
A Top-Down Parallel Semisort

Yan Gu
Carnegie Mellon University
yan.gu@cs.cmu.edu

Julian Shun
Carnegie Mellon University

jshun@cs.cmu.edu

Yihan Sun
Carnegie Mellon University
yihans@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

ABSTRACT
Semisorting is the problem of reordering an input array of
keys such that equal keys are contiguous but different keys
are not necessarily in sorted order. Semisorting is important
for collecting equal values and is widely used in practice. For
example, it is the core of the MapReduce paradigm, is a key
component of the database join operation, and has many
other applications.

We describe a (randomized) parallel algorithm for the
problem that is theoretically efficient (linear work and log-
arithmic depth), but is designed to be more practically effi-
cient than previous algorithms. We use ideas from the par-
allel integer sorting algorithm of Rajasekaran and Reif, but
instead of processing bits of a integers in a reduced range in
a bottom-up fashion, we process the hashed values of keys
directly top-down. We implement the algorithm and exper-
imentally show on a variety of input distributions that it
outperforms a similarly-optimized radix sort on a modern
40-core machine with hyper-threading by about a factor of
1.7–1.9, and achieves a parallel speedup of up to 38x. We
discuss the various optimizations used in our implementa-
tion and present an extensive experimental analysis of its
performance.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sorting and
searching

Keywords
Parallel Algorithms, Semisorting, Integer Sorting

1. INTRODUCTION
The semisorting problem [22] is defined to take as input an

array of records with associated keys, and return a reordered
array such that records with identical keys are contiguous.
Unlike sorting, it does not require that records with distinct
keys are ordered. The problem has many applications. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA ’15, June 13 - 15, 2015, Portland, OR, USA.
Copyright 2015 ACM ISBN 978-1-4503-3588-1/15/06 $15.00.
DOI: http://dx.doi.org/10.1145/2755573.2755597.

the popular MapReduce paradigm [9], for example, the most
expensive step is typically the so-called shuffle step, which
collects the tuples with equal keys returned from the map
stage together so the reducer can be applied to each group.
Also in the relational join operation common in database
processing [6], equal values of a field of a relation have to be
put together with equal values of a field of another. Indeed in
practice, the most recent work on analyzing the performance
of in-memory database joins has focused on hash and sorting
based methods for semisorting [1]. Most database languages
also have a direct groupBy operation that groups together
records by a given key.

Theoretically, semisorting also has many applications. The
term was coined by Valiant in developing techniques for sim-
ulating various parallel machine models with other machine
models [22]. In such simulations, memory operations to
the same location are collected so they can be combined.
Semisorting can also be used in many divide-and-conquer
algorithms to collect together the parts that go to each re-
cursive call [18], and to collect values associated with ver-
tices in a graph [12]. Bast and Hagerup cite many other
applications of semisorting [2].

As with sorting, there are several variants on semisorting
depending on the type of keys and the operations allowed.
The semisorting problem we consider here is defined as fol-
lows: given an array of n records each containing a key
from a universe U , along with a family of hash functions
h : U → [1, . . . , nk], for some constant k, and an equali-
ty test f : U × U → Boolean, return an array of the same
records such that the only records between two equal record-
s are other equal records. Other authors have considered
semisorting applied to a bounded set of integer keys in the
range [1, . . . , n] [2, 18]. From a theoretical perspective, this
is equivalent to our definition since a hash table can be used
to first assign unique labels in the range [1, . . . , n] to each
key (assuming the hash table is asymptotically as fast as
the semisort). Here we consider the more general definition
since it allows for more practical implementations than first
assigning unique labels and then performing integer sorting.

Sequential semisorting can be performed by maintaining a
hash table in which each entry is a list of records with equal
valued keys. The records can then be inserted one at a time.
Whenever a key is first encountered a new list is added to
the table, and when a key is encountered again, the record is
added to the existing list for that key. This simple random-
ized technique takes linear expected work. Semisorting can
also be implemented in linear work by hashing into range
[1, . . . , nk] and then sorting the keys using an integer sort.

For sufficiently large k (i.e. k > 2), it is unlikely there are
collisions.

Parallel semisorting is not as simple. Although parallel
hash tables that insert each distinct key once are simple
and efficient in parallel [19], what makes semisorting hard
is the need to insert all the duplicate entries, which need to
be collected together. Given that there are many efficient
parallel sorting algorithms, one might instead consider an
approach based on integer sorting. Interestingly, however, it
is not known how to sort integer keys in the range [1, . . . , nk],
k > 1 in linear work and polylogarithmic depth.1 This prob-
lem has been open for almost 30 years with many researchers
working on it. What is known is how to sort (but not sta-
bly) integers in the range [1, . . . , n logk n] in O(kn) work and
O(k logn) depth [16] with high probability.2 As mentioned
above, this can be used to solve the semisorting problem
after a preprocessing step that reduces the integer range.
In practice, however, this is not a competitive approach s-
ince just the initial preprocessing using a hash table requires
about as much work as the whole sequential algorithm that
simply inserts the keys into a hash table. Furthermore the
integer sort is itself quite complicated.

In this paper, our goal is to develop a theoretically efficien-
t parallel semisorting algorithm (linear work and polyloga-
rithmic depth) that also performs well in practice, ideally
closely matching the work done by the sequential algorithm.
Our algorithm uses many of the ideas from the Rajasekaran
and Reif integer sort [16] but instead of working bottom-up
(i.e. least-significant bits first) on the bits generated from a
reduced integer range, it works top-down (most-significant
bits first) directly on the hash values. It significantly im-
proves on constant factors while matching the theoretical
bounds.

Our algorithm works as follows. We first hash the keys of
the records into enough bits so that collisions are unlikely.
We then take a sample of these hashed keys and sort them.
The sorted hashes are used to predict the number of keys in
each range of the hash, as well as to detect keys with many
duplicates, which we refer to as heavy keys. The remaining
keys are referred to as light keys. Next, appropriately-sized
arrays are allocated for each of the heavy keys and for ranges
of the light keys. Then, the records are all written to random
locations within their appropriate array, retrying at the next
location when there is a collision. Finally, a counting sort
is used on each array of records associated with light keys,
which are reasonably small. Each step takes at most linear
work and logarithmic depth.

In practice the algorithm is quite efficient since much of
the work is in the single write to memory for each key (when
writing to the allocated arrays). The other memory oper-
ations performed by the algorithm are computations on a
smaller sample (the sample sort), reads from a much smaller
sample (determining the array for writing), adjacent writes
typically on the same cache line (when colliding on a write,
and using an optimization that we describe), linear scans of
the data (to read the records, and to compact the arrays),

1This statement assumes the standard word length of
O(logn). Linear work and logarithmic depth can be
achieved if a non-standard polynomial word length is as-
sumed [17].
2We use“with high probability”(w.h.p.) to mean with prob-
ability at least 1 − 1/nc for any constant c > 0, and with
the constant in the big-O linear in c.

or reads and writes within a polylogarithmic-sized block of
keys (for the final sorts).

