DISCUSSION CLASS

CS 141 F20

A NEW MODEL TO ANALYZE COMPLEXITY

" For sequential programs, we used RAM model
= Arithmetic operations, memory access done in constant time
= Worst case is considered
" There is only one thread
" Need new model to analyze complexity of parallel programs

" Incorporate parallel operations/multiple threads: Binary fork-join model!

BINARY FORK-JOIN MODEL

logn levels of spawn

Spawn Spawn
= Computation starts from one thread

= A thread can perform operations, such as: AN

= Any sequential programming operations (arithmetic, memory access, etc.) _
n tasks in parallel

= Spawn: start (fork) a new thread working on the next statement

= Sync: previous forked processors synchronize (join) here

= Parallel for: can be simulated by using O (logn) spawns, perform the computation of the for loops in parallel

= No concurrent write to the same memory location (or needs to be specified)

H Spawn —)
" sync —

-
—
—)

COST MODEL:WORK-SPAN

= For all computations, draw a DAG
* A->B means that B can be performed

only when A has been finished
= Work: the total number of operations

= Span (depth): the longest length of chain

DAG shows dependencies in the
algorithm

= Work: total number of operations
= Sequential running time when the algorithm runs on one processor
" Work-efficiency: work no more than the best sequential algorithm

" Goal: make the parallel algorithm efficient when a small number of
processor are available

We include all the nodes in the
tree

= Span(depth): The longest dependency chain

Total time required if there are infinite number of processors
Make span polylogarithmic (in most of the cases)

Goal: make the parallel algorithm faster and faster when more and
more processors are available - scalability

Include the depth of the tree (length of
the longest path from root to leaf)

COMPUTE WORK AND SPAN

Spawn
= Assume we have an algorithm in the following form:
spawn Task|
Task1 Task2 Task2

sync
= Work = work of Task| + work of Task?2

= Span = max(span of Taskl, span of Task2)
Sync

SCHEDULING A PARALLEL ALGORITHM

= A DAG with work W and span D can be executed using p processors in time O(W/p+D)
" Both W and D matter!

= For small p, W is more important

= For large p, D is more important

MERGE SORT (SEQUENTIAL)

MergeSort(int *A, int n)

1

2
3
4

if (n<=1) return

MergeSort(A, n/2)

MergeSort(A + n/2, n-n/2)

A = merge(A, n/2, A + n/2, n-n/2)

return

MERGE SORT (PARALLEL)

MergeSort(int *A, int n)

1

vi b~ W N

if (n<=1) return

spawn MergeSort(A, n/2)
MergeSort(A + n/2, n-n/2)

sync

A = merge(A, n/2, A + n/2, n-n/2)

return

TIME COMPLEXITY

= Sequential Algorithm

= W(n) = 2W(n/2) + O(n) = O(n log n)

= Parallel Algorithm
= W(n) = 2W(n/2) + O(n) = O(n log n)
= S(n) = S(n/2) + O(n) = O(n)

LONGEST PALINDROME

= Given a string, find the length of the longest palindrome
= madam =5
= babad = 3 (bab, aba)
= dbabad = 3 (bab, aba)
= cbbd = 2 (bb)
= a=|

" ac=1(ac)

NAIVE SOLUTION (SEQUENTIAL)

int longestPalindrome(String str)

n = str.length, ans =1
for i =1 ton
for j = i+l to n
if (isPalindrome(str, i, j))
ans = max(ans, j-i+1)

vi phWNBER

return ans

NAIVE SOLUTION (PARALLEL)

int longestPalindrome(String str)

n = str.length, ans =1
parallel for i = 1 to n
parallel for j = i+l to n
if (isPalindrome(str, i, j))
ans = max(ans, j-i+1)

vi phWNBER

return ans

TIME COMPLEXITY OF NAIVE SOLUTION

= Sequential Algorithm
= W(n) = O(n"3)

= Parallel Algorithm
= W(n) = O(n"3)
= S(n) = (O(log n)+O(log n)) * O(n) = O(n logn)

DP ALGORITHM (SEQUENTIAL)

int longestPalindrome(string str)

1 n = str.length, ans =1

2 mem[n][n] = {@0}//2d array initialized
3 for i=1ton

4 mem[i][i] =1

5 for i =2 ton

6 if str[i]== str[i-1]

7 mem[i-1][i] = 1

8 for len = 3 to n

9 for 1 = 1 to n-len

10 j =1+ len -1

11 if (str[i] == str[j] && mem[i+1l][]j-1])
12 mem[i][j] = 1

13 ans = len

return ans

DP ALGORITHM (PARALLEL)

int longestPalindrome(string str)

1 n = str.length, ans =1

2 mem[n][n] = {@0}//2d array initialized
3 parallel for i =1 to n

4 mem[i][i] =1

5 parallel for i = 2 to n

6 if str[i]== str[i-1]

7 mem[i-1][i] = 1

8 for len = 3 to n

9 parallel for i = 1 to n-len

10 j =1+ len -1

11 if (str[i] == str[j] && mem[i+1][j-1])
12 mem[i][j] = 1

13 ans = len

return ans

TIME COMPLEXITY OF DP ALGORITHM

= Sequential Algorithm

= W(n) = O(n) + O(n) + O(n"2) = O(n"2)

= Parallel Algorithm
= W(n) = O(n) + O(n) + O(n)*O(n) = O(n"2)
= §(n) = O(log n) + O(log n) + O(n)*O(log n) = O(n log n)

