 3 (bab, aba)
= cbbd = 2 (bb)
= a=|

" ac=1(ac)

NAIVE SOLUTION

" |terate over starting and ending position and check if it’s a palindrome

int longestPalindrome(String str)

n = str.length, ans =1
for 1 =1 to n
for j = i+1 to n
if (isPalindrome(str, i, j))
ans = max(ans, j-i+1)
return ans

vih WN B

= Time complexity??
= Can we make things better?

A BETTER NAIVE SOLUTION

= [f we already found a palindrome of length x, we only would need to check for palindrome for length > x

int longestPalindrome(String str)

n = str.length, ans =1
for i =1 to n
for j = i+ans to n
if (isPalindrome(str, i, j))
ans = max(ans, j-i+1)
return ans

viphwWNBR

BETTER IDEA??

= [f we know all the palindrome of size x, we can easily check for palindromes of x+2 with O(1)
= Know = Memorization

" Finding answers of bigger palindrome easier with smaller palindrome. Bottom-up approach

FORMING DP

Base Cases
= All strings of length |(one) is a palindrome

= Let’s find all palindromes of length 2

Recurrence

® Let’s find palindromes of length x using palindromes of length x-2

MEMORIZATION

" How do we store the palindromes?

= 2d array signifying starting and ending points

= if (isPalindrome(str, i, j) == true) => mem[i][]j] = 1

= mem[x][y] = mem[x+1][y-1] & str[x] == str[y]

DP ALGORITHM

int longestPalindrome(string str)

1 n = str.length, ans =1

2 mem[n][n] = {@0}//2d array initialized
3 for i=1ton

4 mem[i][i] =1

5 for i =2 ton

6 if str[i]== str[i-1]

7 mem[i-1][i] = 1

8 for len = 3 to n

9 for 1 =1 to n

10 j =1+ len -1

11 if (str[i] == str[j] && mem[i+1][j-1])
12 mem[i][j] = 1

13 ans = len

return ans

= A graph G=(V,E) consists of vertices (V, |V|=n) and edges (E, |E|=m) that connect vertices together

TYPES OF GRAPHS

® Directed and Undirected graphs

" Weighted and Unweighted graphs

= Connected graphs

= Bipartite graphs

= Acyclic graphs

UNDIRECTED GRAPHS

= No direction in edges
= An edge can be traversed in both ways

= E.g., Facebook friends, most roads, most flights

DIRECTED GRAPH

= Direction on edges .

= An edge can be traversed in one direction

= E.g., Twitter follows, code flow analysis

WEIGHTED GRAPH

= Vertices and/or edges can be assigned weights

" Weights can be cost, capacity, etc.

= E.g,road network, computer network

(D—+2 (=21,

@ /4 @ 14 /4 29

Unweighted Graph Weighted Graph

For simplicity, most graph algorithms assume the graph is connected. Otherwise, we can run connectivity first,
and work on each component.

Disconnected
Graph

Connected
Graph

BIPARTITE GRAPH

= A graph where the vertices can be partitioned into two subsets:

= No edges within a subset and all the edges are between two subsets

= Usually, vertices in two subsets have different meanings

= E.g,students and courses, courses and classrooms, jobs and applicants

Bipartite Graph

s

Cyclic Graph Acyclic Graph Directed Acyclic Graph (DAG)

GRAPH REPRESENTATIONS

= Adjacency matrix:

Use a 2D matrix ADJ of size n x n

If there is an edge between vertices a and b, ADJ[a][b]= wqa,» (for unweighted graphs ADJ[a][b]=1)

If there is not an edge between a and b, ADJ[a][b]=0
= Takes too much space (O(n?))
= Adjacency list:
= Create n singly linked lists, whose root nodes correspond to vertices in the graph

= Each linked list holds all neighboring vertices of the vertex represented by the root node

COMPRESSED SPARSE ROW

= Adjacency matrix stores unnecessary information: too sparse!!
= We only need to know when there is an edge, we can infer the other case from non-existence of an edge

= |dea:
= Only store the existing edge information in an array Edges

® Keep an extra array, Offset, which indicates which location to look in the Edges array for searching a specific vertex’s

neighbors
Vertex IDs I-_____ e a Q
Offset ‘0
(NENENCNERCNCACNCA o
8 9 5 1 5 3 2 4 3 5 6 | 2 4 4 '

GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
0 0 0 0 0 0

= Start from |
® Mark | as visited

" Next,add 2 and 5 to the queue (visit them next)

2345 l6
I 0 0 0 0 0

GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I 0 0 0 0 0

= Pick 2 (Pop 2 from queue)
= Mark 2 as visited

= Add 3 to the queue

2345 l6
I I 0 0 0 0

GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I 0 0 0 0

® Pick 5
® Mark 5 as visited

= Add 4 to the queue

2345 l6
I I 0 0 I 0
3 4

GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I 0 0 I 0

= Pick 3

® Mark 3 as visited

2345 l6
I I I 0 I 0
4

GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I I 0 I 0

= Pick 4
= Mark 4 as visited

= Add 6 to the queue

2345 l6
I I I I I 0
6

GRAPH TRAVERSALS: BREADTH FIRST SEARCH (BFS)

2345 l6
I I I I I 0

= Pick 6
® Mark 6 as visited

= Queue is empty, we are done

GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
0 0 0 0 0 0

= Start from |
® Mark it as visited

® Put 5,2 in stack

2345 l6
I 0 0 0 0 0

GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I 0 0 0 0 0

= Visit 2 (Pop 2 from stack)
® Mark it as visited

= Put 3 in stack

2345 l6
I I 0 0 0 0
3.5 |

GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I I 0 0 0 0

= Visit 3
® Mark it as visited

= Put4in stack

2345 l6
I I I 0 0 0
405

GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I I I 0 0 0

= Visit 4
® Mark it as visited

= Put 6 in stack

2345 l6
I I I I 0 0
6 s | |

GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

2345 l6
I I I I 0 0

= Visit 6

® Mark it as visited

2345 l6
I I I I 0 I

GRAPH TRAVERSALS: DEPTH FIRST SEARCH (DFS)

1 J2 /3 4 |5 |6
I I I I 0 I
® Visit 5

® Mark it as visited

= Stack is empty, we are done

QUESTIONS??