We implement algorithm and describe the results of a vari-
ety of experiments to measure its performance and compare
it to other methods. Our experiments are performed on a
40-core machine with two-way hyper-threading. On all 40
cores (with hyper-threading enabled), our code achieves up
to a factor of 38 speedup over its performance on a single
thread. Also even on one thread, our algorithm is 20% faster
than a simple sequential version using a hash table. This is
because the sequential version requires using linked lists to
link the elements going to the same bucket, which is not as
efficient as estimating sizes and writing directly to an array.

We measure our algorithm on a variety of different distri-
butions and show that it is robust across the distributions,
only differing in running time by about 20% between the
best and worst distribution. Our experiments are done on a
variety of sizes ranging from 10 million records to one billion
records. The per-record performance improves for larger in-
puts. We also present a breakdown of the running time into
the components of the algorithm, and show that the time
is dominated by the single loop that writes the records into
their respective arrays. In addition, we compare our algo-
rithm to a radix sort from an existing library and show that
it is about twice as fast. We finally compare our algorith-
m to comparison sorting algorithms from existing libraries,
and our results show that our algorithm outperforms them
on large inputs.

2. PRELIMINARIES
We use the work-depth model [13] allowing for concurrent

reads and writes, where work W is equal to the number
of operations required (equivalently, the product of the time
and the number of processors) and depth (span) D is equal
to the number of time steps required. The parallelism of an
algorithm is therefore W/D. For our algorithms, the same
bounds can be obtained on the arbitrary CRCW PRAM
model. Using Brent’s scheduling theorem [5], we can obtain
a running time of W/P +D when using P processors.

We use the notation [n] to indicate the range [1, . . . , n].
We make use of a variety of standard problems as building
blocks. The prefix-sum (scan) problem takes an array of
n integers and returns an equal length array in which each
element is the sum of the previous elements, as well as the
overall sum. The packing problem takes an array of values
and an equal length array of flags, and packs the elements
at positions with true flags down into a contiguous output
array. It can be implemented in parallel with a prefix sum
on the flags (treated as 0s and 1s) followed by a write to
the resulting positions. The naming problem takes a set
of n keys with m distinct values, and a hash function h
on the keys, and output a unique label for each distinct
key with a value in the range [O(m)]. The problem can be
solved easily with a parallel hash table. The placement
problem [18] (also called the assignment problem [16], or
multiple compaction problem [10]) takes an input array A
of records each with an integer key in the range [m], and also
for each key value i an array Bi of size ni ≥

∑n
j=1[Aj = i].3

It places each record of A somewhere in the array associated
with its key.

3[·] is the Iverson bracket.

All of these problems have simple linear work algorithms
with O(logn) depth (using randomization and high proba-
bility bounds for naming and placement). See, for exam-
ple [13]. Furthermore the algorithms are quite efficient in
practice. The problems also have significantly more com-
plicated sublogarithmic depth algorithms, at least for ap-
proximate versions [16, 11, 2]. In this paper, however, we
are satisfied with the more practical logarithmic depth al-
gorithms. We also use comparison-based sorting, which can
be implemented using Cole’s mergesort in O(n logn) work
and O(logn) depth [7] or with slightly more depth with a
variety of algorithms.

We say that a sorting algorithm is stable if the output
preserves the relative order among equal keys from the input
order, and otherwise we say that the algorithm is unstable.

We review the Rajasekaran and Reif integer sorting al-
gorithm [16]—both because it is relevant to the discussion
and also because our algorithm uses some of the ideas. The
algorithm consists of two components. The first is a un-
stable randomized sort for integers in the range [n/ log2 n]
and takes O(n) work and O(logn) span (w.h.p.). The sec-
ond is a stable counting sort for integers in the range [m],
m ≤ n and requires O(n) work and O(m+ log n) span. Us-
ing these sorts, integers in the range [n logk n] can be sorted
in O(kn) work and O(k logn) span (w.h.p.). In particular,
one round of the unstable randomized sort is applied on the
log(n/ log2 n) low-order bits, followed by k+2 rounds of the
stable counting sort on integers in the range [logn] on the
high-order bits of the keys. Since the counting sort is stable,
it maintains the relative order of the randomized sort on the
low-order bits.

The stable counting sort is a simple parallel version of
sequential counting sort. It partitions the sequence into n/m
blocks each of size m, and works in three phases. In the first
phase it counts how many keys of each value are in each
block. This can be run in parallel across the blocks and
sequentially within each block. Then a prefix sum is used
to calculate an offset for each key within each block where
the keys will be written. Finally each block goes over its
elements again and writes them to their final location. The
first and last steps take O(n) work and O(m) span. The
middle step takes O(n) work and O(logn) span. The sort is
fully deterministic and gives the stated bounds.

The unstable randomized sort consists of four steps: gen-
erating an upper bound on the cardinality of each key, allo-
cating a sufficiently sized array for each key value, writing
each key into a random location of its array, and packing the
result into a contiguous sorted array. The upper bound on
the cardinality for each key is determined by taking a ran-
domly selected sample of size Θ(n/ logn) and sorting it using
a parallel comparison sort, giving a count for each key c(i).
Using Chernoff bounds, one can show that with high proba-
bility the values u(i) = c′max(log2 n, c(i) logn) give an up-
per bound on the cardinality of key i (for some constant c′).
Furthermore the estimate ensures that

∑m
i=1 u(i) = O(n) in

expectation. Arrays of size u(i) are then allocated using a
prefix sum on the u(i) values, giving an offset for each subar-
ray within an array of length O(n). Now each key is written
in parallel into some position in its subarray using an al-
gorithm for the placement problem. The final step does a
packing operation to remove the empty spots in the resulting
array. All steps take O(n) work and O(logn) depth (w.h.p.),
and follow from the the building blocks listed above.

Algorithm 1 Parallel Semisort

Input: An array A with n records each containing a key.
Output: An array A′ storing the records of A in semisorted
order.

1: Hash each key into the range [nk] (k > 2)
2: Select a sample S of the hashed keys, independently with

probability p = Θ(1/ logn).
3: Sort S.
4: Partition S into two sets H and L, where H contains

the records with keys that appear at least δ = Θ(logn)
times in S (heavy keys), and L contains the remaining
records (light keys).

5: Create a hash table T which maps each heavy key to its
associated array.

6: Heavy keys:

(a) For each distinct hashed key in H allocate an
appropriately-sized array for it.

(b) Insert the records in A associated with heavy keys
(which can be checked by hash table lookup in T)
into their associated array.

7: Light keys:

(a) Evenly partition the hash range into Θ(n/ log2 n)
buckets, and create an appropriately-sized array for
each bucket by counting light keys in S.

(b) Insert the records in A associated with light keys
(which again can be checked by hash table lookup
in T) into a random location in the array of its
associated bucket.

(c) Semisort each bucket.

8: Pack all of the arrays into a contiguous output array A′.

