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Problem Definitions

How to compute the influence 𝜎 𝑆 ?

Ours with 𝜶𝒏 centers Simulation [4,5] Memoization [2]

space 𝑂( 1 + 𝛼 𝑛) 𝑂(𝑛) 𝑂(𝑅𝑛)

work 𝑃(𝑅 ⋅ min(
1

𝛼
, 𝑇)) 𝑂(𝑅𝑇) 𝑂(𝑅)

notes 𝑇 is the avg. influence of 𝑣 𝛼 = 0 𝛼 = 1
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• Influence propagation: a node 
in a network may propagate 
its influence to its neighbors 
(in a cascading way)… The 
“word-of-mouth” effect
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• Influence propagation model 
(Independent Cascading, IC): In 
each timestamp, a newly-activated 
vertex will activate its neighbor 
with probability 𝒑
• Influence maximization (IM) 

[KKT’03]: find 𝒌 “seeds” such 
that the expectation of their 
total influence is maximized

Influence = 5

Influenced

Not influenced

Propagate

Fail prop

t = 0

t = 1

t = 2

• IM is NP-hard under the IC model [4]

• If the objective is also submodular and monotone: a simple 
greedy algorithm is (1-1/e)-approximation [4]

General Greedy Algorithm

marginal(S, v) = influence 𝑆 ∪ 𝑣  - influence(S)
S = { }
for i = 1 to k {
  𝑣∗ = argmax

𝑣∈𝑉
marginal(𝑆, 𝑣)

  𝑆 = 𝑆 ∪ {𝑣}
}

A Greedy Algorithm: 
• Start from empty seed set S
• Repeatedly adding the vertex with the highest marginal gain to S.

• Simulation [4,5]: simulate the influence propagation for 𝑹 
rounds and use the average

• Very expensive in time

• Memoization [2]: memorizing the simulation results of the
influence propagation for 𝑹 rounds and use the average

• Very expensive in space

…

Expectation = 4.333
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Sketch 1: influence = 5

Sketch 2: influence = 4

Sketch 3: influence = 4

Influence({D}) = ?

Simulation 1: influence = 5

Simulation 2: influence = 4

Simulation 3: influence = 4

…

Expectation = 4.333

A sketch is a subgraph:
• where edges represent

successful propagations
• The connected

component (CC) size is
the influence on that
experiment

Our solution: compressible sketch
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Sketch 1: influence =
CC(F) = 5

Sketch 2: influence = 
BFS(D) = 4

Case 1: encounter a center 
during BFS. Use the CC size of 
the center

Case 2: No center encountered. 
Use #vertices visited in BFS

• Pre-select 𝜶𝒏 centers and only memorize connectivity 
component (CC) sizes for the centers!

• If CC(v) is large, it’s likely to 
be connected to a center, 
and the cost is cheap!

• If CC(v) is small, even finish 
the BFS is cheap!

How to efficiently select seeds?
• The Greedy algorithm itself is still expensive!

• Selecting 1 seed needs to re-evaluate 𝒏 vertices

•𝛀(𝒌 ⋅ 𝑹𝒏) cost even not considering compression

• The CELF [5] Optimization re-evaluates much fewer vertices

• For the same vertex v, marginal(v, S) is non-increasing 
as 𝑺 grows larger

• CELF is iterative and hard to be parallelized
A Greedy Algorithm based on CELF: Lazily update scores

Best (stale) score

Re-evaluate the true score

If still the top, select & go to next

Otherwise, insert it back & repeat

Our solutions: P-tree or Win-tree based CELF

v* = Q.pop();
score[v*] = marginal(v*, S)
if v* is better than Q.top then {
  S = S + {v*}; break;
} else insert v* with back to Q;  

• Solution based on Parallel Trees (P-trees)[1]

• P-tree: binary search trees support:

• split, batch_insert, construction

• “prefix-doubling”: evaluate batches of size 1, 2, 4, 8, … 
until the best new score is better than all the stale scores!

• Theorem: The total number of evaluations for P-tree is at 
most twice as that of CELF

• (Another) Solution based on Winning Trees

• Slightly better in practice, but no worst-case guarantee

• Setup

• Machine: 96 cores, 1.5TB memory

• Baselines: Ours1=ours with no compression, Ours0.1=ours
with 𝛼 = 0.1, InfuserMG [3] and Ripples [6] are parallel
baseline systems

Time Space Time Space Time Space Time Space
SLDT 1.00 1.00 1.76 0.38 1.60 1.17 22.8 1.65

LJ 1.00 1.00 3.42 0.27 10.2 1.76 21.7 3.41
SD 1.00 1.00 4.18 0.36 11.2 1.69 - -

CH5 1.00 1.00 1.51 0.22 62.2 1.80 2.91 0.34

MEAN 1.00 1.00 1.76 0.26 5.66 1.56 18.3 1.34

Ours1 Ours0.1 InfuserMG Ripples
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