CS141- DISCUSSION WEEK 3

TABLE OF GONTENTS

1. SOLUTION OF HOMEWORK 1 QUESTION 3
2. MASTER THEOREM

1. DEFINITION

2. EXAMPLES

3. EXCEPTIONS

4. QUESTION 3 PART 3 REVISITED
3. AVERAGE CASE ANALYSIS

1. OVERVIEW

2. EXAMPLE

HOMEWORK 1QUESTION3

= |nput: n candies, some good, some bad
= Number of bad candies: unknown but we guess it’s small (Company still in business!)
= Want: Identify and get rid of bad candies

= Have: A bad candy detector that can run tests on batches of candy -> signature of the
test: boolean runTest(CandyArray batch, start, end)

result=runTest(batch)

result=0/1
O: no bad candy present in the batch
1. bad candy present in the batch
Takes O(1) time

= |f test outputs 1, we only know there exists at least 1 bad candy in the batch; don’t
know how many

HW1-03: SOLUTION PART 1

Array resultArray; \\empty candy array
void findBadCandies(candyArray, start, end)
if(start==—end) \\we are just checking 1 candy
iIf(runTest(CandyArray, start, end))\\it is bad
resultArray.add(candyArray)
return
boolean val = runTest(candyArray, start, end)
if(val)\\there are some bad candies in the batch, make two recursive calls of input size half
findBadCandies(candyArray, start, (start+tend)/2)
findBadCandies(candyArray, (starttend)/2+1, end)
if('val)\\there are not bad candies in the batch

return

VISUALIZATION OF RW1-03:PARTT

= Assume we have a batch of candies of size BATCH: {041,2,3,4,5,6,7)
8. RUNTEST(BATCH)=1

= Use numbers to represent the candies in
the batch: batch={0,,2,3,4,5,6,7}. 5,6 are
bad

= |n this example n is very small so we can
visualize. But, we don’t see the benefits of
this algorithm that well.

= Think of the scenarios where n is very
big!

HW1-03: PART 2

= Think of the recursive BATCH: {0,1,2,3,4,5,6,7)
computation as a tree RUNTEST(BATCH)=1

= Traverse tree from root to
leaf only if the candy in the
leaf is bad

= Going from root to one leaf
takes logn time

= |f number of bad candies is
constant: traversal takes
c*logn time => O(logn)

HW1-03: PART 3

Array resultArray; \\empty candy array
void findBadCandies(candyArray, start, end)
if(start==end) \\we are just checking 1 candy
if(runTest(CandyArray, start, end))\\it is bad
resultArray.add(candyArray)
return
boolean val = runTest(candyArray, start, end)
if(val)
findBadCandies(candyArray, start, (start+end)/2)
findBadCandies(candyArray, (starttend)/2+1, end)
if('val)

return

If all candies are bad, go down to the leaf for each candy
Two recursive calls with half of the input size

During each recursive call, do O(1) amount of work
Recurrence relation: T(n)=2T(n/2)+1

Solve it with master theorem!

MASTER THEOREM

= A powerful method to solve a common type of recurrence relations

= Can be applied to recurrence relations of the form:
= T(n)=al(n/b)+ f(n),a>1, b > 1, f:asymptotically positive
= Lety = log,a and constant k > 0.

= Case 1: f(n) = O(n”) fory’ < y = T(n) = O(n”): more work as we keep dividing the
input

= Case 2: f(n) = O(n’log"n) = T(n) = Om’log"'n): same amount of work as we keep
dividing the input

= Case 3: f(n) = Qn”) for y' > y and af(n/b) < cf(n) = T(n) = O(f(n)):less work as we
keep dividing the input

GOING BAGK T0 hW1-03:PART 3

T(n) =al(n/b)+f(n),a>1, b > 1, f :asymptotically positive

Let y = log,a and constant k > 0.

Case 1: f(n) = O(n”) fory' < y = T(n) = O(n”)

Case 2: f(n) = O(n’log*n) = T(n) = O(n’log"*'n)

Case 3: f(n) = Qn”) for y' > y and af(n/b) < cf(n) = T(n) = O(f(n))

Recurrence relation of our candy solving problem: T(n)=2T(n/2)+1

Which case does it belong to? Answer: a=2,b=2,f(n)=1, y=1.
fn)=1=00")fory <1.Weareincase1 = T(n) = O(n)

MASTER THEOREM: EXAMPLES

= T(n) =3T(n/2) + n? = T(n) = aT(n/b) +fn),a>1,b>1,

- First find parameters: f: asymptotically positive

- a=3, b=2, f(n)=n2, y=1o 2,3~ 1.6 = Lety = log,a and constant k > 0.

= f(n)=n> = Q(n”) for y’>log,3) ﬁff'ljc’ito(ny’) fory <y = T(n) = O(n’)
= 3(n/2)* = (3n%)/4 < cn* for ~ Case 2:

c>3/4 f(n) = (H)(nYZngn) = T(n) = O(n’ lng+1n)
= We are in case 3! = Case 3: f(n) = Q(n”) for y’ > y and

= T(n) = O(n?) af(n/b) < c(fn) = 1T(n) = O(f(n))

MASTER THEOREM: EXAMPLES

= T(n)=2T(n/2)+n = T(n)=alTn/b)+f(n),a>1, b > 1,

= Which algorithm we learned has f: asymptotically positive

this recurrence relation? = Lety = log,a and constant k > 0.
= First find parameters: = Case1:
_ y ‘ — y
- a=2’ b=2’ f(n):n, y:log22 — 1 f(n) — O(n)fOry < Y = T(n) — ®(n)
- f(n)=n = O(n) = Case 2:
- : fin) = O’log*n) = T(n) = O’log"*'n)
= We are in case 2 with k=0. = Case 3: f(n) = Q(n”) fory’ > y and

= T(n) = Omlogn) af(n/b) < c(fn) = T(n) = O(f(n))

WHENGAN'T WE USE MASTER THEOREM?