3. OUR ALGORITHM
In this section, we describe and analyze our algorithm for

semisorting. In the next section, we will describe various
implementation decisions we made to improve the perfor-
mance. The input to our algorithm is an array of n records.
Each record contains a key. We assume a uniform random
hash function that maps keys to integers in the range [nk]
in constant time. The outline of our parallel semisorting
algorithm is given in Algorithm 1. We prove the following
theorem regarding the complexity of our algorithm.

Theorem 3.1. Algorithm 1 for parallel semisorting can
be implemented in O(n) expected work and space, and O(logn)
depth w.h.p.

The algorithm first hashes the keys into a sufficient large
range [nk] and k > 2 so that collisions are unlikely (i.e. there
is a one-to-one correspondence between keys and hashed
keys). The remainder of the algorithm semisorts these hashed
keys. Step 2 generates a sample S of the hashed keys,
where each hashed key is included in S with probability
p = Θ(1/ logn). This can be done with a parallel pack op-
eration in O(n) work and O(logn) depth. The expected
size of S is Θ(n/ logn). Step 3 sorts S using Cole’s paral-
lel mergesort [7] in O(n) expected work and O(logn) depth.
With S in sorted order we can now compute the multiplicity
of each sampled hashed key in S.

We define a hashed key to be a heavy key if records with
that key appear at least δ = Θ(logn) times in the sample
S, and a light key otherwise. A heavy record is a record

associated with a heavy key, and a light record is a record
associated with a light key. Heavy records appear many
times in the input, and are handled differently than light
records for both theoretical and practical reasons. Step 4
partitions S into heavy keys H and light keys L. This can
be done with prefix sums in linear work and logarithmic
depth.

Steps 5 and 6 collect all heavy records with the same
hashed key into its own bucket. In Step 5, we create a
hash table T which maps the hash value of each heavy key
to an appropriate array. The arrays for the heavy keys are
allocated in Step 6a. For a heavy key appearing s times in
S (we know s from previous steps), it will appear O(s/p)
times in A w.h.p. In Section 3.1, we provide a precise high
probability upper bound on the number of times a key will
appear in A, which we denote by f(s). The step allocates
an array of size αf(s) (α > 1) for each heavy key in the
sample. The expected work and space for allocating the ar-
rays is O(n), as we show in Section 3.1 that the sum of all
f(s)’s is O(n) in expectation. T can be created and filled in
O(n/ logn) work and O(logn) depth w.h.p., and supports
O(1) work lookups [11].

Step 6b uses the placement problem (described in Sec-
tion 2) to place the heavy records into their appropriate
array. The placement problem can be implemented by par-
titioning the input into blocks of size logn and inserting
records in rounds. In each round, we take an uninserted
record from each block in parallel, select a random location
in its associated array, check if the location is empty, and if
so write the record into the location. Each such record then
checks to see if it was successfully written (since another
block could have also written to the location). If unsuccess-
ful it will continue to the next round, otherwise we move
to the next record in the block. Each record has at least a
1 − 1/α probability of succeeding in each round since each
array is at least α times the size of the number of records
destined for it. This means the expected number of rounds
is (α/(α − 1)) logn. Since the rounds are independent, af-
ter O(logn) rounds w.h.p. all blocks finish (using Chernoff
bounds). Each round has constant depth. The total work is
(n/ logn)×O(logn) = O(n).

Step 7 collects all light keys within ranges of the hash s-
pace into their own bucket. First, we evenly partition the
hash range into Θ(n/ log2 n) buckets, and create appropriately-
sized arrays for each bucket (Step 7a). This is done by count-
ing the number of records with light keys in S that fall into
each bucket using a prefix sum. If s records fall into a buck-
et, we allocate an array of size αf(s) for the bucket. We can
again use the placement problem to insert the records into
their appropriate arrays (Step 7b). Unlike the heavy keys,
each bucket can contain records with different hashed keys.
We therefore now need to semisort within the buckets (Step
7c). To do this work-efficiently we note that w.h.p. there are
at most O(log2 n) distinct keys per bucket—we are throw-
ing at most n balls (distinct keys) into Θ(n/ log2 n) buckets
assuming the hash function is uniform [8]. For each bucket,
we use the naming problem to give new labels to the keys
in the range [O(log2 n)] by inserting and then looking up in
a hash table. This has expected linear work and O(logn)
depth w.h.p. For each bucket we then use two passes of the
stable counting sort on the newly labeled records, each pass
sorting O(log logn) bits. The work and space summed over
all the light key buckets is O(n) and the depth is O(logn).

Finally, Step 8 uses a parallel pack over all the arrays.
Since the expected total size of the arrays is O(n) (see Sec-
tion 3.1), the expected work and space is O(n), and depth
is O(logn).

Combining the complexity of each step gives Theorem 3.1.
The algorithm’s correctness (assuming no collisions in the

initial hashing) is easily verified by noting that each heavy
key array contains records with the same key, and the light
key arrays are sorted so records with the same key appear
next to each other. Concatenating the arrays together gives
a semisorted output. Because of the initial hashing, this
is a Monte Carlo algorithm, but can be converted into a
Las Vegas algorithm by checking for correctness of the ini-
tial hashing with a parallel hash table and restarting the
algorithm if there are collisions. Lastly, although unlikely
to happen (Corollary 3.4), it is possible that a bucket can
overflow. This can be checked by keeping a counter of the
number of trials, and if it exceeds a threshold, the algorithm
can be restarted.

3.1 Lemmas for size estimation
Consider some set of keys K. We are interested in esti-

mating the number of records in A that have a key in K,
given that there are s such records in S. We define the
following function:

f(s) =
(
s+ c lnn+

√
c2 ln2 n+ 2sc lnn

)
/p

where p = Θ(1/ logn) is the sampling probability and c is
a constant. We will prove that the function f gives a high
probability upper bound on the number of records with a
key in K in the input array A, given that there are s such
records in the sample S. Our motivation for providing a
precise upper bound is because in our implementation we
must obtain accurate estimates for efficiency.

Lemma 3.2. For a sample S in which an element in A is
included with probability p, if there are s records in S with
a key in K, then the probability that the number of such
records in A is greater than f(s) is at most n−c.

To prove Lemma 3.2, we first prove a lemma stating that
for records with a key in K appearing f(s) times in A, the
probability that there are at most s such records in S is at
most n−c. This can be shown by applying a Chernoff bound
with the mean of s being pf(s) in the following lemma. Let
σ be the number of such records in S, and ν be the number
of such records in A.

Lemma 3.3. Pr[σ ≤ s | ν = df(s)e] ≤ n−c.
Proof.

Pr[σ ≤ s | ν = df(s)e]

≤ exp

[
−
(

1− s

pf(s)

)2

· pf(s)/2

]

= exp

[
s− 1

2
·
(
pf(s) +

s2

pf(s)

)]

= exp

s− 1

2

pf(s) +
s2
(
s+ c lnn−

√
∆
)

(s+ c lnn)2 −∆

(∗)

= exp

[
s− 1

2
(2s+ 2c lnn)

]
= exp[−c lnn] = n−c

where ∆ =
(
c2 ln2 n+ 2sc lnn

)
on the line marked (∗).

With Lemma 3.3, we now prove Lemma 3.2.

