
Full Version Code

Fast and Space-Efficient Parallel Algorithms for Influence Maximization

Letong Wang

Experimental Results

Xiangyun Ding

Yan Gu Yihan Sun

Problem Definitions

How to compute the influence 𝜎 𝑆 ?

Ours with 𝜶𝒏 centers Simulation [4,5] Memoization [2]

space 𝑂(1 + 𝛼 𝑛) 𝑂(𝑛) 𝑂(𝑅𝑛)

work 𝑃(𝑅 ⋅ min(
1

𝛼
, 𝑇)) 𝑂(𝑅𝑇) 𝑂(𝑅)

notes 𝑇 is the avg. influence of 𝑣 𝛼 = 0 𝛼 = 1

References
[1] Guy Blelloch, Daniel Ferizovic, and Yihan Sun. 2022. Joinable Parallel Balanced Binary Trees. ACM Transactions on
Parallel Computing (TOPC) 9, 2 (2022), 1–41.
[2] Suqi Cheng, Huawei Shen, Junming Huang, Guoqing Zhang, and Xueqi Cheng.2013. Staticgreedy: solving the
scalability-accuracy dilemma in influence maximization. In Proceedings of the 22nd ACM international conference on
Information& Knowledge Management. 509–518.
[3] Gökhan Göktürk and Kamer Kaya. 2020. Boosting parallel influence-maximization kernels for undirected networks
with fusing and vectorization. IEEE Transactions on Parallel and Distributed Systems 32, 5 (2020), 1001–1013.
[4] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network. In
ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 137–146.
[5] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van Briesen, and Natalie Glance. 2007.
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining. 420–429.
[6] Marco Minutoli, Mahantesh Halappanavar, Ananth Kalyanaraman, Arun Sathanur, Ryan Mcclure, and Jason
McDermott. 2019. Fast and scalable implementations of influence maximization algorithms. In 2019 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 1–12.

B

C

D

A

H

F

G

E

• Influence propagation: a node
in a network may propagate
its influence to its neighbors
(in a cascading way)… The
“word-of-mouth” effect

B

C

D

A

FG

E

A

A H

• Influence propagation model
(Independent Cascading, IC): In
each timestamp, a newly-activated
vertex will activate its neighbor
with probability 𝒑
• Influence maximization (IM)

[KKT’03]: find 𝒌 “seeds” such
that the expectation of their
total influence is maximized

Influence = 5

Influenced

Not influenced

Propagate

Fail prop

t = 0

t = 1

t = 2

• IM is NP-hard under the IC model [4]

• If the objective is also submodular and monotone: a simple
greedy algorithm is (1-1/e)-approximation [4]

General Greedy Algorithm

marginal(S, v) = influence 𝑆 ∪ 𝑣 - influence(S)
S = { }
for i = 1 to k {
 𝑣∗ = argmax

𝑣∈𝑉
marginal(𝑆, 𝑣)

 𝑆 = 𝑆 ∪ {𝑣}
}

A Greedy Algorithm:
• Start from empty seed set S
• Repeatedly adding the vertex with the highest marginal gain to S.

• Simulation [4,5]: simulate the influence propagation for 𝑹
rounds and use the average

• Very expensive in time

• Memoization [2]: memorizing the simulation results of the
influence propagation for 𝑹 rounds and use the average

• Very expensive in space

…

Expectation = 4.333

B

C

D

A

H

F

G

E

B

C

D

A

H

F

G

E

B

C

D

A

H

F

G

E

Sketch 1: influence = 5

Sketch 2: influence = 4

Sketch 3: influence = 4

Influence({D}) = ?

