
Randomized Incremental Convex Hull is Highly Parallel
Guy E. Blelloch

Carnegie Mellon University

guyb@cs.cmu.edu

Yan Gu

UC Riverside

ygu@cs.ucr.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

Yihan Sun

UC Riverside

yihans@cs.ucr.edu

ABSTRACT
The randomized incremental convex hull algorithm is one of the

most practical and important geometric algorithms in the litera-

ture. Due to its simplicity, and the fact that many points or facets

can be added independently, it is also widely used in parallel con-

vex hull implementations. However, to date there have been no

non-trivial theoretical bounds on the parallelism available in these

implementations. In this paper, we provide a strong theoretical anal-

ysis showing that the standard incremental algorithm is inherently

parallel. In particular, we show that for n points in any constant

dimension, the algorithm hasO(logn) dependence depth with high

probability. This leads to a simple work-optimal parallel algorithm

with polylogarithmic span with high probability.

Our key technical contribution is a new definition and analysis

of the configuration dependence graph extending the traditional

configuration space, which allows for asynchrony in adding config-

urations. To capture the “true” dependence between configurations,

we define the support set of configuration c to be the set of already

added configurations that it depends on. We show that for problems

where the size of the support set can be bounded by a constant, the

depth of the configuration dependence graph is shallow (O(logn)
with high probability for input size n). In addition to convex hull,

our approach also extends to several related problems, including

half-space intersection and finding the intersection of a set of unit

circles. We believe that the configuration dependence graph and its

analysis is a general idea that could potentially be applied to more

problems.

ACM Reference Format:
Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Randomized

Incremental Convex Hull is Highly Parallel. In Proceedings of the 32nd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’20),
July 15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3350755.3400255

1 INTRODUCTION
Finding the convex hull of a set of points in d-dimensions is one of

the most fundamental problems in computational geometry. The

incremental convex hull algorithm (adding points one by one) is

surely the simplest efficient algorithm for the problem, at least

for d > 2. The basic idea of the (sequential) incremental convex

hull algorithm is to add the points one by one while maintaining

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/3350755.3400255

the convex hull. A newly-added point either falls into the current

convex hull and thus no further action is needed, or it removes

existing faces (henceforth facets) that it is visible from, while adding

new facets. For example, in Figure 1, adding c to the existing hull

u-v-w-x-y-z-t would replace edges v-w ,w-x , x-y, and y-z with v-c
and c-z. Clarkson and Shor, in their seminal work over 30 years

ago [28], showed that the incremental convex hull algorithm on n

points in d-dimensions has optimal O(n ⌊d/2⌋ + n logn) expected
runtime when points are added in random order. Their results are

based on a more general setting, which they also used to solve sev-

eral other geometry problems, and the work led to over a hundred

papers and survey articles on the topic of random incremental algo-

rithms. Their proof has been significantly simplified over the years,

and is now described in several textbooks [21, 32, 35, 50]. Analysis

techniques, such as backwards analysis [54], were developed in

this context and are now studied in many intermediate algorithms

courses.

In addition to beautiful theory, incremental convex hulls al-

gorithms are also widely used in practice [10, 24, 48, 58] due to

their simplicity and efficiency. In the parallel setting, there have

been several asymptotically efficient parallel algorithms for convex

hull [5, 7, 8, 42, 49, 52], although none of them are based on the

incremental approach. Interestingly, although incremental algo-

rithms seem inherently sequential, in practice they are widely used

in parallel implementations. The observation is that if two points

are visible from disjoint sets of facets, they can be added simul-

taneously. This idea is used in many parallel implementations of

convex hull [27, 34, 38, 40, 42, 47, 56, 59], although with no strong

theoretical bounds. Despite the fact that the randomized incremen-

tal convex hull algorithm is widely used in practice, it was not

previously known whether the incremental approach for convex

hull is asymptotically efficient in parallel.

In this paper we show that incremental convex hull is indeed

highly parallel, with logarithmic dependence depth. Our result

follows recent work on analyzing the the inherent parallelism in

sequential incremental algorithms by considering their dependence

depth. This work includes showing that incremental algorithms for

maximal independent set and maximal matching [14, 36]; graph

coloring [43]; correlation clustering [51]; random permutation, list

contraction, and tree contraction [55]; and comparison sorting, lin-

ear programming, smallest enclosing disk, and closest pairs [17],

all have shallow dependence depth. Recent work has also shown

that the randomized incremental Delaunay triangulation algorithm

in 2D has shallow dependence depth [17, 18]. The key idea is to

allow for asynchrony: instead of having an added point build all

relevant triangles at once, their analysis allows the triangles added

by a point to be added on different rounds. In our results, we borrow

the idea of using asynchrony in the convex hull problem. Interest-

ingly, however, the analysis techniques in these previous papers

do not apply to incremental convex hull, even just for the 2D case,

1

https://doi.org/10.1145/3350755.3400255
https://doi.org/10.1145/3350755.3400255

v

w
x y

z

u

t

c

ab

w

v

x y
z

u

t

c

ab a

v

w
x y

z

u

t

c

b b

v

w
x y

z

u

t

c

a

a-x

(a) (b) (c) (d)

Figure 1: Example of incremental 2D convex hull. Starting with the hull u-v-w -x -y-z-t , we next need to add a, b , and c into the hull in
lexicographical order. In our algorithm, the facets v-c , w -b , x -a, and a-z can all be added in parallel in the first step (from (a) to (b)), and b-a
and c-z in the second step (from (b) to (c)). The grey edges are those that have already been replaced or buried in the previous step (and thus
do not exist). The label on each grey edge indicates the new edge that replaces it, and those without labels are buried. We give a more detailed
description of the example in Section 5.3.

although convex hull seems to be easier than many of the above

problems.

The challenge for incremental convex hull is that each randomly

inserted point may remove (and thus depend on) more than a con-

stant number of existing points and facets (edges for the 2D case)

on the hull. As an example of 2D convex hull, in Figure 1 we assume

that the hull over the points u-v-w-x-y-z-t has already been gener-

ated (marked in dark solid lines) in previous rounds. The points a,
b, and c are to be added in lexicographical order. Adding c replaces
all edges between v and z, which clearly conflicts with adding a or

b, so c has to wait. The number of edges that a newly-added point

can remove can be arbitrarily large (more than any constant). In

the sequential setting, showing a constant number of dependencies

per inserted node on average is sufficient to derive the expected

work bound since it is the sum of the dependencies for all inserted

points. However, it does not work for the analysis of the parallel

span (longest dependence path), since the degrees (the number of

dependences) of the inserted points multiplicatively contribute to

the number of possible paths.

New results and approach of this paper. As with Clarkson

and Shor’s work [28], and follow-on work by Mulmuley [50] and

others, we derive the results based on configuration spaces. Our key

technique consists of two aspects, the asynchrony that enables

more fine-grained parallelism, and the concept of a support set that
is used to distinguish the “true” dependences. Using both, we show

that the dependence graph of convex hull is shallow, which further

leads to a very simple work-efficient and polylogarithmic-span

algorithm for d-dimensional convex hull.

The first technique that we employ is to allow asynchrony when

adding the facets (edges for the 2D case) incident on one point, as is

studied in previous work [17]. In the 2D example in Figure 1(a), we

assume that the hull over the pointsu-v-w-x-y-z-t has already been
generated (marked in dark solid lines). The points a, b, and c are
to be added in lexicographical order. Adding a point c in previous

incremental algorithms would add the edgesv-c and c-z, which has

to wait for a and b to be added. In our approach, v-c and c-z can
be added separately in different rounds. In particular, v-c can be

added first since there is no “true” dependence from v-c to edges
incident on a or b (see below). This therefore allows for other edges

depending on v-c to be processed earlier before c-z is added, which
builds a “pipeline” of adding points and improves parallelism. This

procedure adds exactly the same facets as the sequential algorithm,

and thus compared to the sequential variant, work is not wasted,

but rather just reshuffled.

The second technique that we use, which is also the main contri-

bution of this paper, is the new concept of a support set in addition

to the standard requirements of configuration spaces [28, 50]. The

goal of the support set is to distinguish the “true” dependences from

unnecessary dependences. We observe that when adding a new

point p that forms a facet t = (p, r) with an existing ridge r , t only
depends on existing facets incident on r . Namely, the new facet t
only depends on two other facets, t1 and t2, which both contain

ridge r , and t will replace one of them (the one that p conflicts with).

In this case, we say the pair of facets t1 and t2 supports the new
facet t (the support set of t is {t1, t2}). Figure 1 shows a running
example of our algorithm in two dimensions across three rounds.

Starting with the hull u-v-w-x-y-z-t , we next need to add a, b, and
c into the hull in lexicographical order. Adding v-c only depends

on edges incident on v , which are v-w and v-u, and so we say v-c
is supported by v-w and v-u. Similarly, w-b is not supported by

x-y or a-z. Hence, v-c ,w-b, x-a, and a-z can all be added in parallel

since they do not support each other (Figure 1(a) to 1(b)). Then,

some existing edges will be replaced by edges with the newly-added

points due to visibility, e.g., v-c replaces v-w because c is visible
from v-w , but not from v-u (see more details in Section 5.3). From

Figure 1(b) to 1(c), b-a replaces x-a and c-z replaces a-z. In addition

to replacement, a pair of facets can also be buried if it does not

support any facet but it is visible by another point. From Figure 1(c)

to 1(d),w-b and b-a are buried since they do not support a facet and

are both visible from c . Indeed, our approach achieves better par-

allelism because we distinguish the “true” dependences (support)

from the “false” ones (buried). Therefore, we can show that each

facet only depends on (is supported by) at most two other facets.