Proof of Lemma 3.2. Applying the law of total proba-
bility, we have:

Pr[f(σ) ≤ ν]

=
∑
ν′

Pr
[
f(σ) ≤ ν′ | ν = ν′

]
Pr
[
ν = ν′

]
(1)

We first rearrange the terms so that we can apply Lem-
ma 3.3. We use the fact that f(s) is a monotonically in-
creasing function.

Pr
[
f(σ) ≤ ν′ | ν = ν′

]
= Pr

[
f(σ) ≤ f

(
f−1(ν′)) | ν = f

(
f−1(ν′))]

= Pr
[
σ ≤ f−1(ν′) | ν = f

(
f−1(ν′))] (2)

≤ n−c (3)

We obtain (3) from (2) by plugging in s = f−1(ν′) into
Lemma 3.3. Plugging this into (1), we have

Pr[f(σ) ≤ ν]

=
∑
ν′

Pr
[
f(σ) ≤ ν′ | ν = ν′

]
Pr
[
ν = ν′

]
≤
∑
ν′

n−c Pr
[
ν = ν′

]
= n−c

∑
ν′

Pr
[
ν = ν′

]
= n−c

which gives the high probability bound.

We now apply Lemma 3.2 for each bucket in Algorithm
1. For heavy key buckets K is a single key, whereas for light
key buckets K is the set of keys falling in the range of the
bucket. Over all buckets, f(s) is an upper bound on the
number of records appearing in the bucket with probability
at least 1 − Θ(n−c+1/ log2 n) by applying a union bound
with Lemma 3.2 (there are at most Θ(n/ log2 n) buckets).
This gives us the following corollary:

Corollary 3.4. The probability that f gives an upper
bound on the number of records in each bucket is at least
1−Θ(n−c+1/ log2 n).

Picking c > 1 gives a high probability bound as required
in the proof of Theorem 3.1. The constant hidden by Θ(·)
can be arbitrarily small since it is decided by the default
constants p, δ, and the number of buckets for light keys.

We will now prove that using the function f , the sum of
estimates over all buckets is O(n) in expectation. Recall that
the n input records are partitioned into Θ(n/ log2 n) buckets
for the light keys and O(n/ log2 n) buckets (expected) for the
heavy keys (the sample size is Θ(n/ logn) and heavy keys
appear δ = Ω(logn) times in the sample). Therefore there
are a total of Θ(n/ log2 n) buckets in expectation. Let R
denote the number of buckets, and let si denote the number
of times records belonging to bucket i appear in the sample
S.

Lemma 3.5.
∑R
i=1 f(si) = Θ(n) holds in expectation.

Proof. Note that E
[∑R

i=1 si
]

= E[|S|] = Θ(n/ logn).

Therefore,

E

[
R∑
i=1

f(si)

]
=

R∑
i=1

E[f(si)]

=

R∑
i=1

E
[(
si + c lnn+

√
c2 ln2 n+ 2sic lnn

)
/p
]

≤ 1

p

R∑
i=1

E[si] +
2c

p
R lnn+

1

p

R∑
i=1

E
[√

2sic lnn
]

≤ Θ(logn) ·Θ(n/ logn)

+ 2c ·Θ(logn) ·Θ(n/ log2 n) lnn

+
1

p
·
√

2c lnn · E

√√√√R

R∑
i=1

si

 (4)

= Θ(n) + Θ(n) +
√

2c lnn · lnn ·Θ

(√
n2

log3 n

)
= Θ(n)

where we apply the Cauchy-Schwarz inequality at (4).

Since we allocate arrays of size αf(s) for each bucket,
Lemma 3.5 implies that the total work and space required for
allocating and packing the the arrays is linear in expectation,
as required by Theorem 3.1.

3.2 Comparison to integer sorting
Our semisorting algorithm uses various ideas from Ra-

jasekaran and Reif’s (RR) integer sorting algorithm [16].
Also as mentioned the RR algorithm can be used for the
semisorting problem by first using the naming problem (with
a hash table) to reduce the range of the hash values to [n]
and then integer sorting (recall that RR is limited to keys
in the range [n logk n]). Here we discuss the differences be-
tween the two approaches and why we made the various
choices, with the view of developing a more practical algo-
rithm in mind. Firstly, we do not need to reduce the range
of the hash values and instead can work directly with hashed
keys in the range [nk], with k picked so collisions are unlike-
ly. This avoids an extra hashing step across all keys. This
is possible since the hashed keys are uniformly distributed.
This played a critical role in bounding the number of distinct
keys in each light bucket.

Secondly, we separate light keys from heavy keys. This
has the advantage that the heavy records can immediately
be placed in their correct bucket without the need for a
secondary sort. This is important in practice because there
can be many (perhaps all) equal valued keys meaning that
buckets with heavy keys can be very large making sorting
more expensive. The remaining light buckets have at most
O(log3 n) keys (w.h.p.) and have expected size O(log2 n).
Therefore sorting them is very cache-friendly. Also, from
a practical standpoint, the hash table of heavy keys can
be made small enough to fit in cache, as can the array of
pointers to the light buckets.

Thirdly, the RR algorithm for keys in the range [n] uses
two rounds of the stable counting sort to start with after ap-
plying the randomized unstable sort. These are expensive

since they create global movement. Instead our algorithm
applies the stable counting sort separately on buckets that
are always small (polylogarithmic size). More discussion of
practical aspects of our particular implementation are de-
scribed in the next section.

4. IMPLEMENTATION DETAILS
In this section, we discuss some of the details of our imple-

mentation. To start with, we introduce the default constants
in the algorithm. We set the sampling probability p to be
1/16, and δ to be 16, which we found to give the best overall
performance in our experiments for our range of input sizes
(107 to 109 records). The number of light key buckets is set
to be 216. Our implementation heavily based on the Problem
Based Benchmark Suite (PBBS) [20] which contains simple
and efficient parallel code to a number of problems and par-
allel primitives, including prefix sum, filter/pack, radix sort,
and concurrent hash tables based on linear probing [19].

The implementation of this algorithm is broken down into
five phases, and this is also the breakdown that we use in
the detailed experimental analysis in Section 5.

Phase 1: Sampling and sorting. This phase corresponds
to Steps 2 and 3 in Algorithm 1. When sampling, the i’th
sample is randomly picked from the (d(i − 1)/pe + 1)’th to
the di/pe-th record. Theoretically, for each key, the average
number of samples using this sampling scheme is the same
as the method that picks every sample independently.

To sort the samples in S, we use the parallel radix sort in
the PBBS. The radix sort is a top-down sort, which processes
8 bits of the key at a time to place the records into buckets,
and recurses on each bucket. This parallel radix sort is also
the baseline algorithm we compare against in Section 5.