Simulation 1: influence = 5

Simulation 2: influence = 4

Simulation 3: influence = 4

…

Expectation = 4.333

A sketch is a subgraph:
• where edges represent

successful propagations
• The connected

component (CC) size is
the influence on that
experiment

Our solution: compressible sketch

B

C

D

A

H

F

G

E

B

C

D

A

H

F

G

E

Sketch 1: influence =
CC(F) = 5

Sketch 2: influence =
BFS(D) = 4

Case 1: encounter a center
during BFS. Use the CC size of
the center

Case 2: No center encountered.
Use #vertices visited in BFS

• Pre-select 𝜶𝒏 centers and only memorize connectivity
component (CC) sizes for the centers!

• If CC(v) is large, it’s likely to
be connected to a center,
and the cost is cheap!

• If CC(v) is small, even finish
the BFS is cheap!

How to efficiently select seeds?
• The Greedy algorithm itself is still expensive!

• Selecting 1 seed needs to re-evaluate 𝒏 vertices

•𝛀(𝒌 ⋅ 𝑹𝒏) cost even not considering compression

• The CELF [5] Optimization re-evaluates much fewer vertices

• For the same vertex v, marginal(v, S) is non-increasing
as 𝑺 grows larger

• CELF is iterative and hard to be parallelized
A Greedy Algorithm based on CELF: Lazily update scores

Best (stale) score

Re-evaluate the true score

If still the top, select & go to next

Otherwise, insert it back & repeat

Our solutions: P-tree or Win-tree based CELF

v* = Q.pop();
score[v*] = marginal(v*, S)
if v* is better than Q.top then {
 S = S + {v*}; break;
} else insert v* with back to Q;

• Solution based on Parallel Trees (P-trees)[1]

• P-tree: binary search trees support:

• split, batch_insert, construction

• “prefix-doubling”: evaluate batches of size 1, 2, 4, 8, …
until the best new score is better than all the stale scores!

• Theorem: The total number of evaluations for P-tree is at
most twice as that of CELF

• (Another) Solution based on Winning Trees

• Slightly better in practice, but no worst-case guarantee

• Setup

• Machine: 96 cores, 1.5TB memory

• Baselines: Ours1=ours with no compression, Ours0.1=ours
with 𝛼 = 0.1, InfuserMG [3] and Ripples [6] are parallel
baseline systems

Time Space Time Space Time Space Time Space
SLDT 1.00 1.00 1.76 0.38 1.60 1.17 22.8 1.65

LJ 1.00 1.00 3.42 0.27 10.2 1.76 21.7 3.41
SD 1.00 1.00 4.18 0.36 11.2 1.69 - -

CH5 1.00 1.00 1.51 0.22 62.2 1.80 2.91 0.34

MEAN 1.00 1.00 1.76 0.26 5.66 1.56 18.3 1.34

Ours1 Ours0.1 InfuserMG Ripples

9
6
h

9
6

4
8

2
4

1
68421

1

2

3
SLDT

9
6
h

9
6

4
8

2
4

1
68421

100

200

LJ

Total Sketch Const ruct ion Seed Select ion

9
6
h

9
6

4
8

2
4

1
68421

2500

5000

7500

SD

9
6
h

9
6

4
8

2
4

1
68421

50

100

CH5

9
6
h

9
6

4
8

2
4

1
68421

5

10

9
6
h

9
6

4
8

2
4

1
68421

250

500

9
6
h

9
6

4
8

2
4

1
68421

5000

10000

15000

9
6
h

9
6

4
8

2
4

1
68421

100

200

9
6
h

9
6

4
8

2
4

1
68421

2.5

5.0

7.5

9
6
h

9
6

4
8

2
4

1
68421

200

400

9
6
h

9
6

4
8

2
4

1
68421

5000

10000

9
6
h

9
6

4
8

2
4

1
68421

100

200

300

9
6
h

9
6

4
8

2
4

1
68421

10

20

9
6
h

9
6

4
8

2
4

1
68421

1000

2000

3000

9
6
h

9
6

4
8

2
4

1
68421

20

40

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Ours1

Ours0.1

InfuserMG

Ripples

Num ber of Cores

Tim e Out

	Slide 1

