
Parallel Range, Segment and Rectangle Queries with Augmented Maps

Yihan Sun
Carnegie Mellon University

yihans@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Abstract
The support of range, segment and rectangle queries are
fundamental problems in computational geometry, and have
extensive applications in many domains. Despite significant
theoretical work on these problems, efficient implementations
can be complicated, and most implementations do not have
useful theoretical bounds. In this paper, we focus on simple
and efficient parallel algorithms and implementations for
range, segment and rectangle queries, which have worst-
case bounds in theory and good performance in practice,
both sequentially and in parallel. We propose to use a
framework based on the abstract data type augmented map, to
model the problems. Based on the augmented map interface,
we develop both multi-level tree structures and sweepline
algorithms supporting range, segment and rectangle queries
in two dimensions. For the sweepline algorithms, we also
propose a parallel paradigm and show corresponding cost
bounds. Theoretically, the construction algorithms of all of
our data structures are work-efficient and highly parallelized.

We have implemented all the data structures described in
the paper, ten in all, using a parallel augmented map library.
Based on the library, each data structure only requires about
100 lines of C++ code. We test their performance on large
data sets (up to 108 elements) and a machine with 72-cores
(144 hyperthreads). The parallel construction achieves 32-68x
speedup, and the speedup numbers for queries are up to 126-
fold. Sequentially, each of our implementations outperforms
the CGAL library by at least 2x in both construction and
queries. Our sequential implementation has approximately
the same construction time as the R-tree in the Boost library,
but has significantly better query performance (1.6-1200x).
We believe this paper provides the most comprehensive
experimental study of data structures on range, segment and
rectangle queries, both in parallel and sequential setting.

1 Introduction
Range, segment and rectangle queries are fundamental prob-
lems in computational geometry, with extensive applications
in many domains. In this paper, we focus on 2D Euclidean
space. The range query problem is to maintain a set of points,
and to answer queries regarding the points contained in a
query rectangle. The segment query problem is to maintain

a set of non-intersecting segments, and to answer questions
regarding all segments intersected with a query vertical line.
The rectangle stabbing query (also referred to as the enclosure
stabbing query) problem is to maintain a set of rectangles,
and to answer questions regarding rectangles containing a
query point. For all problems, we discuss queries of both list-
ing all queried elements (the list-all query), and returning the
count of queried elements (the counting query). Some other
queries, can be implemented by variants (e.g., the weighted
sum of all queried elements) or combinations (e.g. rectangle-
rectangle intersection queries) of the queries in this paper.
Efficient solutions to these problems are mostly based on
variants of range trees [19], segment trees [16], sweepline
algorithms [59], or combinations of them.

In addition to the large body of work on sequential
algorithms and data structures [18, 20, 29, 32, 37, 38],
there have also been many theoretical results on parallel
algorithms and structures for such queries [4, 11, 13, 40].
However, efficient implementations of these structures can
be complicated. We know of few parallel implementations
of these theoretically efficient query structures, primarily
due to delicate design of algorithmic details required by
the structures. The parallel implementations we know
of [28, 43, 46, 50] do not have useful theoretical bounds. Our
goal is to develop theoretically efficient algorithms which
can be implemented with ease and also run fast in practice,
especially in parallel.

The algorithms and implementations in this paper use
many ideas from the sequential and parallel algorithms
mentioned above, but using a framework based on augmented
maps [63]—an abstract data type (ADT). The augmented
map is an abstract data type (ADT) based on ordered maps of
key-value pairs, augmented with an abstract “sum” called the
augmented value (see Section 3). We use augmented maps
to help develop efficient and concise implementations. To
do this, there are two major steps: 1) modeling problems
using augmented maps, and 2) implement augmented maps
using efficient data structures. Indeed, in this paper, as shown
in Section 6, 7 and 8, we model the range, segment and
rectangle query problems all as two-level map structures: an
outer level map augmented with an inner map structure. We
show that the augment map abstraction is extendable to a
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wide range of problems, and develop five structures on top
of the augmented map interface corresponding to different
problems and queries.

As for implementing augmented maps, we employ two
data structures: the augmented tree structures as studied in
previous work, and prefix structures, which are proposed by
this paper. We propose simple and parallel implementations
for the prefix structures and analyze cost bounds. Interest-
ingly, the algorithms based on the prefix structures resemble
the standard sweepline algorithms. Therefore, our algorithm
also parallelizes a family of sweepline algorithms that are
efficient both in theory and practice. As a result, both aug-
mented trees and prefix structures provide efficient parallel
implementations for augmented maps, and each has its own
merits in different settings.

By combining the five two-level map structures with the
two underlying data structures as the outer map (the inner
maps are always implemented by augmented trees), we de-
velop a total of ten different data structures for range, segment
and rectangle queries. Among the ten data structures, five
of them are multi-level trees including RangeTree (for range
query), SegTree (for segment query), RecTree (for rectangle
query), and another two for fast counting queries SegTree*
(segment counting) and RecTree* (rectangle counting). The
other five are the corresponding sweepline algorithms.

All the data structures in this paper are efficient in
theory. We summarize the theoretical costs in Table 1. The
construction bounds are all optimal in work (lower bounded
by sorting), and the query time is almost-linear in the output
size. We did not use fractional cascading [31], so some of our
query bounds are not optimal. However, we note that they are
sub-optimal by at most a log n factor.

All the data structures in this paper are also fast in
practice. We implement all of them making use of a
parallel augmented map library PAM [63], which supports
augmented maps using augmented trees. We compare our
implementations to C++ libraries CGAL [64] and Boost [1].
We achieve a 33-to-68-fold self-speedup in construction on
72 cores (144 hyperthreads), and 60-to-126-fold speedup in
queries. Our sequential construction is more than 2x faster
than CGAL, and is comparable to Boost. Our query time
outperforms both CGAL and Boost by 1.6-1400x. We also
provide a thorough comparison among the new algorithms in
this paper, leading to many interesting findings.

Beyond being fast, our implementation is also concise
and simple. Using the augmented map abstraction greatly
simplifies engineering and reduces the coding effort, which is
indicated by the required lines of code—on top of PAM, each
application only requires about 100 lines of C++ code even for
the parallel version. For the same functionality, both CGAL
and Boost use hundreds of lines of code for each sequential
implementation. We note that PAM implements general-
purpose augmented maps, and does not directly provide

Build Query
Work Depth List-all Count

Range Swp. n logn nε logn+ k log
(
n
k
+ 1
)

logn
Query Tree n logn log3 n log2 n+ k log2 n

Seg Swp. n logn nε logn+ k logn
Query Tree n logn log3 n log2 n+ k log2 n

Rec Swp. n logn nε logn+ k log
(
n
k
+ 1
)

logn
Query Tree n logn log3 n log2 n+ k log

(
n
k
+ 1
)

log2 n

Table 1: Theoretical costs of all problems in this paper (asymp-
totical in Big-O notation) - n is the input size, k the output size.
ε < 1 can be any given constant. “Swp.” means the sweepline algo-
rithms, “Tree” the two-level trees. We note that not all query bounds
are optimal, but they are off optimal by at most a logn factor.

anything special for computational geometry. Due to page
limitation, some content are in the full version of this paper
[62]. Our code is available at https://github.com/
cmuparlay/PAM.

2 Related Work
Many data structures are designed for solving range, segment
and rectangle queries, such as range trees [18], segment
trees [20], kd-trees [17], R-trees [15, 55, 58], priority
trees [49], and many others [24, 34, 35, 53, 57, 65]. They are
then applied to a variety of other problems [3, 5, 6, 8, 9, 19,
21, 22, 27, 41, 44, 54].

There have been fundamental sequential data structures
for such queries. The classic range tree [18] has construc-
tion time O(n log n) and query time O(k + log2 n) for input
size n and output size k. Using fractional cascading [31],
the query time can be O(k + log n). We did not employ
it for the simplicity and extensibility in engineering, and
we believe the performance is still efficient and competitive.
The terminology “segment tree” [20, 29] refers to different
data structures in the literature, but the common insight is
to use the tree structure to partition the interval hierarchi-
cally. Previous solutions for rectangle queries usually use
combinations of range trees, segment trees, interval trees,
and priority trees [20, 32, 37, 38]. Some other prior work
focused on developing sequential sweepline algorithms for
range queries [7, 10], segment intersecting [30, 51] and rect-
angle queries [48]. There are also sequential I/O-efficient
algorithms for computational geometry [8, 9, 33] and sequen-
tial libraries support such queries [1, 64].