Phase 2: Bucket allocation. In this phase we perform
Steps 4, 5, 6a and 7a in Algorithm 1. Since this phase is
inexpensive relative to the whole algorithm (about 1% of
the overall running time), we use a straightforward imple-
mentation. To filter out heavy keys and get their counts, we
first compute the offsets corresponding to the start of each
key in the sorted array, which can be done with a simple
comparison with the preceding key. We then gather these
offsets using a parallel filter, and finally compute the counts
by using the difference between consecutive offsets. If the
count for a key is greater than δ = 16, we insert the key into
a hash table. This hash table stores pointers to the arrays
associated with heavy keys, and the arrays are allocated us-
ing the size computed from the f function in Section 3.1.
All of these steps run in parallel.

We also use the f function to compute the size of the light
key arrays, but use a minor optimization where we combine
small (adjacent) buckets into a single bucket corresponding
to at least δ light key records in S. This optimization reduces
the overall running time by at most 10%. This is because
the estimation function f is more accurate with a larger
number of samples, and therefore the overall used memory
space is reduced. Then the following steps (local sort and
packing phases) will touch less memory, and this improves
the running time.

We sequentially create the associated arrays for the heavy
key and light key buckets since it is a very small fraction of
the running time. To allow for efficient packing later, we use
a single large array for all of the buckets, and each bucket
simply stores an offset into this array to indicate the start of

its associated array. The heavy key buckets are all before the
light key buckets in the array. Each bucket with s samples
allocates an array of size 1.1f(s) with c = 1.25, and rounded
up to the nearest power of 2. In our experiments, this size
was sufficient to prevent overflow on all of our inputs.

Phase 3: Scattering. This phase corresponds to Steps 6b
and 7b in Algorithm 1, where every record is scattered to a
random location in the array of its bucket. In contrast to
the discussion in Section 3, we perform the insertions using
a compare-and-swap, which is supported on most modern
multicore machines. A compare-and-swap returns true if
a record was successfully inserted into an initially empty
location and false otherwise. On a failure, instead of pick-
ing another random location, a record tries the next loca-
tion (linear probing). This gives better cache performance.
Bounds for linear probing show that the expected cost per
insertion is O(1), leading to linear work. Furthermore, the
largest cluster in the array is O(logn) w.h.p., which gives a
depth bound of O(logn) w.h.p. [8].

Phase 4: Local sort. This phase corresponds to Step 7c
in Algorithm 1. After all the records are inserted into the
buckets, a pack followed by a local sort is executed on each
bucket. In our implementation, the local sort in each array
is sequential since sorting a single array is fast, and usual-
ly there are many more arrays than processors, so this step
has good parallelism. We tried several versions including a
bucket sort, some comparison-based hybrid sort algorithm-
s, and the sort in the C++ Standard Library (STL). The
running times for the various algorithms were similar. In
our final implementation, we choose to use the sort in the
C++ Standard Library, which is implemented using a hybrid
of quicksort, heap sort and insertion sort, since it provided
consistent performance on all of our input distributions.

Phase 5: Packing. This phase corresponds to Step 8 in
Algorithm 1. The algorithm that we use to pack the portion
of the array for the heavy key buckets consists of 3 step-
s (recall that we use a single array A′ to represent all the
buckets): first, the array A′ is divided into 1000 intervals and
each interval is packed individually and sequentially by just
scanning the interval; second, we apply a sequential prefix
sum on the counts for the intervals to compute the bound-
aries in A′ for each interval; finally, we write the records into
their appropriate indices in A′ in parallel. The portion of
the array for the light key buckets is already packed from
Phase 4 so we simply copy the records into A′ in parallel.

5. EXPERIMENTS
We measure the performance of the implementation of our

parallel semisorting algorithm using various parameters. We
also compare the performance of our semisorting algorithm
to the parallel integer sorting algorithm from the Problem
Based Benchmark Suite (PBBS) [20], which can be used to
perform semisorting. Finally, we compare with a sequential
implementation of semisorting.

We run our experiments on a 40-core (with two-way hyper-
threading) machine with 4 × 2.4GHz Intel 10-core E7-8870
Xeon processors (with a 1066MHz bus and 30MB L3 cache)
and 256GB of main memory. We run all parallel experi-
ments with hyper-threading enabled, for a total of 80 hyper-
threads. We compile our code with g++ version 4.8.0 with
the -O2 flag. The parallel codes use Cilk Plus [14] to ex-
press parallelism, which is supported by the g++ compiler

that we use. In particular, the parallel for-loops are writ-
ten using the cilk_for construct. Divide-and-conquer par-
allelism, which is required by the parallel integer sort, is
written using the cilk_spawn construct. For an algorithm
with work W and depth D, Cilk’s randomized work-stealing
scheduler [4] with P available threads gives an expected run-
ning time of W/P + O(D). When running in parallel, we
use the command numactl -i all to evenly distribute the
allocated memory among the processors.

5.1 Input data
All of our experiments use an 8-byte (64-bit) hash value

along with 8-byte payload (16 bytes total per record). We
assume that the keys have been pre-hashed, since the cost
for hashing itself would depend on the particular type of val-
ue being semisorted and the cost is common across any of
the hash-based techniques (including radix sort). Further-
more, the cost for hashing is typically small. With an 8-byte
hash the probability of a collision is small, and checking for
collisions is easy once the sort is done.

Although the values are hashed, the distribution of dupli-
cates can vary significantly. We use a variety input distribu-
tions, including uniform distributions, exponential distribu-
tions, and Zipfian distributions. Each class of distribution
has a parameter. For uniform distributions, the parameter
N indicates the range from which the integers are chosen
from. More precisely, each key will be chosen uniformly
from the range [N]. Hence, a smaller N will create more
equal keys. The parameter λ for exponential distribution-
s represents the mean of the distribution, and accordingly,
the variance of the distribution is λ2. The parameter M of
Zipfian distributions denotes the range [M] that the keys
can be chosen from. The i-th number in this range has a
probability 1/(iM̄) of being chosen, where M̄ =

∑M
i=1 1/i is

the normalizing factor.
In Section 5.2, we use all three classes of distributions with

various parameters to show the stability of our algorithm. In
Sections 5.3–5.5 we present a detailed performance analysis
using two representative distributions, the uniform distribu-
tion with parameter N = n (input size), and the exponential
distribution with parameter λ = n/103. These two distribu-
tions were chosen because the first one contains only light
keys, and the second distribution contains about 30% light
keys and 70% heavy keys while not containing too many (as
many as a constant fraction of) duplicates. Hence, the per-
formance of both the heavy-key arrays and light-key arrays
can be analyzed.

For most of the experiments the input is 100 million 64-
bit key-value pairs. However, in Section 5.4 we analyze the
performance with various input sizes. All our experiments
use 16 byte records in which 8 bytes are the hash of the keys,
and the other 8 bytes are the payload.

5.2 Consistency of performance
To show the stability of the parallel semisorting algorithm

with different input distributions, we tested the performance
on three different classes of distributions with 17 distribu-
tions in total. The distributions include different percent-
ages of heavy keys, and span the entire range of 0% to 100%.
The average number of duplicates for each key also varies
significantly among distributions.

