
10/19/2020

MASTER THEOREM AND AVERAGE CASE ANALYSIS

CS141: DISCUSSION WEEK 3

1. SOLUTION OF HOMEWORK 1 QUESTION 3
2. MASTER THEOREM

1. DEFINITION
2. EXAMPLES
3. EXCEPTIONS
4. QUESTION 3 PART 3 REVISITED

3. AVERAGE CASE ANALYSIS
1. OVERVIEW
2. EXAMPLE

TABLE OF CONTENTS

- Input: n candies, some good, some bad

- Number of bad candies: unknown but we guess it’s small (Company still in business!)

- Want: Identify and get rid of bad candies

- Have: A bad candy detector that can run tests on batches of candy -> signature of the
test: boolean runTest(CandyArray batch, start, end)

- If test outputs 1, we only know there exists at least 1 bad candy in the batch; don’t
know how many

HOMEWORK 1 QUESTION 3

batch = {candy1, candy2, . . . , candyx}

result=runTest(batch)

result=0/1
0: no bad candy present in the batch

1: bad candy present in the batch
Takes O(1) time

Array resultArray; \\empty candy array
void findBadCandies(candyArray, start, end)

if(start==end) \\we are just checking 1 candy
if(runTest(CandyArray, start, end))\\it is bad

resultArray.add(candyArray)
return

boolean val = runTest(candyArray, start, end)
if(val)\\there are some bad candies in the batch, make two recursive calls of input size half

findBadCandies(candyArray, start, (start+end)/2)
findBadCandies(candyArray, (start+end)/2+1, end)

if(!val)\\there are not bad candies in the batch
return

HW1-Q3: SOLUTION PART 1

- Assume we have a batch of candies of size
8.

- Use numbers to represent the candies in
the batch: batch= {0,1,2,3,4,5,6,7}: 5,6 are
bad

- In this example n is very small so we can
visualize. But, we don’t see the benefits of
this algorithm that well.

- Think of the scenarios where n is very
big!

VISUALIZATION OF HW1-Q3:PART1
BATCH: {0,1,2,3,4,5,6,7}

RUNTEST(BATCH)=1

BATCH: {0,1,2,3}
RUNTEST(BATCH)=0

BATCH: {4,5,6,7}
RUNTEST(BATCH)=1

BATCH: {4,5}
RUNTEST(BATCH)=1

BATCH: {6,7}
RUNTEST(BATCH)=1

BATCH: {4}
RUNTEST(BATCH)=0

BATCH: {5}
RUNTEST(BATCH)=1

ADD TO RESULT

BATCH: {6}
RUNTEST(BATCH)=1

ADD TO RESULT

BATCH: {7}
RUNTEST(B

ATCH)=0

- Think of the recursive
computation as a tree

- Traverse tree from root to
leaf only if the candy in the
leaf is bad

- Going from root to one leaf
takes logn time

- If number of bad candies is
constant: traversal takes
c*logn time => O(logn)

HW1-Q3: PART 2
BATCH: {0,1,2,3,4,5,6,7}

RUNTEST(BATCH)=1

BATCH: {0,1,2,3}
RUNTEST(BATCH)=0

BATCH: {4,5,6,7}
RUNTEST(BATCH)=1

BATCH: {4,5}
RUNTEST(BATCH)=1

BATCH: {6,7}
RUNTEST(BATCH)=1

BATCH: {4}
RUNTEST(BATCH)=0

BATCH: {5}
RUNTEST(BATCH)=1

ADD TO RESULT

BATCH: {6}
RUNTEST(BATCH)=1

ADD TO RESULT

BATCH: {7}
RUNTEST(B

ATCH)=0

HW1-Q3: PART 3
Array resultArray; \\empty candy array

void findBadCandies(candyArray, start, end)

if(start==end) \\we are just checking 1 candy

if(runTest(CandyArray, start, end))\\it is bad

resultArray.add(candyArray)

return

boolean val = runTest(candyArray, start, end)

if(val)

findBadCandies(candyArray, start, (start+end)/2)

findBadCandies(candyArray, (start+end)/2+1, end)

if(!val)

return

- If all candies are bad, go down to the leaf for each candy

- Two recursive calls with half of the input size

- During each recursive call, do O(1) amount of work

- Recurrence relation: T(n)=2T(n/2)+1

- Solve it with master theorem!

- A powerful method to solve a common type of recurrence relations

- Can be applied to recurrence relations of the form:

- asymptotically positive

- Let and constant .

- Case 1: : more work as we keep dividing the
input

- Case 2: : same amount of work as we keep
dividing the input

- Case 3: :less work as we
keep dividing the input

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1, f :
y = logba k ≥ 0
f(n) = O(ny′) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)

f(n) = Ω(ny′) for y′ > y and af(n/b) ≤ cf(n) ⇒ T(n) = Θ(f(n))

MASTER THEOREM

- asymptotically positive

- Let and constant .

- Case 1:

- Case 2:

- Case 3:

- Recurrence relation of our candy solving problem: T(n)=2T(n/2)+1

- Which case does it belong to? Answer: a=2,b=2,f(n)=1, y=1.

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1, f :
y = logba k ≥ 0

f(n) = O(ny′) for y′ < y ⇒ T(n) = Θ(ny)
f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′) for y′ > y and af(n/b) ≤ cf(n) ⇒ T(n) = Θ(f(n))

f(n) = 1 = O(ny′) for y′ < 1. We are in case 1 ⇒ T(n) = Θ(n)

GOING BACK TO HW1-Q3:PART 3

- f: asymptotically positive

- Let and constant .

