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Abstract
Ordered (key-value) maps are an important and widely-used
data type for large-scale data processing frameworks. Beyond
simple search, insertion and deletion, more advanced oper-
ations such as range extraction, filtering, and bulk updates
form a critical part of these frameworks.

We describe an interface for ordered maps that is augment-
ed to support fast range queries and sums, and introduce a
parallel and concurrent library called PAM (Parallel Augment-
ed Maps) that implements the interface. The interface includes
a wide variety of functions on augmented maps ranging from
basic insertion and deletion to more interesting functions such
as union, intersection, filtering, extracting ranges, splitting,
and range-sums. We describe algorithms for these functions
that are efficient both in theory and practice.

As examples of the use of the interface and the performance
of PAM we apply the library to four applications: simple range
sums, interval trees, 2D range trees, and ranked word index
searching. The interface greatly simplifies the implementation
of these data structures over direct implementations. Sequen-
tially the code achieves performance that matches or exceeds
existing libraries designed specially for a single application,
and in parallel our implementation gets speedups ranging
from 40 to 90 on 72 cores with 2-way hyperthreading.

CCS Concepts • Software and its engineering → General
programming languages; • Social and professional topics
→ History of programming languages;

ACM Reference Format:
Yihan Sun, Daniel Ferizovic, and Guy E. Belloch. 2018. PAM: Par-
allel Augmented Maps. In Proceedings of PPoPP ’18: 23nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, Vienna, Austria, February 24–28, 2018 (PPoPP ’18),
15 pages.
https://doi.org/10.1145/3178487.3178509

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00
https://doi.org/10.1145/3178487.3178509

1 Introduction
The map data type (also called key-value store, dictionary,
table, or associative array) is one of the most important da-
ta types in modern large-scale data analysis, as is indicated
by systems such as F1 [60], Flurry [5], RocksDB [57], Or-
acle NoSQL [50], LevelDB [41]. As such, there has been
significant interest in developing high-performance paral-
lel and concurrent algorithms and implementations of maps
(e.g., see Section 2). Beyond simple insertion, deletion, and
search, this work has considered “bulk” functions over or-
dered maps, such as unions [11, 20, 33], bulk-insertion and
bulk-deletion [6, 24, 26], and range extraction [7, 14, 55].

One particularly useful function is to take a “sum” over a
range of keys, where sum means with respect to any associa-
tive combine function (e.g., addition, maximum, or union). As
an example of such a range sum consider a database of sales
receipts keeping the value of each sale ordered by the time of
sale. When analyzing the data for certain trends, it is likely
useful to quickly query the sum or maximum of sales during
a period of time. Although such sums can be implemented
naively by scanning and summing the values within the key
range, these queries can be answered much more efficiently
using augmented trees [18, 25]. For example, the sum of any
range on a map of size 𝑛 can be answered in 𝑂(log 𝑛) time.
This bound is achieved by using a balanced binary tree and
augmenting each node with the sum of the subtree.

Such a data structure can also implement a significantly
more general form of queries efficiently. In the sales receipt-
s example they can be used for reporting the sales above a
threshold in 𝑂(𝑘 log(𝑛/𝑘 + 1)) time (𝑘 is the output size) if
the augmentation is the maximum of sales, or in 𝑂(𝑘+log 𝑛)
time [44] with a more complicated augmentation. More gen-
erally they can be used for interval queries, 𝑘-dimensional
range queries, inverted indices (all described later in the pa-
per), segment intersection, windowing queries, point location,
rectangle intersection, range overlaps, and many others.

Although there are dozens of implementations of efficient
range sums, there has been very little work on parallel or
concurrent implementations—we know of none for the gen-
eral case, and only two for specific applications [2, 34]. In
this paper we present a general library called PAM (Parallel
Augmented Maps) for supporting in-memory parallel and
concurrent maps with range sums. PAM is implemented in
C++. We use augmented value to refer to the abstract “sum”
on a map (defined in Section 3). When creating a map type
the user specifies two augmenting functions chosen based on
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In Theory In Practice

Application (Asymptotic bound) (Running Time in seconds)
Construct Query Construct Query

Work Span Size Seq. Par. Spd. Size Seq. Par. Spd.
Range Sum 𝑂(𝑛 log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛) 1010 1844.38 28.24 65.3 108 271.09 3.04 89.2

Interval Tree 𝑂(𝑛 log 𝑛) 𝑂(log 𝑛) 𝑂(log 𝑛) 108 14.35 0.23 63.2 108 53.35 0.58 92.7
2d Range Tree 𝑂(𝑛 log 𝑛) 𝑂(log3 𝑛) 𝑂(log2 𝑛) 108 197.47 3.10 63.7 106 48.13 0.55 87.5
Inverted Index 𝑂(𝑛 log 𝑛) 𝑂(log2 𝑛) * 1.96× 109 1038 12.6 82.3 105 368 4.74 77.6

Table 1. The asymptotic cost and experimental results of the applications using PAM. Seq. = sequential, Par. = Parallel (on
72 cores with 144 hyperthreads), Spd. = Speedup. “Work” and “Span” are used to evaluate the theoretical bound of parallel
algorithms (see Section 4). *: Depends on the query.

their application: a base function 𝑔 which gives the augment-
ed value of a single element, and a combine function 𝑓 which
combines multiple augmented values, giving the augment-
ed value of the map. The library can then make use of the
functions to keep “partial sums” (augmented values of sub-
maps) in a tree that asymptotically improve the performance
of certain queries.

Augmented maps in PAM support standard functions on
ordered maps (which maintain the partial sums), as well as
additional function specific to augmented maps (see Figure 1
for a partial list). The standard functions include simple func-
tions such as insertion, and bulk functions such as union. The
functions specific to augmented maps include efficient range-
sums, and filtering based on augmented values. PAM uses
theoretically efficient parallel algorithms for all bulk func-
tions, and is implemented based on using the “join” function
to support parallelism on balanced trees [11]. We extend the
approach of using joins to handle augmented values, and also
give algorithms based on “join” for some other operations
such as filtering, multi-insert, and mapReduce.

PAM uses functional data structures and hence the maps
are fully persistent—updates will not modify an existing map
but will create a new version [22]. Persistence is useful in
various applications, including the range tree and inverted
index applications described in this paper. It is also useful
in supporting a form of concurrency based on snapshot iso-
lation. In particular each concurrent process can atomically
read a snapshot of a map, and can manipulate and modify
their “local” copy without affecting the view of other users,
or being affected by any other concurrent modification to the
shared copy1. However PAM does not directly support tradi-
tional concurrent updates to a shared map. Instead concurrent
updates need to be batched and applied in bulk in parallel.

We present examples of four use cases for PAM along
with experimental performance numbers. Firstly we consid-
er the simple case of maintaining the sum of the values in

1Throughout the paper we use parallel to indicate using multiple processors
to work on a single bulk function, such as multi-insertion or filtering, and we
use concurrent to indicate independent “users” (or processes) asynchronously
accessing the same structure at the same time.

a map using integer addition. For this case we report both
sequential and parallel times for a wide variety of operations
(union, search, multi-insert, range-sum, insertion, deletion,
filter, build). We also present performance comparisons to
other implementations of maps that do not support augment-
ed values. Secondly we use augmented maps to implement
interval trees. An interval tree maintains a set of intervals (e.g.
the intervals of times in which users are logged into a site, or
the intervals of time for FTP connections) and can quickly
answer queries such as if a particular point is covered by
any interval (e.g. is there any user logged in at a given time).
Thirdly we implement 2d range trees. Such trees maintain a
set of points in 2 dimensions and allow one to count or list all
entries within a given rectangular range (e.g. how many users
are between 20 and 25 years old and have salaries between
$50K and $90K). Such counting queries can be answered
in 𝑂(log2 𝑛) time. We present performance comparison to
the sequential range-tree structure available in CGAL [47].
Finally we implement a weighted inverted index that supports
and/or queries, which can quickly return the top 𝑘 matches.
The theoretical cost and practical performance of these four
applications are shown in Table 1.

The main contributions of this paper are:
1. An interface for augmented maps (Section 3).
2. Efficient parallel algorithms and an implementation for

the interface as part of the PAM library (Section 4).
3. Four example applications of the interface (Section 5).
4. Experimental analysis of the examples (Section 6).