More details about the example in Figure 1 are given in Section 5.3.

More generally, we show that for a dependence graph built based

on support sets, as long as each object has a constant-size support

set, the longest dependence path is logarithmic with high probabil-

ity. This indicates that the randomized incremental algorithm for

convex hull in d-dimensions (and other related problems), when

considering the iterations of the algorithm and the dependence

structure among the facets, the depth of dependences for n points

is only O(logn) with high probability for a constant dimension d .
We formally introduce the relevant concepts about support sets in

Section 3 and 4, and our convex hull algorithm in Section 5.

We note that the proposed approach based on support sets in

this paper are also useful in several other applications, which we

briefly discuss in Section 7.

2

In summary, the main result of the paper is to prove the follow-

ing theorem, which states that the depth of dependences of the

randomized incremental convex hull construction is shallow.

Theorem 1.1 (Main Theorem). The configuration dependence
graph (defined in Section 4) of incremental convex hull with n points
in constant dimensions has depth O(logn) whp.

This result directly leads to a very simple d-dimensional parallel

incremental convex hull algorithm (Section 5.2), which is work-

efficient with polylogarithmic span (see Theorem 5.4 and 5.5). Our

algorithm does exactly the same set of plane-side (visibility) tests,

and inserts exactly the same facets along the way as that of the

sequential algorithm. The only difference is in allowing these tests

and updates to run in a more relaxed order, which provides better

parallelism. There exists other algorithms for parallel convex hull

in the literature that are work-efficient and have better span (e.g.,

[5, 8]), although they are not based on the incremental approach.We

also believe that our algorithm is simpler compared to existingwork,

and can lead to an efficient parallel implementation in practice.

Preliminaries. We use the work-span model to analyze algo-

rithms, where theworkW is defined to be the number of operations

used and the span S is defined to be the length of the critical path

in the computation [45]. Our algorithms can run on the PRAM as

well as the nested parallel (fork-join) model. On P processors, the

running time is O(W /P + S) [22]. For the CRCW PRAM model, we

assume concurrent reads and concurrent writes are supported in

unit work. For concurrent writes to the same memory location,

we assume an arbitrary write succeeds (arbitrary-CRCW PRAM).

Most of the discussion will assume the CRCW PRAM model, but

in Appendix A, we also show analysis of our algorithm in the

binary-forking model [13], where a computation starts with an

initial thread and each thread can call a Fork instruction to create a

child task (thread), which is asynchronous and can run in parallel.

We use the term O(f (n)) with high probability (whp) in n to

indicate the boundO(k f (n)) holds with probability at least 1−1/nk

for any k ≥ 1. In asymptotic analysis we assume the dimension d
is a constant.

2 RELATEDWORK
There has been significant interest in designing parallel algorithms

for finding convex hulls over the past decades. Starting in the mid-

80s, several PRAM algorithms for 2D convex hull were developed

that are optimal in work and have polylogarithmic span [7–9, 49].

Also, at around the same time various algorithms for 3D convex

hulls were developed that were within polylogarithmic factors of

optimal in work, and had polylogarithmic span [6, 7, 26, 31]. Reif

and Sen [52] developed the first work-optimal PRAM algorithm

for 3D convex hull, and it also had optimal logarithmic span. This

was later generalized to arbitrary constant dimension by Amato,

Goodrich, and Ramos [5]. Both of these results are based on ideas

from Clarkson and Shor [28]. They are, however, not based on the

incremental method but instead based on divide-and-conquer with

sampling. The idea is to take a sample of points, build a convex hull

on the sample using a more naive approach, and then bucket the re-

maining points by the facets that are visible from each, and process

each bucket in parallel. The algorithms and their analyses, how-

ever, are relatively complicated. Gupta and Sen [42] later used the

parallel divide-and-conquer approach to develop output-sensitive

algorithms for convex hull.

Recent work by Alistarh et al. [3, 4] have used the parallelism

guarantees of incremental algorithms to derive strong bounds for

the corresponding algorithms using relaxed schedulers.

3 MODEL
We use the definition of configuration space fromMulmuley [32, 50]

since we believe it is simpler and more general than Clarkson and

Shor’s original presentation [28].

A configuration space consists of a set of objects X , and a set

of configurations Π ⊂ 2
X × 2

X
. Each configuration (D,C) ∈ Π

consists of a defining set D ⊆ X and a conflict set C ⊆ X \D. For
π ∈ Π, we useD(π) andC(π) to indicate its defining and conflicting
sets, respectively. For Φ ⊆ Π, we use D(Φ) and C(Φ) to represent

the union of their defining sets and the union of their conflicting

sets, respectively.

The maximum degree of a configuration space is defined as

max{|D(π)| : π ∈ Π}, and, as is standard, we assume that the

maximum degree is given by a constant д. We also limit the number

of configurations with the same defining set by a constant c , which
we refer to as themultiplicity.

A configuration π is said to be active with respect to Y ⊆ X if

Y includes all of its defining set but none of its conflict set. A set

of configurations is active if all configurations in the set are active.

The active configurations of Y , T (Y), are defined as follows:

T (Y) = {π ∈ Π | (D(π) ⊆ Y) ∧ (C(π) ∩ Y = ∅)}

As an example of a configuration space,X could be a set of points

in two dimensions, along with a configuration for each possible

triangle (triple of points) inX . A configuration has the three corners

of the triangle as its defining set and the points in the triangle’s

circumcircle as the conflicting set. The active configurations for any

subset of points Y ∈ X is then the Delaunay triangulation of S—i.e.,
all triangles on Y with no other point from Y in their circumcircle.

It has multiplicity one. Table 1 summarizes the notation used in

this paper and shows the mapping from configuration spaces to

their concrete use for convex hulls (described in Section 5).

Based on the definition of configuration spaces, we have Clark-

son and Shor’s theorem bounding the expected total number of

conflicts in an incremental algorithm that adds one object at a time.

Theorem 3.1 (Total Conflict Size [28]). Consider a configu-
ration space (X ,Π) with maximum degree д. Let x1, . . . , xn be the
elements of X (or a subset of them) in a uniformly random order, and
T =

⋃n
i=1

T ({x1, . . . , xi }), then:

E

[∑
π ∈T

|C(π)|

]
≤ nд2

n∑
i=1

E[|T ({x1, . . . , xi })|]

i2
.

In Theorem 3.1, T represents all the configurations that are

created, and since for most incremental algorithms the work is

proportional to the number of conflicts across the configurations

created, the theorem can often be used to bound the total expected

work for such algorithms. For Delaunay triangulation, for example,

|T ({x1, . . . , xi })| ∈ O(i) so the sum givesO(n logn), which is indeed
the expected work for the incremental algorithm.

3

Notation General Definition For d-dimensional Convex Hull
d – The dimension, which we assume is a constant

X The set of objects The set of input points

Y A subset of X A subset of input points

S An ordered sequence of a set of objects A permutation of input points

Π ⊆ 2
X × 2

X
The set of configurations All possible facets

π = (C , D), π ∈ Π A configuration π consists of a defining set D and a conflict set C A facet, i.e., an oriented simplex (hyperplane)

D(π), π ∈ Π The defining set for a configuration π d points defining the facet π (assuming non-degeneracy)

C(π), π ∈ Π The conflict set for a configuration π All points visible from π
Φ A subset of Π. Usually used for a support set for (π , x), Two facets t1 and t2 sharing a ridge r ,

π ∈ Π, x ∈ X where r is also a ridge of π \x ; see Fact 5.2
D(Φ), Φ ⊆ Π The union of the defining sets for a set of configurations Φ All points on all facets in Φ
C(Φ), Φ ⊆ Π The union of the conflict sets for a set of configurations Φ All points visible from any facet in Φ
T (Y), Y ⊆ X The active configuration set of a set of objects Y A set of facets where none of their defining points are

visible from themselves (e.g., the convex hull of Y)
(X , Π) A configuration space (points, facets)

д Themaximum degree of a configuration space д = d
c Themultiplicity c = 2, i.e., facing up and down

nb The base size nb = d + 1

k ∀ configuration π ∈ Π, ∃ a support set with size ≤ k k = 2

G(S) The configuration dependence graph A graph with dependences among facets

based on support sets

D(G(S)) The depth of graph G(S) The depth of graph G(S)
t , t ′, t1, t2 – Used for facets, i.e., oriented d-simplexes

r , r ′ – Used for ridges, i.e., intersection of two facets

p , vi – Used for points

Table 1: The list of notation in this paper.

We now extend the previous definition with some additional

definitions needed to bound the depth of dependences.

Definition 3.2 (Support Set). For a configuration space (X ,Π),
consider a configuration π ∈ Π and one of its defining objects

x ∈ D(π). We say that Φ ⊂ Π is a support set for (π , x) if (1)
D(π) ⊆ D(Φ) ∪ {x}, and (2) C(π) ∪ {x} ⊆ C(Φ).

This definition implies that if a support set Φ for (π , x) is active
with respect to any set of objectsY (i.e., Φ ⊆ T (Y)) then by adding x ,
the configuration π will become active (i.e., π ∈ T (Y ∪{x})). This is
because by (1), adding x will define π , and by (2), nothing conflicts

with π that does not conflict with Φ. Furthermore, it implies that

adding x will destroy at least one object inΦ since x is in the conflict

set of Φ. Importantly, this is all true without having to know about

any other active configurations or objects.

