RUNTIME ANALYSIS OF FUNCTIONS ANALOGY TO REAL NUMBERS $a \leq b$ (n)(n)Q= () $a \ge b$ $= \Omega(q(n))$ n) a = b(g(n) $= (\neg)$ na < b= o(q(n))n) a > b $=\omega(g(n))$ (n)

EXAMPLES

logn	$O(log^2n)$	log^2n	$O(log^2n)$	n log n	$O(log^2n)$
logn	$\Theta(log^2n)$	log^2n	$\Theta(log^2n)$	n log n	$\Theta(log^2n)$
logn	$\Omega(log^2n)$	log^2n	$\Omega(log^2n)$	n log n	$\Omega(log^2n)$
logn	$o(log^2n)$	log^2n	$o(log^2n)$	nlogn	$o(log^2n)$
logn	$\omega(log^2n)$	log^2n	$\omega(log^2n)$	n log n	$\overline{\omega(log^2n)}$

DIVIDE AND CONQUER

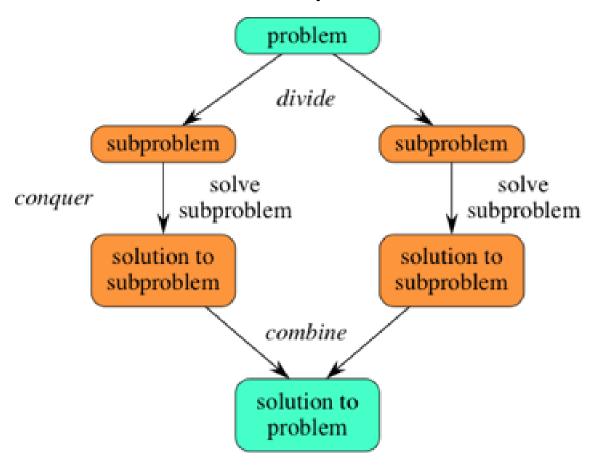


Figure 1: Taken from https://www.khanacademy.org/ computing/computer-science/algorithms/merge-sort/a/ divide-and-conquer-algorithms

Figure 2: Example from class: pseudocode of merge sort

EXERCISES FROM THE BOOK

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω , or Θ of B. Assume that $k \ge 1, \epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	В	0	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}					
b .	n^k	c^n					
с.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
е.	$n^{\lg c}$	$c^{\lg n}$					
<i>f</i> .	lg(<i>n</i> !)	$lg(n^n)$					

4.4-2

Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer.

4.4-4

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1. Use the substitution method to verify your answer.