CS 141 F20 DISCUSSION WEEK 5

(B): It first solves three subproblems of size n - 1, then combines the solutions of the subproblems in constant time.

 $T(n) = 3T(n-1) + \Theta(1)$

Recurrence tree:

There is $\Theta(1) = c$ at the top. There are 3 nodes in the level below it, each with $c \cos t$, thus 3c in total. In the level below that, it would be 9c.

Size of n decreases by 1 at each level and number of node multiples by 3. There would be a total of n levels. At the lowest level, there would be 3^{n-1} , thus $c * 3^{n-1}$ cost, at the lowest level. (**Recall:** n^{th} term of GP series is ar^{n-1}).

Total cost of the tree = $c + 3c + 9c + \dots + c * 3^{n-1}$

$$= c * \frac{3^n - 1}{3 - 1} = c * \frac{3^n - 1}{2} = \Theta(3^n)$$

 $T(n) = 2T(n-2) + \Theta(1)$

(B): It first solves two subproblems of size n-2, then combines the solutions of the subproblems in constant time.

$$\begin{array}{l} \Theta(1) = c \\ T(1) = c \end{array} = 2^{n/2}T(1) + c\{2^{n/2} - 1 + \dots 2 + 1\} \\ = 2\{2T(n-4) + c\} + c \\ = 4T(n-4) + c\{2 + 1\} \\ = 4\{2T(n-6) + c\} + c\{2 + 1\} \\ = 4\{2T(n-6) + c\} + c\{2 + 1\} \\ = 8T(n-6) + c\{2^2 + 2 + 1\} \\ = 2^iT(n-2*i) + c\{2^{i-1} + \dots 2 + 1\} \end{array}$$

$$\begin{array}{l} = 2^{n/2}T(1) + c\{2^{n/2} - 1 + \dots 2 + 1\} \\ = c*2^{n/2} + c*2^{n/2} - 1 \\ = c*2^{n/2} + c*2^{n/2} + 1 \\ = c*2^{n/2} + 1$$

Proof for optimal substructure

S is the set of all the students. Let B be the optimal solution for problem with S students. Student a and b travel in the same boat. S' is a subset of students, where $S = S' \bigcup \{a, b\}$. B' would be the optimal solution to the subproblem S'. B = B' + 1.

Lets assume that B' is not the optimal solution to the problem S'. Then there would be another solution B'', such that B'' < B', which would be optimal for S'. Now, if we add the boat with $\{a, b\}$ to the solution of B'', then we will get B'' + 1 for S. Now, $B'' + 1 \le B' + 1 => B'' + 1 \le B$. Thus we got a more optimal solution, which is a contradiction. Thus, our assumption is wrong. Optimal substructure is thus proved.

Proof for greedy choice

Assume that we have an optimal solution to this problem where we do not pair student i with student j. Instead, we pair student i with student k.

There are two possible scenarios here. First one is the scenario where k = -1. In that case, by looking at the rowling algorithm, we know that student j is the heaviest student whose weight is less than $T - w_i$ (j = -1 if no such student exists). If j and k are both equal to -1, then the rowling algorithm's solution and the optimal solution are identical. Otherwise, rowling algorithm gives us a better solution than the alleged optimal solution in our assumption and we reach a contradiction.

Second scenario is when $k \neq -1$. Since student j is the heaviest student with $w_j < T - w_i$, if we take student k out of the boat and put student j in the boat instead, we will utilize the capacity of the boat more efficiently $(T \ge w_i + w_j > w_i + w_k)$. This contradicts our starting assumption since we found a better solution.

CLRS 9.2

- Incorrect assignment of 0/1
- After forming the tree
 - Heavier branches should be assigned 1.
 - Lighter branches should be assigned 0.

DYNAMIC PROGRAMING

A simplified case

- Overall weight limit: 8 lb
- Item 1: 5 lb, \$150
- Item 2: 4 lb, \$100
- Item 3: 1 lb, \$10
- Solution 1: Item 1 + Item 3 * 3, value: \$180
- Solution 2: Item 2 * 2, value: \$200
- Greedy strategy does not provide the optimal solution
- A naïve solution? Try all possibilities!