2 Related Work
Many researchers have studied concurrent algorithms and
implementations of maps based on balanced search trees fo-
cusing on insertion, deletion and search [6, 10, 13, 15, 21,
24, 26, 36, 37, 40, 46]. Motivated by applications in data
analysis recently researchers have considered mixing atomic
range scanning with concurrent updates (insertion and dele-
tion) [7, 14, 55]. None of them, however, has considered
sub-linear time range sums.

There has also been significant work on parallel algorithms
and implementations of bulk operations on ordered maps and
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sets [3, 11, 12, 20, 24, 26, 33, 52, 53]. Union and intersection,
for example, are available as part of the multicore version of
the C++ Standard Template Library [26]. Again none of this
work has considered fast range sums. There has been some
work on parallel data structures for specific applications of
range sums such as range trees [34].

There are many theoretical results on efficient sequential
data-structures and algorithms for range-type queries using
augmented trees in the context of specific applications such
as interval queries, k-dimensional range sums, or segment
intersection queries (see e.g. [43]). Several of these approach-
es have been implemented as part of systems [35, 47]. Our
work is motivated by this work and our goal is to parallelize
many of these ideas and put them in a framework in which it
is much easier to develop efficient code. We know of no other
general framework as described in Section 3.

Various forms of range queries have been considered in the
context of relational databases [16, 27–29, 31]. Ho et. al. [31]
specifically consider fast range sums. However the work is
sequential, only applies to static data, and requires that the
sum function has an inverse (e.g. works for addition, but not
maximum). More generally, we do not believe that traditional
(flat) relational databases are well suited for our approach
since we use arbitrary data types for augmentation—e.g. our
2d range tree has augmented maps nested as their augmented
values. Recently there has been interest in range queries in
large clusters under systems such as Hadoop [2, 4]. Although
these systems can extract ranges in work proportional to the
number of elements in the range (or close to it), they do not
support fast range sums. None of the “nosql” systems based
on key-value stores [5, 41, 50, 57] support fast range sums.

3 Augmented Maps
Augmented maps, as defined here, are structures that associate
an ordered map with a “sum” (the augmented value) over all
entries in the map. It is achieved by using a base function 𝑔
and a combine function 𝑓 . More formally, an augmented map
type AM is parameterized on the following:
𝐾, key type
< : 𝐾 ×𝐾 → bool, total ordering on the keys
𝑉, value type

𝐴, augmented value type
𝑔 : 𝐾 × 𝑉 → 𝐴, the base function
𝑓 : 𝐴×𝐴 → 𝐴, the combine function
𝐼 : 𝐴 identity for 𝑓

The first three parameters correspond to a standard ordered
map, and the last four are for the augmentation. 𝑓 must be as-
sociative ((𝐴, 𝑓, 𝐼) is a monoid), and we use 𝑓(𝑎1, 𝑎2, . . . , 𝑎𝑛)
to mean any nesting. Then the augmented value of a map
𝑚 = {(𝑘1, 𝑣1), (𝑘2, 𝑣2), . . . , (𝑘𝑛, 𝑣𝑛)} is defined as:

𝒜(𝑚) = 𝑓(𝑔(𝑘1, 𝑣1), 𝑔(𝑘2, 𝑣2), . . . , 𝑔(𝑘𝑛, 𝑣𝑛))

(Partial) Interface AugMap AM(𝐾,𝑉,𝐴,<, 𝑔, 𝑓, 𝐼) :

empty or ∅ : 𝑀
size : 𝑀 → Z
single : 𝐾 × 𝑉 → 𝑀
find : 𝑀 ×𝐾 → 𝑉 ∪ {�}
insert : 𝑀 ×𝐾 × 𝑉 × (𝑉 × 𝑉 → 𝑉 ) → 𝑀
union : 𝑀 ×𝑀 × (𝑉 × 𝑉 → 𝑉 ) → 𝑀
filter : (𝐾 × 𝑉 → bool)×𝑀 → 𝑀
upTo : 𝑀 ×𝐾 → 𝑀
range : 𝑀 ×𝐾 ×𝐾 → 𝑀
mapReduce : (𝐾 × 𝑉 → 𝐵)× (𝐵 ×𝐵 → 𝐵)×𝐵

× 𝑀 → 𝐵
build : (𝐾 × 𝑉 ) seq. × (𝑉 × 𝑉 → 𝑉 ) → 𝑀
augVal : 𝑀 → 𝐴
augLeft : 𝑀 ×𝐾 → 𝐴
augRange : 𝑀 ×𝐾 ×𝐾 → 𝐴
augFilter : (𝐴 → bool)×𝑀 → 𝑀
augProject : (𝐴 → 𝐵)× (𝐵 ×𝐵 → 𝐵)

× 𝑀 ×𝐾 ×𝐾 → 𝐵

Figure 1. The (partial) interface for an augmented map, with
key type 𝐾, value type 𝑉 , and augmented value type 𝐴. The
augmenting monoid is (𝐴, 𝑓, 𝐼). Other functions not listed
include delete, intersect, difference, split, join, downTo,
previous, next, rank, and select. In the table seq. means a
sequence.

As an example, the augmented map type:

AM(Z, <Z,Z,Z, (𝑘, 𝑣) → 𝑣,+Z, 0) (1)

defines an augmented map with integer keys and values, or-
dered by <Z, and for which the augmented value of any map
of this type is the sum of its values.

An augmented map type supports an interface with stan-
dard functions on ordered maps as well as a collection of
functions that make use of 𝑓 and 𝑔. Figure 1 lists an example
interface, which is the one used in this paper and support-
ed by PAM. In the figure, the definitions above the dashed
line are standard definitions for an ordered map. For exam-
ple, the range(𝑚, 𝑘1, 𝑘2) extracts the part of the map be-
tween keys 𝑘1 and 𝑘2, inclusive, returning a new map. The
mapReduce(𝑔′, 𝑓 ′, 𝐼 ′,𝑚) applies the function 𝑔′ to each ele-
ment of the map 𝑚, and then sums them with the associative
function 𝑓 ′ with identity 𝐼 ′. Some functions listed in Fig-
ure 1, such as UNION, INSERT and BUILD, take an addition
argument ℎ, which itself is a function. When applicable it
combines values of all entries with the same key. For example
the union(𝑚1,𝑚2, ℎ) takes union of two maps, and if any
key appears in both maps, it combines their values using ℎ.

Most important to this paper are the definitions below the
dashed line, which are functions specific to augmented map-
s. All of them can be computed using the functions above
the dashed line. However, they can be much more efficient
by maintaining the augmented values of sub-maps (partial
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sums) in a tree structure. Table 2 gives the asymptotic costs
of the functions based on the implementation described in
Section 4, which uses augmented balanced search trees. The
function augVal(𝑚) returns 𝒜(𝑚), which is equivalent to
mapReduce(𝑔, 𝑓, 𝐼,𝑚) but can run in constant instead of
linear work. This is because the functions 𝑓 and 𝑔 are cho-
sen ahead of time and integrated into the augmented map
data type, and therefore the sum can be maintained during
updates. The function augRange(𝑚, 𝑘1, 𝑘2) is equivalent to
augVal(range(𝑚, 𝑘1, 𝑘2)) and augLeft(𝑚, 𝑘) is equivalen-
t to augVal(upTo(𝑚, 𝑘)). These can also be implemented
efficiently using the partial sums.

The last two functions accelerate two common queries on
augmented maps, but are only applicable when their func-
tion arguments meet certain requirements. They also can be
computed using the plain map functions, but can be much
more efficient when applicable. The augFilter(ℎ,𝑚) func-
tion is equivalent to filter(ℎ′,𝑚), where ℎ′ : 𝐾 × 𝑉 ↦→
bool satisfies ℎ(𝑔(𝑘, 𝑣)) ⇔ ℎ′(𝑘, 𝑣). It is only applicable if
ℎ(𝑎) ∨ ℎ(𝑏) ⇔ ℎ(𝑓(𝑎, 𝑏)) for any 𝑎 and 𝑏 (∨ is the logical
or). In this case the filter function can make use of the par-
tial sums. For example, assume the values in the map are
boolean values, 𝑓 is a logical-or, 𝑔(𝑘, 𝑣) = 𝑣, and we want
to filter the map using function ℎ′(𝑘, 𝑣) = 𝑣. In this case
we can filter out a whole sub-map once we see it has false
as a partial sum. Hence we can set ℎ(𝑎) = 𝑎 and directly
use augFilter(𝑚,ℎ). The function is used in interval trees
(Section 5.1). The augProject(𝑔′, 𝑓 ′,𝑚, 𝑘1, 𝑘2) function is
equivalent to 𝑔′(augRange(𝑚, 𝑘1, 𝑘2)). It requires, however,
that (𝐵, 𝑓 ′, 𝑔′(𝐼)) is a monoid and that 𝑓 ′(𝑔′(𝑎), 𝑔′(𝑏)) =
𝑔′(𝑓(𝑎, 𝑏)). This function is useful when the augmented val-
ues are themselves maps or other large data structures. It
allows projecting the augmented values down onto another
type by 𝑔′ (e.g. project augmented values with complicated
structures to values like their sizes) then summing them by
𝑓 ′, and is much more efficient when applicable. For exam-
ple in range trees where each augmented value is itself an
augmented map, it greatly improves performance for queries.

