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What is a kd-tree? Why a new parallel kd-tree?
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Build a kd-tree [Bentely’ 79]: N Rebuild the whole tree o
1. Find the median of the objects. Our Contribution: Techniques: /0 inefficiency.  to keep full balanced. Query on logarithmic trees.
2. Partition into two parts. Propose the Pkd-tree that is 1. An efficient tree construction algorithm optimizes work, span and 1/O complexity.
3. Recursive. highly parallel, 1/0-efficient, and | 2. A reconstruction-based update algorithm guarantees the tree to be weight-balanced.
Fully balanced tree can support efficient updates. 3. A highly efficient implementation.
O(nlogn)
Parallel Tree Construction
0 Step 1 General Idea
Sample & 1. Aslightly unbalanced tree.
get skeleton  logn+ 0(1) tree height or O(log n) height.
e Use samples to estimate the median.
: 2. Build multiple levels at once
""""""" | Step 2 * One round of data movement is sufficient.
’ Parallel & * 1/0 efficient points sieving algorithm to partition points.
sieve points ~
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Parallel  Parallel is hard, e.g., avoid data race, keep 1/0 efficiency ...
O Points OSampIes @ Buckets . oo e se e se e recurse ._* Borrow ideas from the cache-efficient parallel sorting [SPAA’ 20]

Parallel Batch Updates
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0 O 1 2 g, ““Parallel sieve pomts Handling of imbalance
o o 1. The kd-tree does not support rotation.
C,) | Step 1 Y U e ~,  |nstead, we choose to rebuild the imbalanced sub-tree.
° D D Fetch tree skeleton i * Known as partial rebuild [SSBM’ 83].
Q ________________________ | O | 2. Use weighted-balanced scheme.
2 O o D i  Allow the tree to be off from perfectly balanced by a
_________________________________ : factor of @, where 0 < a < 1.
. 0 ! ’
5 O O o 3 N J * Otherwise, rebuilds the sub-tree.
Z v v $¢ Imbalance!
() Tree points (3] Bucket Continue recursion The cost of partial rebuild can be amortized to tree nodes visit.
2
__ Points to be inserted Step 3: In parallel {x Rebuild with new points * O(log“n) work per element.
Experiments
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Table 1: Tree construction and query time on read-world datasets for Pkd-tree and baselines. | | |
Lower is better. k-NN queries are performed in parallel on all points in the dataset. “Range” is the Maximum difference in each (sub)-tree (%)
time for 1000 range report queries with output size between 10%-10°. The fastest runtime for Figure 3: Incremental update time and query time with different imbalance ratio a. Lower /s better. The dataset contains
each benchmark is underlined. “s.f”: segmentation fault. “t.0.”: time out (more than 3 hours). 1000M points in 3D, divided into 1000 batches, and incrementally inserted into an initially empty tree. We perform 1-NN

qgueries in Uniform distribution after each insertion.
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