DISCUSSION CLASS

CS 141 F 20

A NEW MODEL TO ANALYZE COMPLEXITY

- For sequential programs, we used RAM model
 - Arithmetic operations, memory access done in constant time
 - Worst case is considered
 - There is only one thread
- Need new model to analyze complexity of parallel programs
 - Incorporate parallel operations/multiple threads: Binary fork-join model!

BINARY FORK-JOIN MODEL

log n levels of spawn

- Spawn
 - n tasks in parallel

Spawn

- Computation starts from one thread
- A thread can perform operations, such as:
 - Any sequential programming operations (arithmetic, memory access, etc.)
 - Spawn: start (fork) a new thread working on the next statement
 - Sync: previous forked processors synchronize (join) here
 - Parallel for: can be simulated by using $O(\log n)$ spawns, perform the computation of the for loops in parallel
- No concurrent write to the same memory location (or needs to be specified)

sync

COST MODEL: WORK-SPAN

- For all computations, draw a DAG
 - A->B means that B can be performed only when A has been finished
- Work: the total number of operations
- Span (depth): the longest length of chain

DAG shows dependencies in the algorithm

WORK

- Work: total number of operations
 - Sequential running time when the algorithm runs on one processor
 - Work-efficiency: work no more than the best sequential algorithm
 - Goal: make the parallel algorithm efficient when a small number of processor are available

We include all the nodes in the tree

SPAN

- Span(depth):The longest dependency chain
 - Total time required if there are infinite number of processors
 - Make span polylogarithmic (in most of the cases)
 - Goal: make the parallel algorithm faster and faster when more and more processors are available - scalability

Include the depth of the tree (length of the longest path from root to leaf)

COMPUTE WORK AND SPAN

Assume we have an algorithm in the following form:

spawn Task I

Task2

sync

- Work = work of Task1 + work of Task2
- Span = max(span of Task1, span of Task2)

SCHEDULING A PARALLEL ALGORITHM

- A DAG with work W and span D can be executed using p processors in time O(W/p+D)
- Both W and D matter!
 - For small \mathbf{p} , W is more important
 - For large \mathbf{p} , D is more important

MERGE SORT (SEQUENTIAL)

```
MergeSort(int *A, int n)

1  if (n<=1) return

2  MergeSort(A, n/2)

3  MergeSort(A + n/2, n-n/2)

4  A = merge(A, n/2, A + n/2, n-n/2)
  return</pre>
```

MERGE SORT (PARALLEL)

```
MergeSort(int *A, int n)

1  if (n<=1) return

2  spawn MergeSort(A, n/2)

3  MergeSort(A + n/2, n-n/2)

4  sync

5  A = merge(A, n/2, A + n/2, n-n/2)
  return</pre>
```

TIME COMPLEXITY

- Sequential Algorithm
 - $W(n) = 2W(n/2) + O(n) = O(n \log n)$
- Parallel Algorithm
 - $W(n) = 2W(n/2) + O(n) = O(n \log n)$
 - S(n) = S(n/2) + O(n) = O(n)

LONGEST PALINDROME

- Given a string, find the length of the longest palindrome
 - madam = 5
 - babad = 3 (bab, aba)
 - dbabad = 3 (bab, aba)
 - cbbd = 2 (bb)
 - a = |
 - ac = I (a, c)

NAÏVE SOLUTION (SEQUENTIAL)

NAÏVE SOLUTION (PARALLEL)

```
int longestPalindrome(String str)

1    n = str.length, ans = 1
2    parallel for i = 1 to n
3        parallel for j = i+1 to n
4        if (isPalindrome(str, i, j))
5             ans = max(ans, j-i+1)
        return ans
```

TIME COMPLEXITY OF NAÏVE SOLUTION

- Sequential Algorithm
 - $W(n) = O(n^3)$
- Parallel Algorithm
 - $W(n) = O(n^3)$
 - $S(n) = (O(\log n) + O(\log n)) * O(n) = O(n \log n)$

DPALGORITHM (SEQUENTIAL)

```
int longestPalindrome(string str)
1 n = str.length, ans = 1
   mem[n][n] = {0}//2d array initialized
3 for i = 1 to n
      mem[i][i] = 1
  for i = 2 to n
6
      if str[i]== str[i-1]
         mem[i-1][i] = 1
  for len = 3 to n
9
      for i = 1 to n-len
         j = i + len -1
10
11
         if (str[i] == str[j] && mem[i+1][j-1])
             mem[i][j] = 1
12
13
             ans = len
   return ans
```

DP ALGORITHM (PARALLEL)

```
int longestPalindrome(string str)
1 \quad n = str.length, ans = 1
   mem[n][n] = {0}//2d array initialized
   parallel for i = 1 to n
      mem[i][i] = 1
   parallel for i = 2 to n
6
      if str[i]== str[i-1]
          mem[i-1][i] = 1
   for len = 3 to n
9
      parallel for i = 1 to n-len
10
          j = i + len -1
          if (str[i] == str[j] && mem[i+1][j-1])
11
             mem[i][j] = 1
12
13
             ans = len
   return ans
```

TIME COMPLEXITY OF DP ALGORITHM

- Sequential Algorithm
 - $W(n) = O(n) + O(n) + O(n^2) = O(n^2)$
- Parallel Algorithm
 - $W(n) = O(n) + O(n) + O(n)*O(n) = O(n^2)$
 - $S(n) = O(\log n) + O(\log n) + O(n)*O(\log n) = O(n \log n)$