4 Data Structure and Algorithms
In this section we outline a data structure and associated
algorithms used in PAM that can be used to efficiently im-
plement augmented maps. Our data structure is based on
abstracting the balancing criteria of a class of trees (e.g. AVL
or Red-Black trees) in terms of a single JOIN function [11],
which joins two maps with a key between them (defined more
formally below). Prior work describes parallel algorithm-
s for UNION, DIFFERENCE, and INTERSECT for standard
un-augmented sets and maps using just JOIN [11]. Here we
extend the methodology to handle augmentation, and also
describe some other functions based on join. Because the bal-
ancing criteria is fully abstracted in JOIN, similar algorithm

can be applied to AVL trees [1] red-black trees [8], weight-
balanced trees and treaps [59]. We implemented all of them in
PAM. By default, we use weight-balanced trees [48] in PAM,
because it does not require extra balancing criteria in each
node (the node size is already stored), but users can change
to any specific balancing scheme using C++ templates.
Augmentation. We implement augmentation by storing with
every tree node the augmented sum of the subtree rooted
at that node. This localizes application of the augmentation
functions 𝑓 and 𝑔 to when a node is created or updated2. In
particular when creating a node with a left child 𝐿, right child
𝑅, key 𝑘 and value 𝑣 the augmented value can be calculated
as 𝑓(𝒜(𝐿), 𝑓(𝑔(𝑘, 𝑣),𝒜(𝑅))), where 𝒜(·) extracts the aug-
mented value from a node. Note that it takes two applications
of 𝑓 since we have to combine three values, the left, middle
and right. We do not store 𝑔(𝑘, 𝑣). In our algorithms, creation
of new nodes is handled in JOIN, which also deals with rebal-
ancing when needed. Therefore all the algorithms and code
that do not explicitly need the augmented value are unaffected
by and even oblivious of augmentation.
Parallelism. We use fork-join parallelism to implement in-
ternal parallelism for the bulk operations. In pseudocode the
notation “𝑠1 || 𝑠2” means that the two statements 𝑠1 and 𝑠2
can run in parallel, and when both are finished the overall
statement finishes. In most cases parallelism is over the struc-
ture of the trees—i.e. applying some function in parallel over
the two children, and applying this parallelism in a nested
fashion recursively (Figure 2 shows several examples). The
only exception is build, where we use parallelism in a sort
and in removing duplicates. In the PAM library fork-join
parallelism is implemented with the cilkplus extensions to
C++ [39]. We have a granularity set so parallelism is not used
on very small trees.
Theoretical bounds. To analyze the asymptotic costs in the-
ory we use work (𝑊 ) and span (𝑆), where work is the total
number of operations (the sequential cost) and span is the
length of the critical path [18]. Almost all the algorithms
we describe, and implemented in PAM, are asymptotically
optimal in terms of work in the comparison model, i.e., the
total number of comparisons. Furthermore they achieve very
good parallelism (i.e. polylogarithmic span). Table 2 list the
cost of some of the functions in PAM. When the augmenting
functions 𝑓 and 𝑔 both take constant time, the augmentation
only affects all the bounds by a constant factor. Furthermore
experiments show that this constant factor is reasonably small,
typically around 10% for simple functions such as summing
the values or taking the maximum.
Join, Split, Join2 and Union. As mentioned, we adopt and
extend the methodology introduced in [11], which builds

2For supporting persistence, updating a tree node, e.g., when it is involved in
rotations and is set a new child, usually results in the creation of a new node.
See details in the persistence part.
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1 UNION(𝑇1, 𝑇2, ℎ) =

2 if 𝑇1 = ∅ then 𝑇2

3 else if 𝑇2 = ∅ then 𝑇1

4 else let ⟨𝐿2, 𝑘, 𝑣, 𝑅2⟩ = 𝑇2

5 and ⟨𝐿1, 𝑣
′, 𝑅2⟩ = SPLIT(𝑇1, 𝑘)

6 and 𝐿 = UNION(𝐿1, 𝐿2) || 𝑅 = UNION(𝑅1, 𝑅2)

7 in if 𝑣′ ̸= � then JOIN(𝐿, 𝑘, ℎ(𝑣, 𝑣′), 𝑅)

8 else JOIN(𝐿, 𝑘, 𝑣,𝑅)

9 INSERT(𝑇, 𝑘, 𝑣, ℎ) =

10 if 𝑇 = ∅ then SINGLETON(𝑘, 𝑣)

11 else let ⟨𝐿, 𝑘′, 𝑣′, 𝑅⟩ = 𝑇 in
12 if 𝑘 < 𝑘′ then JOIN(INSERT(𝐿, 𝑘, 𝑣), 𝑘′, 𝑣′, 𝑅)

13 else if 𝑘 > 𝑘′ then JOIN(𝐿, 𝑘′, 𝑣′, INSERT(𝑅, 𝑘, 𝑣))

14 else JOIN(𝐿, 𝑘, ℎ(𝑣′, 𝑣), 𝑅)

15 MAPREDUCE(𝑇, 𝑔′, 𝑓 ′, 𝐼 ′) =

16 if 𝑇 = ∅ then 𝐼 ′

17 else let ⟨𝐿, 𝑘, 𝑣,𝑅⟩ = 𝑇

18 and 𝐿′ = MAPREDUCE(𝐿, 𝑔′, 𝑓 ′, 𝐼 ′) ||
19 𝑅′ = MAPREDUCE(𝑅, 𝑔′, 𝑓 ′, 𝐼 ′)

20 in 𝑓 ′(𝐿′, 𝑔′(𝑘, 𝑣), 𝑅′)

21 AUGLEFT(𝑇, 𝑘′) =

22 if 𝑇 = ∅ then 𝐼

23 else let ⟨𝐿, 𝑘, 𝑣,𝑅⟩ = 𝑇

24 in if 𝑘′ < 𝑘 then AUGLEFT(𝐿, 𝑘′)

25 else 𝑓(𝒜(𝐿), 𝑔(𝑘, 𝑣),AUGLEFT(𝑅, 𝑘′))

26 FILTER(𝑇, ℎ) =

27 if 𝑇 = ∅ then ∅
28 else let ⟨𝐿, 𝑘, 𝑣,𝑅⟩ = 𝑇

29 and 𝐿′ = FILTER(𝐿, ℎ) || 𝑅′ = FILTER(𝑅, ℎ)

30 in if ℎ(𝑘, 𝑣) then JOIN(𝐿′, 𝑘, 𝑣, 𝑅′) else JOIN2(𝐿′, 𝑅′)

31 AUGFILTER(𝑇, ℎ) =

32 if (𝑇 = ∅) OR (¬ℎ(𝒜(𝑇 ))) then ∅
33 else let ⟨𝐿, 𝑘, 𝑣,𝑅⟩ = 𝑇

34 and 𝐿′ = AUGFILTER(𝐿, ℎ) ||
35 𝑅′ = AUGFILTER(𝑅, ℎ)

36 in if ℎ(𝑔(𝑘, 𝑣)) then JOIN(𝐿′, 𝑘, 𝑣, 𝑅′) else JOIN2(𝐿′, 𝑅′)

37 BUILD’(𝑆, 𝑖, 𝑗) =
38 if 𝑖 = 𝑗 then ∅
39 else if 𝑖+ 1 = 𝑗 then SINGLETON(𝑆[𝑖])

40 else let 𝑚 = (𝑖+ 𝑗)/2

41 and 𝐿 = BUILD’(𝑆, 𝑖,𝑚) || 𝑅 = BUILD’(𝑆,𝑚+ 1, 𝑗)

42 in JOIN(𝐿, 𝑆[𝑚], 𝑅)

43 BUILD(𝑆) =

44 BUILD’(REMOVEDUPLICATES(SORT(𝑆)), 0, |𝑆|)

Figure 2. Pseudocode for some of the functions on augmented
maps. UNION is from [11], the rest are new. For an associated binary
function 𝑓 , 𝑓(𝑎, 𝑏, 𝑐) means 𝑓(𝑎, 𝑓(𝑏, 𝑐)).

