
Parallel and (Nearly) Work-Efficient Dynamic Programming
Xiangyun Ding

University of California, Riverside

xding047@ucr.edu

Yan Gu

University of California, Riverside

ygu@cs.ucr.edu

Yihan Sun

University of California, Riverside

yihans@cs.ucr.edu

ABSTRACT
The idea of dynamic programming (DP), proposed by Bellman in

the 1950s, is one of the most important algorithmic techniques.

However, in parallel, many fundamental and sequentially simple

problems become more challenging, and open to a (nearly) work-

efficient solution (i.e., the work is off by at most a polylogarithmic

factor over the best sequential solution). In fact, sequential DP al-

gorithms employ many advanced optimizations such as decision

monotonicity or special data structures, and achieve better work

than straightforward solutions. Many such optimizations are in-

herently sequential, which creates extra challenges for a parallel

algorithm to achieve the same work bound.

The goal of this paper is to achieve (nearly) work-efficient par-

allel DP algorithms by parallelizing classic, highly-optimized and

practical sequential algorithms. We show a general framework

called the Cordon Algorithm for parallel DP algorithms, and use it to

solve several classic problems. Our selection of problems includes

Longest Increasing Subsequence (LIS), sparse Longest Common

Subsequence (LCS), convex/concave generalized Least Weight Sub-

sequence (LWS), Optimal Alphabetic Tree (OAT), and more. We

show how the Cordon Algorithm can be used to achieve the same

level of optimization as the sequential algorithms, and achieve good

parallelism. Many of our algorithms are conceptually simple, and

we show some experimental results as proofs-of-concept.

CCS CONCEPTS
• Theory of computation→ Parallel algorithms.

KEYWORDS
Parallel Algorithms, Dynamic Programming, Longest Increasing

Subsequence, Longest Common Subsequence, Least Weighted Sum,

Optimal Alphabetic Tree, Decision Monotonicity

1 INTRODUCTION
The idea of dynamic programming (DP), since proposed by Richard

Bellman in the 1950s [13], has been extensively used in algorithm

design, and is one of the most important algorithmic techniques.

It is covered in classic textbooks and basic algorithm classes, and

is widely used in research and industry. The goal of this paper is

to achieve (nearly) work-efficient (defined below) and parallel
DP algorithms based on parallelizing classic, highly-optimized and

practical sequential algorithms.

At a high level, a DP algorithm computes the DP values for a
set of states (labeled by integers) by a recurrence. The recurrence
specifies a set of transitions from state 𝑗 to state 𝑖 , i.e., how 𝐷 [𝑗]
can be used to compute 𝐷 [𝑖]1. We call 𝑗 a decision at 𝑖 . 𝐷 [𝑖] is
then computed by taking the best (minimum or maximum) among

1
More generally, a transition may compute 𝐷 [𝑖] from multiple other states. All algo-

rithms in this paper only requires one state 𝑗 in the transition to compute 𝐷 [𝑖].

all decisions, which we call the best decision at 𝑖 . Throughout

the paper, we will use 𝑖∗ to denote the best decision of state 𝑖 . We

introduce more concepts about DP in Sec. 2.

One can view the states and transitions as a directed acyclic

graph (DAG), which we refer to as a DP DAG. In this DAG, each

vertex is a state, and an edge 𝑗 to 𝑖 denotes a transition from 𝑗

to 𝑖 . Since such an edge indicates that computing 𝐷 [𝑖] logically
requires 𝐷 [𝑗], we also call it a dependency, and say 𝑖 depends
on 𝑗 . Sequentially, we can compute all states based on a topological

ordering. For simplicity, we always assume that the (integer) order

of the states is a valid topological ordering.

Unfortunately, many DP algorithms (even some simple ones se-

quentially) are hard to parallelize, and are especially hard to achieve

work-efficiency (the work asymptotically matches the best sequen-

tial algorithm) or even near work-efficiency (off by a polylogarith-

mic factor). We note that on today’s multicore machines with tens

to hundreds of processors, achieving low work is one of the most

crucial objectives for designing practical parallel algorithms. One

particularly intriguing and somewhat ironic challenge for achieving

work-efficient parallel DP algorithms is that, sequential algorithms

are extremely well-optimized. In many cases, an optimized DP al-

gorithm does not need to process all edges (transitions) in the DP

DAG; some even do not need to process all vertices (states). We

review the literature at the end of this section. In fact, almost all

textbook DP solutions can be optimized to achieve lower work

than the straightforward solution that directly computes the DP

values of all states based on the recurrence. Such examples include

longest increasing subsequence (LIS), (sparse) longest common sub-

sequence (LCS), (convex/concave) least weight subsequence (LWS),

and many others discussed in this paper.

One typical DP optimization that is both theoretically elegant

and practically useful is decision monotonicity (DM). At a high
level, DM indicates that two states 𝑖 and 𝑗 > 𝑖 must have their

best decisions 𝑗∗ ≥ 𝑖∗, called the convex case
2
, or the concave case

where either 𝑗∗ ≤ 𝑖∗ or 𝑗∗ ≥ 𝑖 (see Fig. 1). Hence, when finding

the best decision for state 𝑗 , one can narrow down the possible

range of 𝑗∗ based on the known best decisions of previous states,

and thus avoid processing all transitions. DM has been widely

studied in the sequential setting (e.g., [35, 39, 41, 42, 60, 60, 61]),

and is also closely related to concepts such as quadrangle inequali-

ties [89, 90] and Monge property [76]. Sequentially, using DM saves

a polynomial factor than the naïve DP algorithm in many applica-

tions [1, 2, 16, 40, 64, 75, 87]. In the parallel setting, however, among

the papers we know of [21, 23, 29, 43, 52, 67, 78], most from the 90s,

very few of them take advantage of DM to reduce work. Indeed,

none of them are work-efficient, and most of them have a polyno-

mial overhead, which limits their potential applicability on today’s

multicore machines. The only nearly work-efficient results [21, 23]

focus on the concave case of one specific problem.

2
The definitions of convexity and concavity are interchanged in some other papers.

1

𝑖∗ 𝑗∗ 𝑖 𝑗 𝑖∗ 𝑖 𝑗∗ 𝑗𝑗∗

(a): Convex Case (b): Concave Case

Figure 1: Convex and concave decision monotonicity. (a). Convexity: for

two states 𝑖 < 𝑗 , their best decisions satisfy 𝑖∗ ≤ 𝑗∗. (b). Concavity: for two
states 𝑖 < 𝑗 , their best decisions satisfy either 𝑗∗ ≤ 𝑖∗ or 𝑗∗ ≥ 𝑖 .

The challenge of using DM in parallel lies in two aspects. First,

sequentially we skip the transitions for state 𝑖 by observing the best

decisions of all states before 𝑖 . Whenmultiple states are processed in

parallel, they cannot see each other’s best decision, making it hard to

skip the same set of “useless” transitions as in the sequential setting.

Second, many classic sequential DP algorithms with DM relies

on efficient data structures such as monotonic queues, which are

inherently sequential. Achieving the same work bound in parallel

also requires careful redesign of the underlying data structures.

In this paper, we study parallel DP algorithms to achieve the same

work as highly-optimized sequential algorithms. Given a sequential

algorithm Γ with certain optimizations, our goal for work-efficiency

is to process (asymptotically) the same number of transitions and

states as in Γ. Regarding parallelism, we hope to achieve the best

possible parallelism indicated by the transitions processed by Γ. We

formalize our goals in Sec. 2.3. Our solution is based on an algorith-

mic framework that generally applies to almost all DP algorithms.

We call this framework the Cordon Algorithm. At a high level,

our framework specifies how to correctly identify a subset of states

that do not depend on each other and process them in parallel.

We then present how to do so efficiently for specific problems. To

achieve work-efficiency, our key ideas are two-fold. First, many of

our algorithms use prefix-doubling to bound the additional work

on processing unnecessary states. Second, we design new parallel
data structures to skip unnecessary transitions.

This paper studies general approaches for parallel DP, with a spe-

cial focus on applying the non-trivial, effective optimizations found

in the sequential context to parallel algorithms. We select classic DP

problems and their optimized sequential solutions, and parallelize

them using novel techniques. Our framework unifies one existing

parallel LIS algorithm [45], and provides new parallel algorithms

for various problems such as sparse LCS, convex/concave gener-

alized LWS and GAP edit distance (GAP), and optimal alphabetic

tree (OAT). All the algorithms are (nearly) work-efficient with non-

trivial parallelism. Among them, we highlight our contributions on

parallelizing the DP algorithms with decision monotonicity. The

core of our idea is a parallel algorithm for convex/concave gener-

alized LWS. We apply it to other problems such as GAP and OAT,

and achieve new theoretical results. For OAT, we partially solve

the open problem in [70] by providing a work-efficient algorithm

with polylogarithmic span when the inputs are positive integers

with word size 𝑛polylog(𝑛) . We present our theoretical results in

Thm. 3.1, 3.2, 4.1, 4.2, 5.1 and 5.2. We believe this is the first pa-

per that achieves near work-efficiency in parallel for a class of DP

algorithms with DM.

Although the main focus of this paper is to achieve low work

in theory, an additional goal is to make the algorithms simple and

practical. We implement two algorithms as proofs-of-concept (code

available at [34]). On 10
9
input size, both of them outperform se-

quential solutions when the depth of the DP DAG is within 10
5
,

and achieve 20–30× speedup with smaller depth of the DP DAG.

Due to page limit, we provide the full version of the paper in [33],

which contains more algorithmic details, proofs, and some addi-

tional algorithms that fit into our framework.

RelatedWork. Dynamic programming (DP) is one of themost stud-

ied topics in algorithm design. The seminal survey [42] by Galil and

Park reviewed two types of optimization techniques sequentially,

including decision monotonicity (e.g., [35, 39, 41, 42, 60, 60, 61, 87])

and sparsity (e.g., [37, 38, 49, 54]). This paper mainly focuses on

parallelizing the sequential algorithms in this scope, and we will

review the literature of each problem in the corresponding section.

DP is also widely studied in parallel. There exists rich literature

on optimizing various goals in different models, such as span (time)

in PRAM (e.g. [6, 9, 11, 43, 52, 67, 68, 70, 71, 74, 78]), I/O cost in the

external-memory/ideal-cache model (e.g., [25–28, 57, 81]), rounds

in the MPC model [12, 20, 48, 55], or on the BSP model [5, 65, 66].

However, these papers either only considered the DP algorithms

without the optimizations, or incur polynomial work overhead,

except for [21, 23] for one specific problem. Instead, our paper tries

to parallelize the efficient and practical sequential algorithms while

maintaining low work. Some other works try to parallelize certain

types of DP algorithms or applications using DP (e.g., [3, 10, 18,

32, 58, 73, 86]). Alternately, our work aims to provide a general

approach to parallelize almost all DP algorithms.

2 MODEL AND FRAMEWORK
We use the work-span model in the classic multithreaded model

with binary-forking [8, 15, 19]. We assume a set of threads that

share the memory. Each thread acts like a sequential RAM plus a

fork instruction that forks two threads running in parallel. When

both threads finish, the original thread continues. A parallel-for is

simulated by forks in a logarithmic number of steps. A computation

can be viewed as a DAG. The work𝑊 of a parallel algorithm is the

total number of operations, and the span (depth) 𝑆 is the longest

path in the DAG. In practice, we can execute the computation with

work𝑊 and span 𝑆 using a randomized work-stealing scheduler [19,

46] in time𝑊 /𝑃 + 𝑂 (𝑆) with 𝑃 processors with high probability.

A parallel algorithm is work-efficient, if its work is 𝑂 (𝑊), where
𝑊 is the work of the best known or the corresponding sequential

algorithm, and nearly work-efficient if its work is 𝑂̃ (𝑊). We use

𝑂̃ (·) to hide polylog(𝑛) where 𝑛 is the input size.

2.1 Basic Concepts in Dynamic Programming
A DP algorithm solves an optimization problem by breaking it

down to subproblems, memoizing the answers to the subproblems,

and using them to find the answer to the original problem. The

subproblems are usually indexed by integers, referred to as states.
With clear context, we directly use 𝑖 to refer to “state 𝑖”. The DP

value of a state is determined either by a boundary condition (i.e.,

initial values), or from other states, specified by a DP recurrence.
This paper studies recurrences in the following form:

𝐷 [𝑖] = min/max 𝑓𝑖, 𝑗 (𝐷 [𝑗]) (1)

where 𝑗 is a decision at 𝑖 . Function 𝑓𝑖, 𝑗 (·) indicates how the DP

value of state 𝑗 can be used to update state 𝑖 . The transitions (i.e.,

2

dependencies) among states form a DAG 𝐺 = (𝑉 , 𝐸) as introduced
in Sec. 1. We use 𝑗 → 𝑖 to denote an edge from 𝑗 to 𝑖 in the DAG,

and use best [𝑖] to denote the best decision of state 𝑖 .