Definition 3.3 (k-support). We say a configuration space has k-
support if for all sufficiently large Y ⊆ X , and for every configu-

ration π ∈ T (Y) and all of its defining objects x ∈ D(π), there is a
support set for (π , x) inT (Y \ {x}) of size at most k . By sufficiently

large we mean |Y | ≥ nb for some constant nb , and we refer to nb
as the base size.

Having small support sets is important since it means that adding

a configuration involving a new object depends on only at most

k previous configurations. As we will see, this leads to shallow

dependence depth. We will assume that for every Y , π , and x , there
is exactly one support set of size at most k . If there is more than

one, then we can choose one arbitrarily.

4 THE CONFIGURATION DEPENDENCE
GRAPH

In this section, we show that the configuration space defined in

Section 3 has shallow depth. We are interested in the process of

incrementally adding objects in some sequential order and ana-

lyzing the dependence graph defined by this ordering. Each step

will add some configurations and delete some (those that conflict

with the new object). Here, we only care about the configurations

added as we are interested in an upper bound on the depth. Let

S = ⟨x1, . . . , xn⟩ be an ordering of X . For any Y ⊆ X , we will use
minS (Y) and maxS (Y) to indicate the minimum and maximum ele-

ment in Y , respectively, based on the ordering S , and we drop the

subscript when clear from the context.

Definition 4.1 (Configuration Dependence Graph). For a configu-
ration space (X ,Π)with k-support and base size nb , and a sequence
of distinct objects S = ⟨x1, . . . , xn⟩ ∈ X

∗
, let

Vi = T ({x1, . . . , xi }) \T ({x1, . . . , xi−1}),

i.e., the configurations added on step i . The configuration depen-
dence graph G(S) for S assigns a vertex to each configuration in

V =
⋃n
i=1

Vi , and edges to each configuration π ∈ Vi for i > nb
from the (up to k) configurations in T ({x1, . . . , xi−1}) that support

(π , xi).

The important property here is that we can add a configuration

once its (up to k) configurations from its predecessors in the con-

figuration dependence graph have been added, regardless of what

other configurations have been added. We use D(G) to indicate

the depth of the configuration dependence graph G. We are inter-

ested in the distribution of dependence graphs considering that all

orderings of x1, . . . , xn are equally likely.

4

Theorem 4.2 (Shallow Dependence). Consider a configuration
space (X ,Π) with maximum degree д, multiplicity c , and k-support.
For any Y ⊆ X , for a random ordering S of Y , and for all σ ≥ дke2:

Pr[D(G(S)) ≥ σHn] < cn−(σ−д)

where n = |Y |, and Hn =
∑n
i=1

1/i .

Proof. We analyze the depth by considering a single path in

G(S) and then take a union bound over the number of possible

paths of a given length.

To analyze the single path, we use backwards analysis [54] by

considering removing objects one at a time, each selected at random

among the remaining objects. We decrease i from n down to nb . Let
Yi be the set of objects that remain before step i , and πi ∈ T (Yi) be
a particular active configuration on step i , which we will track as

described below and is on the path that we are considering. We start

with i = n, Yn = Y , and with an arbitrary πn ∈ T (Y)—we account
for all such πn later in the union bound. On step i , we pick a random
object xi from Yi to remove. If xi ∈ D(πi), then it must be that πi is
removed on step i . In this case, we arbitrarily choose one of the (up

to k) configurations that (πi , xi) has in its support set in T (Yi−1),

i.e., one of the configurations that it depends on, and make it πi−1.

We account for the up to k configurations in the union bounds

given below. Picking πi−1 extends the dependence path by one. If

xi < D(πi), then πi is not removed and so we keep it by setting

πi−1 = πi , and the dependence path is not extended. The probability
of the event xi ∈ D(πi) is at most д/i , since |D(πi)| ≤ д and xi is
chosen at random from i objects. Therefore, on each backwards

step i , the dependence path is extended by one with probability at

most д/i , and otherwise stays the same.

We analyze a tail bound on the length of the single path. LetXi be
a random variable indicating xi ∈ πi (i.e., πi was removed on step i),
and L be a random variable corresponding to the length of the path.

We therefore have that E[L] ≤
∑n
i=1
E[Xi] ≤

∑n
i=1

min(1,д/i) ≤

д ·Hn . Although theXi may not be independent
1
, the upper bounds

(д/i) on the probability of each event is independent of the previous

events. This is because we always independently remove a random

object from the remaining objects, and д is an upper bound on

the degree of any configuration π . Let L̄ be a random variable

that is a sum of n independent indicator random variables with

probabilities min(1,д/i), 1 ≤ i ≤ n of being 1. We have that

Pr[L ≥ A] ≤ Pr[L̄ ≥ A] since the conditional probabilities of the
events that make up L are at most the exact probabilities making up

L̄. Using a Chernoff bound,
2
for a sum Z of independent indicator

random variables we have that:

Pr[Z ≥ A] <

(
eE[Z]

A

)A
which gives,

Pr[L ≥ A] ≤ Pr[L̄ ≥ A] <

(
eдHn

A

)A
.

This gives us the probability that our one path has length at least A.
We now consider the number of such paths and apply a union

bound. Recall that c is the multiplicity, which is the number of

1
They would be independent if all configurations had degree exactly д.

2
Not standard form, but easily derivable.

Algorithm 1: Generic Parallel Incremental Algorithm

Input: An set of objects X = {x1, . . . , xn } with an ordering

S on it.

Output: T (X), the active configuration of all objects in X .

Maintains: T = the current set of configurations.

1 function ParallelIncremental(X = {x1, . . . , xn }, S)
2 T ← T ({x1, . . . , xnb })

3 Ψ← {Φ ⊆ T | Φ is support sets for any (π , x), |Φ| ≤ k}

4 parallel foreach Φ ∈ Ψ do AddConfiguration(Φ, S)

5 return T

6 function AddConfiguration(Φ, S)
7 x ← minS (C(Φ))

8 if Φ supports (π , x) for some π then
9 C(π) ← {x ′ ∈ C(Φ) | conflicts(x ′, π)}

10 T ← (T ∪ {π }) \ {π ′ ∈ T | x ∈ C(π ′)}

11 Ψ← {Φ′ ⊆ T | Φ′ is support set for any (π ′, x),
π ∈ Φ′, |Φ′ | ≤ k}

12 parallel foreach Φ′ ∈ Ψ do
13 AddConfiguration(Φ′, S)

configurations that can be defined by the same defining set. There

are at most cnд possible configurations inT (Y), since each defining

set contains д objects and each defining set can define at most c
configurations. For each path ending at any of these configurations,

at each configuration we arbitrarily picked one of the at most k

configurations that support it. Hence there are at most kl paths

of length l per configuration, for a total of cnдkl possible paths of
length l . We are interested in the probability that some path is at

least σHn , for σ ≥ дke2
. Using a union bound, we can upper bound

this probability by taking the product of the number of possible

paths of length l = σHn , and the probability that such a path

appears. Note that any longer path must have a length l path as a

prefix, so we need not consider the longer paths. This probability

is bounded by Pr[L ≥ A] given above with A = σHn . This gives:

Pr[D(G) > σHn] ≤ cnдkσHn · Pr[L ≥ σHn]

< cnдkσHn

(
eдHn

σHn

)σHn

= cnд
(
kдe

σ

)σHn

≤ cnд
(

1

e

)(lnn)σ
= cn−(σ−д). �

This leads to Algorithm 1 for executing a parallel incremental

algorithm based on its configuration space. As given, this algo-

rithm is under-specified since it does not describe how to find the

support sets and what they support, but we will see a concrete

implementation for convex hull in the next section.

Theorem 4.3. For a dependence graph G with depth D(G), the
maximum recursion depth of Algorithm 1 is D(G).

Proof. We only make recursive calls on Line 13 when we have

enabled a configuration S , meaning that all of its predecessors in

the configuration dependence graph have already been executed.

Therefore, a recursive call corresponds to descending one level in

5

the dependence graph. The depth of the dependence graph isD(G),
and thus the theorem follows. �

The algorithm is presented in a nested-parallel style but can be

executed on a PRAM by processing the configuration dependence

graph level-by-level, each level in parallel.

Relationship to History Graphs. We note that the configura-

tion dependence graph is similar to a history [50] or an influence

graph [19, 20] and used as a search structure to find conflicting

configurations for an object. For example, for trapezoidal decom-

position, an influence graph can be used for locating a point in its

corresponding trapezoid. Mulmuley proved that such a search path

has O(logn) length whp [50, Lemma 3.1.5]. However, an important

point is that this does not by itself imply that the configuration

dependence graph has O(logn) depth whp since there can be paths

in the configuration dependence graph that do not correspond to

any search path for an object. Mulmuley’s proof relies on every

configuration depending on a single previous configuration, which

is true for a search path.

Indeed, our results do not show that the configuration depen-

dence graphs for trapezoidal decompositions have logarithmic

depth since the configuration spaces for trapezoidal decompositions

do not have constant support. Adding a line segment can combine

Ω(n) trapezoids into one. The new trapezoid depends on all those

trapezoids even though a search for a particular point depends

on only a single one. There will almost certainly be paths in the

configuration dependence graph (or influence graph) that do not

correspond to a search for any point. Our support condition states

that the longest path of any type in the configuration dependence

graph is logarithmic, whp, as long as the configuration space has

constant support.