Function Work Span
Map operations
insert, delete, find, first,

log 𝑛 log 𝑛last, previous, next, rank,
select, upTo, downTo
Bulk operations
join log 𝑛− log𝑚 log 𝑛− log𝑚

union*, intersect*,
𝑚 log

(︀
𝑛
𝑚 + 1

)︀
log 𝑛 log𝑚

difference*

mapReduce 𝑛 log 𝑛

filter 𝑛 log2 𝑛

range, split, join2 log 𝑛 log 𝑛

build 𝑛 log 𝑛 log 𝑛

Augmented operations
augVal 1 1
augRange, augProject log 𝑛 log 𝑛

augFilter (output size 𝑘) 𝑘 log(𝑛/𝑘 + 1) log2 𝑛

Table 2. The core functions in PAM and their asymptotic
costs (all big-O). The cost is given under the assumption that
the base function 𝑔, the combine function 𝑓 and the functions
as parameters (e.g., for AUGPROJECT) take constant time to
return. For the functions noted with *, the efficient algorithms
with bounds shown in the table are introduced and proved
in [11]. For functions with two input maps (e.g., UNION), 𝑛
is the size of the larger input, and 𝑚 of the smaller.

all map functions using JOIN(𝐿, 𝑘,𝑅). The JOIN function
takes two ordered maps 𝐿 and 𝑅 and a key-value pair (𝑘, 𝑣)
that sits between them (i.e. max(𝐿) < 𝑘 < min(𝑅)) and
returns the composition of 𝐿, (𝑘, 𝑣) and 𝑅. Using JOIN it
is easy to implement two other useful functions: SPLIT and
JOIN2. The function ⟨𝐿, 𝑣,𝑅⟩ = SPLIT(𝐴, 𝑘) splits the map
𝐴 into the elements less than 𝑘 (placed in 𝐿) and those greater
(placed in 𝑅). If 𝑘 appears in 𝐴 its associated value is returned
as 𝑣, otherwise 𝑣 is set to be an empty value noted as �.
The function 𝑇 =JOIN2(𝑇𝐿, 𝑇𝑅) works similar to JOIN, but
without the middle element. These are useful in the other
algorithms. Algorithmic details can be found in [11].

The first function in Figure 2 defines an algorithm for U-
NION based on SPLIT and JOIN. We add a feature that it can
accept a function ℎ as parameter. If one key appears in both
sets, the values are combined using ℎ. In the pseudocode
we use ⟨𝐿, 𝑘, 𝑣,𝑅⟩ = 𝑇 to extract the left child, key, value
and right child from the tree node 𝑇 , respectively. The pseu-
docode is written in a functional (non side-effecting) style.
This matches our implementation, as discussed in persistence
below.
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Insert and Delete. Instead of the classic implementations
of INSERT and DELETE, which are specific to the balanc-
ing scheme, we define versions based purely on JOIN, and
hence independent of the balancing scheme. Like the UNION
function, INSERT also takes an addition function ℎ as input,
such that if the key to be inserted is found in the map, the
values will be combined by ℎ. The algorithm for insert is
given in Figure 2, and the algorithm for deletion is similar.
The algorithms run in 𝑂(log 𝑛) work (and span since sequen-
tial). One might expect that abstracting insertion using JOIN
instead of specializing for a particular balance criteria has
significant overhead. Our experiments show this is not the
case—and even though we maintain the reference counter for
persistence, we are only 17% slower sequentially than the
highly-optimized C++ STL library (see section 6).
Build. To construct an augmented map from a sequence of
key-value pairs we first sort the sequence by the keys, then
remove the duplicates (which are contiguous in sorted order),
and finally use a balanced divide-and-conquer with JOIN. The
algorithm is given in Figure 2. The work is then 𝑂(𝑊sort(𝑛)+
𝑊remove(𝑛) + 𝑛) and the span is 𝑂(𝑆sort(𝑛) + 𝑆remove(𝑛) +
log 𝑛). For work-efficient sort and remove-duplicates with
𝑂(log 𝑛) span this gives the bounds in Table 2.
Reporting Augmented Values. As an example, we give the
algorithm of AUGLEFT(𝑇, 𝑘′) in Figure 2, which returns
the augmented value of all entries with keys less than 𝑘′. It
compares the root of 𝑇 with 𝑘′, and if 𝑘′ is smaller, it calls
AUGLEFT on its left subtree. Otherwise the whole left sub-
tree and the root should be counted. Thus we directly extract
the augmented value of the left subtree, convert the entry in
the root to an augmented value by 𝑔, and recursively call
AUGLEFT on its right subtree. The three results are com-
bined using 𝑓 as the final answer. This function visits at most
𝑂(log 𝑛) nodes, so it costs 𝑂(log 𝑛) work and span assuming
𝑓 , 𝑔 and 𝐼 return in constant time. The AUGRANGE function,
which reports the augmented value of all entries in a range,
can be implemented similarly with the same asymptotical
bound.
Filter and AugFilter. The filter and augFilter function both
select all entries in the map satisfying condition ℎ. For a
(non-empty) tree T, FILTER recursively filters its left and
right branches in parallel, and combines the two results with
JOIN or JOIN2 depending on whether ℎ is satisfied for the
entry at the root. It takes linear work and 𝑂(log2 𝑛) span
for a balanced tree. The augFilter(ℎ,𝑚) function has the
same effect as filter(ℎ′,𝑚), where ℎ′ : 𝐾 × 𝑉 ↦→ bool
satisfies ℎ(𝑔(𝑘, 𝑣)) ⇔ ℎ′(𝑘, 𝑣) and is only applicable if
ℎ(𝑎) ∨ ℎ(𝑏) ⇔ ℎ(𝑓(𝑎, 𝑏)). This can asymptotically improve
efficiency since if ℎ(𝒜(𝑇 )) is false, then we know that ℎ will
not hold for any entries in the tree 𝑇 3, so the search can be

3Similar methodology can be applied if there exists a function ℎ′′ to decide
if all entries in a subtree will be selected just by reading the augmented value.

pruned (see Figure 1). For 𝑘 output entries, this function takes
𝑂(𝑘 log(𝑛/𝑘 + 1)) work, which is asymptotically smaller
than 𝑛 and is significantly more efficient when 𝑘 is small. Its
span is 𝑂(log2 𝑛).
Other Functions. We implement many other functions in
PAM, including all in Figure 1. In MAPREDUCE(𝑔′, 𝑓 ′, 𝐼 ′, 𝑇 ),
for example, it is recursively applied on 𝑇 ’s two subtrees in
parallel, and 𝑔′ is applied to the root. The three values are then
combined using 𝑓 ′. The function AUGPROJECT(𝑔′, 𝑓 ′,𝑚, 𝑘1, 𝑘2)
on the top level adopts a similar method as AUGRANGE to
get related entries or subtrees in range [𝑘1, 𝑘2], projects 𝑔′ to
their augmented values and combine results by 𝑓 ′.
Persistence. The PAM library uses functional data structures,
and hence does not modify existing tree nodes but instead
creates new ones [49]. This is not necessary for implementing
augmented maps, but is helpful in the parallel and concurren-
t implementation. Furthermore the fact that functional data
structures are persistent (no existing data is modified) has
many applications in developing efficient data structures [22].
In this paper three of our four applications (maintaining in-
verted indices, interval trees and range trees) use persistence
in a critical way. The JOIN function copies nodes along the
join path, leaving the two original trees unchanged. All of
our code is built on JOIN in the functional style, returning
new trees rather than modifying old ones. Such functional
data structures mean that parts of trees are shared, and that
old trees for which there are no longer any pointers need to
be garbage collected. We use a reference counting garbage
collector. When the reference count is one we use a stan-
dard reuse optimization—reusing the current node instead of
collecting it and allocating a new one [32].
Concurrency. In PAM any number of users can concurrently
access and update their local copy (snapshot) of any map.
This is relatively easy to implement based on functional data
structures (persistent) since each process only makes copies
of new data instead of modifying shared data. The one tricky
part is maintaining the reference counts and implementing
the memory allocator and garbage collector to be safe for
concurrency. This is all implemented in a lock-free fashion.
A compare-and-swap is used for updating reference counts,
and a combination of local pools and a global pool are used
for memory allocation. Updates to the shared instance of a
map can be made atomically by swapping in a new pointer
(e.g., with a compare-and-swap). This means that updates
are sequentialized. However they can be accumulated and
applied when needed in bulk using the parallel multi-insert or
multi-delete.