During a DP algorithm, we may maintain the DP value of a state

and update it by the recurrence.We call the process of updating𝐷 [𝑖]
by 𝐷 [𝑗] a relaxation, or say 𝑗 relaxes 𝑖 . A relaxation is successful

if the DP value is updated to a better value, i.e., a lower (higher)

value if the objective is minimum (maximum). We call the actual DP

value of a state the true or finalized DP value to distinguish from

the DP value being updated during the algorithm, which we call the

tentative DP value. We say a state 𝑖 is finalized if we can ensure

that its true DP value has been computed, and tentative otherwise.

Among all tentative states, we say a state is ready, if all its decisions
are finalized, and unready otherwise. A naïve DP algorithm will

process all transitions and states based on a topological ordering.

DP Optimizations. Instead of computing the recurrence straight-

forwardly, many algorithms can optimize the computation by skip-

ping vertices and/or edges in the DAG to save work. We call such

algorithms optimized DP algorithms. For example, given an in-

put sequence 𝐴[1..𝑛], the optimized LIS algorithm [63] maintains

a data structure to precisely find the best decision of each state

in 𝑂 (log𝑛) cost, and only processes 𝑂 (𝑛) transitions instead of

𝑂 (𝑛2) as suggested by the recurrence. Similarly, given two input

sequences 𝐴[1..𝑛] and 𝐵 [1..𝑚], the optimized LCS algorithm only

needs to process all states 𝐷 [𝑖, 𝑗] where 𝐴[𝑖] = 𝐵 [𝑗], instead of

𝑂 (𝑛𝑚) states in the recurrence. Another typical optimization is

decision monotonicity where the best decisions of previous states

can narrow down the range for best decisions for later states, which

skips transitions and saves work. Typical examples include con-

cave/convex generalized LWS (see Sec. 4), OAT (see Sec. 5.1), GAP

(see Sec. 5.2), etc. We will discuss all these algorithms in this paper.

2.2 Parallelizing Sequential DP Algorithms
We now discuss our goal to parallelize a sequential DP algorithm.

Our primary goal is to achieve (asymptotically) the same compu-

tation as an optimized sequential algorithm. More formally, for

a sequential algorithm Γ computing a recurrence 𝑅 with certain

optimizations, we define the 𝚪-optimized DAG, denoted as 𝐺Γ =

(𝑉Γ, 𝐸Γ), as follows.𝐺Γ is the same as the DP DAG on 𝑅 with some

edges highlighted: for all edges that are processed by Γ, we high-
light them in 𝐺Γ , and call them the effective edges. We call the

other edges normal edges. These effective edges can be used to fully

complete the computation. For a sequential DP algorithm Γ, we
hope its faithful and best possible parallelization Λ to:

• process the same effective edges in 𝐺Γ and achieve the same

work as Γ, and
• have span proportional to the effective depth of 𝐺Γ , defined as

the largest number of effective edges in any path in 𝐺Γ .

Namely, if our goal is to parallelize Γ and perform the same com-

putation, the parallel algorithm Λ has to process all edges 𝑗 → 𝑖

processed by Γ. This means 𝑖 can be finalized only after j is finalized,

so the span is related to the effective depth as defined above. We use

𝐸̂Γ to denote the set of effective edges, and 𝑑ˆ (𝐺Γ) as the effective
depth of 𝐺Γ . More formally, we define the following concepts.

We say a parallel algorithm Λ is an optimal parallelization
of a sequential DP algorithm Γ, if 1) the set of edges processed in

Λ and Γ satisfies 𝐸̂Γ ⊆ 𝐸̂Λ and |𝐸̂Λ | = 𝑂 (|𝐸̂Γ |), 2) the work of the

two algorithms are asymptotically the same, and 3) the span of Λ is

𝑂̃ (𝑑ˆ (𝐺Γ)). Namely, Λ can process a superset of edges of that in Γ,
but not asymptotically more, and its span is proportional to the

effective depth of the Γ-optimized DAG.

In addition, we define the perfect parallelization. In an omni-

scient version of Γ, we only need to process the best decisions based
on their dependencies. We define the 𝚪-perfect DAG, denoted as

𝐺∗Γ , as subgraph of 𝐺Γ that only contains the best decision edges

(both effective and normal edges). We say an optimal parallelization

Λ of Γ is also a perfect parallelization if the span of Λ is 𝑂̃ (𝑑ˆ (𝐺∗Γ)).
While the definitions seem abstract, we will later show that

they are intuitive for concrete problems. For example, in longest

common subsequence (LCS), both 𝑑ˆ (𝐺Γ) and 𝑑ˆ (𝐺∗Γ) are the output
LCS length 𝑘 (but for other algorithms they can be different), and

our goal is to achieve 𝑂̃ (𝑘) span for a perfect parallelization.

Note that the “perfect parallelization” of a sequential algorithm

does not directly suggest optimality in work or span bounds for the

same problem. One can possibly achieve better bounds by redesign-

ing the recurrence and/or sequential algorithm with fewer edges or

a shallower depth. Instead of finding or redesigning a different DAG

to obtain new optimizations, our focus is to provide parallelization

of existing sequential algorithms with optimizations.

In the following, we first present our new algorithmic framework:

the Cordon Algorithm, which provides a correct, although not

necessarily efficient parallelization for general DP algorithms. On

top of it, for each specific problem, we will show how to achieve low

work, which, as discussed in Sec. 4 and 5, can be highly non-trivial.

2.3 Our Framework: the Cordon Algorithm
Our idea is based on the phase-parallel framework [79] (see below)

adapted to DP algorithms. The phase-parallel framework by Shen

et al. aims to identify (as many as possible) operations that do

not depend on each other, and process them in parallel. Directly

applying this framework to DP algorithms will give the following

algorithm outline:

Phase-Parallel Framework for DP algorithms
While there exist any tentative states:

• Find the set of ready states as F
• Process all states in F in parallel and mark all of them

as finalized

We call each iteration of the while-loop a round. We call the

set of states being processed in round 𝑖 the frontier of round 𝑖 ,

denoted as F𝑖 . While the phase-parallel framework gives a high-

level approach in achieving parallelism, it does not indicate how to

do so (i.e., how to identify the ready states in each round).

We now introduce our Cordon Algorithm, which uses a novel

approach to identify the frontier F𝑖 in each round, particularly

for a DP computation 𝐺Γ . The Cordon Algorithm identifies the

unready tentative states and put sentinels on them; then it uses all

sentinels to outline a cordon to mark the boundary of the frontier.

We summarize the algorithm in the following steps. Note that every

step can be processed in parallel.

Step 1 Mark all states as tentative and initialize them by the

boundary condition.

3

Step 2 If a tentative state 𝑗 can successfully relax another ten-

tative state 𝑖 (i.e., update 𝐷 [𝑖] to a better value), put a sentinel on

state 𝑖 . Such a sentinel means that all the descendants (inclusive)

of state 𝑖 are unready. We say this state and all its descendants are

blocked by the sentinel in this case. Therefore, a state is ready if

there is no sentinel on any of its ancestors (inclusive).

Step 3 For each ready state, use its DP value to relax the tenta-

tive DP values of its descendants. Usually, we need to do so implicitly
to achieve efficient work. We discuss more details later.

Step 4 Mark all ready states as finalized. Clear all the sentinels.

Step 5 If there still exist tentative states, go to Step 2 and repeat.
We will first prove that the algorithm is correct, i.e., it computes

correct DP values for all states. Later we will show some motivating

examples to help understand this algorithm in Sec. 3.

Theorem 2.1. The Cordon Algorithm is correct.

Proof. This is equivalent to show that, when we find a ready state

and later mark it finalized, its DP value must be finalized.

We will show this inductively. At the beginning, the ready states

are those with zero in-degree in the DAG, and their true DP values

are specified by the boundary cases. Clearly, their DP values cannot

be relaxed by other states and they will be identified as ready in

our algorithm. Their DP values are also computed by the boundary

in Step 1. Therefore, our algorithm is correct in the first round.

Assume the algorithm is correct up to round 𝑟 . We will show that

round 𝑟 + 1 also correctly finds the ready states and their DP values.

Assume to the contrary that a state 𝑖 identified in Step 2 does not

have its true DP value yet. This means that the best decision of 𝑖

has not relaxed 𝑖 to the finalized value. Let 𝑗 = best [𝑖]. Note that 𝑗
cannot be finalized: if so, before 𝑗 is marked as finalized in Step 4,
in Step 3 it must have relaxed 𝑖 .

Therefore, 𝑗 is tentative. In this case, let 𝑗0 = 𝑖 , and state 𝑗𝑥 be

the best decision of state 𝑗𝑥−1 for 𝑥 ≥ 1, i.e., we chase the chain

of best decisions and get a list of states 𝑖 = 𝑗0, 𝑗1 = best [𝑗0], etc.
Let us find the first 𝑥 such that 𝐷 [𝑗𝑥] is not the true DP value but

𝐷 [𝑗𝑥+1] is the true DP value. We then prove that state 𝑗𝑥+1 must be

a tentative state. If we consider 𝑗𝑦 as the first finalized state on this

chain, then 𝑗𝑦−1 is a tentative state, and also must already have its

true DP value (because 𝑗𝑦 has relaxed it in Step 3). Note that since
state 𝑗𝑦−1 is a tentative state, all states between 𝑗0 and 𝑗𝑦−1 must

be tentative. Since 𝑗𝑦−1 has its true DP value, and 𝑖 = 𝑗0 does not

have its true DP value, the first switch point 𝑗𝑥 must be between 𝑗0
and 𝑗𝑦−1, and must also be a tentative state.

Therefore, state 𝑗𝑥+1 is a tentative state that can relax state 𝑗𝑥 ,

so it will put a sentinel on state 𝑗𝑥 . As a descendant of 𝑗𝑥 , state 𝑖

must be blocked by 𝑗𝑥 , and cannot be identified as a ready state.

This leads to a contradiction. Therefore, if a state 𝑖 is identified as

ready in our algorithm, its DP value must have been finalized. □
The Cordon Algorithm tells which states/vertices should be in

the frontier in each round, but the algorithm does not show how to

do so efficiently. Especially in Step 3, it is almost infeasible to use

the finalized DP values to explicitly update all other states. In this

case, we have to develop new parallel data structures to facilitate

this step. Next, we first use LIS and LCS as two examples to illustrate

our framework. We then apply it to more involved cases that use

decision monotonicity in Sec. 4 and 5.

3 MOTIVATING EXAMPLES ON LIS/LCS
To help the audience understand the more complicated algorithms

using DM in the following sections, we first provide two simple

examples on Cordon Algorithm, especially on how to compute the

cordon efficiently.

Longest Increasing Subsequence (LIS). We first use LIS as an

example. Given an input sequence 𝐴𝑖 , LIS computes the maximum

of 𝐷 [𝑖] such that:

𝐷 [𝑖] = max{1, max

𝑗<𝑖,𝐴 𝑗<𝐴𝑖

𝐷 [𝑗] + 1} (2)

We use 𝑛 as the input size and 𝑘 as the output LIS length. Directly

computing this recurrence takes 𝑂 (𝑛2) work. Sequentially, we can
process all states one by one, and computemax𝑗<𝑖,𝐴 𝑗<𝐴𝑖

𝐷 [𝑗] using
a binary search structure, giving 𝑂 (𝑛 log𝑘) total cost [63]. The
binary search precisely finds the best decision of each state, and

only 𝑛 transitions are processed. Many parallel LIS solutions have

also been proposed [22, 45, 65, 66, 79]. We will show that solving

LIS using our Cordon Algorithm framework will essentially give

an existing algorithm [45] and is a perfect parallelization of the

sequential 𝑂 (𝑛 log𝑘) algorithm.

Based on Cordon Algorithm, the boundary case is to set all

tentative DP values as 1. Then we will attempt to use the current

tentative DP values for relaxation. In this case, for a state 𝑖 , as

long as there is any other state 𝑗 < 𝑖 with 𝐴 𝑗 < 𝐴𝑖 , 𝐷 [𝑖] can be

relaxed to a better value 2. Therefore, all ready states are those

input objects that are prefix-min elements in the sequence, i.e.,

𝐴𝑖 is the smallest value among all 𝐴1..𝑖 . We can set these states

as ready, update all other states and repeat. Note that since all

unfinalized states have the same tentative DP value of 2, we do not
need to explicitly update the values in 𝐷 [𝑖], but can just maintain

a global variable as the current tentative DP value. By the same

idea, the ready states in the next round would be the prefix-min

elements in the input after removing the finalized states. The same

observation (repeatedly finding prefix-min elements) is exactly the

core idea of the algorithm in [45]. In their algorithm, they further

use a tournament tree to identify prefix-min elements efficiently

and achieve efficient 𝑂 (𝑛 log𝑘) work, and 𝑂 (𝑘 log𝑛) span. Note
that 𝑘 is exactly the perfect depth of the DP DAG, which is the

longest dependency between best decisions.