In the parallel setting, there exist many theoretical
results [2, 4, 11, 12, 14, 39, 40]. Atallah et al. [14] proposed
the array-of-trees using persistent binary search trees (BST)
to store all intermediate trees in a sweepline algorithm by
storing all versions of a tree node in a super-node. Our method
also uses persistent BSTs, but uses path-copying to maintain
a set of trees independently instead of in one skeleton.
Recently, Afshani et al. [2] implemented the array-of-trees
for the 1D total visibility-index problem. Atallah et al. [11]
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discussed a cascading divide-and-conquer scheme for solving
computational geometry problems in parallel. Goodrich et
al. [40] proposed a framework to parallelize several sweepline-
based algorithms. There has been previous work focusing
on parallelizing segment-tree-like data structures [4, 13], and
our segment tree algorithm is inspired by them. There are
also theoretical I/O efficient algorithms in parallel [6, 60]. We
know of no implementations or experimental evaluations of
these theoretically efficient algorithms on range, segment and
rectangle queries. There are also parallel implementation-
based works such as parallel R-trees [46], parallel sweepline
algorithms [50], and algorithms focusing on distributed
systems [67] and GPUs [66]. No theoretical guarantees are
provided in these papers.

3 Preliminaries
Notation. We call a key-value pair in a map an entry denoted
as e = (k, v). We use k(e) and v(e) to extract the key and
the value from an entry. Let 〈P 〉 be a sequence of elements
of type P . For a tree node u, we use k(u), l(u) and r(u) to
extract its key, left child and right child respectively.

In two dimensions, let X , Y and D = X × Y be the
types of x- and y-coordinates and the type of points, where X
and Y are two sets with total ordering defined by<X and<Y
respectively. For a point p ∈ D in two dimensions, we use
x(p) ∈ X and y(p) ∈ Y to extract its x- and y-coordinates,
and use a pair (x(p), y(p)) to denote p. For simplicity, we
assume all input coordinates are unique. Duplicates can be
resolved by slight variations of algorithms in this paper.
Parallel Cost Model. To analyze asymptotic costs of a
parallel algorithm we use work W and depth D (or span S),
where work is the total number of operations and depth is
the length of the critical path. The parallel time T can be
bounded as T ≤ W

P +D assuming a PRAM model [45] with
P processors and a greedy scheduler [25, 26, 42]. We assume
concurrent reads and exclusive writes (CREW).
Persistence. A persistent data structure [36] is a data
structure that preserves previous versions of itself. When
being modified, it always creates a new updated structure.
For BSTs, persistence can be achieved by path-copying [56].
In path-copying, only the affected path related to the update
is copied, so the asymptotical cost for an update remains
unchanged. In this paper, we assume all underlying tree
structures are persistent. In experiments, we use a library
PAM supporting persistence [63].
Sweepline Algorithms. A sweepline algorithm (or plane
sweep algorithm) is an algorithmic paradigm that uses a
conceptual sweep line to process elements in order [59]. It
uses a virtual line sweeping across the plane, which stops at
some points (e.g., the endpoints of segments) to make updates.
We refer to the points as the event points pi ∈ P . They are
processed in a total order defined by ≺: P × P 7→ BOOL.
Here we assume the events are known ahead of time. As

Function Work Depth
INSERT(m, e), DELETE(m, k) logn logn

INTERSECT(m1,m2)

n1 log
(
n1
n2

+ 1
)

logn1 logn2DIFFERENCE(m1,m2)
UNION(m1,m2, σ)

BUILD(s) n logn logn

UPTO(m, k), RANGE(m, k1, k2) logn logn

ALEFT(m, k), ARANGE(m, k1, k2) logn logn

Table 2: Core functions on the augmented map interface -
k, k1, k2 ∈ K. m,m1,m2 are maps, n = |m|, ni = |mi|. s
is a sequence. All bounds are in big-O notation. The bounds assume
the augmenting functions f , g have constant cost.

the algorithm processes the points, a data structure T is
maintained and updated at each event point to track the status
at that point. Sarnak and Tarjan [56] first noticed that by being
persistent, one can keep the intermediate structures ti ∈ T
at all event points for later queries. In this paper, we adopt
the same methodology, but parallelize it. We call ti the prefix
structure at the point i.

Typically in sweepline algorithms, on encountering an
event point pi we compute ti from the previous structure ti−1
and the new point pi using an update function h : T×P 7→ T ,
i.e., ti = h(ti−1, pi). The initial structure is t0. A sweepline
algorithm can therefore be defined as the five tuple:

S = SW(P,≺, T, t0, h)(3.1)
It defines a function that takes a set of points pi ∈ P and
returns a mapping from each point to a prefix structure ti ∈ T .
The Augmented Map. The augmented map [63] is an
abstract data type (ADT) that associates an ordered map (a set
of key-value pairs) with a “map-reduce” operation for keeping
track of the abstract sum over entries (referred to as the
augmented value of the map). More formally, an augmented
map is an ordered mapM where keys belong to some ordered
set K (with total ordering defined by relation <K ) and values
to a set V , that is associated with two functions: the base
function g : K × V 7→ A that maps a key-value pair to an
augmented value (from a set A) and the combine function
f : A × A 7→ A that combines (reduces) two augmented
values. We require f to be associative and have an identity
I (i.e., set A with f and I forms a monoid). An augmented
map can therefore be defined as the seven tuple:

a = AM(K,<K , V, A, g, f, I)(3.2)
Then the augmented value of a map M =

((k1, v1), . . . , (kn, vn)), denoted as A(M), is defined as
A(M) = f(g(k1, v1), g(k2, v2), . . . , g(kn, vn)), where the
definition of the binary function f is extended as:

f(∅) = I, f(a1) = a1,

f(a1, a2, . . . , an) = f(f(a1, a2, . . . an−1), an)

A list of common functions on augmented maps used in
this paper, and their parameters, are shown in Table 2 (the
first column). Functions that are useful in this paper include:
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the ARANGE function which returns the augmented value of
all entries within a key range, and ALEFT(k) which returns
the augmented value of all entries up to a key k. More details
can be found in our previous paper [63].
Augmented Maps Using Augmented Trees. An efficient
implementation of augmented maps is to use augmented
balanced binary search trees [63]. Entries are stored in tree
nodes and sorted by keys. Each node also maintains the
augmented value of the subtree rooted at it. Using join-based
algorithms [23, 63] on trees, the augmented map interface can
be supported in an efficient and highly-parallelized manner,
and the costs are listed in Table 2 assume f and g have a
constant cost. All functions listed in Table 2 have optimal
work and polylog depth. In the experiment we use the parallel
library PAM [63] which implements augmented maps using
augmented trees. The cost of functions in the library matches
the bounds in Table 2.

4 A Parallel Sweepline Paradigm
We present a parallel algorithm to build the prefix structures,
assuming the update function h can be applied “associatively”
to the prefix structures. We assume h(t, p) ≡ fh(t, gh(p)) for
some associative function fh : T × T 7→ T and gh : P 7→ T .
Similarly as in an augmented map, we call fh and gh the base
and combine function of the corresponding update function,
respectively. Because of the associativity of hp, to repeatedly
update a sequence of points 〈pi〉 onto a “prefix sum” t using
h is equivalent to combining the “partial sum” of all points
〈pi〉 to t using the combine function fh. Thus, to build all
the prefix structures in parallel, our approach is to evenly
split the input sequence of points into b blocks, calculate the
partial sum of each block, and refine the prefix structures in
each block using the update function h. For simplicity we
assume n is an integral multiple of b and n = b × r. We
define a fold function ρ : 〈P 〉 7→ T that converts a sequence
of points into a prefix structure, which gives the “partial
sums” of the blocks. We note that the fold function can be
directly computed using gh and fh, but in many applications,
a much simpler algorithm can be used. The parallel sweepline
paradigm can therefore be defined as the six tuple:

S′ = PS(P ;≺;T ; t0;h;ρ;fh)(4.3)
We do not include gh in the formalization since it is never
used separately. Our parallel algorithm to build the prefix
structures is as follows (also see Algorithm 1):

1. Batching. Assume all input points have been sorted
by ≺. We evenly split them into b blocks and then in
parallel generate b partial sums t′i ∈ T using ρ, each
corresponding to one of the b blocks.

