
What is a kd-tree?

Parallel Tree Construction

Why a new parallel kd-tree?

Parallel Batch Updates

Experiments

University of California, Riverside

Ziyang Men, Zheqi Shen, Yan Gu, Yihan Sun

Parallel kd-tree with Batch Updates

… … … …

0 2

1 3

Points Samples 3 Buckets

0 1 2 3

Sk
e

le
to

n

0

1

2
3

Step 1
Sample &
get skeleton

Step 2
Parallel
sieve points

Step 3
Parallel
recurse

①

②

③ ③ ③ ③

Tree points

Points to be inserted

3 Bucket

0 2 1 3

Step 1

Fetch tree skeleton

0 1

2 3

Step 2

Parallel sieve points

Imbalance!

: Continue recursion
Step 3: In parallel

: Rebuild with new points

Build a kd-tree [Bentely’ 79]:

1. Find the median of the objects.
2. Partition into two parts.
3. Recursive.

1. An efficient tree construction algorithm optimizes work, span and I/O complexity.
2. A reconstruction-based update algorithm guarantees the tree to be weight-balanced.
3. A highly efficient implementation.

Our Contribution:

1. A slightly unbalanced tree.
• 𝐥𝐨𝐠 𝒏 + 𝑶 𝟏 tree height or 𝑶(𝐥𝐨𝐠 𝒏) height.
• Use samples to estimate the median.

2. Build multiple levels at once
• One round of data movement is sufficient.
• I/O efficient points sieving algorithm to partition points.

General Idea

Fully balanced tree
𝑶(𝒏 𝐥𝐨𝐠 𝒏)

Real-world datasets

Table 1: Tree construction and query time on read-world datasets for Pkd-tree and baselines.
Lower is better. 𝑘-NN queries are performed in parallel on all points in the dataset. “Range” is the
time for 1000 range report queries with output size between 104-106. The fastest runtime for
each benchmark is underlined. “s.f.”: segmentation fault. “t.o.”: time out (more than 3 hours).

Synthetic datasets

Figure 2: Time required for batch update on points from Varden and
Uniform on a tree with 1000M points in 3 dimensions. Lower is better.

Figure 1: The evaluation of the performance gain for techniques in tree construction.
Lower is better. The datasets have 1000M size in 3 dimensions. The y-axis
normalized to the final version that builds 6 levels at once and using sampling.

Figure 3: Incremental update time and query time with different imbalance ratio 𝛼. Lower is better. The dataset contains
1000M points in 3D, divided into 1000 batches, and incrementally inserted into an initially empty tree. We perform 1-NN
queries in Uniform distribution after each insertion.

Uniform: points are uniformly distributed
Varden: points are skewed distributed

Input a b c d e f g h i
Bucket 0 2 3 1 2 1 0 3 1

Output a g d f i b e c h
Bucket 0 0 1 1 1 2 2 3 3

• Parallel is hard, e.g., avoid data race, keep I/O efficiency …
• Borrow ideas from the cache-efficient parallel sorting [SPAA’ 20]

1. The kd-tree does not support rotation.

• Instead, we choose to rebuild the imbalanced sub-tree.

• Known as partial rebuild [SSBM’ 83].

2. Use weighted-balanced scheme.
• Allow the tree to be off from perfectly balanced by a

factor of 𝛼, where 0 < 𝛼 < 1.

• Otherwise, rebuilds the sub-tree.

The cost of partial rebuild can be amortized to tree nodes visit.

• 𝑶(𝐥𝐨𝐠𝟐𝒏) work per element.

Handling of imbalance

Machine : 96 cores, 192 hyper-threads, 1.5 TB
main memory, code in C++.

References:
[Bentely’ 79]: Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9 (1975), 509–517.
[SSBM’ 83]: Mark H Overmars. 1983. The design of dynamic data structures. Vol. 156. Springer Science & Business Media.
[CGAL’ 20]: The CGAL Project. 2020. CGAL User and Reference Manual (5.1 ed.). CGAL Editorial Board. https://doc.cgal.org/5.1/Manual/packages.html.
[SPAA’ 20]: Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
[SIGMOD’ 22]: Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. 2022. ParGeo: a library for parallel computational geometry. In European Symposium on Algorithms (ESA).

I/O inefficiency. Query on logarithmic trees.
Rebuild the whole tree
to keep full balanced.

- Conventionally, kd-trees are maintained fully-balanced
and is hard to support efficient updates while maintaining
balance. Existing parallel update algorithms either fully
rebuild the tree or sacrifice query performance.

- High performance also requires strong guarantee in work
(time complexity), span (parallelism) and I/O (cache)
complexity.

Propose the Pkd-tree that is
highly parallel, I/O-efficient, and
can support efficient updates.

Techniques:

Challenges:

https://doc.cgal.org/5.1/Manual/packages.html

	幻灯片 1