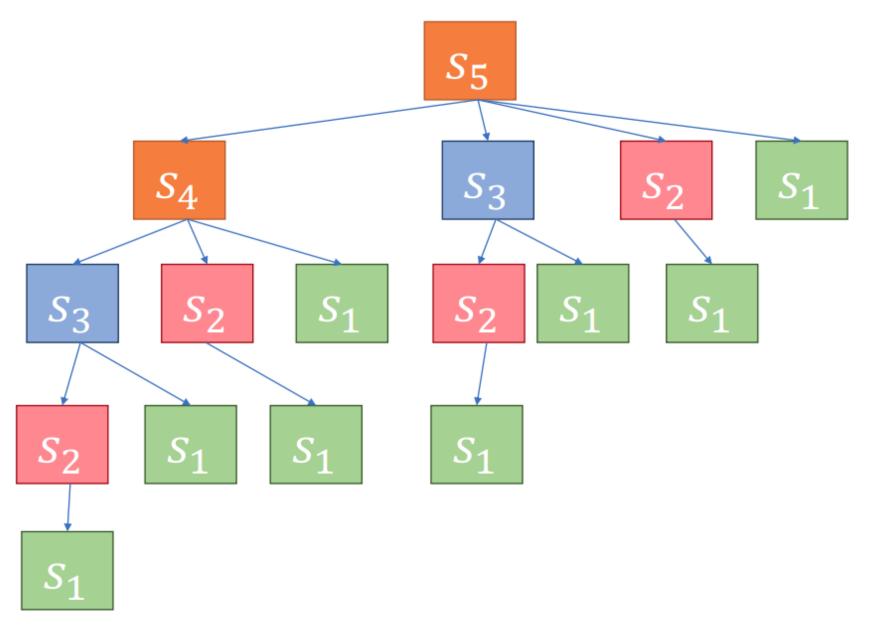
A naïve algorithm

```
int suitcase(int leftWeight) {
    int curBest = 0;
    foreach item (weight, value)
        if (leftWeight >= weight)
            curBest = max(curBest, suitcase(leftWeight - Weight) + value);
    return curBest;
```

```
answer = suitcase(50);
```

Execution Recurrence Tree

Assume we have for items with weights 1,2,3,4, and the overall weight is 5



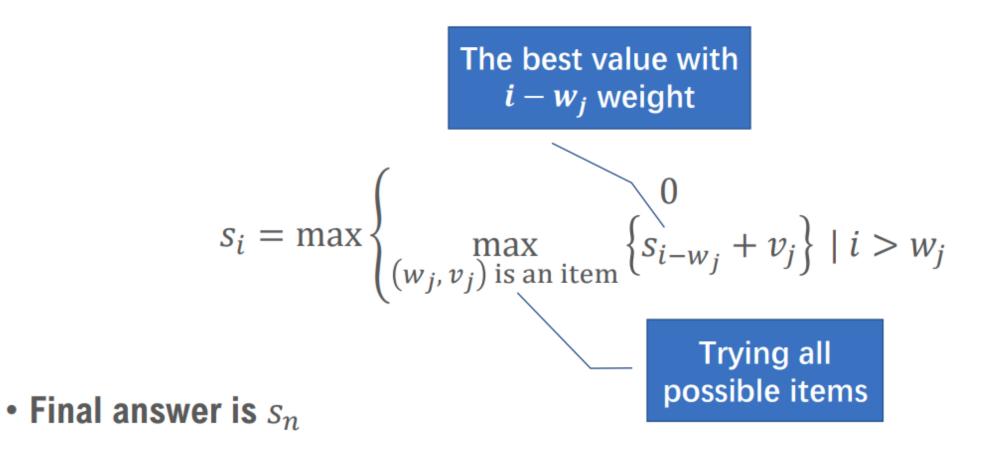
A DP algorithm

```
int suitcase(int leftWeight) {
    if (ans[leftWeight] != -1) return ans[leftWeight];
    int curBest = 0;
    foreach item (weight, value)
        if (leftWeight >= weight)
            curBest = max(curBest, suitcase(leftWeight - Weight) + value);
    return ans[leftWeight] = curBest;
```

```
int ans[50] = {-1, ..., -1};
answer = suitcase(50);
```

Recursive Solution

- Define s_i as the maximum value you can get for a total weight of i
- We can express s_i as the following recurrence:



ISSUE WITH CURRENT APPROACH

- Can we pick an item more than once?
- If so, do we need to change the solutions discussed earlier?
- If we use just S_i, it is not possible to know if an item has been used before
- Let's also keep track of the items.

Let S_{i,i} be the optimal value for total max weight of i using only first j item

HOW DO WE GET $S_{I,I}$?

- There are 2 options for getting the optimal value for weight i and for first j items:
 - Item j is picked: $S_{i,j} = S_{i-W_{j,j-1}} + v_j$
 - Item j is not picked: $S_{i,j} = S_{i,j-1}$
 - Which one is the best??
 - We pick the maximum of both

Another way to state the relationship of $s_{i,j}$

• The recurrence:

$$s_{i,j} = \max \begin{cases} s_{i,j-1} \\ s_{i-w_j,j-1} + v_j & i \ge w_j \end{cases}$$

• The boundary: $s_{i,0} = 0$

• The recurrence cannot be circular

 You can not have states a, b, and c that computing a relied on b, b on c, and c on a

EXAMPLE

Assume we have one copy of each of these items {(\$5,2lbs),(\$4,1lbs),(\$3, 1lbs)} and capacity W=3.

$$s_{i,j} = \max \begin{cases} s_{i,j-1} \\ s_{i-w_j,j-1} + v_j & i \ge w_j \end{cases}$$

• Let us fill the dynamic programming table (*Caclulate all* $S_{\{i,j\}}$ for $i \le 3$ (which is W) and $j \le 3$ (total number of items))

i: cols j:rows	0	I	2	3
0	0	0	0	0
I	0	0	5	5
2	0	4	5	9
3	0	4	7	9