Theorem 3.1. Combining with a tournament tree, Cordon Algo-
rithm leads to a perfect parallelization of sequential 𝑂 (𝑛 log𝑘) LIS
algorithm in [45], where 𝑛 is the input size, and 𝑘 is the LIS length.

Longest Common Subsequence (LCS). LIS has a close relationship

with other important problems such as LCS. Here we will revisit

our cordon-based LIS algorithm from the view of LCS, which also

leads to a new parallel LCS algorithm. Given two sequences𝐴[1..𝑛]
and 𝐵 [1..𝑚] (𝑚 ≤ 𝑛), LCS aims to find a common subsequence 𝐶

of 𝐴 and 𝐵 such that 𝐶 has the longest length among all common

subsequences. An LIS problem can be reduced to an LCS problem

by first relabeling all input elements by 1..𝑛 based on their total

order, and then finding the LCS between this new sequence and a

sequence 𝐵 = ⟨1, 2, . . . , 𝑛⟩. See Fig. 2(a)–(c) for an illustration. LCS

has been extensively studied both sequentially [7, 38, 49, 54, 63]

and in parallel [6, 11, 24, 32, 74, 82, 88]. The standard DP solution

defines each state 𝐷 [𝑖, 𝑗] as the LCS for 𝐴[1..𝑖] and 𝐵 [1.. 𝑗], and
4

7 3 6 8 1 4 2 5

7

3

6

8

1

4

2

5

𝑖

𝐴𝑖

1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

LIS = 1

LIS = 2

LIS = 3

(a) (b) (c) (d)
1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

(e)

(3,6)

(4,8)

(5,6)

(6,4)

(7,7)

(7,3)

(7,2)

…

6

6

6

4

4

3

2

…

✓

✘

✓

✓

✘

✓

✓

…

On
Cordon?

Prefix
minStates

(f)

Figure 2: Illustrations for the LIS/LCS problem and the Cordon Algorithm. Subfigure (a): An input sequence for LIS with the DP value of each element.

Subfigure (b): A geometric view of the input sequence on a 2D plane with each element represented as (𝑖, 𝐴𝑖) . Subfigure (c): The corresponding LCS on this

input—the answer is the longest path from (0, 0) to (8, 8) using the maximum number of red edges. Subfigure (d): The process to compute the second cordon.

The ready states are marked in the shaded gray region. The cordon is decided by the three cells with LIS=2 in the original input. Subfigure (e): A general LCS

case where every diagonal can be a red edge. Subfigure (f): An example execution of our LCS algorithm. Here we only show unready states for simplicity.

uses the following recurrence:

𝐷 [𝑖, 𝑗] =
⎧⎪⎪⎨⎪⎪⎩
0, if 𝑖 = 0 or 𝑗 = 0

𝐷 [𝑖 − 1, 𝑗 − 1] + 1, if 𝐴[𝑖] = 𝐵 [𝑗]
max{𝐷 [𝑖 − 1, 𝑗], 𝐷 [𝑖, 𝑗 − 1] }, otherwise.

(3)

These transitions correspond to horizontal, vertical and diagonal

edges on a grid (see an example in Fig. 2(c)). A known sequential

optimization (i.e., sparsification) [7, 38, 49, 54] to this recurrence is

to observe that only the edges correspond to the diagonal edgeswith

𝐴[𝑖] = 𝐵 [𝑗] are useful. The computation is equivalent to finding

the longest path from the bottom-left to top-right corresponds to

these effective (red) edges, and all other edges and states can be

skipped. This can lead to a sequential algorithm with 𝑂 (𝐿 log𝑛)
cost, where 𝐿 is the number of pairs (𝑖, 𝑗) such that 𝐴[𝑖] = 𝐵 [𝑗].
For LIS, there are exactly 𝐿 = 𝑛 such effective edges.

We will show how Cordon Algorithm can be used to parallelize

this optimization. Starting with the boundary where 𝐷 [𝑖, 𝑗] = 0, we

observe that the DP value 𝐷 [𝑖, 𝑗] of any state with 𝐴[𝑖] = 𝐵 [𝑗] can
be updated to a better value. Therefore, we will put a sentinel at
each of such states to indicate that they should be updated. All such

sentinels will block the top-right part of the grid. In this way, the

blocked region is clearly marked by a staircase region, as shown
in Fig. 2(d). Therefore, the entire region within the first cordon has

the DP value 0. By repeatedly doing this, we will effectively find

that the region between the cordons of round 𝑖 + 1 and 𝑖 are those
states with DP value (LCS length) 𝑖 . The algorithm finishes in 𝑘

rounds where 𝑘 is the LCS length.

The problem boils down to efficiently identifying the cordon (i.e.,

the staircase) in each round. Note that in LIS there is at most one

effective edge in each column (see Fig. 2(d)), while in LCS there

can be multiple effective edges in each column (see Fig. 2(e)). We

will show an interesting modification to the original LIS algorithm

that can handle this more complicated setting. Here we sort all

edges by column index as the primary key (from the smallest to

largest) and row index as the secondary key (but from largest to

smallest). An example is illustrated in Fig. 2(f). Then, we will still

use a tournament tree to maintain this list, and apply prefix-min

on the row indexes. It is easy to see that a state/edge is on the

cordon if its row index is smaller than or equal to the prefix-min.

A tournament tree can identify, mark, and remove these states in

𝑂 (𝑙 log(𝐿/𝑙)) work and𝑂 (log𝑛) span [45], where 𝑙 is the number of

diagonal edges on the cordon. We thus have the following theorem.

Theorem 3.2. Combining with a tournament tree, Cordon Algo-
rithm leads to a perfect parallelization (𝑂 (𝐿 log𝑛) work and𝑂 (𝑘 log𝑛)
span) of sequential LCS algorithm in [7], where 𝑛 and 𝑚 < 𝑛 are
the input sequence sizes, 𝐿 is the number of pairs (𝑖, 𝑗) such that
𝐴[𝑖] = 𝐵 [𝑗], and 𝑘 is the LCS length.

Since𝐿 = 𝑂 (𝑛2), the𝑂 (log𝐿) terms in the cost of the tournament

trees is stated as 𝑂 (log𝑛) in the theorem.

Interestingly, to the best of our knowledge, this is the first parallel

LCS algorithm with 𝑜 (𝑚𝑛) work and 𝑜 (min(𝑛,𝑚)) span for sparse

LCS problem (i.e., 𝐿 = 𝑜 (𝑚𝑛) and 𝑘 = 𝑜 (min(𝑛,𝑚))). Meanwhile,

this algorithm is quite simple—we provide our implementation

in [34] and experimentally study it in Sec. 6. Another interesting

finding is that our algorithm implies how to map LCS to LIS (we

only know the other direction). Given two input strings 𝐴 and 𝐵, if

we sort all (𝑖, 𝑗) pairs for 𝐴[𝑖] = 𝐵 [𝑗] by increasing 𝑖 (primary key)

and decreasing 𝑗 (secondary key), then LCS is equivalent to the LIS

on the secondary keys (the 𝑗 (s)) of this sorted list.

Wewill showmore sophisticated parallelization of DP algorithms

in the next sections. Our LCS algorithm will be a subroutine in the

more involved parallel GAP algorithm introduced in Sec. 5.2.

4 PARALLEL GENERALIZED LWS
We now discuss the convex/concave generalized least weight
subsequence (GLWS) problem, which is one of the most classic

cases of decision monotonicity (DM). Given a cost function𝑤 (𝑗, 𝑖)
for integers 0 ≤ 𝑗 < 𝑖 ≤ 𝑛 and 𝐷 [0], the GLWS problem computes:

𝐷 [𝑖] = min

0≤ 𝑗<𝑖
{𝐸 [𝑗] +𝑤 (𝑗, 𝑖)} (4)

for 1 ≤ 𝑖 ≤ 𝑛, where 𝐸 [𝑗] = 𝑓 (𝐷 [𝑗], 𝑗) can be computed in

constant time. The original least weight subsequence (LWS) prob-

lem [50] is a special case when 𝐸 [𝑗] = 𝐷 [𝑗]. Here we use the

general case 𝐸 [𝑗] = 𝑓 (𝐷 [𝑗], 𝑗) that has the same sequential work

bound [35, 36, 39, 41, 42, 60], because the generalized version is

needed in many applications (see examples in Sec. 5). The GLWS

problem is also referred to as 1D/1D DP by Galil and Park [42].

The GLWS problem is highly relevant to other important prob-

lems (e.g., line breaking [64], optimal alphabetic trees [70], and a

number of computational geometry problems [1]). The essence of

GLWS is to cluster a list of 1D objects based on spatial proximity

and minimize the total weighted sum of all clusters. As an intuitive

example, consider selecting a subset of villages on a road (with their

coordinates known) to build post offices to minimize the total cost,

5

where 𝑤 (𝑗, 𝑖) is the cost of using one post office to serve villages

𝑗 + 1 to 𝑖 . This gives a GLWS problem with 𝐷 [𝑖] as the lowest cost
to serve the first 𝑖 villages and 𝐸 [𝑖] = 𝐷 [𝑖]. The DP recurrence

enumerates all possible decisions 𝑗 such that the last post office

serves the villages 𝑗 + 1 to 𝑖 , and takes the minimum cost among all

possible decisions 𝑗 . Many cost functions𝑤 used in practice (e.g.,

a fixed cost plus a linear or quadratic cost to the service range or

sum of distances from villages to the post office) are convex, which
implies decision monotonicity (DM) — for two states 𝑖 and 𝑗 > 𝑖 ,

their best decisions 𝑖∗ and 𝑗∗ satisfy 𝑗∗ ≥ 𝑖∗. Symmetrically we can

show that for concave cost functions 𝑤 , either 𝑗∗ ≥ 𝑖 or 𝑗∗ ≤ 𝑖∗

holds, although concave cost functions are less common in the

real-world applications of GLWS.

Given its high relevance in practice, convex GLWS has been

studied in parallel. Apostolico et al. [6] showed an algorithm with

𝑂 (𝑛2 log𝑛) work and𝑂 (log2 𝑛) span. Later, Larmore and Przytycka

[67] showed an improved algorithm with 𝑂 (𝑛1.5 log𝑛) work and

𝑂 (
√
𝑛 log𝑛) span. Despite the interesting algorithmic insights in

these algorithms, the polynomial overhead in work limits their

potential to outperform the classic sequential solutions with 𝑂̃ (𝑛)
work [35, 36, 39, 41, 42, 60]. For the concave case, somework [21, 23]

achieved near work-efficiency and polylog span on the original

LWS, but the ideas cannot be applied to generalized LWS.

In this section, we show how to use the Cordon Algorithm to par-

allelize a well-known sequential GLWS algorithm with 𝑂 (𝑛 log𝑛)
work, which works for both convex and concave DM. Although

efficiently applying Cordon Algorithm here requires many sophis-

ticated algorithmic techniques, our parallel algorithm (Alg. 1) re-

mains practical and it indeed outperforms the sequential algorithm

in a wide parameter range (see Sec. 6 for details). It is also the key

building block for many other algorithms shown later in Sec. 5.

We start with preliminaries and the classic sequential algorithm,

then discuss how to use Cordon Algorithm to parallelize it. We will

use the convex case when describing the algorithm since it is used

more often in practice, and discuss the concave case in Sec. 4.3.

4.1 Preliminaries
Convexity, Concavity and Decision Monotonicity. The convex-

ity of the cost function𝑤 is defined by the Monge condition [76].

We say that𝑤 satisfies the convex Monge condition (also known

as quadrangle inequality [89]) if for all 𝑎 < 𝑏 < 𝑐 < 𝑑 ,

𝑤 (𝑎, 𝑐) +𝑤 (𝑏, 𝑑) ≤ 𝑤 (𝑏, 𝑐) +𝑤 (𝑎, 𝑑) . (5)

We say that𝑤 satisfies the concave Monge condition (also known

as inverse quadrangle inequality) if for all 𝑎 < 𝑏 < 𝑐 < 𝑑 ,

𝑤 (𝑎, 𝑐) +𝑤 (𝑏, 𝑑) ≥ 𝑤 (𝑏, 𝑐) +𝑤 (𝑎, 𝑑) . (6)

Consider two states 𝑖 and 𝑗 > 𝑖 with best decisions 𝑖∗ and 𝑗∗. A
convex weight function leads to DM such that 𝑗∗ ≥ 𝑖∗. A concave

weight function leads to DM such that either 𝑗∗ ≥ 𝑖 or 𝑗∗ ≤ 𝑖∗.
A more general condition to enable DM is convex/concave total

monotonicity [2]. Our algorithm works as long as the transition

function is convex/concave totally monotone. For page limit, we

provide the full background of related discussions in [33].