5 Applications
In this section we describe applications that can be imple-
mented using the PAM interface. Our first application is given
in Equation 1, which is a map storing integer keys and values,
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and keeping track of sum over values. In this section we give
three more involved applications of augmented maps: inter-
val trees, range trees and word indices (also called inverted
indices). We note that although we use trees as the implemen-
tation, the abstraction of the applications to augmented maps
is independent of representations.

5.1 Interval Trees
We give an example of how to use our interface for interval
trees [18, 19, 23, 25, 35, 43]. This data structure maintains
a set of intervals on the real line, each defined by a left and
right endpoint. Various queries can be answered, such as a
stabbing query which given a point reports whether it is in an
interval.

There are various versions of interval trees. Here we discuss
the version as described in [18]. In this version each interval
is stored in a tree node, sorted by the left endpoint (key). A
point 𝑥 is covered by in an interval in the tree if the maximum
right endpoint for all intervals with keys less than 𝑥 is greater
than 𝑥 (i.e. an interval starts to the left and finishes to the
right of 𝑥). By storing at each tree node the maximum right
endpoint among all intervals in its subtree, the stabbing query
can be answered in 𝑂(log 𝑛) time. An example is shown in
Figure 4.

In our framework this can easily be implemented by using
the left endpoints as keys, the right endpoints as values, and
using max as the combining function. The definition is:

𝐼 = AM(R, <R,R,R, (𝑘, 𝑣) ↦→ 𝑣,maxR,−∞)
Figure 3 shows the C++ code of the interval tree struc-

ture using PAM. The entry with augmentation is defined in
entry starting from line 3, containing the key type key t,
value type val t, comparison function comp, augmented val-
ue type (aug t), the base function 𝑔 (base), the combine
function 𝑓 (combine), and the identity of 𝑓 (identity). An
augmented map (line 16) is then declared as the interval tree
structure with entry. The constructor on line 18 builds an
interval tree from an array of 𝑛 intervals by directly calling
the augmented-map constructor in PAM (𝑂(𝑛 log 𝑛) work).
The function stab(p) returns if 𝑝 is inside any interval using
amap::aug left(m,p). As defined in Section 3 and 4, this
function returns the augmented sum, which is the max on
values, of all entries with keys less than 𝑝. As mentioned we
need only to compare it with 𝑝. The function report all(p)

returns all intervals containing 𝑝, which are those with keys
less than 𝑝 but values larger than 𝑝. We first get the sub-
map in m with keys less then 𝑝 (amap::upTo(m,p)), and
filter all with values larger than 𝑝. Note that ℎ(𝑎) = (𝑎 >
𝑝) and the combine function 𝑓(𝑎, 𝑏) = max(𝑎, 𝑏) satisfy
ℎ(𝑎) ∨ ℎ(𝑏) ⇔ ℎ(𝑓(𝑎, 𝑏)). This means that to get all nodes
with values > 𝑝, if the maximum value of a subtree is less
than 𝑝, the whole subtree can be discarded. Thus we can apply

amap::aug filter (𝑂(𝑘 log(𝑛/𝑘+1)) work for 𝑘 results),
which is more efficient than a plain filter.

1 struct interval_map {
2 using interval = pair<point, point>;
3 struct entry {
4 using key_t = point;
5 using val_t = point;
6 using aug_t = point;
7 static bool comp(key_t a, key_t b)
8 { return a < b;}
9 static aug_t identity()
10 { return 0;}
11 static aug_t base(key_t k, val_t v)
12 { return v;}
13 static aug_t combine(aug_t a, aug_t b) {
14 return (a > b) ? a : b;}
15 };
16 using amap = aug_map<entry>;
17 amap m;

18 interval_map(interval* A, size_t n) {
19 m = amap(A,A+n); }

20 bool stab(point p) {
21 return (amap::aug_left(m,p) > p);}

22 amap report_all(point p) {
23 amap t = amap::up_to(m,p);
24 auto h = [] (P a) -> bool {return a>p;}
25 return amap::augFilter(t,h);};

Figure 3. The definition of interval maps using PAM in C++.

5.2 Range Trees
Given a set of 𝑛 points {𝑝𝑖 = (𝑥𝑖, 𝑦𝑖)} in the plane, where
𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 , each point with weight 𝑤𝑖 ∈ 𝑊 , a 2D range
sum query asks for the sum of weights of points within a
rectangle defined by a horizontal range (𝑥𝐿, 𝑥𝑅) and vertical
range (𝑦𝐿, 𝑦𝑅). A 2D range query reports all points in the
query window. In this section, we describe how to adapt 2D
range trees to the PAM framework to efficiently support these
queries.

The standard 2D range tree [9, 43, 58] is a two-level tree (or
map) structure. The outer level stores all the points ordered
by the x-coordinates. Each tree node stores an inner tree
with all points in its subtree but ordered by the y-coordinates.

1 2 4 3 5 6 9 8 7 
(3,5) 

(1,7) (2,6) (4,5) 
(5,8) (6,7) 

(7,9) 
(4,5) 9 

Key: Left endpoint; Val: Right endpoint; 𝒈𝒈(𝒌𝒌,𝒗𝒗) = 𝑣𝑣; 𝒇𝒇(𝒂𝒂𝟏𝟏,𝒂𝒂𝟐𝟐) = max(𝑣𝑣1,𝑣𝑣2); 

(number line) 

(6,7) 9 
(key,val) aug_val 

(2,6) 7 

(1,7) 7 (3,5) 5 (5,8) 8 (7,9) 9 

Figure 4. An example of an interval tree.
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node 
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node 

Left 
subtree 

Inner tree 
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Figure 5. The range tree data structure under PAM frame-
work. In the illustration we omit some attributes such as size,
reference counter and the identity function. Note that the
functions combine, base and identity of both the out-
er tree and inner tree are static functions, so these functions
shown in this figure actually do not take any real spaces.

Then a range query can be done by two nested queries on
x- and y-coordinates respectively. Sequential construction
time and query time is 𝑂(𝑛 log 𝑛) and 𝑂(log2 𝑛) respectively
(the query time can be reduced to 𝑂(log 𝑛) with reasonably
complicated approaches).

In our interface the outer tree (𝑅𝑂) is represented as an aug-
mented map in which keys are points (sorted by x-coordinates)
and values are weights. The augmented value, which is the
inner tree, is another augmented map (𝑅𝐼 ) storing all points in
its subtree using the points as the key (sorted by y-coordinates)
and the weights as the value. The inner map is augmented
by the sum of the weights for efficiently answering range
sums. Union is used as the combine function for the outer
map. The range tree layout is illustrated in in Figure 5, and
the definition in our framework is:

𝑅𝐼 = AM ( 𝑃 , <𝑌 , 𝑊 , 𝑊 , (𝑘, 𝑣) → 𝑣, +𝑊 , 0𝑊 )
𝑅𝑂 = AM ( 𝑃 , <𝑋 , 𝑊 , 𝑅𝐼 , 𝑅𝐼 .singleton, ∪, ∅ )

Here 𝑃 = 𝑋 × 𝑌 is the point type. 𝑊 is the weight type.
+𝑊 and 0𝑊 are the addition function on 𝑊 and its identity
respectively.

It is worth noting that because of the persistence supported
by the PAM library, the combine function UNION does not
affect the inner trees in its two children, but builds a new
version of 𝑅𝐼 containing all the elements in its subtree. This
is important in guaranteeing the correctness of the algorithm.

