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- Input: n candies, some good, some bad 

- Number of bad candies: unknown but we guess it’s small (Company still in business!) 

- Want: Identify and get rid of bad candies 

- Have: A bad candy detector that can run tests on batches of candy -> signature of the 
test: boolean runTest(CandyArray batch, start, end) 

- If test outputs 1, we only know there exists at least 1 bad candy in the batch; don’t 
know how many 

HOMEWORK 1 QUESTION 3 

batch = {candy1, candy2, . . . , candyx}

result=runTest(batch)

result=0/1 
0: no bad candy present in the batch 

1: bad candy present in the batch
Takes O(1) time



Array resultArray; \\empty candy array 
void findBadCandies(candyArray, start, end) 

if(start==end) \\we are just checking 1 candy 
if(runTest(CandyArray, start, end))\\it is bad 

resultArray.add(candyArray) 
return 

boolean val = runTest(candyArray, start, end) 
if(val)\\there are some bad candies in the batch, make two recursive calls of input size half 

findBadCandies(candyArray, start, (start+end)/2) 
findBadCandies(candyArray, (start+end)/2+1, end) 

if(!val)\\there are not bad candies in the batch 
return 

HW1-Q3: SOLUTION PART 1 



- Assume we have a batch of candies of size 
8. 

- Use numbers to represent the candies in 
the batch: batch= {0,1,2,3,4,5,6,7}: 5,6 are 
bad 

- In this example n is very small so we can 
visualize. But, we don’t see the benefits of 
this algorithm that well.  

- Think of the scenarios where n is very 
big!

VISUALIZATION OF HW1-Q3:PART1
BATCH: {0,1,2,3,4,5,6,7} 

RUNTEST(BATCH)=1

BATCH: {0,1,2,3} 
RUNTEST(BATCH)=0

BATCH: {4,5,6,7} 
RUNTEST(BATCH)=1

BATCH: {4,5} 
RUNTEST(BATCH)=1

BATCH: {6,7} 
RUNTEST(BATCH)=1

BATCH: {4} 
RUNTEST(BATCH)=0

BATCH: {5} 
RUNTEST(BATCH)=1 

ADD TO RESULT

BATCH: {6} 
RUNTEST(BATCH)=1 

ADD TO RESULT

BATCH: {7} 
RUNTEST(B

ATCH)=0



- Think of the recursive 
computation as a tree 

- Traverse tree from root to 
leaf only if the candy in the 
leaf is bad 

- Going from root to one leaf 
takes logn time 

- If number of bad candies is 
constant: traversal takes 
c*logn time => O(logn)

HW1-Q3: PART 2
BATCH: {0,1,2,3,4,5,6,7} 

RUNTEST(BATCH)=1

BATCH: {0,1,2,3} 
RUNTEST(BATCH)=0

BATCH: {4,5,6,7} 
RUNTEST(BATCH)=1

BATCH: {4,5} 
RUNTEST(BATCH)=1

BATCH: {6,7} 
RUNTEST(BATCH)=1

BATCH: {4} 
RUNTEST(BATCH)=0

BATCH: {5} 
RUNTEST(BATCH)=1 

ADD TO RESULT

BATCH: {6} 
RUNTEST(BATCH)=1 

ADD TO RESULT

BATCH: {7} 
RUNTEST(B

ATCH)=0



HW1-Q3: PART 3
Array resultArray; \\empty candy array 

void findBadCandies(candyArray, start, end) 

if(start==end) \\we are just checking 1 candy 

if(runTest(CandyArray, start, end))\\it is bad 

resultArray.add(candyArray) 

return 

boolean val = runTest(candyArray, start, end) 

if(val) 

findBadCandies(candyArray, start, (start+end)/2) 

findBadCandies(candyArray, (start+end)/2+1, end) 

if(!val) 

return 

- If all candies are bad, go down to the leaf for each candy 

- Two recursive calls with half of the input size 

- During each recursive call, do O(1) amount of work 

- Recurrence relation: T(n)=2T(n/2)+1 

- Solve it with master theorem!



- A powerful method to solve a common type of recurrence relations  

- Can be applied to recurrence relations of the form:  

- asymptotically positive 

- Let  and constant .  

- Case 1: : more work as we keep dividing the 
input 

- Case 2: : same amount of work as we keep 
dividing the input  

- Case 3: :less work as we 
keep dividing the input 

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1, f :
y = logba k ≥ 0
f(n) = O(ny′ ) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)

f(n) = Ω(ny′ ) for y′ > y and af(n/b) ≤ cf(n) ⇒ T(n) = Θ( f(n))

MASTER THEOREM



- asymptotically positive 

- Let  and constant .  

- Case 1:  

- Case 2:   

- Case 3:  

- Recurrence relation of our candy solving problem: T(n)=2T(n/2)+1 

- Which case does it belong to? Answer: a=2,b=2,f(n)=1, y=1. 

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1, f :
y = logba k ≥ 0

f(n) = O(ny′ ) for y′ < y ⇒ T(n) = Θ(ny)
f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′ ) for y′ > y and af(n/b) ≤ cf(n) ⇒ T(n) = Θ( f(n))

f(n) = 1 = O(ny′ ) for y′ < 1. We are in case 1  ⇒ T(n) = Θ(n)

GOING BACK TO HW1-Q3:PART 3



- f: asymptotically positive 

- Let  and constant .  