5 CONVEX HULLS
We are concerned with finding the convex hull of a set of points P in

Rd . In this section, we assume that the points are in general position

(no degeneracies)—i.e., at most d points lie in a d − 1 hyperplane.

We relax this requirement in Section 6.

5.1 Constant Support for Convex Hull
The convex hull is a convex d-dimensional polytope (the smallest

one enclosing the points). We refer to the d − 1 dimensional faces

of the polytope as facets, and the d − 2 dimensional interfaces

between the faces as ridges. For points in general position, each

facet is an oriented d-simplex (defined by d points) and each ridge

is a (d − 1)-simplex (defined by d − 1 points). The facets have an

up (facing out) or down (facing in) orientation, each defining a

half-space in d dimensions, with a (d − 1)-dimensional hyperplane

defined by its points. A point is visible from a facet if it is in the

open half-space defined by the facet. A ridge is incident on exactly

two facets of the same orientation. A facet is incident on d ridges.

To model d-dimensional convex hulls in general position as a

configuration space, the objects X are the set of input points and

each configuration corresponds to a possible facet. In particular,

every subset of d points defines two facets, one oriented up and

one oriented down. The configuration corresponding to a facet will

conflict with points visible from that facet. The two configurations

Algorithm 2: Sequential Incremental Convex Hull

Input: A sequence V = {v1, . . . ,vn } of points in R
d
.

Output: The convex hull of V .

Maintains:
H = the current set of facets.

C = a map from facets to conflicting (visible) points.

C−1 = the inverse map of C .

1 function ConvexHull(V = {v1, . . . ,vn })
2 H ← the convex hull of {v1, . . . ,vd+1

}

3 foreach facet t ∈ H do C(t) ← {v ∈ V | visible(v, t)}

4 for i ← d + 2 to n do
5 Let R ← C−1(vi)

6 foreach ridge r on the boundary of R do
7 (t1, t2) ← the two facets incident on r , with t1

visible from vi and t2 invisible

8 t ← a new facet consisting of r and vi
9 C(t) ← {v ∈ C(t1) ∪C(t2) | visible(v, t)}

10 H = H ∪ {t}

11 H = H \ R

12 return H

will therefore have complementary conflict sets (except for the

defining points, which are in neither conflict set). The configuration

space has maximum degree d and multiplicity 2.

When adding a point p to a convex hull (or the corresponding

configuration space), we remove all facets visible from p. These
facets are contiguous (reachable by shared ridges) and the region

that is removed leaves a simply connected boundary of ridges.

The new convex hull with p is then the old hull with the visible

facets removed, and a new facet from each ridge to p. This leads
to the standard incremental algorithm for convex hulls given by

Algorithm 2, which requires O(n ⌊d/2⌋ + n logn) visibility tests in

expectation, and O(n ⌊d/2⌋ + n logn) work when using appropriate

data structures [32, 50, 53].

Theorem 5.1 (Convex Hull Support). The configuration space
of convex hulls in d dimensions has 2-support with base size d+1, and
with support sets that always consist of two facets sharing a ridge.

Proof. Consider a set of points Vi with |Vi | ≥ d + 1, and its

active configurationT (Vi) (i.e., its convex hull). We argue that every

configuration (simplex) t ∈ T (Vi), and every point v ∈ t has 2-

support. Consider the ridge r = t \ {vi }, which must be present in

T (Vi \ {vi }) since adding vi extends each boundary (ridge) of the

deleted region withvi . We claim that the two adjacent facets, t1 and
t2, of r in T (Vi \ {vi }) form a support set for (t,vi). In particular,

no point in Vi can conflict with t (i.e., C(t) ∩Vi = ∅), because if a
point is visible from t it must be visible from either t1 or t2. See
Figure 2 for an illustration. In the 2D case (Figure 2(a)), based on

the geometric relationship, since vi is visible from either t1 or t2,
the visible set of t consisting of vi and r is a subset ofC(t1) ∪C(t2),
indicating the 2-support. In higher dimensions, the ridge r has d − 2

dimensions. When projecting the simplex to the 2 dimensions that

r is not defined on (Figure 2(b)), the proof for 2-support is the same

as in the 2D case. �

6

(a) 2d case (b) 3d case

𝑣𝑖

𝑡1𝑡2

𝑟 𝑡
𝑡1

𝑡2
𝑟

𝑣𝑖
𝑡

Figure 2: Illustration of 2-support for convex hulls. (a) The 2D case
from Figure 1. The facet t consisting of r and vi is supported by t1

and t2, since it is easy to check that C(t) ∪ {vi } ⊆ C({t1, t2 }) as C(t)
is above the red long dashed line, andC({t1, t1 }) is the green shaded
region. Also, clearly D(t) ⊆ D({t1, t2 }) ∪ {vi }. Similarly, if we con-
sider removing any point from a hull, both removed facets (edges)
will have 2-support from facets in the remaining hull (i.e., the two
facets sharing the opposite endpoint). (b) A 3D case where ridges are
segments and facets are triangles. When rotating the viewpoint so
that ridge r is perpendicular to this sheet of paper, the geometric
relationship of the conflict sets C(t), C(t1), and C(t2) is exactly the
same as in the 2D case shown in (a). Similarly, the projection of a
d-dimensional case onto the 2 dimensions that the ridge is not de-
fined on is equivalent to the 2D case, and so the configuration space
always has 2-support.

Based on Theorem 5.1, we give the following fact for the support

set for the configuration space of convex hulls.

Fact 5.2. {t1, t2} ⊆ Π is the support set for (t, x) if and only if
(1) t1 and t2 share a ridge r , and r and x define t ; and (2) x is visible
from either t1 or t2, and is not visible from the other, with t oriented
away from the facet (one of t1 and t2) that x is visible from.

Based on Theorem 5.1 and plugging in д = d into Theorem 4.2,

we obtain our main result, Theorem 1.1.

5.2 A Parallel Randomized Incremental
Convex Hull Algorithm

We now consider a simple parallel variant of the sequential algo-

rithm. It creates the exact same set of facets along the way and

runs the exact same set of visibility tests, but in a relaxed order

defined by the configuration dependence graph. We first define

the conflict pivot of a facet t as bt = minS (C(t)), i.e., the earliest
inserted point in its conflict set (visible from the facet). In fact, the

facet t should be removed if the point bt is being inserted.
To create facets in the order defined by the graph, we need to

recognize the facet supported by a support set as soon as the support

set is created. Since support sets consist of adjacent facets sharing

a ridge, we can identify each potential support set when creating a

ridge, which happens when adding a facet. Since two facets define

a ridge, the ridge is not ready until the second facet is added.

This simple idea leads to Algorithm 3. As with the sequential al-

gorithm, it first assigns conflict sets for a convex hull on d+1 points.

Then, for each pair of adjacent facets and the ridge between them,

it makes calls to the recursive function ProcessRidge(t1, r , t2). The
function determines if the two facets t1 and t2 sharing a ridge r
support a new facet incident on r , and if so, creates the facet and
recurses on all newly created ridges. This function is only called

when both facets of the ridge r have been created. In the parallel

setting, the two facet sharing a ridge r may be created at different

times, and thus the facet that is created later is responsible for

Algorithm 3: Parallel Incremental Convex Hull

Input: A sequence V = {v1, . . . ,vn } of points in R
d
.

Output: The facets on the convex hull of V .

Maintains:
H = the current set of facets.

C = a map from facets to conflicting (visible) points.

M = a map from ridges to the incident facets.

1 function ConvexHull(V = {v1, . . . ,vn })
2 H ← the convex hull of {v1, . . . ,vd+1

}

3 parallel foreach t ∈ H do
4 C(t) ← {v ∈ V | visible(v, t)}

5 parallel foreach {t1, t2} ⊆ H sharing ridge r do
6 ProcessRidge(t1, r , t2)

7 return H

8 function ProcessRidge(t1, r , t2)
9 if C(t2) = C(t1) = ∅ then return

10 else if min(C(t2)) = min(C(t1)) then H ← H \ {t1, t2}

11 else if min(C(t2)) < min(C(t1)) then
12 ProcessRidge(t2, r , t1)

13 else
14 p ← min(C(t1))

15 t ← join r with p

16 C(t) ← {v ′ ∈ C(t1) ∪C(t2) | visible(v
′, t)}

17 H ← (H \ {t1}) ∪ {t}

18 parallel foreach r ′ ∈ boundary of t do
19 if r = r ′ then ProcessRidge(t, r , t2)

20 else if (¬M .InsertAndSet(r ′, t)) then
21 t ′ = M .GetValue(r ′, t)

22 ProcessRidge(t, r ′, t ′)

calling ProcessRidge on r . Note that exactly two facets define one

ridge. The interaction between the two facets sharing a ridge r ,
although created different times, can be handled by a hash table

keyed by the ridges — the first facet that arrives creates the entry in

the hash table and leaves its information, and the second one reads

the information about the first facet and invokes ProcessRidge on

r . If they arrive simultaneously the tie can be broken either way.

More details are provided below.

This algorithm starts with an initial convex hull of nb = d + 1

points. It then calls ProcessRidge on each possible ridge, which,

along with the two facets incident on it, forms a possible support set

for some (x, π). Consider the four cases of the conditional statement

starting on Line 9. In the first case (Line 9), the two facets have no

conflicts, and so there is no facet to support. Therefore, there are no

points outside of these two facets, and no further action is needed.