A detailed running time and speedup for each experimen-
tal run is reported in Table 1 with different thread counts.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100 1K 10K 100K 300K 1M
 0

 20

 40

 60

 80

 100

Ti
m

e
(s

ec
on

ds
)

Pr
op

or
tio

n
(%

)

Distribution parameter

Running time
% Heavy records

(a) Exponential distributions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10 100K 320K 500K 1M 100M
 0

 20

 40

 60

 80

 100

Ti
m

e
(s

ec
on

ds
)

Pr
op

or
tio

n
(%

)

Distribution parameter

Running time
% Heavy records

(b) Uniform distributions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10K 100K 1M 10M 100M
 0

 20

 40

 60

 80

 100

Ti
m

e
(s

ec
on

ds
)

Pr
op

or
tio

n
(%

)

Distribution parameter

Running time
% Heavy records

(c) Zipfian distributions.

Figure 1: Running time (seconds) using 40 cores
with hyper-threading and the proportion (%) of
heavy keys of three different classes of distributions
with various parameters. The input size is 108.

We also plot the 40-core (with hyper-threading) running
time for each class of distributions versus the distribution
parameter on 108 records in Figure 1.

From the figure, we can see that the lowest running time
(0.46s) appears in three test cases, and in all three of these
cases, more than 99% records have heavy keys. The algo-
rithm is particularly efficient in this case because no local
sort for the light keys is required. Meanwhile, the highest
running time is 0.56s, and the common situation in these
cases is that most of the keys are close to the threshold
between heavy and light key but the majority of keys are

Sequential 40h
Speedup

time (s) % time (s) %

sample and sort 1.03 7.41 0.06 13.29 16.03

construct buckets 0.11 0.77 0.02 3.32 6.65

scatter 9.81 70.60 0.25 51.95 39.08

local sort 0.18 1.30 0.01 1.22 30.51

pack 2.77 19.93 0.15 30.22 18.97

Table 2: Breakdown of running time and percent-
age for sequential and 40 cores with hyper-threading
versions. The input has 108 records and the keys
follow the exponential distribution with parameter
λ = 105. (40h) indicates 40 cores with two-way
hyper-threading.

Sequential 40h
Speedup

time (s) % time (s) %

sample and sort 1.55 8.52 0.08 15.18 19.42

construct buckets 0.18 1.00 0.02 3.68 9.40

scatter 9.15 50.25 0.24 45.98 37.81

local sort 6.56 36.02 0.13 23.75 52.48

pack 0.77 4.21 0.06 11.42 12.75

Table 3: Breakdown of running time and percent-
age for sequential and 40 cores with hyper-threading
versions. The input has 108 records and the keys
follow the uniform distribution with parameter N =
108. (40h) indicates 40 cores with two-way hyper-
threading.

light. Therefore, the size of light key arrays can easily ex-
ceed Θ(log2 n), which increases the workload in the local
sorting phase.

However, the difference between the extreme cases is only
0.1s, which is about only 20% of the overall running time.
This shows that the parallel semisorting algorithm has a
reasonably consistent performance on various input distri-
butions.

5.3 Performance, speedup, and breakdown
The parallel speedup of the semisorting algorithm is shown

in Table 1. The speedup lines for the two representative dis-
tributions are also shown in Figure 2 to demonstrate that the
algorithm has good parallel speedup. For example, an aver-
age speedup of 14.3x is obtained using 16 threads. Moreover,
the speedups for 40 cores with hyper-threading are 31.7 and
34.6 on the two input distributions, respectively. Given that
some subroutines in the algorithm are memory-bandwidth
bound, this speedup is quite good.

To further analyze the performance of the algorithm, we
show the breakdown of running time among the different
phases in Tables 2 and 3, and Figure 3. The array con-
struction is inexpensive, and hence a lower speedup is tol-
erable. The speedup of the sampling/sorting phase is de-
termined by the radix sort and is between 16 and 20. The
packing phase is memory-bandwidth bound, and gets 12–
19x speedup. The scatter process achieves 37–39x speedup.
The highest speedup comes from the local sort (30–52x).
Since all the light-key arrays fit into caches, this phase is
dominated by the computation and not the memory access.
The overall cost is dominated by the scatter.

5.4 Scalability with varying input sizes
In this section we analyze the performance of our algo-

rithm as a function of input size. We use inputs with 7

 0.25

 0.5

 1

 2

 4

 8

 16

 32

1 2 4 8 16 32 40 40h

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Number of threads

Linear speedup
Radix sort

Parallel semisort

(a) Exponential distribution (λ = 105).

 0.25

 0.5

 1

 2

 4

 8

 16

 32

1 2 4 8 16 32 40 40h

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Number of threads

Linear speedup
Radix sort

Parallel semisort

(b) Uniform distribution (N = 108).

Figure 2: Running times (seconds) of parallel
semisort and radix sort with varying number of
threads on an input size of 108. (40h) corresponds to
40-cores with two-way hyper-threading. The linear
speedup line is plotted for reference.

Figure 3: Breakdown of the different phases in terms
of percentage of the total running time for running
sequentially and on 40 cores with hyper-threading
(40h). The input has 108 records and the keys follow:
(a) exponential distribution with parameter λ = 105,
(b) uniform distribution with parameter N = 108.
The data for this figure is taken from Table 2 and 3.

different sizes from 107 to 109. The running times and
speedups for the two representative distributions for these
sizes are shown in Table 4. The speedups for the algorith-
m using 40 cores with hyper-threading are also plotted in
Figure 4(a)–(b) and the corresponding speed (records per
second) is shown in Figure 4(c)–(d). From the figure we can
see that the speedup improves from 23 to 35.2 for the expo-
nential distribution with increasing input size. Similarly for
the uniform distribution the speedup improves from 25.2 to
38.2. The speedup for both distributions is high, and higher

Indicator #threads Exponential distribution Uniform distribution Zipfian distribution

Parameter 100 1K 10K 100K 300K 1M 10 100K 320K 500K 1M 100M 10K 100K 1M 10M 100M

% Heavy key records 99.97 99.7 97 73 21 0 100 100 75 13 0 0 100 90 74 62 54

1 13.46 13.48 17.82 13.90 17.24 18.56 12.43 14.73 15.77 18.54 17.50 18.21 13.01 14.51 15.47 16.28 17.83

2 6.95 7.00 9.34 7.22 8.79 10.00 6.54 7.63 8.10 9.73 9.36 9.67 6.81 7.52 8.22 8.69 9.43

4 3.46 3.47 4.65 3.56 4.27 4.92 3.26 3.73 3.94 4.82 4.60 4.78 3.39 3.71 4.09 4.26 4.66

8 1.75 1.76 2.34 1.80 2.17 2.48 1.67 1.89 1.98 2.45 2.33 2.40 1.72 1.88 2.04 2.14 2.38

Time 16 0.94 0.94 1.25 0.96 1.16 1.30 0.90 1.01 1.06 1.27 1.22 1.26 0.93 1.01 1.09 1.14 1.25

32 0.57 0.58 0.73 0.59 0.71 0.74 0.56 0.62 0.67 0.79 0.70 0.72 0.57 0.64 0.66 0.69 0.73