- Case 1:

- Case 2:

- Case 3: and

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′) for y′ > y

af(n/b) ≤ c(fn) ⇒ T(n) = Θ(f(n))

MASTER THEOREM: EXAMPLES
-

- First find parameters:

- a=3, b=2, f(n)= , y=

- f(n)= for y’>

- for

- We are in case 3!

-

T(n) = 3T(n/2) + n2

n2 log23 ≈ 1.6
n2 = Ω(ny′) log23

3(n/2)2 = (3n2)/4 ≤ cn2

c ≥ 3/4

T(n) = Θ(n2)

- f: asymptotically positive

- Let and constant .

- Case 1:

- Case 2:

- Case 3: and

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′) for y′ > y

af(n/b) ≤ c(fn) ⇒ T(n) = Θ(f(n))

MASTER THEOREM: EXAMPLES
-

- Which algorithm we learned has
this recurrence relation?

- First find parameters:

- a=2, b=2, f(n)= , y=

- f(n)= .

- We are in case 2 with k=0.

-

T(n) = 2T(n/2) + n

n log22 = 1
n = Θ(n)

T(n) = Θ(nlogn)

- When f is not asymptotically positive

- Example:

- When we are in case 3 and does not hold

- Example: T(n)=T(n/2)+n(2-sin(n)): a=1, b=2,

- Are we in case 3?

- af(n/b)=n/2(2-sin(n/2))<?cn(2-sin(n))=>2-sin(n/2)<?
2c(2-sin(n)): No because sine function oscillates

- When we are in case 2 and k<0

- Example: T(n)=2T(n/2)+n/logn => a=2, b=2, y=1, f(n)=n/
logn=> , k=-1.

- We cannot use master theorem because k<0!

T(n) = 64T(n/8) − n2 ⇒ f(n) = − n2

af(n/b) ≤ cf(n)

y = log21 = 0

n/logn = Θ(nlog−1n)

WHEN CAN’T WE USE MASTER THEOREM?
- f: asymptotically positive

- Let and constant .

- Case 1:

- Case 2:

- Case 3: and

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′) for y′ > y

af(n/b) ≤ c(fn) ⇒ T(n) = Θ(f(n))

- When a is not a constant

- Example:

- When

- Basically, we cannot use master theorem if the
conditions on parameters are violated!

- Carefully check if parameters are valid

T(n) = 2nT(n/8) + n2 ⇒ a = 2n

a < 1 or b ≤ 1

WHEN CAN’T WE USE MASTER THEOREM?
- f: asymptotically positive

- Let and constant .

- Case 1:

- Case 2:

- Case 3: and

T(n) = aT(n/b) + f(n), a ≥ 1, b > 1,

y = logba k ≥ 0

f(n) = O(ny′) for y′ < y ⇒ T(n) = Θ(ny)

f(n) = Θ(nylogkn) ⇒ T(n) = Θ(nylogk+1n)
f(n) = Ω(ny′) for y′ > y

af(n/b) ≤ c(fn) ⇒ T(n) = Θ(f(n))

- Why average case analysis?

- Worst case is too pessimistic

- Think about the bad candy problem and our solution

- Worst case performance is O(n), which seems like we are not getting improved
performance by cleverly using the test mechanism

- However, on an average input, which is the case most of the time, runtime is
O(logn): we are in fact better off!

- Worst case analysis might miss these details, which are crucial!

AVERAGE CASE ANALYSIS

- If you are familiar, discrete random variables can help perform average case analysis!

- Bernoulli Trials:
1. Each trial results in one of two possible outcomes, denoted success (S) or failure (F).
2. The probability of S remains constant from trial-to-trial and is denoted by p.
3. The trials are independent.

- Example: Coin flip.

- Geometric distribution: Represents the number of failures before you get a success in a
series of Bernoulli trials

- Expected value of number of trials before we get first success: 1/p.

SOME PROBABILITY BACKGROUND

RANDOM-SEARCH(x, A, n)
 v = Ø\\v can contain each value once
 while |v| != n
 i = RANDOM(1, n)
 if A[i] = x
 return i
 else
 Add i to v
 return NIL

AVERAGE CASE ANALYSIS: AN EXAMPLE

- Each index picking event can be
modeled as Bernoulli trials

- Success probability of each trial is
p=1/n. (have n values and one of
them is x)

- Whole process can be modeled with
geometric random variable G

- Success: Finding x->want how many
trials we will have before we have the
first success

- Thus, expected number of indices we hit
before RANDOM-SEARCH
terminates=E[G]=1/p=n.

AVERAGE CASE ANALYSIS: SEARCHING AN UNSORTED ARRAY
RANDOM-SEARCH(x, A, n)
 v = Ø
 while |v| != n
 i = RANDOM(1, n)
 if A[i] = x
 return i
 else
 Add i to v
 return NIL

AVERAGE CASE ANALYSIS: SEARCHING AN UNSORTED ARRAY
RANDOM-SEARCH(x, A, n)
 v = Ø
 while |v| != n
 i = RANDOM(1, n)
 if A[i] = x
 return i
 else
 Add i to v
 return NIL

- Each index picking event can be
modeled as Bernoulli trials

- Success probability of each trial is
p=k/n. (have n values and one of
them is x)

- Whole process can be modeled with
geometric random variable G

- Success: Finding x->want how many
trials we will have before we have the
first success

- Thus, expected number of indices we hit
before RANDOM-SEARCH
terminates=E[G]=1/p=n\k.