In the second case, both facets have the same conflict pivot p′

(Line 10). From Fact 5.2, {t1, t2} is not a support set for a new facet

with a point p′ since p′ is visible from both facets. Thus the point p′,
which will expand the current convex hull by forming new facets

with some other ridges “surrounding” r , will remove the ridge r . We

say that p′ buries the ridge r in this case. This case also needs to

delete both facets from the convex hull since they will be “covered”

by other facets. However, we do not need to further deal with p′

since p′ will be processed by its support set.

7

In the last two cases (which are symmetric), the earliest (in

insertion order) point is visible from one facet but not the other,

and thus from Fact 5.2, {t1, t2} supports a facet. WLOG, we assume

that the conflict pivot of t1 is earlier than that of t2. Otherwise, we
flip the order and call the function again (Line 12).

When the earliest point p is visible from just t1 (Line 14), the

new facet t will consist of the ridge r between t1 and t2 and the

conflict pivot p. Based on Fact 5.2 (also as described in the proof of

Theorem 5.1), (t,p) is supported by {t1, t2}. Since p is the earliest

point supported by {t1, t2}, it can be processed immediately. The

algorithm then removes t1 from the current hull, and adds a new

facet t = (p, r). We say that t replaces t1 in this case. After that, all

new ridges on the new facet, if ready, need to be processed on the

next round. By “ready”, we mean that the facets on both sides of

this ridge have been added to the hull.

Since facets are added asynchronously, for a ridge r , the facet of
the two sides arriving later is responsible for processing the ridge.

In particular, the ridge between t and t2 is always ready since t2
already exists (Line 19). For the other ridges, we store for each ridge,

the first facet incident on it added by the algorithm. The second one

that is added can therefore find the information of the first facet and

recurse on the pair. This can be implemented using a global mapping

M . In the pseudocode, the function M .InsertAndSet(r ′, t) checks
if the ridge r ′ has already been mapped to some value inM , and if

so, returns False. If r ′ has not yet been mapped to any facet, it sets

the value of r ′ to t and returns True. When running in parallel,

InsertAndSet has to be atomic. Note that there can be at most

two values (facets) associated with one key (ridge) being inserted

into the map. Accordingly, functionM .GetValue(r ′, t) returns the
value associated with r ′ which is not t . When InsertAndSet fails,

this function call is then responsible for processing r ′ with two

facets: the new facet t created by this call, and a facet t ′ associated
with r ′ by previous calls.

On a CRCW PRAM, the mappingM can be implemented by a dic-

tionary [39], such that all ridges to be processed in the next round

can be inserted intoM in O(log
∗ n) span whp. This requires the al-

gorithm to run in rounds and use synchronization between rounds.

For loosely-synchronized models such the binary-forking model,

the mapping M and the functions InsertAndSet and GetValue

can be implemented using a parallel hash table with compare-and-

swap. We present the algorithm later in this subsection. We note

thatM can also be implemented with an even weaker atomic prim-

itive TestAndSet. We present the algorithm in Appendix A. Us-

ing eitherCompareAndSwap or TestAndSet, InsertAndSet and

GetValue can be implemented in O(logn) span whp.
The algorithm calls ProcessRidge exactly once for every triple

t1, r , t2, where r is a ridge and t1 and t2 are the two facets defining

r . This is because each ridge is defined by exactly two facets, and

the second facet to be added will always make the call. After that,

the ridge will either be finalized (Line 9) or disappear because at

least one of the facet is buried (Line 10) or replaced (from Line 17).

Furthermore, ProcessRidge never blocks—if it is the first to arrive

on a ridge, it returns and lets the other facet handle the ridge.

Theorem 5.3 (Recursion Depth). Algorithm 3 has recursion
depth O(logn) whp.

Proof. Apply Theorem 4.3 with D(G) = O(logn) whp. �

We note that assuming a constant dimension, the base case

cost (nb = d + 1 is also a constant) and the visibility check also

only take constant work. With the recursion depth bounded by

O(logn) whp, we can show that the algorithm is work-efficient

with polylogarithmic span in various parallel models.

Theorem 5.4 (Cost of Convex Hull Algorithm). Algorithm 3
runs in O(n ⌊d/2⌋ + n logn) expected work and O(logn log

∗ n) span
whp on a CRCW PRAM.

Proof. The visibility tests performed in the parallel algorithm

all correspond to a visibility test that would have been performed

by the sequential algorithm. Therefore, the expected number of

visibility tests isO(n ⌊d/2⌋ +n logn) and can be implemented in the

same expected work (note that some sequential visibility tests are

skipped in the parallel case due to buried ridges). We can maintain

the data structures H , M , and C using parallel hash tables which

support insertions, deletions, and finds in linear work andO(log
∗ n)

span whp [39]. All other work can be charged to visibility tests that

would have occurred in the sequential algorithm. Therefore, the

total expected work is O(n ⌊d/2⌋ + n logn).
For the span, the number of levels of recursion isO(logn)whp by

Theorem 4.3. We run the algorithm in rounds and fully synchronize

between rounds. We now argue that each round (each call to a

ProcessRidge ignoring recursion) can be implemented inO(log
∗ n)

span whp. As mentioned above, updating the hash tables takes

O(log
∗ n) span whp. Finding the minimum of a set (Lines 10, 12,

and 14) takes O(1) span whp [60]. Load balancing, and filtering

the points that are visible (Line 16) can be done with approximate

compaction in O(log
∗ n) span [41]. Therefore, including recursive

calls, the overall span isO(logn log
∗ n) whp. The initial convex hull

(Line 2) can be found sequentially in constant work. �

This algorithm can be easily applied to other parallel models,

such as models based on fork-join parallelism, and thus requir-

ing no synchronization between rounds. In this case, to support

InsertAndSet, some atomic primitive, such as TestAndSet or

CompareAndSwap, is needed. In the following discussion, we con-

sider the binary-forking model [13]. In this setting, tasks can fork

one child task and continue its own computation in parallel. Tasks

can be forked recursively and executed asynchronously. Further-

more, the atomic TestAndSet instruction is allowed as a prim-

itive for threads to reach consensus. This model is a fundamen-

tal model for parallelism and has been widely used in analyzing

parallel algorithms [1, 2, 11, 12, 15, 16, 29, 30, 33], and are also

supported by programming systems such as Cilk [37], the Java

fork-join framework [46], X10 [25], Habanero [23], TBB [44], and

TPL [57]. In our algorithm, when the more powerful primitive

CompareAndSwap is supported, we have a simpler implementa-

tion for InsertAndSet. For simplicity, we briefly show the algo-

rithm using CompareAndSwap later in this subsection, and leave

the full algorithm using the weaker TestAndSet in Appendix A.

In both settings, InsertAndSet and GetValue takeO(logn) work
and span whp. In addition, in each function call to ProcessRidge,

the span for combining the conflict sets and finding the minimum of

the set isO(logn). In total, the algorithm has optimal expected work

and O(log
2 n) span whp, which leads to the following theorem.

8

Theorem 5.5 (Cost of Convex Hull Algorithm). Algorithm 3
runs in O(n ⌊d/2⌋ + n logn) expected work and O(log

2 n) span whp

in the binary-forking model.

Space Complexity. To maintain the hash tables in Algorithm 3,

the space needed can be proportional to the work. We note that

this is also the worst-case space usage for storing all output facets.

Implementing InsertAndSetusingCompareAndSwap. Here

we present a simple implementation of InsertAndSet using the

atomic primitiveCompareAndSwap. Recall that InsertAndSet(r , t)
checks inM if ridge r has already been added to it. If so, it returns

False; otherwise, it inserts r to the hash table with the value t and
returns True. GetValue(r , t) looks up the value associated with

r in the map M , and returns t ′, the facet on the other side of the

ridge. We note that in Algorithm 3, there can be at most two values

associated with the same key (ridge) inM . We have to guarantee

that, when calling GetValue(r , t), the value t ′ , t associated with

r has already been inserted intoM .

The algorithm is shown in Algorithm 4. In this algorithm, the

mapping is maintained by a hash table R with linear probing. When

adding a key-value pair (r , t) to the hash table, we first find the

index of it using the hash function fR . The algorithm then tries

to CompareAndSwap in the pointer of the key-value pair (r , t) on
Line 3. There are two cases that may cause the CompareAndSwap

to fail: a collision on the index due to the hash function, or a con-

flict since two facets have the same key. We then check if it is

due to a duplicate key (Line 4). If so, the current facet t is the
second value associated with r , and so we simply return False. If

CompareAndSwap fails due to a collision, we do linear probing

until an empty slot is found, and write the pair (r , t) to this slot.

This means that t is the first facet incident on r being added, and
so the algorithm return True.

For GetValue, we simply look up the value of r in R as in a

standard hash table. Since the task calling GetValue must have

failed in InsertAndSet(r ′, t) on Line 20 in Algorithm 3, the value

of the other facet for r ′ must have already been added to the map

then. Therefore, GetValue is guaranteed to find the facet t ′ , t
associated with r ′ inM .

The work and span for GetValue and InsertAndSet is just the

cost for linear probing, which is O(logn) whp.