2. Sweeping. These partial sums t′i are combined in turn
sequentially by the combine function fh to get the
first prefix structure t0, tr, t2r . . . in each block using
ti×r = f(t(i−1)×r, t

′
i).

Algorithm 1: The construction of the prefix structure.
Input: A list p storing n input points in order, the update

function h, the fold function ρ, the combine function
fh, the empty prefix structure t0, and the number of
blocks b. Assume r = n/b is an integer.

Output: A series of prefix-combine trees ti.
1 [Step 1.] parallel-for i← 0 to b− 1 do
2 t′i = ρ(pi×r, . . . , p(i+1)×r−1)

3 [Step 2.] for i← 1 to b− 1 do ti×r = fh(t(i−1)×r, t
′
i−1)

4 [Step 3.] parallel-for i← 0 to b− 1 do
5 s = i× r, e = s+ r − 1
6 for j ← s to e do tj = h(tj−1, pj)

7 return {pi 7→ ti}

𝑡2
′

Step1:
Batching

Step2:
Sweeping

𝑡0 = 𝐼 𝑡𝑟 = 𝑡1
′ 𝑡2𝑟 = 𝑓ℎ(𝑡𝑟 , 𝑡2

′ )

Step3:
Refining

𝑡𝑚
′

𝑡𝑖 = ℎ(𝑡𝑖−1, 𝑝𝑖−1)

⋯⋯

⋯⋯

⋯⋯

𝑡1
′

= 𝜌(𝑝1, … , 𝑝𝑟) = 𝜌(𝑝𝑟+1, … , 𝑝2𝑟) = 𝜌(𝑝 𝑏−1 𝑟+1, … , 𝑝𝑛)

3. Refining. All other prefix structures are built based
on t0, tr, t2r, . . . (built in the second step) in the corre-
sponding blocks. All the b blocks can be built in parallel.
In each block, the prefix structure ti is computed sequen-
tially in turn by applying h on pi and ti−1.

Algorithm 1 is straight-forward, yielding a simple im-
plementation. Our experiments show that it also has good
performance in parallel. However, we note that the paral-
lelism is non-trivial. The challenge is in the sweeping step
where fh is applied sequentially for b times. Without new in-
sights, this step can be as expensive as the original sequential
sweepline algorithm, which is the reason that similar attempts
previously did not achieve useful depth bounds [33, 50]. We
observed that in many instantiations of this framework (es-
pecially those in this paper), a parallel combine function can
be applied, which effectively guarantees the work-efficiency
and parallelism of this algorithm. We formalize the typical
setting as follows.

In a common setting of sweepline algorithms, each prefix
structure keeps an ordered set tracking some elements related
to a subset of the processed event points, having size O(i)
at point i. The function h updates one element to the set at
a time, which costs O(log n) on a prefix structure of size n.
The corresponding combine function fh is some set functions
(e.g., a UNION for a sequence of insertions). Using trees
to maintain the sets, previous work shows [23] that the set
function can be done in O(n2 log(n1/n2 + 1)) work and
O(log n1 log n2) depth for two set of size n1 and n2 ≤ n1.
This algorithm is implemented in the PAM library (as shown
in Table 2). Creating the partial sum of a block of r points
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The update The fold The combine
function (h(t, p)) function (ρ(s)) function (f(t, t′))

Work log |t| |s| log |s| |t′| log( |t||t′| + 1)

Depth log |t| log |s| log |t| log |t′|
Output |t| |s| |t′|+ |t|
Table 3: A typical setting of the function costs in a
sweepline paradigm. Bounds are in Big-O notation.

costs O(r log r) work and O(log r) depth, building a prefix
structure of size at most r. We summarize the setting in Table
3, and the corresponding bounds of the sweepline algorithm
in Theorem 4.1.

THEOREM 4.1. A sweepline paradigm S as in Equation
5.5 can be built in parallel using its corresponding parallel
paradigm S′ (Equation 4.3). If the bounds as shown in Table
3 hold, then Algorithm 1 can construct all prefix structures in
work O(n log n) and depth O(

√
n log1.5 n), where n is the

number of event points.

Proof. The cost of the algorithm is analyzed as follows:
1. Batching. This step builds b prefix structures, each of

size at most n/b, so it takes work O(b · nb log n
b ) =

O(n log n
b ) and depth O(log n

b ).
2. Sweeping. This step invokes b times of the combine

function fh sequentially, but the combine function works
in parallel. The size of t′i is no more than O(r).
Considering the given work and depth bounds of the
combine function, the total work of this step is bounded
by: O

(∑b
i=1 r log( irr + 1)

)
= O(n log b). The depth

is: O
(∑b

i=1 log r log ir
)

= O(b log n
b log n).

3. Refining. This step computes all the other prefix
structures using h. The total work is: O(

∑n
i=1 log i) =

O(n log n). We process each block in parallel, so the
depth is O(nb log n).
In total, it costs work O(n log n) and depth

O
((
b log n

b + n
b

)
log n

)
. When b = Θ(

√
n/ log n),

the depth is O(
√
n log1.5 n).

This parallel algorithm is also easy to implement. Our
code is available online at https://github.com/
cmuparlay/PAM/blob/master/common/sweep.h.
Theoretically, by repeatedly applying this process to each
block in the last step, we can further reduce the depth to
O(n−ε) for any constant ε > 0. We state the following
corollary and show the proof in Appendix D.

COROLLARY 4.1. A sweepline paradigm S as in Equation
5.5 can be parallelized using its corresponding parallel
paradigm S′ (Equation 4.3). If the bounds as shown in Table
3 hold, then we can construct all prefix structures in work
O( 1

εn log n) and depth Õ(nε) for arbitrary small ε > 0.

5 Augmented Maps Using Trees and Prefix Structures
With all preliminaries and techniques proposed above, we
now discuss efficient parallel implementations of augmented
maps. One solution is to use augmented trees, as studied in
previous work [63] (summarized in Section 3). In this section,
we further show how to use the prefix structures to implement
parallel augmented maps.

For an augmented map m = {e1, . . . , e|m|}, the prefix
structures store the augmented values of all prefixes up to
each entry ei, i.e., ALEFT(m, k(ei)). For example, if the
augmented value is the sum of values, the prefix structures
are prefix sums. This is equivalent to using a combination
of function f and g as the update function. That is to say,
an augmented map m = AM(K,≺, V, A, f, g, I) can be
implemented by a sweepline paradigm S as:

S = SW(K × V ;≺;A; t0 ≡ I;h(t, p) ≡ f(t, g(p)))(5.4)
Because the combine function f in augmented maps is always
associative, S trivially fits the parallel sweepline paradigm as
defined in Equation 4.3 as follows:

S′ = PS(K × V ;≺;A; t0 ≡ I;h(t, p) ≡ f(t, g(p));(5.5)
ρ(p1, . . . pn) ≡ f(g(p1), . . . g(pn); fh ≡ f)

This means we can apply Algorithm 1 to construct such an
augmented map in parallel.

Prefix structures are especially useful for queries related
to ALEFT, as is the case for many queries in this paper.
When using the prefix structures to represent the outer map
in range, segment and rectangle queries, the algorithms are
equivalent to sweepline algorithms, and they all accord with
the assumption on the function cost in Theorem 4.1.

Now we have presented parallel implementations of
augmented maps using two data structures. In the rest of
the paper, we show how we model the range, segment and
rectangle queries by augmented maps. Then by plugging in
different representations, we show solutions to the problems
using both augmented trees and prefix structures.

6 2D Range Query
Given a set of n points in the 2D plane, a range query
asks some information of points within the intersection of a
horizontal range (xL, xR) and vertical range (yL, yR).