To answer the query, we conduct two nested range searches:
(𝑥𝐿, 𝑥𝑅) on the outer tree, and (𝑦𝐿, 𝑦𝑅) on the related inner
trees [43, 58]. It can be implemented using the augmented
map functions as:

QUERY(𝑟𝑂, 𝑥𝐿, 𝑥𝑅, 𝑦𝐿, 𝑦𝑅) =

let 𝑔′(𝑟𝐼) = AUGRANGE(𝑟𝐼 , 𝑦𝐿, 𝑦𝑅)

in AUGPROJECT(𝑔′,+𝑊 , 𝑟𝑂, 𝑥𝐿, 𝑥𝑅)

The augProject on 𝑅𝑂 is the top-level searching of x-
coordinates in the outer tree, and 𝑔′ projects the inner trees
to the weight sum of the corresponding y-range. 𝑓 ′ (i.e.,
+𝑊 ) combines the weight of all results of 𝑔′ to give the

sum of weights in the rectangle. When 𝑓 ′ is an addition,
𝑔′ returns the range sum, and 𝑓 is a UNION, the condition
𝑓 ′(𝑔′(𝑎), 𝑔′(𝑏)) = 𝑔′(𝑎) + 𝑔′(𝑏) = 𝑔′(𝑎 ∪ 𝑏) = 𝑔′(𝑓(𝑎, 𝑏))
holds, so AUGPROJECT is applicable. Combining the two
steps together, the query time is 𝑂(log2 𝑛). We can also an-
swer range queries that report all point inside a rectangle in
time 𝑂(𝑘 + log2 𝑛), where 𝑘 is the output size.

5.3 Ranked Queries on Inverted Indices
Our last application of augmented maps is building and search-
ing a weighted inverted index of the kind used by search
engines [56, 66] (also called an inverted file or posting file).
For a given corpus, the index stores a mapping from words
to second-level mappings. Each second-level mapping, maps
each document that the term appears in to a weight, corre-
sponding to the importance of the word in the document and
the importance of the document itself. Using such a represen-
tation, conjunctions and disjunctions on terms in the index can
be found by taking the intersection and union, respectively, of
the corresponding maps. Weights are combined when taking
unions and intersections. It is often useful to only report the
𝑘 results with highest weight, as a search engine would list
on its first page.

This can be represented rather directly in our interface.
The inner map, maps document-ids (𝐷) to weights (𝑊 ) and
uses maximum as the augmenting function 𝑓 . The outer map
maps terms (𝑇 ) to inner maps, and has no augmentation. This
corresponds to the maps:

𝑀𝐼 = AM ( 𝐷, <𝐷 , 𝑊 , 𝑊 , (𝑘, 𝑣) → 𝑣, max𝑊 , 0 )
𝑀𝑂 = M ( 𝑇 , <𝑇 𝑀𝐼 , )

We use M(𝐾,<𝐾 , 𝑉 ) to represent a plain map with key
type 𝐾, total ordering defined by <𝐾 and value type 𝑉 . In the
implementation, we use the feature of PAM that allows pass-
ing a combining function with UNION and INTERSECT (see
Section 4), for combining weights. The AUGFILTER function
can be used to select the 𝑘 best results after taking unions
and intersections over terms. Note that an important feature is
that the UNION function can take time that is much less that
the size of the output (e.g., see Section 4). Therefore using
augmentation can significantly reduce the cost of finding the
top 𝑘 relative to naively checking all the output to pick out
the 𝑘 best. The C++ code for our implementation is under 50
lines.

6 Experiments
For the experiments we use a 72-core Dell R930 with 4 x
Intel(R) Xeon(R) E7-8867 v4 (18 cores, 2.4GHz and 45MB
L3 cache), and 1Tbyte memory. Each core is 2-way hyper-
threaded giving 144 hyperthreads. Our code was compiled
using g++ 5.4.1, which supports the Cilk Plus extensions.
Of these we only use cilk spawn and cilk sync for fork-
join, and cilk for as a parallel loop. We compile with -O2.
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We use numactl -i all in all experiments with more than
one thread. It evenly spreads the memory pages across the
processors in a round-robin fashion.

We ran experiments that measure performance of our four
applications: the augmented sum (or max), the interval tree,
the 2D range tree and the word index searching.

6.1 The Augmented Sum
Times for set functions such as union using the same algo-
rithm in PAM without augmentation have been summarized
in [11]. In this section we summarize times for a simple aug-
mentation, which just adds values as the augmented value
(see Equation 1). We test the performance of multiple func-
tions on this structure. We also compare PAM with some
sequential and parallel libraries, as well as some concurrent
data structures. None of the other implementations support
augmentation. We use 64-bit integer keys and values. The
results on running time are summarized in Table 3. Our times
include the cost of any necessary garbage collection (GC).
We also present space usage in Table 4.

We test versions both with and without augmentation. For
general map functions like UNION or INSERT, maintaining
the augmented value in each node costs overhead, but it seems
to be minimal in running time (within 10%). This is likely
because the time is dominated by the number of cache misses,
which is hardly affected by maintaining the augmented value.
The overhead of space in maintaining the augmented value
is 20% in each tree node (extra 8 bytes for the augmented
value). For the functions related to the range sum, the aug-
mentation is necessary for theoretical efficiency, and greatly
improves the performance. For example, the AUGRANGE
function using a plain (non-augmented) tree structure would
require scanning all entries in the range, so the running time is
proportional to the number of related entries. It costs 0.44s to
process 104 parallel AUGRANGE queries. With augmentation,
AUGRANGE has performance that is close to a simple FIND
function, which is only 3.04s for 108 queries. Another exam-
ple to show the advantage of augmentation is the AUGFILTER
function. Here we use MAX instead of taking the sum as the
combine function, and set the filter function as selecting all
entries with values that are larger than some threshold 𝜃. We
set the parameter 𝑚 as the output size, which can be adjusted
by choosing appropriate 𝜃. Such an algorithm has theoretical
work of 𝑂(𝑚 log(𝑛/𝑚+ 1)), and is significantly more effi-
cient than a plain implementation (linear work) when 𝑚 ≪ 𝑛.
We give two examples of tests on 𝑚 = 105 and 106. The
change of output size does not affect the running time of
the non-augmented version, which is about 2.6s sequentially
and 0.05s in parallel. When making use of the augmentation,
we get a 3x improvement when 𝑚 = 106 and about 14x
improvement when 𝑚 = 105.

n m T1 T144 Spd.

PAM (with augmentation)
Union 108 108 12.517 0.2369 52.8

Union 108 105 0.257 0.0046 55.9

Find 108 108 113.941 1.1923 95.6

Insert 108 − 205.970 − −
Build 108 − 16.089 0.3232 49.8

Build 1010 − 1844.38 28.24 65.3

Filter 108 − 4.578 0.0804 56.9

Multi-Insert 108 108 23.797 0.4528 52.6

Multi-Insert 108 105 0.407 0.0071 57.3

Range 108 108 44.995 0.8033 56.0

AugLeft 108 108 106.096 1.2133 87.4

AugRange 108 108 193.229 2.1966 88.0

AugRange 1010 108 271.09 3.04 89.2

AugFilter 108 106 0.807 0.0163 49.7

AugFilter 108 105 0.185 0.0030 61.2

Non-augmented PAM (general map functions)
Union 108 108 11.734 0.1967 59.7

Insert 108 − 186.649 − −
build 108 − 15.782 0.3008 52.5

Range 108 108 42.756 0.7603 56.2

Non-augmented PAM (augmented functions)
AugRange 108 104 21.642 0.4368 49.5

AugFilter 108 106 2.695 0.0484 55.7

AugFilter 108 105 2.598 0.0497 52.3

STL
Union Tree 108 108 166.055 − −
Union Tree 108 105 82.514 − −
Union Array 108 108 1.033 − −
Union Array 108 105 0.459 − −
Insert 108 − 158.251 − −

MCSTL
Multi-Insert 108 108 51.71 7.972 6.48

Multi-Insert 108 105 0.20 0.027 7.36

Table 3. Timings in seconds for various functions in PAM,
the C++ Standard Template Library (STL) and the library
Multi-core STL (MCSTL) [61]. Here “𝑇144” means on all 72
cores with hyperthreads (i.e., 144 threads), and “𝑇1” means
the same algorithm running on one thread. “Spd.” means the
speedup (i.e., 𝑇1/𝑇144). For insertion we test the total time
of 𝑛 insertions in turn starting from an empty tree. All other
libraries except PAM are not augmented.

For sequential performance we compare to the C++ Stan-
dard Template Library (STL) [45], which supports set union
on sets based on red-black trees and sorted vectors (arrays).
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(a). 5× 107 insertions, throughput (M/s), 𝑝 = 144. (b). 107 concurrent reads, throughput (M/s), 𝑝 = 144.
Compare to some concurrent data structures. Compare to some concurrent data structures.
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Figure 6. (a), (b) The performance (throughput, millions of elements per second) of PAM comparing with some concurrent data
structures. In (a) we use our MULTIINSERT, which is not as general as the concurrent insertions in other implementations. (c)
The running time of UNION and BUILD using PAM on different input sizes. (d) The speedup on interval tree construction and
query. (e) The running time on range tree construction.