The Sequential Algorithm. The best (sequential) work bound for

convex GLWS is 𝑂 (𝑛) [42, 60, 72], and 𝑂 (𝑛𝛼 (𝑛)) for the concave
case [61]. However, both of them are mainly of theoretical interest

since they are complicated and have large constants in both work

and space usage. We parallelize a simpler and more practical algo-

rithm with 𝑂 (𝑛 log𝑛) work [42]. This algorithm computes 𝐷 [1..𝑛]
in order. It implicitly maintains the best decision array best [1..𝑛].
When the algorithm finishes computing 𝐷 [𝑖], the algorithm up-

dates best [(𝑖 + 1)..𝑛] using 𝐷 [𝑖], then best [𝑗] (𝑗 > 𝑖) will be the

best decision of state 𝑗 among states 0 to 𝑖 .

However, maintaining and updating this array of size 𝑛 for 𝑛

iterations require quadratic work. Observe that after computing

𝐷 [𝑖], best [(𝑖 + 1) ..𝑛] must be non-decreasing in the convex case,

and must be non-increasing in the concave case [42]. Hence, the

algorithm maintains a “compressed” version of best [(𝑖 + 1)..𝑛] by
a list of triples ([𝑙, 𝑟], 𝑗), which indicates that all states between 𝑙

and 𝑟 have best decision 𝑗 , i.e., ∀𝑖′ ∈ [𝑙, 𝑟], best [𝑖′] = 𝑗 . The list is

maintained by a monotonic queue, which is a classic data structure

based on double-ended queue, and is inherently sequential. In the

𝑖-th iteration, we can directly find the decision of state 𝑖 from the

queue. After obtaining 𝐷 [𝑖], the monotonic queue can be updated

in 𝑂 (log𝑛) amortized cost to consider 𝑖 as a decision for all later

states. In total, this algorithm costs 𝑂 (𝑛 log𝑛) work. Here we refer
to the audience to the original paper for details of this algorithm.We

will call this algorithm Γlws . Making use of DM, Γlws only processes

transitions between each state 𝑖 and its best decision. The DAG

𝐺Γlws for this algorithm includes normal edges 𝑗 → 𝑖 for all 𝑗 < 𝑖 ,

and exactly 𝑛 effective edges best [𝑖] → 𝑖 for all states 𝑖 .

Due to simplicity, this algorithm is usually the choice of im-

plementation in practice. We will show a parallel version of this

algorithm using Cordon Algorithm.

4.2 Parallel Convex GLWS
We first give the parallel algorithm of convex GLWS. We will use

the “post-office” problem mentioned above as a running example

to explain the concepts, but our algorithm works for general cases.

Following the idea of the phase-parallel algorithm, with the

current finalized states, the goal is to find all ready states as the

frontier, where their true DP values can be computed from the

finalized ones.Wewill use our CordonAlgorithm to find the frontier

in each round. Naïvely, the recurrence suggests that a state depends

on all states before it. However, note that a state is essentially ready

as long as its best decision has been finalized. For the convex case,

we will use the fact as shown below.

Fact 4.1. In convex GLWS, let 𝑆 = { 𝑗 : 𝑗 > 𝑖 ∧ best [𝑗] ≤ 𝑖}, which
is the set of states with best decisions no later than state 𝑖 ; then 𝑆 is a
consecutive range of states starting from 𝑖 + 1.

This is a known fact in the sequential setting (can be proved

by induction). It suggests that the frontier of each round in the

phase-parallel algorithm is a consecutive range of states. Based on

this idea, we will maintain now as the last finalized state in each

round. Then in the next round, ideally, the algorithm should find the

cordon at cordon, where all states [now + 1, cordon − 1] are ready
and can compute their true DP value from (i.e., have their best

decisions at) states no later than now. We show an example of the

post-office problem to illustrate the phase-parallel framework in

Fig. 3. Based on the discussions above, ideally, in round 𝑖 , the ready

states in the frontier are those where the best solution contains 𝑖

post offices. This is because their best decision must have 𝑖 − 1 post
offices, and must be finalized in the previous round.

6

Algorithm 1: Parallel Convex GLWS

Input: problem size 𝑛,𝐷 [0], cost function 𝑤 (·, ·)
Output: 𝐷 [1..𝑛]: the DP table

Maintains: 𝐵: an sorted array storing triples of ([𝑙, 𝑟], 𝑗) , meaning that

for all 𝑙 ≤ 𝑖 ≤ 𝑟 , the current best decision best [𝑖] = 𝑗

1 now ← 0

2 while now < 𝑛 do
3 cordon← FindCordon(now)
4 UpdateBest(now, cordon)
5 now ← cordon − 1

6 return 𝐷 [1..𝑛]
7 Function FindCordon(now)
8 cordon← 𝑛 + 1
9 for 𝑡 ← 1 to log𝑛 do
10 𝑙 ← now + 2𝑡−1
11 𝑟 ← min(𝑛, now + 2𝑡 − 1)
12 ParallelForEach 𝑗 ∈ [𝑙, 𝑟] do
13 Let best [𝑗] be the current best decision of 𝑗 recorded by 𝐵

14 𝐷 [𝑗] ← 𝐸 [best [𝑗]] + 𝑤 (best [𝑗], 𝑗) // relax 𝑗

15 Binary search in 𝐵 and find

𝑠 𝑗 = min{𝑖 : 𝐸 [𝑗] + 𝑤 (𝑗, 𝑖) < 𝐸 [best [𝑖]] + 𝑤 (best [𝑖], 𝑖) },
i.e., 𝑖 is the first state that can be successfully relaxed by 𝑗

16 cordon← min(cordon,min𝑙≤ 𝑗≤𝑟 𝑠 𝑗)
17 if cordon ≤ 𝑟 + 1 then break

18 return cordon
19 Function UpdateBest(now, cordon)
20 Tree𝑇 ← FindIntervals(now + 1, cordon − 1, cordon, 𝑛)
21 Flatten𝑇 into array 𝐵

22 Merge adjancent intervals with the same best decision in 𝐵

23 Function FindIntervals(𝑗𝑙 , 𝑗𝑟 , 𝑖𝑙 , 𝑖𝑟)// use 𝐷 [𝑗𝑙 .. 𝑗𝑟] to update best [𝑖𝑙 ..𝑖𝑟]
24 if 𝑖𝑙 > 𝑖𝑟 then return null
25 if 𝑗𝑙 = 𝑗𝑟 then return a leaf node([𝑖𝑙 , 𝑖𝑟], 𝑗𝑙)
26 𝑖𝑚 ← (𝑖𝑙 + 𝑖𝑟)/2
27 𝑗𝑚 ← argmin𝑗𝑙 ≤ 𝑗≤ 𝑗𝑟 (𝐸 [𝑗] + 𝑤 (𝑗, 𝑖𝑚))
28 𝑥 ← node([𝑖𝑚, 𝑖𝑚], 𝑗𝑚)
29 In Parallel:
30 𝑇𝑙 ←FindIntervals(𝑗𝑙 , 𝑗𝑚, 𝑖𝑙 , 𝑖𝑚 − 1)

31 𝑇𝑟 ←FindIntervals(𝑗𝑚, 𝑗𝑟 , 𝑖𝑚 + 1, 𝑖𝑟)
32 return node 𝑥 with left child as𝑇𝑙 and right child as𝑇𝑟

This high-level idea is presented in the main function of Alg. 1.

Starting from now = 0, given the current finalized states [0, now],
we will find all ready states [now + 1, cordon − 1] using the Cordon
Algorithm, which essentially will find the cordon at cordon. We

explain this part with more details in Sec. 4.2.1. Similar to the

sequential algorithm, we also maintain a data structure 𝐵 to store

all triples ([𝑙, 𝑟], 𝑗) in order, which indicates that all states between

𝑙 and 𝑟 have best decisions at 𝑗 . This data structure is essential to

guarantee the efficiency of finding the next frontier, and also has

to be updated after each round with the new DP values (Line 4).

4.2.1 Finding the Cordon. To find the ready states in each round,

we use the Cordon Algorithm. Namely, with all states up to now
finalized, we can attempt to use the tentative states after now to

update other tentative DP values. Once we find any 𝑗 that can

update 𝑖 , we put a sentinel at 𝑖 . Among all sentinels, the smallest

(leftmost) one will give the final position of the cordon.

However, note that we cannot afford exhaustive checking for

all pairs of states (𝑗, 𝑖). First of all, checking all possible 𝑗 > now
may incur large overhead in work, since most of the later states are

unready anyway. Ideally, the algorithm should check up to exactly

the position of cordon, but this would be a chicken-and-egg problem.

To handle this, our idea is to use prefix-doubling, a common idea

in parallel algorithm design (e.g., [17, 31, 45, 47, 79]) to achieve

work-efficiency and high parallelism. Here, prefix-doubling is used

in function FindCordon in Alg. 1, which attempts to extend the

cordon by a batch of 2
𝑡−1

states for increasing 𝑡 in each substep 𝑡 .

If the entire batch is ready—i.e., no states in [now + 1, now + 2𝑡) can
be relaxed by each other, and all sentinels are outside the batch—we

try a larger step and extend the cordon to now + 2𝑡+1. During the
process, we will maintain cordon as the leftmost sentinel so far.

Once we find cordon is inside the batch, it means that this batch is

not fully ready. Therefore, the process stops and returns the current

value of cordon to the main algorithm.

Using prefix doubling, the parallel algorithm may check more

states than the ready ones, but the number of “wasted” states is

at most twice of the “useful” ones which will be finalized in this

round. Hence, the total number of processed states is 𝑂 (𝑛).
We then discuss the way to avoid checking all states 𝑖 > 𝑗 when

𝑗 puts sentinels. By DM, if 𝑗 can successfully relax 𝑖 , then 𝑗 can also

successfully relax all states 𝑖 ..𝑛. Therefore, we only need to put a

sentinel at the first such state 𝑖 . Recall that we maintain all best

decision triples in a data structure 𝐵 in sorted order. By DM, we

can simply binary search (𝑂 (log𝑛) cost) in 𝐵 to find 𝑠 𝑗 as the first

tentative state that can be updated by 𝑗 , and put a sentinel there.

The FindCordon in Alg. 1 gives the full process as described

above. Each iteration of the while-loop at Line 9 is a substep, which

processes a batch of states in [now + 2𝑡−1, now + 2𝑡) in substep 𝑡 .

Then for each state 𝑗 in this batch (in parallel), we use 𝐵 to find

the first state that can be updated by 𝑗 and put a sentinel at this

position 𝑠 𝑗 . Finally, the leftmost sentinel so far forms the cordon.

When the cordon is within the current batch, the algorithm returns.

We also show an illustration of this process in Fig. 3.

Lemma 4.1. The function FindCordon has 𝑂 (ℎ log𝑛) work and
𝑂 (log2 𝑛) span, where ℎ = cordon − now − 1 is the frontier size.
Proof. As discussed above, the prefix doubling scheme may attempt

to process up to ℎ′ states, where ℎ′ ≤ 2ℎ. For each such state, we

may binary search in 𝐵 to find 𝑠 𝑗 in 𝑂 (log𝑛) cost, and check the

condition on Line 15 in𝑂 (1) cost. Therefore, FindCordon has work

𝑂 (ℎ log𝑛) and span 𝑂 (log2 𝑛). □

4.2.2 Generating New Best-Decision Array. The efficiency of the

algorithm relies on maintaining an ordered data structure 𝐵 for

all best decision triples. We will store 𝐵 as an array of all such

triples in sorted order, such that the binary search in Line 15 can be

performed efficiently. Therefore, after we get the newly finalized

states 𝐷 [now + 1..cordon − 1], we need to update 𝐵 accordingly to

get the new best decision for all states in [cordon, 𝑛].
We use a divide-and-conquer approach to do this. Function Find-

Intervals(𝑗𝑙 , 𝑗𝑟 , 𝑖𝑙 , 𝑖𝑟) finds all best decision triples for states in range
[𝑖𝑙 , 𝑖𝑟], with best decisions in range [𝑗𝑙 , 𝑗𝑟]. Note that we only need

the best decisions for all states after cordon. All these states must

have their current best decisions within [now + 1, cordon − 1] (if
their best decisions are before now, they must have been ready in

7

frontier 1
1 post office
in solution

frontier 2
2 post offices

in solution

10 2 73 4 5 6 8 9 10 12

Subround 1 Process one state ④. cordon = 13.
Assume ④ cannot update any other tentative states.