5.3 Example of the Parallel Algorithm
We use Figure 1 as an example to show how our parallel algorithm

works in 2D. Starting from a hull u-v-w-x-y-z-t , suppose we add
points a, b and c to the hull in lexicographical order. The algorithm

will call ProcessRidge for the current support sets, which are all

“corners” consisting of two edges incident on a point. Following the

algorithm, when processing a corner, each of the two edges first

finds its conflict pivot. In particular,w-v sees c as its conflict pivot,
butv-u does not. This falls into case 4 of the algorithm (starting from

Line 14), where v-c is added to the hull, and v-w is replaced by v-c .
Similarly,w-x is replaced byw-b, x-y is replaced by x-a, and y-z is
replaced by a-z. All these replacements can be processed in parallel.

These edges being replaced are colored in grey in Figure 1(b), and

are labeled by the edges replacing them. Proceeding to the next

round, each newly-added corner will be processed.

Algorithm 4: InsertAndSet and GetValue on a mul-

timapM .

InsertAndSet(r , t)
Input: A ridge r and a facet t .
Maintains:

A map R as a hash table from keys as ridges and values

as pointers to ridge-facet pairs. R uses linear probing for

conflicts. Assume the hash function for R is fR , which
hashes a ridge r to an index in the range [0, . . . , |R | − 1].

Output: If r ∈ M , return false. Otherwise return true and

map key r to value t inM .

1 functionM .InsertAndSet(r , t)
2 i ← fR (r) // get the starting index

3 while ¬CompareAndSwap(R[i],Null, (r , t)) do
4 if the key stored at R[i] is r then
5 return False

6 i ← (i + 1)ModM .size

7 return True

GetValue(r , t)
Input: A ridge r and a facet t .
Output: A value t ′ associated with r inM which is not t .

8 functionM .GetValue(r , t)
9 i ← fR (r) // get the starting index

10 while R[i].key , r do i ← (i + 1)ModM .size

11 return the value in R[i]

pr

pl

pm

Figure 3: Example of the
conflict set for the corner
configuration {pm , pl , pr }
with corner point pm . The
figure represents the plane
of the facet (a pentagon)
containing the corner. The
shaded region and the dark
lines conflict with the con-
figuration, but the dashed
lines and white space do
not.

On this round (Figure 1(b) to 1(c)), the corners at c and b cannot

be processed since the other side of the corner is not ready. The

corner x-a-z can be processed since both of its edges have been

added, and the conflict pivot is b (b-a is added). Similarly, the corner

a-z-t can be processed since both of its edges have been added, and

the conflict pivot is c (c-z is added). As a result, x-a and a-z are

replaced by b-a and c-z, respectively, and in parallel. On the next

round (Figure 1(c) to 1(d)), the cornersw-b-a and v-c-z are ready.
Forw-b-a, both of the edgesw-b and b-a see c as their conflict pivot,
and so it falls into case 2 of the algorithm (Line 10), which directly

buriesw-b and b-a from the convex hull and returns. For v-c-z, the
conflict set of the two edges are both empty, which is case 1 of the

algorithm (Line 9). This means that these edges are finalized and

the algorithm returns.

9

6 CONVEX HULLS WITH DEGENERACY
Here we describe how to use configuration spaces with constant

support for 3D convex hulls with degenerate points, i.e., four or

more lie on a plane or three or more lie on a line. The idea that

we use is based on the description by Berg et. al. [32]. As before,

the set of objects X is a set of points. When four or more points

are degenerate, the facets need not be triangles and instead can be

arbitrary convex polygons. We therefore cannot use the points on

a facet to define configurations since in general they do not have

constant maximum degree. Instead, we define the configurations

in terms of the corners of possible facets on the convex hull. In

particular, Π consists of six configurations for each non-collinear

triple of points in X . The six configurations correspond to each one

of the three points being the “corner”, and for each such corner,

one for each side of the plane defined by the three points. As with

the non-degenerate case, a configuration conflicts with all points

above its plane for the appropriate side. If we label the corner point

as pm and the other two points as pl and pr , the configuration also

conflicts with all points on the plane defined by the three points

that are visible from the outside (strict) of either of the two lines

pm-pl or pm-pr , as well as points on the lines starting from pr or
pl in the direction away from pm . Figure 3 illustrates an example.

We call this the corner configuration space. We note that for points

that are collinear along a facet edge, only the outermost two along

the line define the hull and are part of any corner. Similarly, points

on a facet but not on its boundary do not define the convex hull.

Lemma 6.1. For a corner configuration space (X ,Π) and Y ⊂ X ,
T (Y) includes one configuration for each corner of the 3D convex hull
of Y .

Proof. Wewill show that a configuration is inT (Y) if and only if
it is a corner of the convex hull ofY . Consider a corner π = pr -pm -pl
with pr ,pm,pl ∈ Y . No point above the plane defined by π is in Y ,
and also no point will be on the facet plane and outside either of

the two lines pm-pl or pm-pr (e.g., the shaded region in Figure 3),

or on those lines starting from pr or pl in the direction away from

pm (e.g., the solid black half-line starting from pr or pl in Figure 3).

Therefore, if π is a corner, then π ∈ T (Y) (i.e., it has no conflicts

with Y).
For the “only if” direction, a configuration π = pr -pm-pl that is

not a corner must conflict either with a point above its plane (if

not all on the same facet), a point outside pm-pl or pm-pr (if not

adjacent on the facet), or a point on those lines but outside pr -pl
(if not consisting of the outermost collinear points on the edge of

the facet). Hence, since all π ′ ∈ T (Y) have no conflicts with Y , they
must all be corners. �

We note that the number of configurations for a set of points in

the corner configuration space is at most three times the number in

the non-degenerate triangle configuration space. This is because the

worst case is when each facet is a triangle, and there are then three

corners per triangle. If any face is degenerate, then this decreases

the number of corners [32]. This means that the asymptotic work of

incremental convex hull is unchanged. However, we need to bound

the support to bound the depth of the dependence graph.

Lemma 6.2. The corner configuration space (X ,Π) has 4-support.

Proof. Consider a configuration π and a point x ∈ D(π). First,
consider x as the corner point and call the other two points y and

z. Adding x will remove a ridge incident on each of y and z. This
is possibly, but not necessarily, a ridge joining them. Consider the

ridge y-y′ from y (as mentioned it is possible that y′ = z, although
this is not necessary). This ridgey-y′will be involved in two corners
with y as the corner point, each corresponding to one of the two

facets incident on y-y′. Similarly, we can find two such corners for

z. We will then show that (π , x) is supported by those at most four

corners.

One case is that x , y, and z define a different plane than those

defined by any of the four corners (the non-degenerate case). In

this case, the ridge incident on y and z is the same ridge, and the

conflict set of π is included in the two half-spaces defined by the

ridge and hence included in the conflict sets for the four corners.

In fact using just two corners, one from each plane, would suffice.

The other case is when we are adding x to a facet that already

contains at least 3 points (the degenerate case). This corresponds

to adding a point to a 2D convex hull in the plane of the facet.

Considering other points in this plane, the new corner is supported

by the two corners in the plane with y and z as their corner points
(as would be the case in a 2D convex hull). Considering points

not on the plane, the new corner is supported by the other two

corners—i.e., the ones with y and z as their corner points but not
in the plane containing x , y, and z.

Now we consider x when it is not the corner point of π . In this

case, (π , x) has 2-support. In particular, without loss of generality,

let y be the corner point of π . Then, y will have one ridge incident

on it removed by x . This ridge is defined by two facets, each of

which contains a corner configuration with corner point y. (π , x)
will be supported by just these two corners.

In all of the above cases, the corner configuration is supported

by at most four corners. �

With Lemmas 6.1 and 6.2, we know that Theorems ?? and 5.3 still
hold for inputs with degenerate points. With some minor changes

to our CRCW PRAM algorithm (accounting for up to 4 conflicts

instead of 2), Theorem 5.4 also holds.

7 OTHER CONFIGURATION SPACES WITH
k-SUPPORT

We now discuss some other uses of configuration space with k-
support. First, we mention that there is another formulation of

convex hull. Here we describe the version for points in general

position. The objects are points, but the configurations correspond

to ridges of the convex hull with their two neighboring facets. Each

such configuration can be defined by d + 1 objects: the d − 1 points

on the ridge and the two points sharing facets with the ridge. Every

set of d +1 points define up to

(d+1

d−1

)
configurations, since subsets of

sized−1 will specify the ridge. It therefore has constant multiplicity

for constant dimension. The conflict set of a configuration is all the

points visible from either of its facets. The configuration space has

2-support. Both of the points not on the shared ridge have support

sets of size one. In particular, the support for (π , x) will consist
of a configuration with the same opposite facet, along with the

previous facet sharing the ridge. The points on the shared ridge

10

have support sets of size two. In particular, the support consists of

the two configurations, each consisting of an opposite ridge to x
(there are two such ridges), the facet on the other side of that ridge,

and the facet previously sharing the opposite ridge.

This formulation has the property that adding a facet deletes

all of its support set. This makes it easier to apply Theorem 3.1 to

determine the total work of the algorithm (all conflicts on a config-

uration are examined once and then the configuration is removed).

The corresponding algorithm, however, is more complicated.

