CS 141 F20
DISCUSSION WEEK 5

Dynamic programming
Midterm problems

MIDTERM PROBLEM 3B

(B): It first solves three subproblems of size n — 1, then combines the solutions of the subproblems in
constant time.

T(n)=3T(n—-—1)+6(1)

Recurrence tree:

There is ©(1) = ¢ at the top. There are 3 nodes in the level below it, each with ¢ cost, thus 3¢ in total.
In the level below that, it would be 9ec.

Size of n decreases by 1 at each level and number of node multiples by 3. There would be a total of n

levels. At the lowest level, there would be 3"~ !, thus ¢ * 3" 7! cost, at the lowest level. (Recall: n!" term
of GP series is ar™™1).

Total cost of the tree = ¢ + 3¢ + 9¢ +

3" — 1 3" — 1

MIDTERM PROBLEM 3B

(B): It first solves two subproblems of size n — 2, then combines the solutions of the subproblems in constant
time.

T'(n)=2T(n—-2)+6(1)

O(1)=c =2"2T(1) + {2/ "1 4+ .24 1)
T(1) =c |
" 271,".’ -1
r Y ol T o R e —
T(n)=2{2T'(n—4)+c} +¢ 2 -1

= 4T(.n - 4' + ({2 T 1} =cx*x2M* 4+ = {')”."- — 1}

= 4{2T(n — 6) + ¢} + ¢{2 + 1} —cs 22 4 a2/
= 8T(n—6) + {22 + 2+ 1} =ca2M3 1 —c
=2T(n—2%i) + {21+ .2+ 1} — 9(27/2)

n—2%1=1
=2*x1=n-—1
=t=(n—1)/2x=n/2

MIDTERM PROBLEM 4

Proof for optimal substructure

S is the set of all the students. Let B be the optimal solution for problem with S students. Student a
and b travel in the same boat. S’ is a subset of students, where S = S’ J{a.b}. B’ would be the optimal
solution to the subproblem $’'. B = B + 1.

Lets assume that B’ is not the optimal solution to the problem S’. Then there would be another solution
B". such that B"” < B’, which would be optimal for S’ . Now. if we add the boat with {a. b} to the solution
of B”. then we will get B” +1 for S. Now. B" +1 < B'"+1=> B” +1 < B. Thus we got a more optimal
solution, which is a contradiction. Thus, our assumption is wrong. Optimal substructure is thus proved.

MIDTERM PROBLEM 4

Proof for greedy choice

Assume that we have an optimal solution to this problem where we do not pair student ¢ with student
7. Instead, we pair student i with student k.

There are two possible scenarios here. First one is the scenario where £ = —1. In that case, by looking
at the rowling algorithm, we know that student j is the heaviest student whose weight is less than T — wy;
(7 = —1 if no such student exists). If 7 and &k are both equal to -1, then the rowling algorithm’s solution and

the optimal solution are identical. Otherwise, rowling algorithm gives us a better solution than the alleged
optimal solution in our assumption and we reach a contradiction.

Second scenario is when & # —1. Since student j is the heaviest student with w; < T — w;, if we take
student & out of the boat and put student j in the boat instead, we will utilize the capacity of the boat
more efhiciently (T > w; +w; > w; + wy). This contradicts our starting assumption since we found a better
solution.[]

MIDTERM PROBLEM 5

= CLRS 9.2

MIDTERM PROBLEM 6

" Incorrect assignment of 0/

= After forming the tree
= Heavier branches should be assigned |.

= Lighter branches should be assigned 0.

DYNAMIC PROGRAMING

A simplified case

* Overall weight limit: 8 Ib
* Item 1: 51b, $150

* [tem 2: 4 1b, $100

* Item 3: 1 1b, $10

 Solution 1: Item 1 + Item 3 * 3, value: $180
 Solution 2: Item 2 * 2, value: $200

* Greedy strategy does not provide the optimal solution
* A naive solution? Try all possibilities!

A naive algorithm

int suitcase(int leftWeight) {
int curBest = 0;
foreach item (weight, value)
if (leftWeight >= weight)
curBest = max(curBest, suitcase(leftWeight - Weight) + value);
return curBest;

}

answer = suitcase(50);

Execution Recurrence Tree

Assume we
have for items
with weights
1,2,3,4, and
the overall
weight IS 5

A DP algorithm

int suitcase(int leftWeight) {
if (ans[leftWeight] != -1) return ans[leftWeight];
int curBest = 0;
foreach item (weight, value)
if (leftWeight >= weight)
curBest = max(curBest, suitcase(leftWeight - Weight) + value);
return ans[leftWeight] = curBest;

}

int ans[50] ={-1, ..., -1};
answer = suitcase(50);

13

Recursive Solution

* Define s; as the maximum value you can get for a total weight of i
* We can express s; as the following recurrence:

The best value with

i —w; weight

r \0

Si = max- max {Si—w' + U]} | [> W;j
k(wj' vj) is an item J

\ Trying all
* Final answer is s, possible items

ISSUEWITH CURRENT APPROACH

Can we pick an item more than once!

If so, do we need to change the solutions discussed earlier?

If we use just S, it is not possible to know if an item has been used before

Let’s also keep track of the items.

Let S;; be the optimal value for total max weight of i using only first j item

HOW DO WE GET S, ?

= There are 2 options for getting the optimal value for weight i and for first j
items:

= Item jis picked:S ;; =S, ;. tV

= Item jis not picked:S ;; =S,

®= Which one is the best??

= We pick the maximum of both

Another way to state the relationship of s; ;

* The recurrence:

Si,j — IMax

* The boundary: s; , = 0

* The recurrence cannot be circular

* You can not have states a, b, and ¢ that computing a relied on b, b on c,
and con a

EXAMPLE

= Assume we have one copy of each of these items {($5,2Ibs),($4,11bs),($3, Sij—1
|bs)} and capacity W=3. Sij T MA s iy > w
]l

= Let us fill the dynamic programming table (Caclulate all Sg; jy fori <
3(which is W)and j < 3 (total number of items))

0

0
5
5
7

o O O O
A A O O
O VW U1 O