Overhead for aug. Saving from node-sharing
Func. Type node aug. over- #nodes in Actual Saving

size size head theory #nodes ratio

Union
m = 108 48B 8B 20% 390M 386M 1.2%

m = 105 48B 8B 20% 200M 102M 49.0%

Range Outer 48B 8B 20% 100M 100M 0.0%

Tree Inner 40B 4B 11% 266M 229M 13.8%

Table 4. Space used by the UNION function and the range
tree application. We use B for byte, M for million.

We denote the two versions as Union-Tree and Union-Array.
In Union-Tree results are inserted into a new tree, so it is also
persistent. When the two sets have the same size, the array
implementation is faster because of its flat structure and better
cache performance. If one map is much smaller, PAM per-
forms better than Union-Array because of better theoretical
bound (𝑂(𝑚 log(𝑛/𝑚+ 1)) vs. 𝑂(𝑛+𝑚)). It outperforms
Union-Tree because it supports persistence more efficiently,
i.e., sharing nodes instead of making a copy of all output
entries. Also, our JOIN-based INSERT achieves performance
close to (about 17% slower) the well-optimized STL tree in-
sertion even though PAM needs to maintain the reference
counts.

In parallel, the speedup on the aggregate functions such
as UNION and BUILD is above 50. Generally, the speedup is
correlated to the ratio of reads to writes. With all (or mostly)
reads to the tree structure, the speedup is often more than 72
(number of cores) with hyperthreads (e.g., FIND, AUGLEFT
and AUGRANGE). With mostly writes (e.g., building a new
tree as output) it is 40-50 (e.g., FILTER, RANGE, UNION
and AUGFILTER). The BUILD function is relatively special
because the parallelism is mainly from the parallel sorting.
We also give the performance of the MULTIINSERT function
in the Multicore STL (MCSTL) [61] for reference. On our
server MCSTL does not scale to 144 threads, and we show
the best time it has (on 8-16 threads). On the functions we test,
PAM outperforms MCSTL both sequentially and in parallel.

PAM is scalable to very large data, and still achieve very
good speedup. On our machine, PAM can process up to 1010

elements (highlighted in Table 3). It takes more than half an
hour to build the tree sequentially, but only needs 28 seconds
in parallel, achieving a 65-fold speedup. For AUGRANGE the
speedup is about 90.

Also, using path-copying to implement persistence im-
proves space-efficiency. For the persistent UNION on two
maps of size 108 and 105, we save about 49% of tree nodes
because most nodes in the larger tree are re-used in the output
tree. When the two trees are of the same size and the keys of

299



PAM: Parallel Augmented Maps PPoPP ’18, February 24–28, 2018, Vienna, Austria

both trees are extracted from the similar distribution, there is
little savings.

We present the parallel running times of UNION and BUILD
on different input sizes in Figure 6 (c). For UNION we set one
tree of size 108 and vary the other tree size. When the tree size
is small, the parallel running time does not shrink proportional
to size (especially for BUILD), but is still reasonably small.
This seems to be caused by insufficient parallelism on small
sizes. When the input size is larger than 106, the algorithms
scales very well.

We also compare with four comparison-based concurrent
data structures: skiplist, OpenBw-tree [63], Masstree [42]
and B+ tree [65]. The implementations are from [63]4. We
compare their concurrent insertions with our parallel MUL-
TIINSERT and test on YCSB microbenchmark C (read-only).
We first use 5×107 insertions to an empty tree to build the ini-
tial database, and then test 107 concurrent reads. The results
are given in Figure 6(a) (insertions) and (b) (reads). For inser-
tions, PAM largely outperforms all of them sequentially and
in parallel, although we note that their concurrent insertions
are more general than our parallel multi-insert (e.g., they can
deal with ongoing deletions at the same time). For concurrent
reads, PAM performs similarly to B+ tree and Masstree with
less than 72 cores, but outperforms all of them on all 144
threads. We also compare to Intel TBB [54, 62] concurrent
hash map, which is a parallel implementation on unordered
maps. On inserting 𝑛 = 108 entries into a pre-allocated table
of appropriate size, it takes 0.883s compared to our 0.323s
(using all 144 threads).

6.2 Interval Trees
We test our interval tree (same code as in Figure 3) using the
PAM library. For queries we test 109 stabbing queries. We
give the results of our interval tree on 108 intervals in Table 5
and the speedup figure in Figure 6(d).

Sequentially, even on 108 intervals the tree construction
only takes 14 seconds, and each query takes around 0.58 𝜇s.
We did not find any comparable open-source interval-tree li-
brary in C++ to compare with. The only available library is a
Python interval tree implementation [30], which is sequential,
and is very inefficient (about 1000 times slower sequentially).
Although unfair to compare performance of C++ to python
(python is optimized for ease of programming and not per-
formance), our interval tree is much simpler than the python
code—30 lines in Figure 3 vs. over 2000 lines of python.
This does not include our code in PAM (about 4000 lines of
code), but the point is that our library can be shared among
many applications while the Python library is specific for the
interval query. Also our code supports parallelism.

4We do not compare to the fastest implementation (the Adaptive Radix Tree
[38]) in [63] because it is not comparison-based.

Lib. Func. n m T1 T144 Spd.
PAM Build 108 - 14.35 0.227 63.2
(interval) Query 108 108 53.35 0.576 92.7

PAM
Build 108 - 197.47 3.098 63.7

(range)
Q-Sum 108 106 48.13 0.550 87.5
Q-All 108 103 44.40 0.687 64.6

CGAL Build 108 - 525.94 - -
(range) Q-All 108 103 110.94 - -

Table 5. The running time (seconds) of the range tree and the
interval tree implemented with PAM interface on 𝑛 points
and 𝑚 queries. Here “𝑇1” reports the sequential running time
and “𝑇144” means on all 72 cores with hyperthreads (i.e., 144
threads). “Spd.” means the speedup (i.e., 𝑇1/𝑇144). “Q-Sum”
and “Q-All” represent querying the sum of weights and query-
ing the full list of all points in a certain range respectively.
We give the result on CGAL range tree for comparisons with
our range tree.

In parallel, on 108 intervals, our code can build an interval
tree in about 0.23 second, achieving a 63-fold speedup. We
also give the speedup of our PAM interval tree in Figure 6(d).
Both construction and queries scale up to 144 threads (72
cores with hyperthreads).

6.3 Range Trees
We test our 2D range tree as described in Section 5.2. A
summary of run times is presented in Table 5. We com-
pared our sequential version with the range tree in the CGAL
library [51] (see Figure 6(e)). The CGAL range tree is se-
quential and can only report all the points in the range. For
108 input points we control the output size of the query to be
around 106 on average. Table 5 gives results of construction
and query time using PAM and CGAL respectively. Note that
our range tree also stores the weight and reference counting
in the tree while CGAL only stores the coordinates, which
means CGAL version is more space-efficient than ours. Even
considering this, PAM is always more efficient than CGAL
and less than half the running time both in building and query-
ing time on 108 points. Also our code can answer the weight-
sum in the window in a much shorter time, while CGAL can
only give the full list.

We then look at the parallel performance. As shown in
Table 5 it took 3 seconds (about a 64-fold speedup) to build
a tree on 108 points. On 144 threads the PAM range tree
can process 1.82 million queries on weight-sum per second,
achieving a 87-fold speedup.

We also report the number of allocated tree nodes in Table
4. Because of path-copying, we save 13.8% space by the
sharing of inner tree nodes.
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n
1 Core 72* Cores

Speed-
(×109)

Time Melts Time Gelts
up

(secs) /sec (secs) /sec
Build 1.96 1038 1.89 12.6 0.156 82.3

Queries 177 368 480.98 4.74 37.34 77.6

Table 6. The running time and rates for building and queer-
ing an inverted index. Here “one core” reports the sequen-
tial running time and “72* cores” means on all 72 cores
with hyperthreads (i.e., 144 threads). Gelts/sec calculated as
𝑛/(time × 109).
6.4 Word Index Searching
To test the performance of the inverted index data structure de-
scribed in Section 5.3, we use the publicly available Wikipedi-
a database [64] (dumped on Oct. 1, 2016) consisting of 8.13
million documents. We removed all XML markup, treated
everything other than alphanumeric characters as separators,
and converted all upper case to lower case to make search-
es case-insensitive. This leaves 1.96 billion total words with
5.09 million unique words. We assigned a random weight to
each word in each document (the values of the weights make
no difference to the runtime). We measure the performance
of building the index from an array of (word, doc id,
weight) triples, and the performance of queries that take
an intersection (logical-and) followed by selecting the top 10
documents by weight.