= When f is not asymptotically positive = T(n) = al(n/b) _|-f(n), a>1,b>1,
= Example: T(n) = 64T(n/8) — n® = f(n) = — n’ f: asymptotically positive
= When we are in case 3 and af(n/b) < cf(n) does not hold = Let y = lagba and constant k£ > 0.
= Example: T(n)=T(n/2)+n(2-sin(n)): a=1, b=2, - .
Example:. T(n)=T(r2)n(2-sin(r) Case 1:

= Are we in case 3? f(n) — O(nyl) for y, <y= I(n) = @(ny)
| = Case 2:

= af(n/b)=n/2(2-sin(n/2))<?cn(2-si =>2-sin(n/2)<?
2c(2-5in(n): No becatise sine function oscillates fin) = @(nlogn) = T(n) = O(n*log"*'n)
= When we are in case 2 and k<0 = Case 3:f(n) = Q(n”) fory’ > y and
= Example: T(n)=2T(n/2)+n/{ogn => a=2, b=2, y=1, f(n)=n/ le (n /b) = C(f n) = T(n) — ®(f (n))

logn=>n/logn = ®(nlog™ 'n), k=-1.

= We cannot use master theorem because k<O!

WHENGAN'T WE USE MASTER THEOREM?

= When a is not a constant = T(n) =al(n/b)+f(n),a>1, b>1,
= Example: T(n) = 2"T(n/8) + n* = a = 2" f: asymptotically positive
= Whena<lorb<1 = Lety = log,a and constant k > 0.
- Basidcally, we cannot use master tlheocr"em if the = Case 1:
iti t iolated!) ,
conditions on parameters are vioiate f(n) _ O(ny) fOI" y, < y : T(n) — @(ny)

= Carefully check if parameters are valid
= Case 2:

fn) = O(’log*n) = T(n) = O(n’log"* 'n)

= Case 3: f(n) = Q") fory’ > y and
af(n/b) < c(fn) = T(n) = O(f(n))

AVERAGE GASE ANALYSIS

= Why average case analysis?
= Worst case is too pessimistic
= Think about the bad candy problem and our solution

= Worst case performance is O(n), which seems like we are not getting improved
performance by cleverly using the test mechanism

= However, on an average input, which is the case most of the time, runtime is
O(logn): we are in fact better off!

= Worst case analysis might miss these details, which are crucial!

SOME PROBABILITY BAGKGROUND

= |f you are familiar, discrete random variables can help perform average case analysis!
= Bernoulli Trials:
1. Each trial results in one of two possible outcomes, denoted success (S) or failure (F).
2. The probability of S remains constant from trial-to-trial and is denoted by p.
3. The trials are independent.
= Example: Coin flip.

= Geometric distribution: Represents the number of failures before you get a success in a
series of Bernoulli trials

= Expected value of number of trials before we get first success: 1/p.

RANDOM-SEARCH(x, A, n)
v = Q\\v can contain each value once
while vl I=n
| = RANDOM(1, n)
if Ali] = X
return |
else
Additov
return NIL

AVERAGE GASE ANALYSIS: AN ENAMPLE

5-2 Searching an unsorted array
This problem examines three algorithms for searching for a value x in an unsorted
array A consisting of n elements.

Consider the following randomized strategy: pick a random index i into A. If
Ali] = x, then we terminate; otherwise, we continue the search by picking a new
random index into A. We continue picking random indices into A until we find an
index j such that A[j] = x or until we have checked every element of A. Note
that we pick from the whole set of indices each time, so that we may examine a
given element more than once.

a. Write pseudocode for a procedure RANDOM-SEARCH to implement the strat-
egy above. Be sure that your algorithm terminates when all indices into A have

been picked.

AVERAGE GASE ANALYSIS: SEARGHING ANUNSORTED ARRAY

RANDOM-SEARCH(x, A, n)

= Each index picking event can be

modeled as Bernoulli trials V=0
while Ivl = n
= Success probability of each trial is | = RANDOM(1, n)
p=1/n. (have n values and one of ITAL] =x
else
= Whole process can be modeled with Additov
geometric random variable G return NIL
. SI:ICCGSS! Flndlng x->want how many b. Suppose that there is exactly one index i such that A[i] = x. What is the
trials we will have before we have the expected number of indices into A that we must pick before we find x and
first success RANDOM-SEARCH terminates?

= Thus, expected number of indices we hit
before RANDOM-SEARCH
terminates=E[G]=1/p=n.

AVERAGE GASE ANALYSIS: SEARGHING ANUNSORTED ARRAY

RANDOM-SEARCH(x, A, n)

= Each index picking event can be

.« . v=0
modeled as Bernoulli trials while vl 1= n
= Success probability of each trial is | = RANDOM(1, n)
p=k/n. (have n values and one of ALl =x
them is x) return |
else
= Whole process can be modeled with Additov
geometric random variable G return NIL
o SUCCGSS . Finding X->want hOW many ¢. Generalizing your solution to part (b), suppose that there are k > 1 indices i
tl"ials we Wi" have before we have the such that A[i] = x. What is the expected number of indices into A that we
ﬁrst success must pick before we find x and RANDOM-SEARCH terminates? Your answer

should be a function of » and k.

= Thus, expected number of indices we hit
before RANDOM-SEARCH

terminates=E[G]=1/p=n\k.