Parallel 40 0.54 0.53 0.66 0.53 0.65 0.72 0.52 0.59 0.60 0.67 0.64 0.66 0.54 0.56 0.61 0.62 0.66

semisort 40h 0.46 0.46 0.56 0.48 0.56 0.54 0.46 0.52 0.54 0.56 0.52 0.53 0.47 0.50 0.52 0.52 0.55

2 1.94 1.93 1.91 1.92 1.96 1.86 1.90 1.93 1.95 1.90 1.87 1.88 1.91 1.93 1.88 1.87 1.89

4 3.89 3.89 3.83 3.90 4.04 3.77 3.81 3.95 4.00 3.84 3.80 3.81 3.84 3.91 3.78 3.82 3.83

8 7.68 7.67 7.61 7.71 7.94 7.50 7.46 7.79 7.98 7.58 7.52 7.58 7.56 7.73 7.56 7.59 7.49

Speedup 16 14.38 14.39 14.23 14.43 14.87 14.25 13.77 14.53 14.85 14.57 14.36 14.41 14.07 14.41 14.18 14.29 14.31

32 23.55 23.30 24.43 23.50 24.19 25.15 22.24 23.59 23.58 23.54 24.83 25.37 22.68 22.69 23.58 23.57 24.53

40 25.07 25.64 27.21 26.11 26.45 25.89 23.84 25.01 26.11 27.63 27.55 27.55 24.32 25.98 25.31 26.39 26.87

40h 29.15 29.31 31.74 28.76 30.62 34.37 27.07 28.54 28.98 33.20 33.71 34.60 27.61 29.11 29.91 31.06 32.57

Radix
Time

1 12.00 10.33 14.00 13.70 13.90 14.50 14.10 13.80 13.80 13.80 13.90 14.80 13.10 13.60 13.80 14.20 14.00

sort 40h 0.88 0.88 0.90 0.88 0.90 0.92 0.91 0.89 0.89 0.90 0.90 0.93 0.93 0.94 0.92 0.96 0.90

Speedup 40h 13.59 11.79 15.56 15.57 15.43 15.83 15.48 15.45 15.47 15.37 15.51 15.90 14.10 14.55 14.95 14.85 15.50

Table 1: Running times (seconds) and speedup of parallel semisort and radix sort on various distributions
using a 40-core machine. (40h) indicates 40 cores with two-way hyper-threading. The input size is 108.

 0

 10

 20

 30

 40

 50

10 20 50 100 200 500 1000

Sp
ee

du
p

Input size (million)

Sample Sort
Radix Sort
STL Sort
Parallel Semisort

(a) Parallel speedup versus input size on the exponential
distribution (λ = n/103).

 0

 10

 20

 30

 40

 50

10 20 50 100 200 500 1000

Sp
ee

du
p

Input size (million)

Sample Sort
Radix Sort
STL Sort
Parallel Semisort

(b) Parallel speedup versus input size on the uniform dis-
tribution (N = n).

 0

 50

 100

 150

 200

 250

 300

10 20 50 100 200 500 1000

R
ec

or
ds

 p
er

 s
ec

on
d

(m
ill

io
n)

Input size (million)

Sample Sort
Radix Sort
STL Sort
Parallel Semisort

(c) Million records/second processed versus input size on
the exponential distribution (λ = n/103).

 0

 50

 100

 150

 200

 250

 300

10 20 50 100 200 500 1000

R
ec

or
ds

 p
er

 s
ec

on
d

(m
ill

io
n)

Input size (million)

Sample Sort
Radix Sort
STL Sort
Parallel Semisort

(d) Million records/second processed versus input size on
the uniform distribution (N = n).

Figure 4: Parallel speedup and records per second (million) for four different algorithms on two distributions
with varying input size from n = 107 to n = 109, using 40 cores with hyper-threading.

on the uniform distribution since the local sort has very high
parallelism across the different buckets. The lower speedup

for smaller input sizes is likely due to overhead of parallelism
on smaller data.

 0.01

 0.1

 1

 10

10 20 50 100 200 500 1000

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Input size (million)

Exponential
Uniform

Scatter + pack

Figure 5: Parallel running times (seconds) with
varying input size from n = 107 to n = 109, and the
comparison to a scatter and pack operation.

As a baseline, we compare the performance of our semisort-
ing algorithm to just a scatter and pack (the minimal work
one would need to do to perform semisorting) and show that
our algorithm is not much more expensive. In particular,
Table 4 and Figure 5 show that on both the uniform and
exponential distributions, our semisorting algorithm is just
1.5–2 times slower in parallel than a scatter followed by a
pack on an array of size n, with better relative performance
as we increase the input size.

We also compared with a simple sequential chained hash
table-based algorithm for semisorting and found our algo-
rithm to be 20% faster on a single thread. This is because
the sequential implementation requires linked lists to link
the elements going to the same bucket, which is not as ef-
ficient as estimating sizes and writing directly to an array.
In addition, we tried other sequential implementations (e.g.
STL vectors, hash tables using open addressing on keys and
separate chaining on records with the same key, and a two-
phase approach where we simply count the multiplicity of
each key, allocate enough space for each key, and write the
records into the appropriate locations) but found them to
be even less efficient.

5.5 Comparison with other sorting implemen-
tations

In this section we compare the performance of our parallel
semisorting algorithm with other optimized parallel sorting
algorithms: radix sort, STL sort, and sample sort.

We compare the performance of our algorithm to the par-
allel radix sort in PBBS, which is a top-down recursive ap-
proach. The code for the radix sort is equally-optimized
and is also a subroutine in our parallel semisorting code.
The sequential and parallel running time of the radix sort
is provided in Table 1 and Figure 2. The results show that
the sequential running times for both algorithms are simi-
lar, but the parallel semisort gets about twice the parallel
speedup compared to the radix sort. This is because the
radix sort works by executing many rounds over the data,
thus involving more reads and writes to memory, which lim-
its the speedup as memory bandwidth is the bottleneck.

We also looked at the highly-optimized radix sort of [15],
which is the fastest radix sort that we are aware of. Their
code is highly-optimized with over 15,000 lines of code. It
makes heavy use of AVX vector instructions, which are not
supported on our 40-core Intel Nehalem test machine, so we

are unable to directly compare with our reported numbers.
Based on our experiments on another machine supporting
AVX instructions, their code is faster than our code on the
uniform random distribution (a particularly easy case), but
did not work on more skewed distributions. We believe that
their code is designed to only handle well-balanced distri-
butions, and so it is not surprising that it outperforms our
code. Furthermore, their code is much more complicated
than ours.

In addition, we compare our algorithm with two optimized
comparison sorts: GNU libstdc++ (STL) parallel sort [21]
implemented with OpenMP and sample sort [3] implement-
ed with Cilk Plus in PBBS [20]. The experiment is run on
inputs of varying sizes, ranging from 107 to 109, and two
representative distributions: exponential and uniform dis-
tributions. The sequential and parallel running times are
shown in Table 5, and the speedup and records per second
comparing to parallel semisort are provided in Figure 4.