Unfortunately we could not find a publicly available C++
version of inverted indices to compare to that support and/or
queries and weights although there exist benchmarks sup-
porting plain searching on a single word [17]. However the
experiments do demonstrate speedup numbers, which are in-
teresting in this application since it is the only one which does
concurrent updates. In particular each query does its own in-
tersection over the shared posting lists to create new lists (e.g.,
multiple users are searching at the same time). Timings are
shown in Table 6. Our implementation can build the index for
Wikipedia in 13 seconds, and can answer 100K queries with
a total of close to 200 billion documents across the queries
in under 5 seconds. It demonstrates that good speedup (77x)
can be achieved for the concurrent updates in the query.

7 Conclusion
In this paper we introduce the augmented map, and describe
an interface and efficient algorithms to for it. Based on the
interface and algorithms we develop a library supporting
the augmented map interface called PAM, which is parallel,
work-efficient, and supports persistence. We also give four
example applications that can be adapted to the abstraction of
augmented maps, including the augmented sum, interval trees,
2D range trees and the inverted indices. We implemented all
these applications with the PAM library. Experiments show
that the functions in our PAM implementation are efficient

both sequentially and in parallel. The code of the applications
implemented with PAM outperforms some existing libraries
and implementations, and also achieves good parallelism.
Without any specific optimizations, the speedup is about more
than 60 for both building interval trees and building range
trees, and 82 for building word index trees on 72 cores. For
parallel queries the speedup is always over 70.
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A Artifact description
A.1 Abstract
PAM (Parallel Augmented Maps) is a parallel C++ library
implementing the interface for augmented maps (defined in
this paper). It is designed for maintaining an ordered map data
structure while efficiently answering range-based and other
related queries. In the experiments we use the interface in
four examples: augmented-sums, interval-queries, 2d range-
queries, and an inverted index. The released code includes
both the code for the library and the code implementing the
applications. We provide scripts for running the specific ex-
periments reported in the paper. It is also designed so it is
easy to try in many other scenarios (different sizes, differ-
ent numbers of cores, and other operations described in the
paper, but not reported in the experiments, and even other
applications that fit the augmented map framework).

A.2 Description
To just run the experiments and tests as shown in the paper, y-
ou can skip this part and directly use the scripts in our released
version.

To use the library and define an augmented map using PAM,
users need to include the header file pam.h, and specify the
parameters including type names and (static) functions in an
entry structure entry.

∙ typename key t: the key type (𝐾),
∙ function comp: 𝐾 ×𝐾 ↦→ bool: the comparison func-

tion on K (<𝐾)
∙ typename val t: the value type (𝑉 ),
∙ typename aug t: the augmented value type (𝐴),

∙ function base: 𝐾 × 𝑉 ↦→ 𝐴: the base function (𝑔)
∙ function combine: 𝐴 × 𝐴 ↦→ 𝐴: the combine func-

tion (𝑓 )
∙ function identity: ∅ ↦→ 𝐴: the identity of f (𝐼)

Then an augmented map is defined with C++ template as
aug map<entry>.

Note that a plain ordered map (pam map<entry>) is
defined as an augmented map with no augmentation (i.e., it
only has 𝐾, <𝐾 and 𝑉 in its entry) and a plain ordered set
(pam set<entry>) is similarly defined as an augmented
map with no augmentation and no value type.

Here is an example of defining an augmented map 𝑚 that
has integer keys and values and is augmented with value sums
(similar as the augmented sum example in our paper):

1 struct entry {
2 using key_t = int;
3 using val_t = int;
4 using aug_t = int;
5 static bool comp(key_t a, key_t b) {
6 return a < b;}
7 static aug_t identity() { return 0;}
8 static aug_t base(key_t k, val_t v) {
9 return v;}
10 static aug_t combine(aug_t a, aug_t b) {
11 return a+b;}};
12 aug_map<entry> m;

Another quick example can be found in Section 5.1, which
shows how to implement an interval tree using the PAM
interface.

A.2.1 Check-list (artifact meta information)
∙ Algorithm: Join-based balanced binary tree algorithms, and

applications of them, as described in the paper.
∙ Program: C++ code with the Cilk Plus extensions.
∙ Compilation: g++ 5.4.0 (or later versions), which supports

the Cilk Plus extensions.
∙ Data set: Mostly generated internally, but for one experiment

we use the publicly available Wikipedia database.
∙ Run-time environment: Linux with numactl installed (we

used ubuntu 16.04.3).
∙ Hardware: Any modern x86-based multicore machine. Most

experiments run with 64GB memory. Some require 256GB, or
1TB. We ran on a machine with 72 cores (144 hyperthreads)
and 1TB memory.

∙ Output: Results shown on the screen and written to files:
benchmark name, parameters, median runtime, and speedup.

∙ Experiment workflow: git clone; run a script (or modify and
run for more options).

∙ Publicly available?: Yes.

A.2.2 How delivered
Released publicly on GitHub at:
https://github.com/syhlalala/PAM-AE
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A.2.3 Hardware dependencies
Any modern (2010+) x86-based multicore machines. Relies
on 128-bit CMPXCHG (requires -mcx16 compiler flag) but
does not need hardware transactional memory (TSX). Most
experiments require 64GB memory, but range query requires
256GB memory and aug sum on the large input requires 1TB
memory. Times reported are for a 72-core Dell R930 with 4 x
Intel(R) Xeon(R) E7-8867 v4 (18 cores, 2.4GHz and 45MB
L3 cache), and 1Tbyte memory.

A.2.4 Software dependencies
PAM requires g++ 5.4.0 or later versions supporting the Cilk
Plus extensions. The scripts that we provide in the repository
use numactl for better performance. All tests can also run
directly without numactl.

A.2.5 Datasets
We use the publicly available Wikipedia database (dumped on
Oct. 1, 2016) for the inverted index experiment. We release
a sample (1% of total size) in the GitHub repository (35MB
compressed). The full data (3.5TB compressed) is available
on request. All other applications use randomly generated
data.

A.3 Installation
After cloning the repository, scripts are provided for compil-
ing and running PAM.

A.4 Experiment workflow
At the top level there is a makefile (make) and a script for
compiling and running all timings (./run all). The source
code of the library is provided in the directory c++/, and
the other directories each corresponds to some examples of
applications (as we show in the paper). There are four example
applications provided in our repository:

∙ The range sum (in directory aug sum/).
∙ The interval tree (in directory interval/).
∙ The range tree (in directory range query/).

∙ The inverted indices (in directory index/).
In each of the directories there is a separated makefile and a
script to run the timings for the corresponding application.

All tests include parallel and sequential running times. The
sequential versions are the algorithms running directly on
one thread, and the parallel versions use all threads on the
machine using “numactl -i all” if numactl is installed.

A.5 Evaluation and expected result
By running the script, the median running time over multiple
runs of each application, along with the parameters used, will
be output to both stdout and a file. Each experiment runs on all
threads available on the machine in parallel, and sequentially
on one thread. In our experience the times do not deviate by
much from run to run (from 1-5%).

The experiments correspond to the numbers reported in
Tables 3, 4 and 5 in the paper. If run on a similar machine,
one should observe similar numbers as reported in the paper.

All executable files can run with different input arguments.
More details about command line arguments can be found in
the repository. The number of working threads is set using
CILK NWORKERS, i.e.:
export CILK_NWORKERS=<num threads>

A.6 Experiment customization
It is not hard to run our experiments on different input sizes
and number of cores. There is also code to run timings for all
functions discussed in the paper even if not included in the
tables in the paper and default scripts. It is also easy to use
our library to design user’s own augmented maps based on
their applications.

A.7 Notes
It may take a long time to run all experiments (especially for
the sequential ones) since we run each experiment multiple
rounds and take the median. Each test can be run separately
with smaller input size. See the document in the repository
for more details. If the interface changes in the future, check
the documents on GitHub.
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