The 2D range query can be answered using a two-level
map structure RangeMap, each level corresponding to one
dimension of the coordinates. The structure can answer both
counting queries and list-all queries. The definition (the outer
map RM with inner map RI ) and an illustration are shown
in Table 4 and Figure 1 (a). In particular, the key of the outer
map is the coordinate of each point and the value is the count.
The augmented value of such an outer map, which is the
inner map, contains the same set of points, but are sorted by
y-coordinates. Therefore, the base function of the outer map
is just a singleton on the point and the combine function is

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



* Range Query:
(Inner Map)RI= AM (K: D; ≺: <Y ; V : Z; A: Z; g: (k, v) 7→ 1; f : +Z; I: 0 )

-RangeMapRM = AM (K: D; ≺: <X ; V : Z; A: RI ; g: RI .singleton; f : RI .union; I: ∅ )
- RangeSwpRS = PS ( P : D; ≺: <X ; T : RI ; t0: ∅ h: RI .insert ρ: RI .build; f : RI .union)

* Segment Query:
(Inner Map)SI= AM (K: D ×D; ≺: <Y ; V : ∅; A: Z; g: (k, v) 7→ 1; f : +Z; I: 0 )

- SegMap SM = AM (K: X; ≺: <X ; V : D ×D;A: SI × SI ; g: gseg f : fseg I: (∅, ∅) )

gseg(k, (pl, pr)):

{
(∅, SI .singleton(pl, pr),when k = x(pl)

(SI .singleton(pl, pr), ∅),when k = x(pr)
, fseg: See Equation 7.7;

- SegSwp SS = PS ( P : D ×D; ≺: <X ; T : SI ; t0: ∅; h: hseg; ρ: ρseg; f : fseg )

hseg(t, p) =

{
SI .insert(t, p),when p is a left endpoint
SI .delete(t, p),when p is a right endpoint

,ρseg(〈pi〉) = 〈L,R〉

{
L ∈ SI : segments with right endpoint in 〈pi〉
R ∈ SI : segments with left endpoint in 〈pi〉

* Rectangle Query:
(Inner Map)GI= AM (K: Y ; ≺: <Y ; V : D ×D;A: Y ; g: (k, (pl, pr)) 7→ y(pr); f : maxY ; I: −∞ )

- RecMapGM = AM (K: X; ≺: <X ; V : D ×D;A: GI ×GI ; g: grec f : frec I: (∅, ∅) )
- RecSwpGS = PS ( P : D ×D; ≺: <X ; T : GI ; t0: ∅; h: hrec; ρ: ρrec; f : fseg )

grec, frec, hrec and ρrec are defined similarly as gseg, fseg, hseg and ρseg

Table 4: Definitions of all structures - Although this table seems complicated, we note that it fully defines all data structures
in this paper using augmented maps. X and Y are types of x- and y-coordinates. D = X × Y is the type of a point.

UNION. The augmented value of the inner map counts the
number of points in this (sub-)map. Then the construction of
a sequence s of points can be done with the augmented map
interface as: rM = RM .BUILD(s).

To answer queries, we use two nested range searches
(xL, xR) on the outer map and (yL, yR) on the corresponding
inner map. The counting query can be represented using the
augmented map interface as:

RANGEQUERY(rM , xL, xR, yL, yR) =

RI .ARANGE(RM .ARANGE(rM , xL, xR), yL, yR)(6.6)
The list-all query can be answered similarly usingRI .RANGE
instead of RI .ARANGE.

In this paper, we use augmented trees for inner maps. We
discuss two implementations of the outer map: the augmented
tree, which yields a range-tree-like data structure, and the
prefix structures, which yields a sweepline algorithm.

6.1 2D Range Tree. If the outer map is supported using
the augmented tree structure, the RangeMap becomes a
range tree (RangeTree). In this case we do not explicitly
build RM .ARANGE(rM , xL, xR) in queries. Instead, as the
standard range tree query algorithm, we search the x-range
on the outer tree, and conduct the y-range queries on the
related inner trees. This operation is supported by the function
APROJECT in the augmented map interface and the PAM
library. Such a tree structure can be constructed within work
O(n log n) and depth O(log3 n) (theoretically the depth can
be easily reduced to O(log2 n), but in the experiments we
use the O(log3 n) version to make fewer copies of data). It
answers the counting query in O(log2 n) time, and report

all queried points in O(k + log2 n) time for output size k.
A similar discussion of range trees is shown in [63]. In this
paper, we further discuss efficient updates on RangeTree using
the augmented map interface in Appendix E.

6.2 The Sweepline Algorithm. We now present a parallel
sweepline algorithm RangeSwp for 2D range queries using
our parallel sweepline paradigm, which can answer counting
queries efficiently. We use the prefix structures to represent
the outer map. Then each prefix structure is an inner
map tracking all points up to the current point sorted by
y-coordinates. The combine function of the outer map is
UNION, so the update function h can be an insertion and the
fold function ρ builds an inner map from a list of points. The
definition of this sweepline paradigm RS is shown in Table 4.

Since the inner maps are implemented by augmented
trees, the theoretical bound of the functions (INSERT, BUILD,
and UNION) are consistent with the assumptions in Theo-
rem 4.1. Thus the theoretical cost of RangeSwp follows from
Theorem 4.1. This data structure takes O(n log n) space be-
cause of persistence. We note that previous work [36] showed
a more space-efficient version (linear space), but the goal in
this paper is to show a generic paradigm that can easily im-
plement many different problems without much extra effort.
Answering Queries. Computing ARANGE(rM , xL, xR)
explicitly in Equation 6.6 on RangeSwp can be costly. We
note that it can be computed by taking a DIFFERENCE on
the prefix structure tR at xR and the prefix structure tL at
xL (each can be found by a binary search). If only the count
is required, a more efficient query can be applied. We can
compute the number of points in the range (yL, yR) in tL and
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tR respectively, using ARANGE, and the difference of them
is the answer. Two binary searches cost O(log n), and the
range search on y-coordinates costs O(log n). Thus the total
cost of a single query is O(log n).
Extension to Report All Points. This sweepline algorithm
can be inefficient in list-all queries. Here we propose a variant
for list-all queries in Appendix C. The cost of one query
is O(log n + k log(nk + 1)) for output size k. Comparing
with RangeTree, which costs O(k + log2 n) per query, this
algorithm is asymptotically more efficient when k < log n.

7 2D Segment Query
Given a set of non-intersecting 2D segments, and a vertical
segment Sq , a segment query asks for some information about
the segments that cross Sq. We define a segment as its two
endpoints (li, ri) where li, ri ∈ D,x(li) ≤ x(ri), and say it
starts from x(li) and ends at x(ri).

In this paper, we introduce a two-level map structure
SegMap addressing this problem (shown in Table 4 and Figure
1 (b)). The keys of the outer map are the x-coordinates of
all endpoints of the input segments, and the values are the
corresponding segments. Each (sub-)outer map corresponds
to an interval on the x-axis (from the leftmost to the rightmost
key in the sub-map), noted as the x-range of this map. The
augmented value of an outer map is a pair of inner maps: L(·)
(the left open set) which stores all input segments starting
outside of its x-range and ending inside (i.e., only the right
endpoint is in its x-range), and symmetrically R(·) (the right
open set) with all segments starting inside but ending outside.
We call them the open sets of the corresponding interval. The
open sets of an interval u can be computed by combining
the open sets of its sub-intervals. In particular, suppose u
is composed of two contiguous intervals ul and ur, then u’s
open sets can be computed by a function fseg as:
fseg(〈L(ul), R(ul)〉, 〈L(ur), R(ur)〉) =

〈L(ul) ∪ (L(ur)\R(ul)), R(ur) ∪ (R(ul)\L(ur))〉(7.7)
Intuitively, taking the right open set as an example, it stores all
segments starting in ur and going beyond, or those stretching
out from ul but not ending in ur. This function is associative.
We use fseg as the combine function of the outer map.

The base function gseg of the outer map (see Table 4)
computes the augmented value of a single entry. For an entry
(xk, (pl, pr)), the interval it represents is the solid point at
xk. WLOG we assume xk = x(pl) such that the key is the
left endpoint. Then the only element in its open sets is the
segment itself in its right open set. If xk > xv it is symmetric.

We organize all segments in an inner map sorted by
their y-coordinates and augmented by the count, such that
in queries, the range search on y-coordinates can be done in
the corresponding inner maps. We note that all segments in a
certain inner tree must cross one common x-coordinate. For
example, in the left open set of an interval i, all segments must

cross the left border of i. Thus we can use the y-coordinates
at this point to determine the ordering of all segments. Note
that input segments are non-intersecting, so this ordering of
two segments is consistent at any x-coordinate. The definition
of such an inner map is in Table 4 (the inner map SI ). The
construction of the two-level map SegMap (SM ) from a list
of segments B = {(pl, pr)} can be done as follows:
sM =SM .BUILD(B′), where

B′ = {(x(pl), (pl, pr)), (x(pr), (pl, pr)) : (pl, pr) ∈ B}
Assume the query segment is (ps, pe), where x(ps) =

x(pe) = xq and y(ps) < y(pe). The query will first find all
segments that cross xq, and then conduct a range query on
(y(ps), y(pe)) on the y-coordinate among those segments. To
find all segments that cross xq , note that they are the segments
starting before xq but ending after xq , which are exactly those
in the right open set of the interval (−∞, xq). This can be
computed by the function ALEFT. The counting query can
be done using the augmented map interface as:
SEGQUERY(sM , ps, pe) = SI .ARANGE

(ROPEN(SM .ALEFT(sM , x(pt))), y(ps), y(pe))

where ROPEN(·) extracts the right open set from an open
set pair. The list-all query can be answered similarly using
SI .RANGE instead of SI .ARANGE.