Subround 2 Process next two states ⑤ and ⑥ in parallel.
Assume ⑤ cannot update any other tentative states.
The earliest state ⑥ can update is ⑧. So ⑥ puts a sentinel on ⑧. cordon=8.

Subround 3 Process next four states ⑦-⑩ in parallel.
⑦ puts a sentinel on ⑨; ⑧-⑩ may or may not put sentinels on other states.
cordon = 8 < 10. Return cordon(=8).

Example of generating frontier 2

frontier 3
3 post offices

in solution

11

frontier 4
4 post offices

in solution

Figure 3: Example of applying the Cordon Algorithm to the post office

problem with convex cost function. Circles (states) are villages. Arrows are

best decisions between states. The final answer is four post offices serving

villages 1–3, 4–7, 8–9, 10–12, respectively. The subrounds below illustrate

the prefix-doubling scheme in FindCordon.

this round and been included in the frontier). Therefore, at the root

level, we call FindIntervals(now + 1, cordon − 1, cordon, 𝑛).
In FindIntervals, we first compute 𝑗𝑚 = best [𝑖𝑚] where 𝑖𝑚 =

(𝑖𝑙 + 𝑖𝑟)/2, i.e., the best decision of the state in the middle. By

(convex) DM, the best decisions of 𝑖 ∈ [𝑖𝑙 , 𝑖𝑚 − 1] are in [𝑗𝑙 , 𝑗𝑚],
and the best decisions of 𝑖 ∈ [𝑖𝑚 + 1, 𝑖𝑟] are in [𝑗𝑚, 𝑗𝑟]. We will

deal with the two subproblems in parallel. To collect all ([𝑙, 𝑟], 𝑗)
triples in parallel, we build a tree-based structure bottom-up in the

recursion. Finally, we flatten the tree to an array and merge the

adjacent intervals if they have the same value of 𝑗 .

Lemma 4.2. The function UpdateBest has 𝑂 (ℎ log𝑛) work and
𝑂 (log2 𝑛) span, where ℎ = cordon − now − 1 is the frontier size.
Proof. Flattening and removing duplicates can be performed by

simple parallel primitives on trees and arrays in 𝑂 (ℎ) work and

𝑂 (log𝑛) span. Below we will focus on the more complicated FindIn-
tervals function. The span of FindIntervals comes from 1) 𝑂 (log𝑛)
levels recursions and 2) 𝑂 (log𝑛) span to check all states in [𝑗𝑙 , 𝑗𝑟]
in parallel. For the work, each recursive call in FindIntervals deals
with a range of states [𝑖𝑙 , 𝑖𝑟] using best decision candidates in range

[𝑗𝑙 , 𝑗𝑟]. The algorithm first finds 𝑖𝑚 ∈ [𝑖𝑙 , 𝑖𝑟] and its best decision

𝑗𝑚 ∈ [𝑗𝑙 , 𝑗𝑟]. This can be done by comparing all possible decisions

in [𝑗𝑙 , 𝑗𝑟], which is 𝑂 (𝑗𝑟 − 𝑗𝑙) work. split the ranges into two sub-

problems and recurse. Let 𝑁 = |𝑖𝑟 − 𝑖𝑙 + 1| and 𝑀 = | 𝑗𝑟 − 𝑗𝑙 + 1|
denoting the sizes of the two ranges. The work of FindIntervals
indicates the following recurrence:

𝑊 (𝑁,𝑀) =𝑊 (𝑁 /2, 𝑀1) +𝑊 (𝑁 /2, 𝑀2) +𝑂 (𝑀)
where 𝑀1 + 𝑀2 = 𝑂 (𝑀). This solves to 𝑂 (𝑀 log𝑛). On the root

level, 𝑀 = cordon − now − 1 = ℎ. This proves that the work is

𝑂 (ℎ log𝑛) for frontier size ℎ. □

4.3 Parallel Concave GLWS
To extend the algorithm to the concave case, we need a few modi-

fications. In FindCordon, by the concavity, if 𝑗 can update 𝑖 , then

𝑗 must be able to update 𝑗 + 1. Therefore, in Line 15 in Alg. 1, we

check whether 𝑗 can update 𝑗 + 1. If so, we put a sentinel at 𝑗 + 1.
The other modifications are in FindIntervals. First, due to concavity,
when we find 𝑗𝑚 as the best decision of 𝑖𝑚 in Line 27, we need to

swap the last two parameters in the first and second recursive calls,

i.e., the best decision range for states 𝑖𝑚 + 1 to 𝑖𝑟 must be before 𝑗𝑚 ,

and those in 𝑖𝑙 to 𝑖𝑚 − 1 must be after 𝑗𝑚 .

A more involved modification in the concave GLWS is that after

we get the array 𝐵 from FindIntervals, we have to merge it with the

old array 𝐵 before this round — FindIntervals only considers the

best decisions among [now + 1, cordon− 1], but in the concave case,

these states may also have better decisions using states before now.
For page limitation, we elaborate on this part in full paper [33].

With careful design, this part can also be finished in 𝑂 (ℎ log𝑛)
work and 𝑂 (log𝑛) span, where ℎ is the frontier size.

4.4 Theoretical Analysis
In this section, we show the theoretical analysis for our parallel

GLWS algorithm. We first summarize our main results as follows.

Theorem 4.1. Given an input sequence of size𝑛, and the sequential
GLWS algorithm Γlws introduced in Sec. 4.1, let 𝑘 = 𝑑ˆ (𝐺∗Γlws) be the
effective depth of the Γlws-perfect DAG. Then the Cordon Algorithm
for the convex GLWS has 𝑂 (𝑛 log𝑛) work and 𝑂 (𝑘 log2 𝑛) span. It
is a perfect parallelization of Γlws .

More intuitively, 𝑘 in Thm. 4.1 is also the number of best deci-

sions to make in the final solution: for instance, for the post-office

problem, it is the number of post offices in the optimal solution.

Theorem 4.2. Given an input sequence of size𝑛, and the sequential
GLWS algorithm Γlws introduced in Sec. 4.1, let 𝑘 = 𝑑ˆ (𝐺Γlws) be the
effective depth of the Γlws-optimized DAG. Then the Cordon Algorithm
for the concave GLWS has 𝑂 (𝑛 log𝑛) work and 𝑂 (𝑘 log2 𝑛) span. It
is an optimal parallelization of Γlws .

We first prove that both algorithms are nearly work-efficient

and have 𝑂 (𝑛 log𝑛) work.

Lemma 4.3. The Cordon Algorithm for GLWS has𝑂 (𝑛 log𝑛) work
for both convex and concave case.
Proof. Combining Lemma 4.1 and 4.2 (and the discussion in Sec. 4.3),

the work for each round is 𝑂 (ℎ log𝑛), where ℎ = cordon − now − 1
is the frontier size. Since the frontier sizes ℎ across all rounds add

up to 𝑛, the entire algorithm has 𝑂 (𝑛 log𝑛) work. □
We then show that the number of rounds in both convex and

concave cases is the effective depth of 𝐺Γlws . Recall that the DAG

𝐺Γlws includes normal edges between all states 𝑗 and 𝑖 < 𝑗 , and

effective edges between a state 𝑗 and its best decision. The effective

depth 𝑑ˆ (𝐺Γlws) is the largest number of effective edges in any path.

Lemma 4.4. The Cordon Algorithm for GLWS finishes in 𝑘 rounds,
where 𝑘 is 𝑑ˆ (𝐺Γlws).
Proof. Define the effective depth 𝑑ˆ (𝑠) of a state 𝑠 as the largest

number of effective edges of a path ending at 𝑠 . We will inductively

prove that a state 𝑠 is in the frontier of round 𝑟 iff. 𝑠 has effective

depth 𝑟 . The base case (boundary cases) holds trivially.

Assume the conclusion is true for 𝑟 − 1. We first prove the “if”

direction, i.e., if a state 𝑠 has effective depth 𝑟 , it must be in the

frontier of round 𝑟 . This is equivalent to show that there is no

sentinel on all states from now to 𝑠 . Assume to the contrary that

there is a state 𝑦 ∈ (now, 𝑠] with a sentinel, which is put by state

𝑥 ∈ (now, 𝑦]. This means that 𝑥 is a better decision for 𝑦 than all

8

states before now, indicating that 𝑦’s best decision 𝑦∗ ≥ now. Based
on the induction hypothesis, the effective depth of𝑦∗ must be larger

than 𝑟 − 1. Therefore, 𝑑ˆ (𝑦) = 𝑑ˆ (𝑦∗) + 1 > 𝑟 − 1+ 1 = 𝑟 , which means

that 𝑑ˆ (𝑦) is at least 𝑟 + 1. Based on the recurrence, there is a normal

edge from 𝑦 to 𝑠 , so 𝑑ˆ (𝑠) ≥ 𝑟 + 1, leading to a contradiction.

We then prove the “only if” condition, i.e., if a state 𝑠 is in the

frontier of round 𝑟 , it must have effective depth 𝑟 . The induction

hypothesis suggests that all states with effective depth smaller

than 𝑟 have been finalized in previous rounds, so we only need to

show that 𝑑ˆ (𝑠) cannot be larger than 𝑟 . Assume to the contrary

that 𝑑ˆ (𝑠) ≥ 𝑟 + 1. Let the path to 𝑠 with effective depth 𝑑ˆ (𝑠) be
𝑥1, 𝑥2, . . . , 𝑠 . Since the total number of effective edges on this path

is at least 𝑟 + 1, there must exist an effective edge 𝑥𝑖 → 𝑥𝑖+1 on the

path such that 𝑑ˆ (𝑥𝑖) = 𝑟 and 𝑑ˆ (𝑥𝑖+1) = 𝑟 +1. However, based on the

induction hypothesis, 𝑥𝑖 ’s best decision must have been finalized.

During Line 14, 𝑥 must get its true DP value, and will find itself

able to update 𝑥𝑖+1. Therefore, there will be a sentinel on 𝑥𝑖+1 ≤ 𝑠 ,

and 𝑠 cannot be identified in the frontier of round 𝑟 . □
We will then show that the number of rounds of the convex case

is also the effective depth of the 𝚪lws-perfect DAG 𝐺∗Γlws . This is
stronger than the Γlws-optimized DAG as shown above. Recall that

the perfect DAG 𝐺∗Γlws contains all best decision edges in 𝐺Γlws .

Lemma 4.5. The Cordon Algorithm for convex GLWS runs in 𝑘∗

rounds, where 𝑘∗ is 𝑑ˆ (𝐺∗Γlws).

Proof. Define the perfect depth 𝑑∗ (𝑠) of a state 𝑠 as the largest

number of effective edges of any path ending at 𝑠 in𝐺∗Γlws . Similarly,

we will show by induction that in round 𝑟 , all states with perfect

depth 𝑟 will be processed. The base case holds trivially. Assume the

conclusion holds for 𝑟 − 1. In round 𝑟 , we will show that a state

𝑠 with perfect depth 𝑟 must be put in the frontier. Let 𝑠∗ be the

best decision of 𝑠 , then 𝑑∗ (𝑠∗) = 𝑟 − 1 and therefore 𝑠∗ < now.
According to DM, any state 𝑥 between now and 𝑠 must have its best

decisions 𝑥∗ ≤ 𝑠∗ < now, indicating that 𝑑∗ (𝑥∗) ≤ 𝑟 − 1. Therefore,
𝑥 must find its true best decision in 𝐵, and cannot be updated by

any other tentative states in Line 15. This means that there will

be no sentinel between now and 𝑠 , so 𝑠 must be identified ready in

round 𝑟 . Therefore, a state with perfect depth 𝑟 must be finalized

in round 𝑟 , leading to the stated theorem. □
Combining Lemma 4.1, 4.2, 4.4 and 4.5 proves the span bounds

in Thm. 4.1 and 4.2.

5 OTHER PARALLEL DP ALGORITHMS
We now show that our algorithmic framework can be used to par-

allelize a wide variety of classic sequential DP algorithms. Due to

the space limit, we will focus on two of them and leave others in

the full version of this paper [33], with a short summary in Sec. 5.3.

In particular, for the optimal alphabetic tree (OAT) problem

(Sec. 5.1), we partially answered a long-standing open problem by

Larmore et al. [70] for reasonable input instances (for instance,

positive integer weights in range 𝑛polylog(𝑛)). For the GAP problem

(Sec. 5.2), we showed the first nearly work-efficient algorithm with

non-trivial parallelism. More interestingly, this algorithm combines

all techniques in the algorithms for convex GLWS and sparse LCS.