By duality, we can use convex hulls to find the intersection

of a set of intersecting half-spaces in d dimensions. However, it

is also helpful to consider a direct formulation. In this case, the

objects are the half-spaces, and the configurations are intersections

of d half-spaces, which define a point. A configuration conflicts

with a half-space if it is not contained in the half-space. As with

convex hulls, such configurations have 2-support. In particular, for

a configuration (point) π and object (half-space) x ∈ D(π), the
half-space x when added will cut a 1-dimensional edge between

two existing points. Those two points support (π , x) since any half-

space that conflicts with x must conflict with at least one of those

points. Boundaries can be handled by using configurations with

d − 1 half-spaces and a direction along the shared edge signifying

infinity along the shared edge in that direction.

Finally, we consider the problem of finding the intersection of

a set of unit circles [28]. In this case, the objects are the circles

and the configurations are arcs defined by intersecting either two

or three circles. For two circles, there are two arcs that bound the

intersection of the circles, and for three circles there are three. The

multiplicity is therefore bounded by three. An arc conflicts with

any circle that overlaps with it but does not fully contain it. This

configuration space has 2-support. Consider an arc π defined by

three circles. If x is the circle on which the arc is a boundary, then

(π , x) has a support of size two consisting of the two arcs that are

cut at the ends of π by adding x . If x is one of the other circles, then

(π , x) has a singleton support set on the one side for the arc being

cut. Similarly, if the arc is defined by two circles, it has a support

set of size one for the arc on the other circle being cut.

8 CONCLUSION
We showed that the randomized incremental convex hull algorithm

is inherently parallel with O(logn) dependence depth. Based on

this, we have presented a simple work-efficient polylogarithmic-

span algorithm for convex hull in constant dimensions, which is

perhaps even simpler than the standard sequential variant. The

key idea is analyzing the dependence in the configuration space

based on facets, and showing that adding a facet only depends on a

constant number of existing facets (support set). We showed this

within a more general setting based on configuration spaces, and

the definition of support sets and k-support. This work follows a

line of work that aims at exposing inherent parallelism in seemingly

sequential algorithms [3, 4, 14, 17, 36, 43, 51, 55].

Although our analysis of k-support applies to convex hull, Delau-
nay triangulation, half-space intersection, and circle intersection, it

does not cover some other problems that use configuration spaces.

In particular, it does not cover the standard randomized incremental

algorithm for trapezoidal decomposition [28, 32, 50]. It is an open

question whether some other formulation of trapezoidal decompo-

sition fits within the framework, or whether the framework can be

extended to incorporate trapezoidal decomposition.

Acknowledgements. This research was supported by DOE Early

Career Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,

NSF grants CCF-1910030 and CCF-1919223, Google Faculty Re-

search Award, DARPA SDH Award #HR0011-18-3-0007, and the

Applications Driving Algorithms (ADA) Center, a JUMP Center

co-sponsored by SRC and DARPA.

REFERENCES
[1] Umut Acar, Guy E. Blelloch, and Robert Blumofe. The data locality of work

stealing. Theory of Computing Systems (TOCS), 35(3):321–347, 2002.
[2] Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim Sukha, and

Robert Utterback. Provably good scheduling for parallel programs that use

data structures through implicit batching. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2014.

[3] Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. Relaxed

schedulers can efficiently parallelize iterative algorithms. In ACM Symposium on
Principles of Distributed Computing (PODC), pages 377–386, 2018.

[4] Dan Alistarh, Giorgi Nadiradze, and Nikita Koval. Efficiency guarantees for

parallel incremental algorithms under relaxed schedulers. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 145–154, 2019.

[5] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. Parallel algorithms

for higher-dimensional convex hulls. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 683–694, 1994.

[6] Nancy M. Amato and Franco P. Preparata. The parallel 3D convex hull prob-

lem revisited. International Journal of Computational Geometry & Applications,
2(02):163–173, 1992.

[7] Mikhail J. Atallah, Richard Cole, and Michael T. Goodrich. Cascading divide-and-

conquer: A technique for designing parallel algorithms. SIAM J. on Computing,
18(3):499–532, June 1989.

[8] Mikhail J. Atallah and Michael T. Goodrich. Efficient parallel solutions to some

geometric problems. Journal of Parallel and Distributed Computing, 3(4):492 –
507, 1986.

[9] Mikhail J. Atallah andMichael T. Goodrich. Parallel algorithms for some functions

of two convex polygons. Algorithmica, 3(4):535–548, 1988.
[10] Brad Barber. Qhull. http://www.qhull.org/html/index.htm, 2015.

[11] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan

Gu, Charles McGuffey, and Julian Shun. Parallel algorithms for asymmetric read-

write costs. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 145–156, 2016.

[12] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered

sets. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 253–264. ACM, 2016.

[13] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal (random-

ized) parallel algorithms in the binary-forking model. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2020.

[14] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal

independent set and matching are parallel on average. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 308–317, 2012.

[15] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low depth

cache-oblivious algorithms. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2010.

[16] Guy E. Blelloch and Yan Gu. Improved parallel cache-oblivious algorithms on

dynamic programming. SIAM Symposium on Algorithmic Principles of Computer
Systems (APOCS), 2020.

[17] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized

incremental algorithms. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 467–478, 2016.

[18] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallel write-efficient

algorithms and data structures for computational geometry. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2018.

[19] Jean-Daniel Boissonnat, Olivier Devillers, René Schott, Monique Teillaud, and

Mariette Yvinec. Applications of random sampling to on-line algorithms in

computational geometry. Discrete & Computational Geometry, 8(1):51–71, Jul
1992.

[20] Jean-Daniel Boissonnat and Monique Teillaud. On the randomized construction

of the Delaunay tree. Theoretical Computer Science, 112(2):339–354, 1993.
[21] Jean-Daniel Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge Uni-

versity Press, 1998.

[22] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J.
ACM, 21(2):201–206, April 1974.

11

[23] Zoran Budimlic, Vincent Cave, Raghavan Raman, Jun Shirako, Sagnak Tasir-

lar, Jisheng Zhao, and Vivek Sarkar. The design and implementation of the

Habanero-Java parallel programming language. In Symposium on Object-oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 185–186,
2011.

[24] Matt Campbell. MIConvexHull. https://designengrlab.github.io/MIConvexHull/,

2017.

[25] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an

object-oriented approach to non-uniform cluster computing. In Symposium on
Object-oriented Programming, Systems, Languages and Applications (OOPSLA),
volume 40, pages 519–538, 2005.

[26] A. Chow. Parallel Algorithms for Geometric Problems. PhD thesis, Department of

Computer Science, University of Illinois, Urbana-Champaign, December 1981.

[27] Marcelo Cintra, Diego R. Llanos, and Belén Palop. Speculative parallelization of

a randomized incremental convex hull algorithm. In International Conference on
Computational Science and Its Applications, pages 188–197, 2004.

[28] Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in

computational geometry, II. Discrete & Computational Geometry, 4(5):387–421,
1989.

[29] Richard Cole and Vijaya Ramachandran. Resource oblivious sorting onmulticores.

ACM Transactions on Parallel Computing (TOPC), 3(4), 2017.
[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms (3. ed.). MIT Press, 2009.

[31] Norm Dadoun and David G. Kirkpatrick. Parallel construction of subdivision

hierarchies. J. Computer and System Sciences, 39(2):153–165, 1989.
[32] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-

tational Geometry: Algorithms and Applications. Springer-Verlag, 2008.
[33] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient par-

allel graph algorithms can be fast and scalable. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

[34] Pedro Diaz, Diego R. Llanos, and Belen Palop. Parallelizing 2D-convex hulls on

clusters: Sorting matters. Jornadas De Paralelismo, 2004.
[35] Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge

University Press, 2006.

[36] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized

greedy mis. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2152–2160, 2018.

[37] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation of

the Cilk-5 multithreaded language. ACM Conference on Programming Language
Design and Implementation (PLDI), 33(5):212–223, 1998.

[38] Mingcen Gao, Thanh-Tung Cao, Ashwin Nanjappa, Tiow-Seng Tan, and Zhiyong

Huang. gHull: A GPU algorithm for 3D convex hull. ACM Transactions on
Mathematical Software, 40(1):3:1–3:19, October 2013.

[39] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel

algorithms. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
698–710, 1991.

[40] Arturo Gonzalez-Escribano, Diego R. Llanos, David Orden, and Belen Palop.

Parallelization alternatives and their performance for the convex hull problem.

Applied Mathematical Modelling, 30(7):563 – 577, 2006.

[41] Michael T. Goodrich, Yossi Matias, and Uzi Vishkin. Optimal parallel approxima-

tion for prefix sums and integer sorting. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1994.

[42] Neelima Gupta and Sandeep Sen. Faster output-sensitive parallel algorithms

for 3D convex hulls and vector maxima. Journal of Parallel and Distributed
Computing, 63(4):488–500, April 2003.

[43] William Hasenplaugh, Tim Kaler, Tao B Schardl, and Charles E Leiserson. Order-

ing heuristics for parallel graph coloring. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 166–177, 2014.

[44] https://www.threadingbuildingblocks.org.

[45] Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[46] http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html.

[47] Diego R. Llanos, David Orden, and Belen Palop. MESETA: A new scheduling

strategy for speculative parallelization of randomized incremental algorithms.

International Conference on Parallel Processing Workshops, pages 121–128, 2005.
[48] Mikola Lysenko. incremental-convex-hull.

https://github.com/mikolalysenko/incremental-convex-hull, 2014.

[49] Russ Miller and Quentin F. Stout. Efficient parallel convex hull algorithms. IEEE
Trans. on Comput., 37(12):1605–1618, December 1988.