We use augmented trees for inner maps. We discuss two
implementations of the outer map: the augmented tree (which
yields a segment-tree-like structure SegTree) and the prefix
structures (which yields a sweepline algorithm SegSwp). We
also present another two-level augmented map (Segment*
Map) structure that can answer counting queries on axis-
parallel segments in Appendix A.

7.1 The Segment Tree. If the outer map is implemented
by an augmented tree, the SegMap becomes very similar to a
segment tree (noted as SegTree). Previous work has studied a
similar data structure [4, 13, 29]. We note that their version
can deal with more types of queries and problems, but we
know of no implementation work of a similar data structure.
Our goal is to show how to apply the simple augmented map
framework to model the segment query problem, and show
an efficient and concise parallel implementation of it.

In segment trees, each subtree represents an open interval,
and the union of all intervals in the same level span the whole
interval (see Figure 1 (b) as an example). The intervals are
separated by the endpoints of the input segments, and the two
children partition the interval of the parent. Our version is
slightly different from the classic segment trees in that we
also use internal nodes to represent a point on the axis. For
example, a tree node u denoting an interval (l, r) have its left
child representing (l, k(u)), right child for (k(u), r), and the
single node u itself, is the solid point at it key k(u). For each
tree node, the SegTree tracks the open sets of its subtree’s
interval, which is exactly the augmented value of the sub-
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Figure 1: An illustration
of all data structures intro-
duced in this paper - The
input data are shown in the
middle rectangle. We show
the tree structures on the top,
and the sweepline algorithm
on the bottom. All the inner
trees (the augmented values
or the prefix structures) are
shown as sets (or a pair of
sets) with elements listed in
sorted order.

map rooted at u. The augmented value (the open sets) of a
node can be generated by combining the open sets of its two
children (and the entry in itself) using Equation 7.7.
Answering Queries more efficiently. Calling the ALEFT
function on the outer tree of SegTree is costly, as it would
requireO(log n) function calls of UNION and DIFFERENCE
on the way. Here we present a more efficient query algorithm
making use of the tree structure, which is a variant of the
algorithm in [13, 29]. Besides the open sets, in each node
we store two helper sets (called the difference sets): the
segments starting in its left half and going beyond the whole
interval (R(ul)\L(ur) as in Equation 7.7), and vice versa
(L(ur)\R(ul)). We note that the calculation of the difference
sets is not associative, but depends on the tree structure. These
difference sets are the side-effect of computing the open sets.
Hence in implementations we just keep them with no extra
work. Suppose xq is unique to all the input endpoints. The
query algorithm first searches xq outer tree. Let u be the
current visited tree node. Then xq falls in either the left or the
right side of k(u). WLOG, assume xq goes right. Then all
segments starting in the left half and going beyond the range
of u should be reported because they must cover xq . All such
segments are in R(l(u))\L(r(u)), which is in u’s difference
sets. The range search on y-coordinates will be done on this
difference sets tree structure. After that, the algorithm goes
down to u’s right child to continue the search recursively. The
cost of returning all related segments is O(k + log2 n) for
output size k, and the cost of returning the count is O(log2 n).

7.2 The Sweepline Algorithm. If prefix structures are
used to represent the outer map, the algorithm becomes a

sweepline algorithm SegSwp (shown as SS in Table 4). We
store at each endpoint p the augmented value of the prefix
of all points up to p. Because the corresponding interval is a
prefix, the left open set is always empty. For simplicity we
only keep the right open set as the prefix structure, which is
all “alive” segments up to the current event point (a segment
(pl, pr) is alive at some point x ∈ X iff x(pl) ≤ x ≤ x(pr)).

Sequentially, this is a standard sweepline algorithm
for segment queries—as the line sweeping through the
plane, each left endpoint should trigger an insertion of its
corresponding segment into the prefix structure while the
right endpoints cause deletions. We note that this is also
what happens when a single point is plugged in as ur in
Equation 7.7. We use our parallel sweepline paradigm to
parallelize this process. In the batching step, we compute
the augmented value of each block, which is the open sets of
the corresponding interval. The left open set of an interval
are segments with their right endpoints inside the interval,
noted as L, and the right open set is those with left endpoints
inside, noted as R. In the sweeping step, the prefix structure
is updated by the combine function fseg, but only on the right
open set, which is equivalent to first taking a UNION with
R and then a DIFFERENCE with L. Finally, in the refining
step, each left endpoint triggers an insertion and each right
endpoint causes a deletion. This algorithm fits the sweepline
abstraction in Theorem 4.1, so the corresponding bound holds.
Answering Queries. The ALEFT function on the prefix
structure is just a binary search of xq in the sorted list of x-
coordinates. In that prefix structure all segments are sorted by
y-coordinates, and we search the query range of y-coordinates
on that. In all, a query for reporting all intersecting segments
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costs O(log n + k) (k is the output size), and a query on
counting related segments costs O(log n).

8 2D Rectangle Query
Given a set of rectangles in two dimensions, a rectangle
query asks for all rectangles containing a query point pq =
(xq, yq). Each rectangle C = (pl, pr), where pl, pr ∈ D, is
represented as its left-top and right-bottom vertices. We say
the interval [x(pl), x(pr)] and [y(pl), y(pr)] are the x-interval
and y-interval of C, respectively.

The rectangle query can be answered by a two-level map
structure RecMap (GM in Table 4 and Figure 1 (c)), which is
similar to the SegMap as introduced in Section 7. The outer
map organizes all rectangles based on their x-intervals using a
similar structure to the outer map of SegMap. The keys of the
outer map are the x-coordinates of all endpoints of the input
rectangles, and the values are the rectangles. The augmented
value of a (sub-)outer map is also the open sets as defined in
SegMap, which store the rectangles that partially overlap the
x-range of this sub-map. The combine function is accordingly
the same as the segment map.

Each inner map of the RecMap organizes the rectangles
based on their y-intervals. All the y-intervals in an inner
tree are organized in an interval tree (the term interval tree
refers to different definitions in the literature. We use the
definition in [34]). The interval tree is an augmented tree
(map) structure storing a set of 1D intervals sorted by the left
endpoints, and augmented by the maximum right endpoint
in the map. Previous work [63] has studied implementing
interval trees using the augmented map interface. It can report
all intervals crossing a point in timeO(log n+k log(n/k+1))
for input size n and output size k.

RecMap answers the enclosure query of point (xq, yq)
using a similar algorithm to SegMap. The query algorithm
first finds all rectangles crossing xq by computing the right
open set R in the outer map up to xq using ALEFT, which is
an interval tree. The algorithm then selects all rectangles in
R crossing yq by applying a list-all query on the interval tree.

Using interval trees as inner maps does not provide an
efficient interface for counting queries. We use the same inner
map as in SegMap* for counting queries. The corresponding
map structure (RecMap*) is presented in Appendix B.

We use augmented trees for inner maps (the interval
trees). We discuss two implementations of the outer map: the
augmented tree (which yields a multi-level tree structure) and
the prefix structures (which yields a sweepline algorithm).

8.1 The Multi-level Tree Structure. RecMap becomes a
two-level tree structure if the outer map is supported by an
augmented tree, which is similar to the segment tree, and we
use the same trick of storing the difference sets in the tree
nodes to accelerate queries. The cost of a list-all query is
O(k log(n/k + 1) + log2 n) for output size k.

8.2 The Sweepline Algorithm. If we use prefix structures
to represent the outer map, the algorithm becomes a sweepline
algorithm (GS in Table 4). The skeleton of the sweepline
algorithm is the same as SegSwp—the prefix structure at event
point x stores all “live” rectangle at x. The combine function,
fold function and update function are defined similar as in
SegSwp, but onto inner maps as interval trees. This algorithm
also fits the sweepline abstraction in Theorem 4.1, so the
corresponding bound holds.