5.1 Parallel Optimal Alphabetic Trees (OAT)
The optimal alphabetic tree (OAT) problem is a classic problem and

has been widely studied both sequentially [30, 44, 51, 56, 59, 69, 77,

85] and in parallel [67, 68, 70, 78]. Given a sequence of non-negative

weights 𝑎1..𝑛 , the OAT is a binary search tree with 𝑛 leaves and has

the minimum cost, where the cost of a tree 𝑇 is defined as:

𝑐𝑜𝑠𝑡 (𝑇) =
𝑛∑︂
𝑖=1

𝑎𝑖𝑑𝑖 (7)

Here 𝑑𝑖 is the depth of the 𝑖-th leaf (from the left) of𝑇 (the root has

depth 0). One can view the weight 𝑎𝑖 as the frequency of accessing

leaf 𝑖 , and the depth of a leaf is the cost of accessing it. Then the

cost of 𝑇 is the total expected cost of accessing all leaves in 𝑇 . The

OAT problem is closely related to other important problems such as

the optimal binary search tree (OBST) [62] and Huffman tree [53].

Sequentially, Hu and Tucker [51] showed an OAT algorithmwith

𝑂 (𝑛 log𝑛) work. Later, Garsia and Wachs [44] simplified this algo-

rithm. In parallel, Larmore et al. [70] showed an algorithm based

on Garsia-Wachs. We will apply our techniques to this algorithm to

improve the span bounds. Due to page limit, we provide the details

of [70] in the full version paper [33], and review the high-level

idea here. The algorithm computes an 𝑙-tree [44], which has the

same depth with and will be finally converted to the OAT in 𝑂 (𝑛)
work and polylogarithmic span. The key insight of [70] is to start

with a sequence of 𝑛 leaf nodes with the input weights, and find

several disjoint intervals in the sequence to process in parallel. This

partition is done by various operations on the Cartesian tree of

the input sequence, which requires 𝑂 (𝑛 log𝑛) work and 𝑂 (log2 𝑛)
span. Larmore et al. showed that processing each interval can be

reduced to a convex LWS. The solution of the LWS will connect

items in this interval into a forest, which becomes a subgraph in the

final 𝑙-tree. Finally, for each tree in the forest, we insert its root back

to the sequence and repeat the process. This reinsertion step takes

𝑂 (𝑛 log𝑛) work and𝑂 (log𝑛) span by basic parallel primitives such

as sorting and range-minimum queries. The further rounds will

connect the forest to the final 𝑙-tree. Larmore et al. also showed that

the number of such intervals shrinks to half in each iteration, so the

algorithm will finish in 𝑂 (log𝑛) rounds. Here all other steps in ad-

dition to solving convex LWS take 𝑂 (𝑛 log2 𝑛) work and 𝑂 (log3 𝑛)
span. The remaining cost of the algorithm is to solve convex LWS in

each round, multiplied by the number of rounds, which is𝑂 (log𝑛).
Larmore et al. originally used the parallel convex LWS algo-

rithm from [4, 6], which has𝑂 (𝑚2
log𝑚) work and𝑂 (log2𝑚) span

when taking an input interval of length 𝑚. Later, Larmore and

Przytycka [67] improved the parallel convex LWS algorithm to

𝑂 (𝑚1.5
log𝑚) work and𝑂 (

√
𝑚 log𝑚) span, yielding𝑂 (𝑛1.5 log2 𝑛)

work and𝑂 (
√
𝑛 log2 𝑛) span for the OAT algorithm—the work over-

head is still polynomial. Larmore et al. [70] left the open problem

on whether there exists an OAT algorithm with 𝑂̃ (𝑛) work and

polylog(𝑛) span, which remains unsolved for three decades.

Note that the convex LWS problem is a special case of the convex

GLWS problem discussed in Sec. 4.1 with 𝐸 [𝑖] = 𝐷 [𝑖]. Hence, Alg. 1
directly gives 𝑂 (𝑚 log𝑚) work and 𝑂 (𝑘 log2𝑚) span for convex

LWS problem, and here 𝑘 is the longest dependency path of best

decisions. In Larmore’s algorithm, the forest for each interval is

constructed iteratively by the DP algorithm on LWS: if iteration 𝑖

finds the best decision at iteration 𝑗 < 𝑖 , then iteration 𝑖 creates one

9

more level on top of the forest at iteration 𝑗 . This means that the 𝑘

is equivalent to the depth of the forest, which is upper bounded by

the final OAT height ℎ. We present more details in [33]. Hence, we

can parameterize our final bounds using ℎ as:

Theorem 5.1. The optimal alphabetic tree (OAT) can be con-
structed in 𝑂 (𝑛 log2 𝑛) work and 𝑂 (ℎ log3 𝑛) span, where 𝑛 is the
size of input weight sequence and ℎ is the height of the OAT.

This algorithm is nearly work-efficient with span parameterized

on ℎ. One useful observation is that the OAT height ℎ is polyloga-

rithmic with real-world input instance with positive integer weights

and fixed word length. More formally, we can show that:

Lemma 5.1. If all input weights are positive integers in word size
𝑊 , the OAT height is 𝑂 (log𝑊).

The proof is not complicated and given in the full paper [33].

With this lemma, we can state the following corollary.

Corollary 5.1.1. If the input key weights are positive integers
with word size𝑊 = 𝑛polylog𝑛 , the OAT can be constructed in𝑂 (𝑛 log2 𝑛)
work and polylog(𝑛) span, where 𝑛 is the input size.

The bounds also hold for real number weights if the ratio be-

tween the largest and smallest weight is 𝑛polylog𝑛 . We note that in

realistic models we usually assume word-size𝑊 = 𝑛𝑂 (1) , in which

case Cor. 5.1.1 affirmatively answers the open problem in [70].

5.2 The GAP Edit Distance Problem
The GAP problem is a variant of the famous edit distance problem.

The GAP problem aligns two input strings with sizes 𝑛 and𝑚 ≤ 𝑛,

and allows editing a substring with certain cost function (formally

defined below). This problem has been widely studied both sequen-

tially [26, 36, 40] and in parallel [16, 25, 28, 43, 57, 80, 83]. As noted

by Eppstein et al. [36], most real-world cost functions are either

convex or concave, yielding 𝑂̃ (𝑛𝑚) work for the GAP problem

sequentially. Unfortunately, to the best of our knowledge, these

existing parallel algorithms for the GAP problem need Ω(𝑛2𝑚)
work, and the polynomial overhead makes them less practical.

More specifically, GAP takes two strings 𝐴[1..𝑛] and 𝐵 [1..𝑚],
and computes the minimum cost to align 𝐴 and 𝐵 using the fol-

lowing operations: 1) deleting 𝐴[𝑙 + 1..𝑟] with cost𝑤1 (𝑙, 𝑟), and 2)

deleting𝐵 [𝑙+1..𝑟] with cost𝑤2 (𝑙, 𝑟). Here we consider the following
recurrence, which is usually referred to as the GAP recurrence:

𝑃 [𝑖, 𝑗] = min

0≤𝑖′<𝑖
𝐷 [𝑖′, 𝑗] +𝑤1 (𝑖′, 𝑖)

𝑄 [𝑖, 𝑗] = min

0≤ 𝑗 ′< 𝑗
𝐷 [𝑖, 𝑗 ′] +𝑤2 (𝑗 ′, 𝑗)

𝐷 [𝑖, 𝑗] = min{𝑃 [𝑖, 𝑗], 𝑄 [𝑖, 𝑗], 𝐷 [𝑖 − 1, 𝑗 − 1] | 𝐴[𝑖] = 𝐵 [𝑗]}.
Here 𝑃 [𝑖, 𝑗] and𝑄 [𝑖, 𝑗] indicate the edits on the two strings. Directly
computing the recurrence uses𝑂 (𝑛2𝑚) work. Sincemost real-world

cost functions in machine learning, NLP, and bioinfomatics [36]

are either convex or concave, sequentially each row in 𝑃 or column

in 𝑄 is a convex or concave GLWS and can be computed in 𝑂̃ (𝑛)
or 𝑂̃ (𝑚) work. Hence, computing the entire 𝑃 and 𝑄 takes 𝑂̃ (𝑛𝑚)
work, leading to the same cost for computing 𝐷 and the entire

problem. We denote this standard sequential algorithm as Γgap .
Parallelizing this approach is extremely challenging even with

the parallel convex/concave GLWS in Sec. 4 as a subroutine, and

1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

(a)

1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

(b)

Figure 4: Example of a cordon in the GAP problem.

we are unaware of any existing work on this. The challenge here

is that the rows in 𝑃 interact with the columns in 𝑄 . For instance,

computing a row in 𝑃 requires one element from each column in𝑄 ,

but computing those elements again requires previous rows in 𝑃 .

Our key insight to parallelize this algorithm is to use the Cordon

Algorithm to efficiently mark the ready region to be computed

in each round. Note that as a generalization of the classic edit

distance/LCS, the GAP recurrence is similar to Recurrence 3, but

with “jumps” in computing 𝑃 and𝑄 . An illustration is given in Fig. 4.

In addition to the diagonal edges as in LCS (see Fig. 2), for rows and

columns, there also exist effective (red) edges (see Fig. 4(a)). Here

for simplicity we only draw a subset of these edges, and every state

𝐷 [𝑖, 𝑗] always have one vertical effective edge (to compute 𝑄 [𝑖, 𝑗]),
one horizontal effective edge (to compute 𝑃 [𝑖, 𝑗]), and may have a

diagonal edge if 𝐴[𝑖] = 𝐵 [𝑗]. All these edges imply the sentinels,

which form the cordon and imply the regions for ready states, as

shown in Fig. 4(b). The cordon is still a staircase as in LCS.

However, finding the cordon in GAP is sophisticated. We can-

not directly use a tournament tree as in LIS, since the vertical and

horizontal edges are computed on-the-fly and not known ahead of

time. Meanwhile, in a 2D table where the cordon is a staircase, we

cannot simply use prefix-doubling as in GLWS in Sec. 4. We propose

a unique solution here to use prefix-doubling on a 2D table and

computes the staircase cordon efficiently. This approach will con-

sider each row separately, but for all rows, we run prefix doubling

synchronously and try to see if the next ranges are available. First,

we put a sentinel on state (𝑥,𝑦) with a diagonal edge if (𝑥 −1, 𝑦−1)
is not finalized. We will maintain the best-decision structure for

each row and column, in the same way as the GLWS algorithm.

For this region to be checked, we will use the same approach as

in Alg. 1 to compute 𝑃 and 𝑄 , take the minimum as 𝐷 , and use 𝐷

to check their readiness. If a state (𝑥,𝑦) obtains the best decision
from another tentative state, we will put a sentinel on (𝑥,𝑦), which
will block the other states (𝑥 ′, 𝑦′) with 𝑥 ′ ≥ 𝑥 and 𝑦′ ≥ 𝑦. The

work to put the sentinels is proportional to the number of states

we checked in the prefix-doubling, and the span is polylogarithmic.

Finally we discuss how to handle the sentinels placed as above.

We store all sentinels based on the row index on increasing order.

After this, applying a prefix-min on these sentinels gives part of

the cordon (if they exist), and we will merge it with the previous

cordon. Then, for all tentative states, we check whether they are on

the correct side, and invalidate those across the cordon. Since we

are using prefix doubling, the wasted work for the invalid states

can be amortized. In the next prefix doubling step, we will also use

the cordon to limit the search region. Once all states within the

cordon are checked for readiness, we can move to the next round.

Due to prefix doubling, we only need 𝑂 (log𝑛) steps in each round.

10

Theorem 5.2. The Cordon Algorithm for the GAP problem has
𝑂 (𝑚𝑛 log𝑛) work and 𝑂 (𝑘 log2 𝑛) span, where 𝑛 and𝑚 ≤ 𝑛 are the
input size and 𝑘 is the effective depth of the Γgap-optimized DAG for
the sequential algorithm Γgap introduced in Sec. 5.2.

Recall that the sequential GAP algorithm Γgap gets the DP value

for each state 𝑠 = (𝑖, 𝑗) by solving the GLWS problems in row 𝑖 and

column 𝑗 , respectively, and the diagonal edge (𝑖 − 1, 𝑗 − 1) → (𝑖, 𝑗)
if applicable. Therefore, the optimal DAG𝐺Γgap contains three types

of edges

• (𝑖, 𝑗) → (𝑖′, 𝑗) for all 𝑖′ > 𝑖 ,

• (𝑖, 𝑗) → (𝑖, 𝑗 ′) for all 𝑗 ′ > 𝑗 , and

• (𝑖 − 1, 𝑗 − 1) → (𝑖, 𝑗) if 𝐴[𝑖] = 𝐵 [𝑗].
Among them, the effective edges include:

• (𝑖, 𝑗) → (𝑖′, 𝑗) where 𝑖 is the best decision for 𝑖′ in the GLWS

problem on row 𝑗 ,

• (𝑖, 𝑗) → (𝑖, 𝑗 ′) where 𝑗 is the best decision for 𝑗 ′ in the GLWS

problem on column 𝑖 , and

• (𝑖 − 1, 𝑗 − 1) → (𝑖, 𝑗) if 𝐴[𝑖] = 𝐵 [𝑗].
WLOG we assume 𝑚 ≤ 𝑛 in this section. We first prove the

span bound. We will show that the Cordon Algorithm finishes in 𝑘

rounds, where 𝑘 is the effective depth of 𝐺Γgap .