Although the work complexity of these two algorithms is
O(n logn), they are more cache-friendly, and so their perfor-
mance is competitive with our parallel semisort. In parallel,
the comparison sorts are faster than our semisort on the u-
niform distribution with an input size of no more than 20
million, and exponential distribution with an input size of
no more than 50 million. The STL sort is efficient sequen-
tially (faster than all other algorithms on all inputs), but
only has moderate speedup of at most 20 on all cases. The
sample sort is designed as a cache-efficient algorithm so it
gets consistent speedup of about 30 on all inputs. However,
since the work of the comparison sorts is super-linear, their
performance (records per second) decreases as the input size
grows past 100 million. In contrast, the semisort algorithm
scales better since it does linear work.

In our experiments, radix sort is the least efficient in al-
most all cases. This is because the radix sort is designed for
sorting keys from a small range, and the 64-bit keys used in
our experiments require too many rounds to sort.

6. CONCLUSION
We have described a parallel algorithm for semisorting

that requires linear work and space and logarithmic depth.
The algorithm is both theoretically efficient and also practi-
cal. We show experimentally that it achieves good parallel
speedup on various input distributions and input sizes, and
outperforms similarly-optimized comparison and radix sorts
for large inputs.

Acknowledgments
This work is partially supported by the National Science
Foundation under grant CCF-1218188, and by the Intel Sci-
ence and Technology Center for Cloud Computing.

7. REFERENCES
[1] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu.

Main-memory hash joins on modern processor
architectures. In IEEE Transactions on Knowledge
and Data Engineering (TKDE), 2014.

[2] H. Bast and T. Hagerup. Fast parallel space
allocation, estimation and integer sorting. Information
and Computation, 123(1):72–110, 1995.

[3] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri.
Low depth cache-oblivious algorithms. In Proc. ACM

#records
Exponential distribution Uniform distribution 40h Running time (sec.)

(million)
Running time (sec.)

Speedup
Records / sec. Running time (sec.)

Speedup
Records / sec.

Scatter Pack
Scatter

Sequential 40h (million) Sequential 40h (million) + Pack

10 1.64 0.07 23.09 141.20 1.82 0.07 25.17 138.56 0.02 0.02 0.04

20 3.23 0.14 23.24 143.92 3.69 0.15 25.36 137.54 0.03 0.03 0.06

50 8.25 0.31 26.80 162.36 9.49 0.30 31.45 165.70 0.07 0.06 0.13

100 13.99 0.50 27.81 198.79 18.34 0.55 33.43 182.29 0.14 0.11 0.25

200 28.18 0.95 29.64 210.33 36.64 1.04 35.14 191.85 0.28 0.23 0.51

500 79.53 2.38 33.38 209.85 92.47 2.45 37.75 204.11 0.70 0.64 1.35

1000 155.90 4.43 35.19 225.69 173.03 4.53 38.19 220.69 1.62 1.35 2.97

Table 4: Running time (seconds), speedup, and records per second (million) for input with varying sizes from
107 to 109, and the running time for a scatter, a pack and both operations. (40h) indicates 40 cores with
two-way hyper-threading.

#records
GNU STL Sort Sample Sort Radix Sort

(million)
Exponential Uniform Exponential Uniform Exponential Uniform
Seq. 40h Seq. 40h Seq. 40h Seq. 40h Seq. 40h Seq. 40h

10 0.88 0.07 1.07 0.07 1.53 0.06 2.00 0.07 1.46 0.11 1.36 0.11

20 1.87 0.13 2.24 0.15 3.20 0.12 4.15 0.14 2.93 0.20 2.72 0.19

50 5.12 0.30 6.08 0.37 8.02 0.27 10.41 0.36 7.30 0.48 6.79 0.47

100 10.70 0.60 12.50 0.74 16.70 0.56 21.56 0.69 14.80 0.93 13.70 0.88

200 23.40 1.25 26.20 1.52 34.40 1.15 44.00 1.44 27.30 1.75 27.60 1.66

500 60.50 3.76 70.00 4.02 93.90 3.34 118.00 4.14 85.30 4.72 79.00 4.47

1000 129.00 8.23 146.00 8.84 197.00 7.44 245.00 8.93 186.00 10.20 173.00 9.60

Table 5: Sequential and parallel running time (seconds) for input with varying sizes from 107 to 109. (40h)
indicates 40 cores with two-way hyper-threading.

Symp. on Parallelism in Algorithms and Architectures
(SPAA), pages 189–199, 2010.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM
(JACM), 46(5), Sept. 1999.

[5] R. P. Brent. The parallel evaluation of general
arithmetic expressions. J. ACM (JACM),
21(2):201–206, 1974.

[6] E. F. Codd. A relational model of data for large
shared data banks. Commun. ACM (CACM),
13(6):377–387, June 1970.

[7] R. Cole. Parallel merge sort. SIAM J. Comput.,
17(4):770–785, 1988.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (3. ed.). MIT
Press, 2009.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Commun. ACM
(CACM), 51(1):107–113, Jan. 2008.

[10] P. B. Gibbons, Y. Matias, and V. Ramachandran.
Efficient low-contention parallel algorithms. Journal of
Computer and System Sciences, 53(3):417–442, 1996.

[11] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of
nearly constant time parallel algorithms. In
Foundations of Computer Science (FOCS), pages
698–710, 1991.

[12] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E.
Leiserson. Ordering heuristics for parallel graph
coloring. In Proc. ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), pages 166–177,
2014.

[13] J. Jaja. Introduction to Parallel Algorithms.
Addison-Wesley Professional, 1992.

[14] C. E. Leiserson. The Cilk++ concurrency platform.
The Journal of Supercomputing, 51(3):244–257, 2010.

[15] O. Polychroniou and K. A. Ross. A comprehensive
study of main-memory partitioning and its application
to large-scale comparison- and radix-sort. In Proc.
ACM SIGMOD International Conference on
Management of Data, pages 755–766, 2014.

[16] S. Rajasekaran and J. H. Reif. Optimal and
sublogarithmic time randomized parallel sorting
algorithms. SIAM J. Comput., 18(3):594–607, 1989.

[17] S. Rajasekaran and S. Sen. On parallel integer sorting.
Acta Informatica, 29(1):1–15, 1992.

[18] J. H. Reif and S. Sen. Parallel computational
geometry: An approach using randomization. In
J. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, chapter 18, pages 765–828.
1999.

[19] J. Shun and G. E. Blelloch. Phase-concurrent hash
tables for determinism. In Proc. ACM Symp. on
Parallelism in Algorithms and Architectures (SPAA),
pages 96–107, 2014.

[20] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons,
A. Kyrola, H. V. Simhadri, and K. Tangwongsan. Brief
announcement: the Problem Based Benchmark Suite.
In Proc. ACM Symp. on Parallelism in Algorithms
and Architectures (SPAA), pages 68–70, 2012.

[21] J. Singler, P. Sanders, and F. Putze. Mcstl: The
multi-core standard template library. In Euro-Par,
pages 682–694. 2007.

[22] L. G. Valiant. Handbook of theoretical computer
science (vol. a). chapter General Purpose Parallel
Architectures, pages 943–973. MIT Press, 1990.