To answer the list-all query of point (xq, yq), the algo-
rithm first finds the prefix structure tq at xq, and applies a
list-all query on the interval tree tq at point yq. The cost is
O(log n+ k log(n/k + 1)) per query for output size k.

9 Experiments
We implement all data structures mentioned in this paper
in C++. We run our experiments on a 72-core Dell R930
with 4 x Intel(R) Xeon(R) E7-8867 v4 (18 cores, 2.4GHz
and 45MB L3 cache) with 1TB memory. Each core is 2-
way hyperthreaded giving 144 hyperthreads. Our code was
compiled using the g++ 5.4.1 compiler which supports the
Cilk Plus extensions. We compile with -O2.

All implementations of augmented trees used in the
our algorithms are supported by the parallel augmented
map library PAM [63], which supports persistence by path-
copying. We implement the abstract parallel sweepline
paradigm as described in Section 4. On top of them, each
of our data structures only need about 100 lines of code.
Our code is available online at https://github.com/
cmuparlay/PAM. More details about PAM can be found
online [61] and in our previous work [63].

For range queries, we test RangeTree and RangeSwp in
Section 6. The tested RangeTree implementation is based on
the range tree code in the previous paper [63]. For segment
queries, we test SegTree and SegSwp in Section 7, as well
as the counting versions SegTree* and SegSwp* in Appendix
A. For rectangle queries, we test RecTree and RecSwp in
Section 8, as well as the counting versions RecTree* and
RecSwp* in Appendix B. We use integer coordinates. We
test both construction time and query time, and both counting
queries and list-all queries. In some of the problems, the
construction of the data structure for counting and list-all
queries can be slightly different, and we always report the
version for counting queries. On list-all queries, since the
cost is largely affected by the output size, we test a small and
a large query window with average output size of less than
10 and about 106 respectively. We accumulate query time
over 103 large-window queries and over 106 small window
queries. For counting queries we accumulate 106 queries.
For parallel queries we process all queries in parallel using
a parallel for-loop. The sequential algorithms tested in this
paper are directly running the parallel algorithms on one core.
We use n for the input size, k the output size, p the number
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Figure 2: The speedup of building various data structures for range, segment and rectangle queries (n = 108).

of threads. For the sweepline algorithms we set b = p, and
do not apply the sweepline paradigm recursively to blocks.

We compare our sequential versions with two C++
libraries CGAL [64] and Boost [1]. CGAL provides a range
tree [52] structure similar to ours, and the segment tree [52]
in CGAL implements the 2D rectangle query. Boost provides
an implementation of R-trees, which can be used to answer
range, segment and rectangle queries. CGAL and Boost only
support list-all queries. We parallelize the queries in Boost
using OpenMP. CGAL uses some shared state in queries so
the queries cannot be parallelized trivially. We did not find
comparable parallel implementations in C++, so we compare
our parallel query performance with Boost. We also compare
the query and construction performance of our multi-level
tree structures and sweepline algorithms with each other, both
sequentially and in parallel.

In the rest of this section we show results for range,
segment and rectangle queries and comparisons across all
tested structures. We show that our implementations achieve
good speedup (32-126x on 72 cores with 144 hyperthreads).
The overall sequential performance (construction and query)
of our implementations is comparable or outperforms existing
implementations. We present more experimental results in
the full version of this paper [62].

9.1 2D Range Queries. We test RangeTree and RangeSwp
for both counting and list-all queries, sequentially and in
parallel. We test 108 input points generated uniformly
randomly. For counting queries, we generate endpoints of
the query rectangle uniformly randomly. For list-all queries
with large and small windows, we control the output size by
adjusting the average length of the edge length of the query
rectangle. We show the running time in Table 5. We show the
scalability curve for construction in Figure 2 (a).
Sequential Construction. RangeTree and RangeSwp have
similar performance and outperform CGAL (2x faster) and
Boost (1.3-1.5x). Among all, RangeTree is the fastest in
construction. We guess the reason of the faster construction
of our RangeTree than CGAL is that their implementation
makes copies the data twice (once in merging and once to
create tree nodes) while ours only copies the data once.

Parallel Construction. RangeTree achieves a 63-fold
speedup on n = 108 and p = 144. RangeSwp has relatively
worse parallel performance, which is a 33-fold speedup, and
2.3x slower than RangeTree. This is likely because of its
worse theoretical depth (Õ(

√
n) vs. O(log2 n)). As for

RangeTree, not only the construction is highly-parallelized,
but the combine function (UNION) is also parallel. Figure
2(a) shows that both RangeTree and RangeSwp scale up to
144 threads.
Query Performance. In counting queries, RangeSwp shows
the best performance in both theory and practice. On list-
all queries, RangeSwp is much slower than the other two
range trees when the query window is large, but shows better
performance for small windows. These results are consistent
with their theoretical bounds. Boost’s R-tree is 1.5-26x slower
than our implementations, likely because of lack of worst-
case theoretical guarantee in queries. Our speedup numbers
for queries are above 65 because they are embarrassingly
parallel, and speedup numbers of our implementations are
slightly higher than Boost.

9.2 2D Segment Query. We test 5 × 107 input segment,
using SegSwp, SegTree, SegSwp* and SegTree*. Note that
for these structures on input size n (number of segments),
2n points are needed in the map. Thus we use input size
of n = 5 × 107 for comparison with the maps for range
queries. The x-coordinate of each endpoint is generated
uniformly randomly. To guarantee that the input segments do
not intersect, we generate n non-overlapping intervals as the
y-coordinates and assign each of them to a segment uniformly
randomly. For SegSwp* and SegTree*, each segment is
directly assigned a y-coordinate uniformly randomly. For
counting queries, we generate endpoints of the query segment
uniformly randomly. For list-all queries with large and small
windows, we control the output size by adjusting the average
length of the query segment. We show the running times in
Table 5. We also show the parallel speedup for construction
in Figure 2(b). We discuss the performance of SegTree* and
SegSwp* in the full version of this paper [62].
Sequential Construction. Boost is 1.4x faster than SegSwp
and 2.4x than SegTree. This is likely due to R-tree’s simpler
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n Algorithm Build, s Counting Query, µs List-all (small), µs List-all (large), ms
Seq. Par. Spd. Seq. Par. Spd. Seq. Par. Spd. Seq. Par. Spd.

108

RangeSwp 243.89 7.30 33.4 12.74 0.15 86.7 11.44 0.13 85.4 213.27 1.97 108.4
RangeTree 200.59 3.16 63.5 61.01 0.75 81.1 17.07 0.21 80.5 44.72 0.69 65.2

Boost 315.34 - - - - - 25.41 0.51 49.8 1174.40 22.42 52.4
CGAL 525.94 - - - - - 153.54 - - 110.94 - -

5× 107
SegSwp 254.49 7.20 35.3 6.78 0.09 75.3 6.18 0.08 77.2 255.72 2.65 96.5
SegTree 440.33 6.79 64.8 50.31 0.70 71.9 39.02 0.48 81.7 123.26 1.99 61.9

Boost 179.44 - - - - - 7421.30 113.09 65.6 998.20 23.21 43.0

5× 107 SegSwp* 233.19 7.16 32.6 7.44 0.11 67.6 - - - - - -
SegTree* 202.01 3.21 63.0 33.58 0.40 83.8 - - - - - -

5× 107
RecSwp 241.51 6.76 35.7 - - - 8.34 0.10 83.4 575.46 5.91 97.4
RecTree 390.98 6.23 62.8 - - - 43.57 0.58 75.1 382.26 5.35 71.4

Boost 183.65 - - - - - 52.22 0.94 55.6 706.50 11.10 63.6
5× 106 CGAL[1] 398.44 - - - - - 90.02 - - 4412.67 - -

5× 107 RecSwp* 585.18 12.37 47.32 6.56 0.05 126.1 - - - - - -
RecTree* 778.28 11.34 68.63 39.75 0.35 113.6 - - - - - -

Table 5: The running time of all data structures - “Seq.”, “Par.” and “Spd.” refer to the sequential, parallel running time and the
speedup. [1]: Result of CGAL is shown as on input size 5× 106. On 5× 107, CGAL did not finish in one hour.

