Parallel kd-tree with Batch Updates
Ziyang Men, Zheqi Shen, Yan Gu, Yihan Sun

University of California, Riverside

What is a kd-tree? Why a new parallel kd-tree?

Challenges: T | Huild | Batch Insert | Batch Delete | 10-BN | Hal
- Conventionally, kd-trees are maintained fully-balanced e | 0w 1w 0w | (0K
. © ¢ and is hard to support efficient updates while maintaining oL Torm-aa- 1N
e © 0 balance. Existing parallel update algorithms either fully ;LE[-I]EE I %‘_—E I sUth I ikl I utth I el
: i 3.7 A F T | 2.0
F-om——-l rebuild the tree or sacrifice query performance. COAL ‘ - ‘ [__m ‘ “_I:] ‘ e | 513
° el - High performance also requires strong guarantee in work Varden—-20-10mk
°© ol g0 ol [,e] [Pad [oo (time complexity), span (parallelism) and 1/0 (cache) Oears | .56 055 3 AT | ARZ
© o ° o L9 o 2 lexi LOH ‘ LK. ‘ 01 1.0 ‘CE I '
: complexity. HHL || 294 29 13 | —24F Lok
oAl | (429 445 13.4 | 511 | 2495
Build a kd-tree [Bentely’ 79]: N Rebuild the whole tree o
1. Find the median of the objects. Our Contribution: Techniques: /0 inefficiency. to keep full balanced. Query on logarithmic trees.
2. Partition into two parts. Propose the Pkd-tree that is 1. An efficient tree construction algorithm optimizes work, span and 1/O complexity.
3. Recursive. highly parallel, 1/0-efficient, and | 2. A reconstruction-based update algorithm guarantees the tree to be weight-balanced.
Fully balanced tree can support efficient updates. 3. A highly efficient implementation.
O(nlogn)
Parallel Tree Construction
0 Step 1 General Idea
Sample & 1. Aslightly unbalanced tree.
get skeleton logn+ 0(1) tree height or O(log n) height.
e Use samples to estimate the median.
: 2. Build multiple levels at once
""""""" | Step 2 * One round of data movement is sufficient.
’ Parallel & * 1/0 efficient points sieving algorithm to partition points.
sieve points ~
\/Inputabcdefghi:>0utputagdfibech
1 Step 3 Bucket 0 2 3121031 Bucket 0 0 1 1 12 2 3 3
Parallel Parallel is hard, e.g., avoid data race, keep 1/0 efficiency ...
O Points OSampIes @ Buckets . oo e se e se e recurse ._* Borrow ideas from the cache-efficient parallel sorting [SPAA’ 20]

Parallel Batch Updates

St_eP_Z
0 O 1 2 g, ““Parallel sieve pomts Handling of imbalance
o o 1. The kd-tree does not support rotation.
C,) | Step 1 Y U e ~, |nstead, we choose to rebuild the imbalanced sub-tree.
° D D Fetch tree skeleton i * Known as partial rebuild [SSBM’ 83].
Q ________________________ | O | 2. Use weighted-balanced scheme.
2 O o D i Allow the tree to be off from perfectly balanced by a
_________________________________ : factor of @, where 0 < a < 1.
. 0 ! ’
5 O O o 3 N J * Otherwise, rebuilds the sub-tree.
Z v v $¢ Imbalance!
() Tree points (3] Bucket Continue recursion The cost of partial rebuild can be amortized to tree nodes visit.
2
__ Points to be inserted Step 3: In parallel {x Rebuild with new points * O(log“n) work per element.
Experiments