- Case 1: 
 

- Case 2: 
  

- Case 3:  and 

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′ ) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′ ) for y′ > y

af(n/b) ≤ c( fn) ⇒ T(n) = Θ( f(n))

MASTER THEOREM: EXAMPLES
-  

- First find parameters:  

- a=3, b=2, f(n)= , y=  

- f(n)=  for y’>  

-  for 
 

- We are in case 3! 

-

T(n) = 3T(n/2) + n2

n2 log23 ≈ 1.6
n2 = Ω(ny′ ) log23

3(n/2)2 = (3n2)/4 ≤ cn2

c ≥ 3/4

T(n) = Θ(n2)



- f: asymptotically positive 

- Let  and constant .  

- Case 1: 
 

- Case 2: 
  

- Case 3:  and 

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′ ) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′ ) for y′ > y

af(n/b) ≤ c( fn) ⇒ T(n) = Θ( f(n))

MASTER THEOREM: EXAMPLES
-  

- Which algorithm we learned has 
this recurrence relation? 

- First find parameters:  

- a=2, b=2, f(n)= , y=  

- f(n)= .  

- We are in case 2 with k=0. 

-

T(n) = 2T(n/2) + n

n log22 = 1
n = Θ(n)

T(n) = Θ(nlogn)



- When f is not asymptotically positive 

- Example:  

- When we are in case 3 and  does not hold 

- Example:  T(n)=T(n/2)+n(2-sin(n)): a=1, b=2, 
 

- Are we in case 3?  

- af(n/b)=n/2(2-sin(n/2))<?cn(2-sin(n))=>2-sin(n/2)<?
2c(2-sin(n)): No because sine function oscillates 

- When we are in case 2 and k<0 

- Example: T(n)=2T(n/2)+n/logn => a=2, b=2, y=1, f(n)=n/
logn=> , k=-1. 

- We cannot use master theorem because k<0!

T(n) = 64T(n/8) − n2 ⇒ f(n) = − n2

af(n/b) ≤ cf(n)

y = log21 = 0

n/logn = Θ(nlog−1n)

WHEN CAN’T WE USE MASTER THEOREM?
- f: asymptotically positive 

- Let  and constant .  

- Case 1: 
 

- Case 2: 
  

- Case 3:  and 

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′ ) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′ ) for y′ > y

af(n/b) ≤ c( fn) ⇒ T(n) = Θ( f(n))



- When a is not a constant 

- Example:  

- When  

- Basically, we cannot use master theorem if the 
conditions on parameters are violated!  

- Carefully check if parameters are valid

T(n) = 2nT(n/8) + n2 ⇒ a = 2n

a < 1 or b ≤ 1

WHEN CAN’T WE USE MASTER THEOREM?
- f: asymptotically positive 

- Let  and constant .  

- Case 1: 
 

- Case 2: 
  

- Case 3:  and 

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′ ) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′ ) for y′ > y

af(n/b) ≤ c( fn) ⇒ T(n) = Θ( f(n))



- Why average case analysis? 

- Worst case is too pessimistic 

- Think about the bad candy problem and our solution 

- Worst case performance is O(n), which seems like we are not getting improved 
performance by cleverly using the test mechanism 

- However, on an average input, which is the case most of the time, runtime is 
O(logn): we are in fact better off! 

- Worst case analysis might miss these details, which are crucial!

AVERAGE CASE ANALYSIS



- If you are familiar, discrete random variables can help perform average case analysis! 

- Bernoulli Trials: 
1. Each trial results in one of two possible outcomes, denoted success (S) or failure (F ).  
2. The probability of S remains constant from trial-to-trial and is denoted by p.  
3. The trials are independent.  

- Example: Coin flip. 

- Geometric distribution: Represents the number of failures before you get a success in a 
series of Bernoulli trials 

- Expected value of number of trials before we get first success: 1/p.

SOME PROBABILITY BACKGROUND



RANDOM-SEARCH(x, A, n)
    v = Ø\\v can contain each value once
    while |v| != n
        i = RANDOM(1, n)
        if A[i] = x
            return i
        else
            Add i to v
    return NIL

AVERAGE CASE ANALYSIS: AN EXAMPLE



- Each index picking event can be 
modeled as Bernoulli trials  

- Success probability of each trial is 
p=1/n. (have n values and one of 
them is x) 

- Whole process can be modeled with 
geometric random variable G  

- Success: Finding x->want how many 
trials we will have before we have the 
first success 

- Thus, expected number of indices we hit 
before RANDOM-SEARCH 
terminates=E[G]=1/p=n.

AVERAGE CASE ANALYSIS: SEARCHING AN UNSORTED ARRAY
RANDOM-SEARCH(x, A, n)
    v = Ø
    while |v| != n
        i = RANDOM(1, n)
        if A[i] = x
            return i
        else
            Add i to v
    return NIL



AVERAGE CASE ANALYSIS: SEARCHING AN UNSORTED ARRAY
RANDOM-SEARCH(x, A, n)
    v = Ø
    while |v| != n
        i = RANDOM(1, n)
        if A[i] = x
            return i
        else
            Add i to v
    return NIL

- Each index picking event can be 
modeled as Bernoulli trials  

- Success probability of each trial is 
p=k/n. (have n values and one of 
them is x) 

- Whole process can be modeled with 
geometric random variable G  

- Success: Finding x->want how many 
trials we will have before we have the 
first success 

- Thus, expected number of indices we hit 
before RANDOM-SEARCH 
terminates=E[G]=1/p=n\k.