Lemma 5.2. Given two sequences of sizes 𝑛 and𝑚 ≤ 𝑛, the Cordon
Algorithm on GAP edit distance finishes in 𝑘 = 𝑑ˆ (𝐺Γgap) rounds.
Proof. The proof is similar to Lemma 4.4.We also define the effective

depth of a state 𝑠 as𝑑ˆ𝑠 . Wewill show by induction that 𝑠 is processed

in round 𝑟 iff. 𝑑ˆ𝑠 = 𝑟 . The base case holds trivially.

Assume the conclusion holds for all rounds up to 𝑟 − 1. We will

show it is also true for round 𝑟 . We first prove the “if” direction, i.e.,

if a state 𝑠 = (𝑖, 𝑗) (𝑖-th row, 𝑗-th column) has effective depth 𝑟 , it

must be in the frontier of round 𝑟 . This is equivalent to show that

there is no sentinel that blocks 𝑠 . For simple description, for two

states 𝑠 = (𝑖, 𝑗) and 𝑠′ = (𝑖′, 𝑗 ′), we say 𝑠 ≺ 𝑠′ if 𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗 ′.
Clearly, if a state 𝑠 ≺ 𝑠′, a sentinel on 𝑠 will block 𝑠′. Assume to the

contrary that there is a state 𝑦 ≺ 𝑠 with a sentinel, which is put by

another tentative state 𝑥 ≺ 𝑦. This means that the tentative state 𝑥

is a better decision than all finalized states, indicating that the best

decision of 𝑦, denoted as 𝑦∗, must also be tentative. Based on the

induction hypothesis, the effective depth of 𝑦∗ must be larger than

𝑟 − 1. Therefore, 𝑑ˆ (𝑦) ≥ 𝑑ˆ (𝑦∗) + 1 > 𝑟 − 1+ 1 = 𝑟 , which means that

𝑑ˆ (𝑦) is at least 𝑟 + 1. Let 𝑦 = (𝑖′, 𝑗 ′). 𝑦 and 𝑠 can be connected by

either one normal edge (when they are in the same row or column)

or two normal edges ((𝑖′, 𝑗 ′) → (𝑖, 𝑗 ′) and (𝑖, 𝑗 ′) → (𝑖, 𝑗)). This
means that the effective depth of 𝑠 is at least the same as 𝑦, which

is 𝑟 + 1. This leads to a contradiction.

We then prove the “only if” condition, i.e., if a state 𝑠 is in the

frontier of round 𝑟 , it must have effective depth 𝑟 . The induction

hypothesis suggests that all states with effective depth smaller

than 𝑟 have been finalized in previous rounds, so we only need to

show that 𝑑ˆ (𝑠) cannot be larger than 𝑟 . Assume to the contrary

that 𝑑ˆ (𝑠) ≥ 𝑟 + 1. Let the path to 𝑠 with effective depth 𝑑ˆ (𝑠) be
𝑥1, 𝑥2, . . . , 𝑠 . Since the total number of effective edges on this path

is at least 𝑟 + 1, there must exist an effective edge 𝑥𝑖 → 𝑥𝑖+1 on the

path such that 𝑑ˆ (𝑥𝑖) = 𝑟 and 𝑑ˆ (𝑥𝑖+1) = 𝑟 + 1. However, based on

induction hypothesis, 𝑥𝑖 ’s best decision must have been finalized.

In round 𝑟 , 𝑥 must get its true DP value, and will find itself able to

update 𝑥𝑖+1. Therefore, there will be a sentinel on 𝑥𝑖+1 ≺ 𝑠 , and 𝑠

cannot be identified in the frontier of round 𝑟 . □
Combining Lemma 4.1 and 4.2, the span in each round is𝑂 (log2 𝑛).

This proves the span bound in Thm. 5.2.

We then prove the work bound in Thm. 5.2.

Lemma 5.3. Given two sequences of sizes 𝑛 and𝑚 ≤ 𝑛, the Cordon
Algorithm on GAP edit distance has work 𝑂 (𝑚𝑛 log𝑛).
Proof. As 𝐺Γgap is a grid graph, its depth is no more than 𝑚 + 𝑛.
By Lemma 5.2 the algorithm will finish in 𝑘 = 𝑂 (𝑛) rounds. In
each round, we do prefix-doubling across all 𝑚 rows and try to

push the frontier on each row. In each prefix-doubling step we do

a prefix-min that costs 𝑂 (𝑚) work, so the cost of prefix-doubling

is 𝑂 (𝑚 log𝑛) in each round, and 𝑂 (𝑚𝑛 log𝑛) in total. Suppose ℎ is

the frontier size in one round. Due to prefix-doubling, the number

of tentative states we visited is at most 2ℎ. Combining Lemma 4.1

and 4.2, in each row/column we can achieve work proportional to

the number of tentative states. Thus the cost to put sentinels and

maintain the best decision arrays is also 𝑂 (𝑚𝑛 log𝑛). □

5.3 Other Algorithms
We further apply the Cordon Algorithm to several other problems

in the full version of this paper [33], including a GLWS problem on

a tree structure, 𝑘-GLWS, and Optimal Binary Search Tree (OBST).

For both 𝑘-GLWS and OBST, our algorithm leads to a correct al-

gorithm with trivial parallelism (𝑂̃ (𝑘) and 𝑂̃ (𝑛) span respectively).

However, we show that they are still optimal parallelization of the

sequential algorithms—this indicates that to further improve the

parallelism, one should probably find or redesign another sequential

algorithm to start with.

6 EXPERIMENTS
To demonstrate the practicability of our new algorithms, we de-

signed experiments for LCS and convex GLWS. We implemented

our parallel LCS algorithm and parallel GLWS algorithm in C++

using ParlayLib [14] to support fork-join parallelism and some

parallel primitives (e.g., reduce). Our tests use a 96-core (192 hyper-

threads) machine with four Intel Xeon Gold 6252 CPUs and 1.5 TB

of main memory. We implemented two of our new algorithms (LCS

and GLWS) as proofs-of-concept to show that our new techniques

and algorithms remain practical due to work efficiency, which is

also the main motivation of our paper. We release our code at [34],

which gives more details of our experiments.

Parallel LCS. While as one of the classic algorithmic problem, LCS

is widely studied in parallel, the existing parallel implementations

we know of [6, 11, 24, 74, 82, 84, 88] do not take advantage of the

sparsification. Most of them parallelizes the Θ(𝑛𝑚) algorithm for

two strings with sizes 𝑛 and 𝑚, and the experimental studies in

these papers focus on input sizes up to 10
5
. They cannot process

much larger instances in as the (sequential) sparse LCS algorithms

(e.g., [7]) as discussed in Sec. 3. Hence, in our experiments, our

baseline is our implementation of the sparse LCS in [7], which can

process our input instances with large size (10
8
) and small number

of effective edges 𝐿 (number of pairs (𝑖, 𝑗) such that 𝐴[𝑖] = 𝐵 [𝑗]).
11

102 105 108

k= LCS length

100

101

L= 108

Ours
Ours (1 thread)

102 105 108

k= LCS length

101

102

L= 109

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

Figure 5: Running time of our parallel LCS algorithm (in Sec. 3).

101 103 105

k= # of post offices

100

101

102
n= 108

Ours
Ours (1 thread)
Sequential

101 103 105

k= # of post offices

101

102

103
n= 109

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

Figure 6: Running time of our parallel convex-GLWS algorithm (Alg. 1).

We test two random strings 𝐴[1..𝑛] and 𝐵 [1..𝑛] with length 𝑛 =

10
8
, while controlling 𝐿 and 𝑘 (the LCS length). The pre-processing

time to find all matching pairs is not counted into the running time.

Fig. 5 shows the results when 𝐿 = 10
8
and 𝐿 = 10

9
.

Overall, our algorithm has up to 30× speed up than the sequential
version. Since the span of the algorithm is proportional to the LCS

length 𝑘 , the running time increases when 𝑘 increases. For 𝐿 =

10
8
, the parallel running time stays competitive to the sequential

running time until the extreme case 𝑘 = 10
8
(i.e., the two sequences

are exactly the same). Since our algorithm has𝑂 (𝐿 log𝑛) work and

𝑂 (𝑘 log𝑛) span, there is no parallelism when 𝐿 = 𝑘 = 10
8
. For

𝐿 = 10
9
, where the total work is larger, our parallel algorithm is

always faster than the sequential algorithm regardless of the value

of 𝑘 , and always achieves good parallelism.

Parallel GLWS. For GLWS, we use the setting of the post-office

problem described in Sec. 4. We compare our parallel algorithm

with the sequential solution in Sec. 4.1, as well as our own algo-

rithm running on one core. We generate random data for 𝑛 = 10
8

and 10
9
, and use different weight functions to control the output

size 𝑘 , which is the number of post offices in the solution. Fig. 6

shows the result on different 𝑛 and 𝑘 . The time for sequential al-

gorithm does not change significantly, because it has 𝑂 (𝑛 log𝑛)
work, which is independent of 𝑘 . For our algorithm, the running

time varies with 𝑘 due to the𝑂 (𝑘 log2 𝑛) span. When 𝑘 is small, our

algorithm is 20× faster than the sequential algorithm and achieves

30–40× self-relative speedup. Our parallel algorithm is faster than

the sequential algorithm for 𝑘 < 10
4
when 𝑛 = 10

8
, and is faster

than the sequential algorithm until 𝑘 ≈ 10
5
when 𝑛 = 10

9
.

7 CONCLUSION AND FUTUREWORK
We systematically studied general approaches to parallelize classic

sequential dynamic programming algorithms, particularly those

with non-trivial optimizations such as decision monotonicity and

sparsification. We showed a novel framework, the Cordon Algo-

rithm, and apply it to different DP recurrences. Theoretically, we

gave the concept of optimal parallelism and perfect parallelism of

a sequential algorithm, and showed that with a careful design, we

can achieve optimal parallelism for the classic sequential DP algo-

rithms in a (nearly) work-efficient manner, and perfect parallelism

for some instances. Practically, we show that our carefully-designed

techniques do not include much overhead, and can outperform the

original sequential version in a wide variety of cases.

We believe that the techniques in this paper opens a list of in-

teresting questions. First, many of the new parallel algorithms are

nearly work-efficient—we pick the most practical sequential algo-

rithms for each problem, but they can be off the best work bound

by up to an 𝑂 (log𝑛) factor. It is theoretically interesting to ask

if we can match the best work bound in parallel. Second, among

all these classic algorithms we looked at, one problem/algorithm

that cannot be directly solved by the Cordon Algorithm is the RNA

Secondary Structure [36]. Here, we may have 2
𝑛
different paths

in a DP DAG, so applying Cordon Algorithm efficiently may need

some complicated techniques. Finally, we show how to faithfully

parallelize the sequential DP algorithms. We are aware of other ap-

proaches [6, 22, 66, 74, 82, 88] for LIS/LCS that can achieve stronger

worst-case span bounds using divide-and-conquer. Hence, an inter-

esting direction is to see if we can redesign other DP algorithms in

a similar form to achieve better worst-case span.

ACKNOWLEDGEMENT
This work is supported by NSF grants CCF-2103483, IIS-2227669,

NSF CAREER Awards CCF-2238358 and CCF-2339310, the UCR

Regents Faculty Development Award, and the Google Research

Scholar Program.

REFERENCES
[1] Alok Aggarwal and Maria Klawe. 1990. Applications of generalized matrix

searching to geometric algorithms. Discrete Applied Mathematics 27, 1-2 (1990),
3–23.

[2] Alok Aggarwal, Maria M Klawe, Shlomo Moran, Peter Shor, and Robert Wilber.

1987. Geometric applications of a matrix-searching algorithm. Algorithmica 2, 1
(1987), 195–208.

[3] James B Aimone, Ojas Parekh, Cynthia A Phillips, Ali Pinar, William Severa,

and Helen Xu. 2019. Dynamic programming with spiking neural computing. In

International Conference on Neuromorphic Systems. 1–9.
[4] Aggarwal Alok and Park James. [n.d.]. Notes on searching in multidimensional

monotone arrays. In IEEE Symposium on Foundations of Computer Science (FOCS).
497–512.

[5] Carlos ER Alves, Edson Norberto Cáceres, and FKHA Dehne. 2002. Parallel

dynamic programming for solving the string editing problem on a CGM/BSP. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 275–281.
[6] Alberto Apostolico, Mikhail J Atallah, Lawrence L Larmore, and Scott McFaddin.