structure. However, Boost is 4-1200x slower in queries than
our implementations. SegTree is the slowest in construction
because it stores four sets (the open sets and the difference
sets) in each node, and calls two DIFFERENCE and two
UNION functions in each combine function.
Parallel Construction. In parallel construction, SegTree
is slightly faster than SegSwp. Considering that SegTree is
1.7x slower than SegSwp sequentially, the good parallelism
comes from its good scalability (64x speedup). The lack of
parallelism of SegSwp is for the same reason as RangeSwp.
Query Performance. In the counting query and list-
all query on small window size, SegSweep is significantly
faster than SegTree as would be expected from its better
theoretical bound. As for list-all on large window size,
although SegTree and SegSwp have similar theoretical cost
(output size k dominates the cost), SegTree is faster than
SegSwp both sequentially and in parallel. This might have
to do with locality. In the sweepline algorithms, the tree
nodes even in one prefix structure were created at different
times because of path-copying, and thus are not contiguous in
memory, leading to bad cache performance. Both SegSwp and
SegTree have better query performance than Boost’s R-tree
(8.7-1400x faster in parallel). Also, the Boost R-tree does
not take advantage of smaller query windows. Comparing
the sequential query performance on large windows with
small windows, on outputting about 106x less points, SegTree
and SegSwp are 3000x and 40000x faster respectively, while
Boost’s R-tree is only 130x faster. Our implementations
on small windows is not 106x as fast as on large windows
because on small windows the log n or log2 n term dominates
the cost. This illustrates that the bad query performance of
R-trees comes from lack of worst-case theoretical guarantee.
The query speedup of our implementations is over 61.

9.3 2D Rectangle Query. We test rectangle queries using
RecSwp, RecTree, RecSwp* and RecTree*, on n = 5× 107.
The the query points are generated uniformly randomly. For
counting queries, the endpoints of the input rectangles are
generated uniformly randomly. For list-all queries with large
and small windows, we control the output size by adjusting
the average length of the edge length of the input rectangle.
The running times are reported in Table 5, and the parallel
speedup for construction are in Figure 2(c). We discuss the
performance of RecTree* and RecSwp* in the full version of
this paper [62].
Sequential Construction. Sequentially, RecSwp, RecTree
and Boost R-tree have performance close to segment queries
– Boost is faster in construction than the other two (1.6-
2.1x), but is much slower in queries, and RecTree is slow
in construction because of its more complicated structure.
CGAL did not finish construction on n = 5 × 107 in one
hour, and thus we present the results on n = 5 × 106. In
this case, CGAL has a performance slightly worse than our
implementations even though our input size is 10x larger.
Parallel Construction. The parallel performance is similar
to the segment queries, in which RecTree is slightly faster
than RecSwp because of good scalability (62x speedup).
Query Performance. In list-all queries on a small window
size, RecSwp is significantly faster than other implementa-
tions due to its better theoretical bound. Boost is 1.2-9x
slower than our implementations when query windows are
small, and is 1.2-2x slower when query windows are large,
both sequentially and in parallel. The query speedup of our
implementations is over 71.

9.4 Summary. The sweepline algorithms usually perform
better in sequential construction, but in parallel are slower
than two-level trees. This has to do with the better scalability
of the two-level trees. With properly defined augmentation,
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the construction of the two-level trees is automatically
done by the augmented map constructor in PAM, which
is highly-parallelized (polylog depth). For the sweepline
algorithms, the parallelism comes from the blocking-and-
batching process, with a Õ(

√
n) depth. Another reason

is that more threads means more blocks for sweepline
algorithms, introducing more overhead in batching and
folding. Most of the implementations have close construction
time. Sequentially SegTree and RecTree are much slower than
the others, because they store more information in each node
and have more complicated combine functions. The speedup
of all sweepline algorithms are close at about 30-35x, and all
two-level trees at about 62-68x.

In general, the sweepline algorithms are better in
counting queries and small window queries but are slower in
large window queries. In counting queries and small window
queries (when the output size does not dominate the cost)
the sweepline algorithms perform better because of the better
theoretical bound. On large window queries (when the output
size dominates the cost), the two-level tree structures performs
better because of better locality.

Our implementations scale to 144 threads, achieve
good speedup and show efficiency on large input size. Our
implementation show good performance both sequentially
and in parallel on input size as large as 108. On 72 cores with
144 hyperthreads, the construction speedup is 32-69x, and the
query speedup is 65-126x.

Our implementations are always faster on queries than
existing implementations with comparable or faster construc-
tion time, even sequentially. Our implementations outperform
CGAL in both construction and queries by at least 2x. Overall,
the Boost R-tree is about 1.5x slower to 2.5x faster than our
algorithms in construction, but is always slower (1.6-1400x)
in queries both sequentially and in parallel, likely because of
lack of worst-case theoretical guarantee of R-trees.

9.5 Other Experiments. We also present the results and
discussions on the performance of the data structures for
counting queries, updating range trees and space (memory)
consumption in the full version of this paper [62].

10 Conclusion
In this paper we developed implementations of a broad set of
parallel algorithms for range, segment and rectangle queries
that are very much faster and simpler than the previous im-
plementations, and are also theoretically efficient. We did
this by using the augmented map framework. Based on dif-
ferent representations (augmented trees and prefix structures),
we designed both two-level trees and sweepline algorithms
addressing range, segment and rectangle queries. We imple-
mented all algorithms in this paper and tested the performance
both sequentially and in parallel. Experiments show that our
algorithms achieve good speedup, and have good performance

even sequentially. The overall performance considering both
construction and queries of our implementations outperforms
existing sequential libraries such as CGAL and Boost.
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Ó’Dúnlaing, and Chee Yap. Parallel computational geometry.
Algorithmica, 1988.

[5] Thomas D Ahle, Martin Aumüller, and Rasmus Pagh.
Parameter-free locality sensitive hashing for spherical range
reporting. In Proc. the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2017.

[6] Deepak Ajwani, Nodari Sitchinava, and Norbert Zeh. Geo-
metric algorithms for private-cache chip multiprocessors. In
European Symposium on Algorithms (ESA), 2010.

[7] Lars Arge, Gerth Stølting Brodal, Rolf Fagerberg, and Morten
Laustsen. Cache-oblivious planar orthogonal range searching
and counting. In Proc. symposium on Computational geome-
try(SoCG), 2005.

[8] Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-
dimensional indexability and optimal range search indexing. In
Proc. Symp. on Principles of database systems (PODS), 1999.

[9] Lars Arge and Jeffrey Scott Vitter. Optimal external memory
interval management. SIAM Journal on Computing, 2003.

[10] Lars Arge and Norbert Zeh. Simple and semi-dynamic struc-
tures for cache-oblivious planar orthogonal range searching.
In Proc. Symp. on Computational Geometry (SoCG), 2006.

[11] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading divide-
and-conquer: A technique for designing parallel algorithms.
SIAM J. Comput., 1989.

[12] Mikhail J Atallah and Michael T Goodrich. Efficient parallel
solutions to some geometric problems. Journal of Parallel and
Distributed Computing, 1986.

[13] Mikhail J. Atallah and Michael T. Goodrich. Efficient plane
sweeping in parallel. In Proc. Symposium on Computational
Geometry (SoCG), 1986.

[14] Mikhail J Atallah, Michael T Goodrich, and S Rao
Kosaraju. Parallel algorithms for evaluating sequences of set-
manipulation operations. In Aegean Workshop on Computing,
1988.

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



[15] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and
Bernhard Seeger. The R*-tree: an efficient and robust access
method for points and rectangles. In Acm Sigmod Record,
1990.

[16] J. L. Bentley and D. Wood. An optimal worst case algorithm
for reporting intersections of rectangles. IEEE Trans. Comput.,
1980.

[17] Jon Louis Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM, 1975.

[18] Jon Louis Bentley. Decomposable searching problems. Infor-
mation processing letters, 1979.

[19] Jon Louis Bentley and Jerome H Friedman. Data structures
for range searching. ACM Computing Surveys (CSUR), 1979.

[20] Jon Louis Bentley and Derick Wood. An optimal worst case
algorithm for reporting intersections of rectangles. IEEE
Transactions on Computers, 1980.

[21] Philip Bille, Inge Li Gørtz, and Søren Vind. Compressed data
structures for range reporting. In Proc. International Con-
ference on Language and Automata Theory and Applications
(LATA), 2015.