[50] Ketan Mulmuley. Computational geometry - an introduction through randomized
algorithms. Prentice Hall, 1994.

[51] Xinghao Pan, Dimitris Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan

Ramchandran, and Michael I. Jordan. Parallel correlation clustering on big graphs.

In Advances in Neural Information Processing Systems (NIPS), pages 82–90, 2015.
[52] John H. Reif and Sandeep Sen. Optimal randomized parallel algorithms for

computational geometry. Algorithmica, 7(1-6):91–117, 1992.
[53] Raimund Seidel. Small-dimensional linear programming and convex hulls made

easy. Discrete & Computational Geometry, 6(3):423–434, 1991.

[54] Raimund Seidel. Backwards analysis of randomized geometric algorithms. In

New Trends in Discrete and Computational Geometry, pages 37–67. 1993.
[55] Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons.

Sequential random permutation, list contraction and tree contraction are highly

parallel. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 431–448,
2015.

[56] Ayal Stein, Eran Geva, and Jihad El-Sana. Applications of geometry processing:

CudaHull: Fast parallel 3D convex hull on the GPU. Comput. Graph., 36(4):265–
271, June 2012.

[57] https://msdn.microsoft.com/en-us/library/dd460717 %28v=vs.110%29.aspx.

[58] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,

4.14 edition, 2019.

[59] Stanley Tzeng and John D. Owens. Finding convex hulls using Quickhull on the

GPU. CoRR, abs/1201.2936, 2012.
[60] Uzi Vishkin. Thinking in parallel: Some basic data-parallel algorithms and

techniques, 2010. Course notes, University of Maryland.

A IMPLEMENTING Insert-and-set USING
Test-and-set

In Algorithm 3, we presented our parallel convex hull algorithm. On

a CRCW PRAM, our algorithm can run synchronously in rounds,

where on each round we pack all new ridges to be processed in the

next round using a hash table [39], which costs linear work and

O(log
∗ n) spanwhp. However, on modern machines, global synchro-

nization can be expensive. We note that Algorithm 3 is recursive

and does not require synchronization. The only additional places

that need more discussion are Lines 20 and 21, where two facets in-

cident on one ridge r have to communicate and decide which facet

will process r . Our approach is based on using a global multimap

M using InsertAndSet and GetValue functions. In particular, for

the two facets associated with r , whichever calls InsertAndSet
second will be responsible for processing r .

In Section 5.2, we have shown how to use CompareAndSwap

to implement InsertAndSet. As discussed in [13], in contrast

to TestAndSet, CompareAndSwap is a stronger primitive that

is not assumed in the binary-forking model by default. In this

section, we show how to implement the InsertAndSet(r , t) and
GetValue(r) functions on a multimapM using only TestAndSet,

where a key r is associated with at most two values. In this case, the

InsertAndSet function checks in a hash table if ridge r has been
already added to it—if so, it returns False, but also writes t as the
second value of r ; otherwise, it inserts r into the hash table with

the value t , and returns True. GetValue(r , t) looks up the values

associated with r inM , and returns the facet t ′ , t .
Algorithm 5 shows the implementation of the two functions

on M . M maintains a linear probing hash table R, which stores

key-value pairs and allows for duplicate keys. For each cell in R,
there are three fields: two boolean flags, taken and check, and data
which will store the corresponding key-value pair. Assume the hash

function for R is fR , which hashes a ridge r to an index in the range

[0, . . . , |R | − 1]. When inserting a key-value pair (r , t) into R, the
algorithm first computes the hash value i = fR (r) of r (Line 2) and
tries to reserve the slot with a TestAndSet on R[i].taken (Line 3).

If a conflict (due to concurrency) or a collision (due to hashing)

occurs, R uses linear probing to attempt to assign the next slot

to (r , t) (the while-loop on Lines 3–4). After reserving a slot R[i],
the algorithm writes (r , t) into the data field. Note that even if

the key k already exists, R finds a slot for it using linear probing.

Therefore, each key-value pair is ensured to be added to R and an

insertion on R never fails. Then the algorithm makes a second pass

12

Algorithm 5: InsertAndSet and GetValue on a mul-

timapM .

InsertAndSet(r , t)
Input: A ridge r and a facet t
Maintains:

A hash table R with linear probing from keys as ridges

and values as facets. Each cell in R has three fields: two

boolean flags, taken and check, and data which will

store the corresponding key-value pair. Assume the

hash function for R is fR , which hashes a ridge r to an

index in the range [0, . . . , |R | − 1].

Output: If r ∈ M , add t as the second value of r inM and

return false. Otherwise, add t as the first value of r
inM and return true.

1 functionM .InsertAndSet(r , t)
2 i ← fR (r) // get the starting index

3 while ¬TestAndSet(R[i].taken) do
4 i ← (i + 1)ModM .size

5 R[i].data← (r , t) // write entry to data

6 i ← fR (r) // start from initial index

7 while R[i].taken do
8 if R[i].data.key = r then
9 if ¬TestAndSet(R[i].check) then
10 return False

11 i ← (i + 1)ModM .size

12 return True

GetValue(r , t)
Input: A ridge r and a facet t .
Output: The values t ′ , t associated with r inM .

13 functionM .GetValue(r , t)
14 i ← fR (r) // get the starting index

15 while R[i].taken do
16 if R[i].data.key = r then
17 t ← R[i].data.value

18 if t ′ , t then return t ′

19 i ← (i + 1)ModM .size

over R starting at the initial index from the hash value, and tries

to find r in R. It stops when it sees an empty slot. Whenever the

algorithm sees a slot with key r , it performs a TestAndSet on the

check field of the slot. If the TestAndSet on Line 9 fails, we let this
InsertAndSet return false (Line 10), and the corresponding facet t
will process r in Algorithm 3. Otherwise, if a facet t does not fail the
TestAndSet, it returns true (Line 12). Note that when making the

second pass, a InsertAndSet(r , t) algorithm may see a slot with a

key other than r due to linear probing. The algorithm thus needs

to check if the key is equal to r (Line 8) during the while-loop.
The GetValue(r , t) algorithm starts at the index of the hash

value of r , and scans until it finds a facet t ′ , t associated with r .
We next prove the correctness of the algorithm. We first prove

that InsertAndSetworks as expected. It is straightforward that the

insertion into the hash table (Lines 2–5) works as expected. We then

need to show that the returned boolean value of InsertAndSet

works as expected. Note that for a ridge r , there will be exactly two

facets that call InsertAndSet on r throughout the algorithm. A

correct InsertAndSet algorithm allows for exactly one of them to

return False. This unsuccessful InsertAndSet will take over to

recurse on ridge r on Line 22 of Algorithm 3.

Theorem A.1. For two invocations to InsertAndSet(r , t1) and
InsertAndSet(r , t2), exactly one of them returns False.

Proof. Suppose the two indices for ridge r in the hash table R
are i (reserved by t1) and j > i (reserved by t2). The other case is
symmetric. We first show that there must be one of t1 and t2 that

returns False in InsertAndSet.

Case 1. We call TestAndSettwice on R[i].check on Line 9. Then,

the second one must fail and return False.

Case 2. We call TestAndSetonly once on R[i].check on Line 9.

This can only happen if when t2 is making the second

pass, t1 has marked R[i].taken, but has not written its

key r to R[i].data. Then, for both t1 and t2, when they

make the second pass, they must both reach R[j] and call

TestAndSet on R[j].check on Line 9. One of them has to

fail and return False.

Secondly, we show that it is impossible that t1 and t2 both return

false in InsertAndSet. The TestAndSet on R[i].check can only

fail once, and similarly for the TestAndSet on R[j].check. If both
t1 and t2 return false, then this means that Line 9 fails on both R[i]
and R[j]. This is impossible because whichever fails on R[i] will not
proceed to R[j], and so R[j] cannot be reached twice. �

We next show that GetValue(r , t) works as expected. In partic-

ular, both facets t ′ and t ′′ associated with r in R must have been

inserted into R, and thus the one that is not equal to t will be found
and returned.

Theorem A.2. When GetValue(r , t) is called, the two facets t1
and t2 incident on r have both been added into R.

Proof. A GetValue(r , t) is called only when an invocation of

InsertAndSet(r , t) returns False on Line 20 of Algorithm 3. This

InsertAndSet fails because it fails on Line 9 of Algorithm 5. This

means that the key-value pair (r , t) itself has been added to R on

Line 5 of Algorithm 5.

Suppose that the other facet incident on r is t ′. We will show that

(r , t ′) has also been added to R. Since (r , t) fails on the TestAndSet

on Line 9 of Algorithm 5, it means that the check flag has been

already set to True by (r , t ′) before (r , t) processes it. Since the

algorithm InsertAndSet(r , t ′) reached Line 9 to set the check
flag, it also must have finished adding the data on Line 5. �

In summary, themultimapM with its two functions InsertAndSet

andGetValueworks as expected by using TestAndSet. The work

and depth are just the cost of linear probing, which isO(logn) whp.

13

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 The Configuration Dependence Graph
	5 Convex Hulls
	5.1 Constant Support for Convex Hull
	5.2 A Parallel Randomized Incremental Convex Hull Algorithm
	5.3 Example of the Parallel Algorithm

	6 Convex Hulls with Degeneracy
	7 Other Configuration Spaces with k-Support
	8 Conclusion
	References
	A Implementing Insert-And-Set Using Test-And-Set