Machine LN : 96 cores, 192 hyper-threads, 1.5 TB

main memory, code in C++. Synthetic datasets Uniform: points are uniformly distributed 9 Ours & Log-tree BHL-ree ¥ CGAL
. . L h insertion, Uniform Batch insertion, Varden
Varden: points are skewed distributed pale .
Real-world datasets P ##*H*—HHH[-—#—#—#—#‘* Ht—H—JII—#—!IHHI—t—#-H—#*
— . _ - _ . : 5 A &R F =R
| Podwts Dimes | Op. Ours Log-tree BHL-tree CGAL =4 =6, sampling ¥4 = 1, sampling -/ A = 1, no sampling 100 F Al ﬂaﬂjﬁ 100 poi o
e | = I-_
| Huxild e b7 A6 A7 v 8 “8 B g1 4 " _Eraaa-f“‘a' = A A A ﬁ eﬁ'ﬂa
o | =l e 4.5 15 La] | 1= 0 2 ﬁh_.e-a'g_ ﬁg .jar@’
m I '-IH._'.}: .IIJ |_|] HN .[|1H 1.!_|_ .I:IE'.:-' ﬂ 1'5]6 é E %] ||||||l] |!|||;_|I:I 1 llll:;-llm:l-l IIII;DD |.:|? [||-|||r|| 1 IIIIIII (] ”Iil.{J":lu_
I E."Ln'-':': E B3l 474 | 33 E - E % Batch deletion, Uniform Er-m-h |:|-.=-IL=-11nr| ".."arl:IF-n
| Buald 1154 714 | K} Lo S 4 : g4 s F e = *
7 | I-WM 5a . .0 - : - © s F e c fx*'*
T X04M T | g-NM R 244 4,1% : E 2 | E2 E oK wetoep el op D0 =y
| Range isi) R1% ‘el : S1 o 81 A e e N o T o
=< | Build 059 e -h . s Uniform Var{iéﬁ Uniform Varden o E’# H%;' ;E-E_E o EIIF Hﬂfﬁﬁ
fi I ‘ I'-'I II' P24 Al la.L 1 ﬂ H"Er"'-?-nl T T T !}‘E'.ﬂ_? LAk I||-|| Lo heod o v lieed
5 | tLali 14 lid-ME 353 173 4.3 155 Benchmark 0.1 1 10 100 1000 1 10 100 1000
| Hange %12 4.24 2.54 .14 Figure 1: The evaluation of the performance gain for techniques in tree construction. Batch size | = “'-'1]
| Buald 254 1. H T 0 f Lower is better. The datasets have 1000M size in 3 dimensions. The y-axis Figure 2: Time required for batch update on points from Varden and
1 | I-P o 1.4 1.51 - normalized to the final version that builds 6 levels at once and using sampling. Uniform on a tree with 1000M points in 3 dimensions. Lower is better.
3 el 1 ii}- q -
= I 'F:_'I! NN 'i'l:__j t:ﬂ I:::I [1 Incremental update time =~ Geo, mean guery time = Max. query time
nge ¥ : -] 100% Varden 10% Uniform + 90% Varden
Huzild 1.:4 la.7 133 | 54 “E*"m: L - 107 10° T = 1 z
. I =Fy 2.79 255 5.24 554 '-; SN E 21 - 3
0| 321M 3 1-NM 949 af af 1.0 5 | | - B
| Eange 1% | &4 L.63 2410 2 G—a N
= 10" =7 M —= 10t 107 5 T R =S
| Huzild 5.0d al3 ah.s T & £ — 1 [° E E "
= B 5.7 | 34 L3} o5 % L ~] [] %
S| 13%EM % | 1NN 165 214 30 .5 2L E HE L H J;[QH/ - |L L] j; | =
C S | < T q4.87 1.E] hid = T T 1'3” 107 = : 10° 3
| Bange 147 7 o8 lﬁ@x‘b@ﬂ‘%@&%ﬁ%ﬂ@ b, o o fﬂ‘:ﬁfﬁ@ﬂ@%ﬁﬁ‘w@%
Table 1: Tree construction and query time on read-world datasets for Pkd-tree and baselines. | | |
Lower is better. k-NN queries are performed in parallel on all points in the dataset. “Range” is the Maximum difference in each (sub)-tree (%)
time for 1000 range report queries with output size between 10%-10°. The fastest runtime for Figure 3: Incremental update time and query time with different imbalance ratio a. Lower /s better. The dataset contains
each benchmark is underlined. “s.f”: segmentation fault. “t.0.”: time out (more than 3 hours). 1000M points in 3D, divided into 1000 batches, and incrementally inserted into an initially empty tree. We perform 1-NN

qgueries in Uniform distribution after each insertion.
References:

[Bentely’ 79]: Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9 (1975), 509-517.

[SSBM’ 83]: Mark H Overmars. 1983. The design of dynamic data structures. Vol. 156. Springer Science & Business Media.

[CGAL 20]: The CGAL Project. 2020. CGAL User and Reference Manual (5.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1/Manual/packages.html.

[SPAA’ 20]: Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
[SIGMOD’ 22]: Yigiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).

https://doc.cgal.org/5.1/Manual/packages.html

	幻灯片 1