[22] Gabriele Blankenagel and Ralf Hartmut Güting. External
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A Data Structures for Segment Counting Queries
In this section, we present a simple two-level augmented map
SegMap* structure to answer segment count queries (see the
Segment Count Query in Table 6 and Figure 1 (d)). This
map structure can only deal with axis-parallel input segments.
For each input segment (pl, pr), we suppose x(pl) = x(pr),
and y(pl) < y(pr). We organize the x-coordinates in the
outer map, and deal with y-coordinates in the inner trees.
We first look at the inner map. For a set of 1D segments, a
standard solution to count the segments across some query
point xq is to organize all end points in sorted order, and
assign signed flags to them as values: left endpoints with
1, and right endpoints with −1. Then the prefix sum of the
values up to xq is the number of alive segments. To efficiently
query the prefix sum we can organize all endpoints as keys in
an augmented map, with values being the signed flags, and
augmented values adding values. We call this map the count
map of the segments.

To extend it to 2D scenario, we use a similar outer map
as range query problem. On this level, the x-coordinates are
keys, the segments are values, and the augmented value is the
count map on y-coordinates of all segments in the outer map.

The combine function is UNION on the count maps. However,
different from range maps, here each tree node represents two
endpoints of that segment, with signed flags 1 (left) and −1
(right) respectively, leading to a different base function (g∗seg).

We maintain the inner maps using augmented trees. By
using augmented trees and prefix structures as outer maps, we
can define a two-level tree structure and a sweepline algorithm
for this problem respectively. Each counting query on the
count map of size m can be done in time O(logm). In all,
the rectangle counting query cost time O(log2 n) using the
two-level tree structure SegTree*, and O(log n) time using
the sweepline algorithm SegSwp*.

We present corresponding definition and illustration on
both the multi-level tree structure and the sweepline algorithm
in Table 4 and Figure 1 (d).

B Data Structures for Rectangle Counting Queries
In this section, we extend the RecMap structure to RecMap*
for supporting fast counting queries. We use the exactly
outer map as RecMap, but use base and combine functions
on the corresponding inner maps. The inner map, however, is
the same map as the count map in SegMap* (S∗I in Table
6). Then in queries, the algorithm will find all related
inner maps, which are count maps storing all y-intervals of
related rectangles. To compute the count of all the y-intervals
crossing the query point yq , the query algorithm simply apply
an ALEFT on the count maps.

We maintain the inner maps using augmented trees.
Using augmented trees and prefix structures as outer maps,
we can define a two-level tree structure and a sweepline
algorithm for this problem respectively. The rectangle
counting query cost time O(log2 n) using the two-level tree
structure RecTree*, and O(log n) time using the sweepline
algorithm RecSwp*.

We present corresponding definition and illustration on
both the multi-level tree structure and the sweepline algorithm
in Table 4. The outer representation of RecMap* is of the
same format as RecMap as shown in Figure 1 (c).

C Extend RangeSwp to Report All Points
In the main body we have mentioned that by using a different
augmentation, we can adjust the sweepline algorithm for
range query to report all queried points. It is similar to
RangeSwp, but instead of the count, the augmented value
is the maximum x-coordinate among all points in the map.
To answer queries we first narrow the range to the points in
the inner map tR by just searching xR. In this case, tR is an
augmented tree structure. Then all queried points are those
in tR with x-coordinates larger than xL and y-coordinate in
[yL, yR]. We still conduct a standard range query in [yL, yR]
on tR, but adapt an optimization that if the augmented value of
a subtree node is less than xL, the whole subtree is discarded.
Otherwise, at least part of the points in the tree would be
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* Segment Count Query:
(Inner Map)S∗I = AM ( K: Y ; ≺: <Y ; V : D ×D;A: Z; g: (k, v) 7→ 1; f : +Z; I: 0 )

- SegMap* S∗M = AM ( K: X; ≺: <X ; V : Y × Y ; A: S∗I ; g: g∗seg f : S∗I .union I: ∅ )
g∗seg(x, (l, r)) = CI .build({(l, 1), (r,−1)})

- SegSwp* S∗S = PS ( P : D ×D; ≺: <Y ; T : CI ; t0: ∅; h: h∗seg; ρ: ρ∗seg; f : CI .union )
h∗seg(t, (pl, pr)) = CI .union(t, {(y(pl), 1), (y(pr),−1)}), ρ∗seg({(pl, pr)}) = CI .build({(y(pl), 1), (y(pr),−1)})

* Rectangle Count Query:
(Inner Map)G∗I= S∗I
-RecMap*G∗M = similar as GM , but use G∗I as inner maps
- RecSwp*G∗S = similar as GS , but use G∗I as prefix structures

Table 6: Definitions of SegMap* and RecMap* - X and Y are types of x- and y-coordinates. D = X × Y is the point type.

relevant and we recursively deal with its two subtrees.
Now we analyze the cost of this algorithm. Let the output

size be k. The total cost is asymptotically the number of
tree nodes the algorithm visits, which is asymptotically the
number of all reported points and their ancestors. For k
nodes in a balanced tree of size n, the number of all its
ancestors is equivalent to all the nodes visited by the UNION
function based on split-join model [23] when merging this
tree with a set of the k nodes. When using AVL trees, red-
black trees, weight-balanced trees or treaps, the cost of the
UNION function is O(k log(n/k + 1)). Detailed proof for
the complexity of the UNION function can be found in [23].

D Proof for Corollary 4.1
Proof. To reduce the depth of the parallel sweepline paradigm
mentioned in Section 4, we adopt the same algorithm as
introduced in Theorem 4.1, but in the last refining step,
repeatedly apply the same algorithm on each block. If we
repeat for a c of rounds, for the i-th round, the work would be
the same as splitting the total list into ki blocks. Hence the
work is still O(n log n) every round. After c rounds the total
work is O(cn log n).

For depth, notice that the first step costs logarithmic
depth, and the second step, after c iterations, in total, requires
depth Õ(cb) depth. The final refining step, as the size of each
block is getting smaller and smaller, the cost of each block
is at most O( nbi log n) in the i-th iteration. In total, the depth
is Õ

(
cb+ n

bc

)
, which, when b = c

c
c+1n

1
c+1 , is Õ(n1/(c+1)).

Let ε = 1/(c+ 1), which can be arbitrary small by adjusting
the value of c, we can get the bound in Corollary 4.1.

Specially, when c = log n, the depth will be re-
duced to polylogarithmic, and the total work is accordingly
O(n log2 n). This is equivalent to applying a recursive
algorithm (similar to the divide-and-conquer algorithm of
the prefix-sum problem). Although the depth can be poly-
logarithmic, it is not work-efficient any more. If we set c to
some given constant, the work and depth of this algorithm are
O(n log n) and O(nε) respectively.

E Dynamic Update on Range Trees Using Augmented
Map Interface

The tree-based augmented map interface supports insertions
and deletions (implementing the appropriate rotations). This
can be used to insert and delete on the augmented tree
interface. However, by default this requires updating the
augmented values from the leaf to the root, for a total of
O(n) work. Generally, if augmented trees are used to support
augmented maps, the insertion function will re-compute the
augmented values of all the nodes on the insertion path,
because inserting an entry in the middle of a map could
completely change the augmented value. In the range tree,
the cost is O(n) per update because the combine function
(UNION) has about linear cost. To avoid this we implemented
a version of “lazy” insertion/deletion that applies when the
combine function is commutative. Instead of recomputing the
augmented values it simply adds itself to (or removes itself
from) the augmented values along the path using f and g. This
is similar to the standard range tree update algorithm [47].

The amortized cost per update is O(log2 n) if the tree is
weight-balanced. Here we take the insertion as an example,
but similar methodology can be applied to any mix of
insertion and deletion sequences (to make deletions work,
one may need to define the inverse function f−1 of the
combine function). Intuitively, for any subtree of size m,
imbalance occur at least every Θ(m) updates, each cost
O(m) to rebalance. Hence the amortized cost of rotations per
level is O(1), and thus the for a single update, it is O(log n)
(sum across all levels). Directly inserting the entry into all
inner trees on the insertion path causes O(log n) insertions to
inner trees, each cost O(log n). In all the amortized cost is
O(log2 n) per update.

Similar idea of updating multi-level trees in (amortized)
poly-logarithmic time can be applied to SegTree*, RecTree
and RecTree*. For SegTree, the combine function is not
communicative, and thus update may be more involved than
simply using the interface of lazy-insert function.
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