1990. Efficient parallel algorithms for string editing and related problems. SIAM
J. on Computing 19, 5 (1990), 968–988.

[7] Alberto Apostolico and Concettina Guerra. 1987. The longest common subse-

quence problem revisited. Algorithmica 2 (1987), 315–336.
[8] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. 2001. Thread scheduling

for multiprogrammed multiprocessors. Theory of Computing Systems (TOCS) 34,
2 (2001), 115–144.

[9] Mikhail J Atallah, S Rao Kosaraju, Lawrence L Larmore, Gary L Miller, and S-H

Teng. 1989. Constructing trees in parallel. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 421–431.

[10] Muaaz G Awan, Jack Deslippe, Aydin Buluc, Oguz Selvitopi, Steven Hofmeyr,

Leonid Oliker, and Katherine Yelick. 2020. ADEPT: a domain independent se-

quence alignment strategy for gpu architectures. BMC bioinformatics 21, 1 (2020),
1–29.

[11] K Nandan Babu and Sanjeev Saxena. 1997. Parallel algorithms for the longest com-

mon subsequence problem. In IEEE International Conference on High Performance
Computing (HiPC). IEEE, 120–125.

[12] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Mohammad-

Taghi Hajiaghayi, and Vahab Mirrokni. 2018. Massively parallel dynamic pro-

gramming on trees. arXiv preprint arXiv:1809.03685 (2018).
[13] Richard Bellman. 1954. The theory of dynamic programming. Bull. Amer. Math.

Soc. 60, 6 (1954), 503–515.

12

[14] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib — a

toolkit for parallel algorithms on shared-memory multicore machines. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 507–509.

[15] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal parallel

algorithms in the binary-forking model. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 89–102.

[16] Guy E. Blelloch and Yan Gu. 2020. Improved Parallel Cache-Oblivious Algorithms

for Dynamic Programming. In SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS).

[17] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Parallelism in

Randomized Incremental Algorithms. J. ACM 67, 5 (2020), 1–27.

[18] Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. 2016. Parallel

Shortest Paths Using Radius Stepping. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 443–454.

[19] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded

computations by work stealing. J. ACM 46, 5 (1999), 720–748.

[20] Mahdi Boroujeni and Saeed Seddighin. 2019. Improved MPC algorithms for edit

distance and Ulam distance. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 31–40.

[21] Phillip G Bradford, Gregory JE Rawlins, and Gregory E Shannon. 1998. Efficient

matrix chain ordering in polylog time. SIAM J. on Computing 27, 2 (1998), 466–

490.

[22] Nairen Cao, Shang-En Huang, and Hsin-Hao Su. 2023. Nearly optimal parallel

algorithms for longest increasing subsequence. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA).

[23] Kwong-fai Chan and Tak-wah Lam. 1990. Finding least-weight subsequences with

fewer processors. In International Symposium on Algorithms. Springer, 318–327.
[24] Yixin Chen, AndrewWan, and Wei Liu. 2006. A fast parallel algorithm for finding

the longest common sequence of multiple biosequences. BMC bioinformatics 7
(2006), 1–12.

[25] Rezaul Chowdhury, Pramod Ganapathi, Jesmin Jahan Tithi, Charles Bachmeier,

Bradley C Kuszmaul, Charles E Leiserson, Armando Solar-Lezama, and Yuan

Tang. 2016. Autogen: Automatic discovery of cache-oblivious parallel recursive

algorithms for solving dynamic programs. In ACM Symposium on Principles and
Practice of Parallel Programming (PPOPP). 10.

[26] Rezaul A. Chowdhury and Vijaya Ramachandran. 2006. Cache-oblivious dynamic

programming. InACM-SIAM Symposium on Discrete Algorithms (SODA). 591–600.
[27] Rezaul A. Chowdhury and Vijaya Ramachandran. 2008. Cache-efficient dynamic

programming algorithms for multicores. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). ACM.

[28] Rezaul A. Chowdhury and Vijaya Ramachandran. 2010. The cache-oblivious

gaussian elimination paradigm: theoretical framework, parallelization and exper-

imental evaluation. Theory of Computing Systems (TOCS) 47, 4 (2010), 878–919.
[29] Artur Czumaj. 1992. Parallel algorithm for the matrix chain product problem.

(1992).

[30] Sashka Davis. 1998. Hu-Tucker alogorithm for building optimal alphabetic binary

search trees. (1998).

[31] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically efficient

parallel graph algorithms can be fast and scalable. ACM Transactions on Parallel
Computing (TOPC) 8, 1 (2021), 1–70.

[32] Xiangyun Ding, Xiaojun Dong, Yan Gu, Yihan Sun, and Youzhe Liu. 2023. Efficient

Parallel Output-Sensitive Edit Distance. In European Symposium on Algorithms
(ESA).

[33] XiangyunDing, Yan Gu, and Yihan Sun. 2024. Parallel and (Nearly)Work-Efficient

Dynamic Programming. arXiv preprint arXiv:2404.16314.
[34] Xiangyun Ding, Yan Gu, and Yihan Sun. 2024. Source Code. https://github.com/

ucrparlay/Parallel-Work-Efficient-Dynamic-Programming.

[35] David Eppstein. 1990. Sequence comparison with mixed convex and concave

costs. J. Algorithms 11, 1 (1990), 85–101.
[36] David Eppstein, Zvi Galil, and Raffaele Giancarlo. 1988. Speeding up dynamic

programming. In IEEE Symposium on Foundations of Computer Science (FOCS).
488–496.

[37] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F Italiano. 1990.

Sparse dynamic programming. In ACM-SIAM Symposium on Discrete Algorithms
(SODA). 513–522.

[38] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F Italiano. 1992.

Sparse dynamic programming I: linear cost functions. J. ACM 39, 3 (1992),

519–545.

[39] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F Italiano. 1992.

Sparse dynamic programming II: convex and concave cost functions. J. ACM 39,

3 (1992), 546–567.

[40] Zvi Galil and Raffaele Giancarlo. 1989. Speeding up dynamic programming with

applications to molecular biology. Theoretical Computer Science (TCS) 64, 1 (1989),
107–118.

[41] Zvi Galil and Kunsoo Park. 1989. A linear-time algorithm for concave one-

dimensional dynamic programming. (1989).

[42] Zvi Galil and Kunsoo Park. 1992. Dynamic programming with convexity, con-

cavity and sparsity. Theoretical Computer Science 92, 1 (1992), 49–76.

[43] Zvi Galil and Kunsoo Park. 1994. Parallel algorithms for dynamic programming

recurrences with more than O(1) dependency. J. Parallel Distrib. Comput. 21, 2
(1994), 213–222.

[44] Adriano M Garsia and Michelle L Wachs. 1977. A new algorithm for minimal

binary search trees. SIAM J. Comput. 6, 4 (1977), 622–642.
[45] Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. 2023. Parallel

Longest Increasing Subsequence and van Emde Boas Trees. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA).

[46] Yan Gu, Zachary Napier, and Yihan Sun. 2022. Analysis of Work-Stealing and

Parallel Cache Complexity. In SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS). SIAM, 46–60.

[47] Yan Gu, Zachary Napier, Yihan Sun, and Letong Wang. 2022. Parallel Cover

Trees and their Applications. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). 259–272.

[48] Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan

Studenỳ, Jukka Suomela, Jara Uitto, and Hossein Vahidi. 2023. Fast Dynamic

Programming in Trees in the MPC Model. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 443–453.

[49] Daniel S Hirschberg. 1977. Algorithms for the longest common subsequence

problem. J. ACM 24, 4 (1977), 664–675.

[50] Daniel S Hirschberg and Lawrence L. Larmore. 1987. The least weight subse-

quence problem. SIAM J. on Computing 16, 4 (1987), 628–638.

[51] Te C Hu and Alan C Tucker. 1971. Optimal computer search trees and variable-

length alphabetical codes. SIAM J. Appl. Math. 21, 4 (1971), 514–532.
[52] S-HS Huang, Hongfei Liu, and Venkatraman Viswanathan. 1994. Parallel dynamic

programming. IEEE International Parallel and Distributed Processing Symposium
(IPDPS) 5, 3 (1994), 326–328.

[53] David A. Huffman. 1952. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[54] James W Hunt and Thomas G Szymanski. 1977. A fast algorithm for computing

longest common subsequences. Commun. ACM 20, 5 (1977), 350–353.

[55] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. 2017. Efficient massively parallel

methods for dynamic programming. In ACM Symposium on Theory of Computing
(STOC). 798–811.

[56] Alon Itai. 1976. Optimal alphabetic trees. SIAM J. Comput. 5, 1 (1976), 9–18.
[57] Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov, Yongquan

Lu, Charles Leiserson, and Rezaul Chowdhury. 2016. Deriving divide-and-conquer

dynamic programming algorithms using solver-aided transformations. In Sym-
posium on Object-oriented Programming, Systems, Languages and Applications
(OOPSLA). 145–164.

[58] Mohammad Mahdi Javanmard, Pramod Ganapathr, Rathish Das, Zafar Ahmad,

Stephen Tschudi, and Rezaul Chowdhury. 2019. Toward efficient architecture-

independent algorithms for dynamic programs: poster. In Symposium on Principles
and Practice of Parallel Programming (PPoPP). 413–414.

[59] Marek Karpinski, Lawrence L Larmore, and Wojciech Rytter. 1997. Correctness

of constructing optimal alphabetic trees revisited. Theoretical Computer Science
180, 1-2 (1997), 309–324.

[60] Maria M. Klawe. 1989. A simple linear time algorithm for concave one-dimensional
dynamic programming. University of British Columbia Vancouver.

[61] Maria M Klawe and Daniel J Kleitman. 1990. An almost linear time algorithm for

generalized matrix searching. SIAM Journal on Discrete Mathematics 3, 1 (1990),
81–97.

[62] Donald E. Knuth. 1971. Optimum binary search trees. Acta informatica 1 (1971),
14–25.

[63] Donald E. Knuth. 1973. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley.

[64] Donald E. Knuth and Michael F. Plass. 1981. Breaking paragraphs into lines.

Software: Practice and Experience 11, 11 (1981), 1119–1184.
[65] Peter Krusche and Alexander Tiskin. 2009. Parallel longest increasing subse-

quences in scalable time and memory. In International Conference on Parallel
Processing and Applied Mathematics. Springer, 176–185.

[66] Peter Krusche and Alexander Tiskin. 2010. New algorithms for efficient par-

allel string comparison. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 209–216.

[67] Lawrence L Larmore and Teresa M Przytycka. 1995. Constructing Huffman trees

in parallel. SIAM J. on Computing 24, 6 (1995), 1163–1169.

[68] Lawrence L Larmore and Teresa M Przytycka. 1996. A parallel algorithm for

optimum height-limited alphabetic binary trees. J. Parallel and Distrib. Comput.
35, 1 (1996), 49–56.

[69] Lawrence L Larmore and Teresa M Przytycka. 1998. The optimal alphabetic tree

problem revisited. Journal of Algorithms 28, 1 (1998), 1–20.
[70] Lawrence L Larmore, Teresa M Przytycka, andWojciech Rytter. 1993. Parallel con-

struction of optimal alphabetic trees. In ACM symposium on Parallel Algorithms
and Architectures (SPAA). 214–223.

[71] Lawrence L Larmore and Wojciech Rytter. 1994. An optimal sublinear time

parallel algorithm for some dynamic programming problems. Inform. Process.
Lett. 52, 1 (1994), 31–34.

13

https://github.com/ucrparlay/Parallel-Work-Efficient-Dynamic-Programming
https://github.com/ucrparlay/Parallel-Work-Efficient-Dynamic-Programming

[72] Lawrence L Larmore and Baruch Schieber. 1991. On-line dynamic programming

with applications to the prediction of RNA secondary structure. J. Algorithms 12,
3 (1991), 490–515.

[73] Xiang Li, Jiahua Wei, Tiejian Li, Guangqian Wang, and WilliamW-G Yeh. 2014. A

parallel dynamic programming algorithm formulti-reservoir system optimization.

Advances in water resources 67 (2014), 1–15.
[74] Mi Lu andHua Lin. 1994. Parallel algorithms for the longest common subsequence

problem. IEEE Transactions on Parallel and Distributed Systems 5, 8 (1994), 835–
848.

[75] Webb Miller and Eugene W Myers. 1988. Sequence comparison with concave

weighting functions. Bulletin of mathematical biology 50 (1988), 97–120.

[76] Gaspard Monge. 1781. Mémoire sur la théorie des déblais et des remblais. Mem.
Math. Phys. Acad. Royale Sci. (1781), 666–704.

[77] SV Nagaraj. 1997. Optimal binary search trees. Theoretical Computer Science 188,
1-2 (1997), 1–44.

[78] Wojciech Rytter. 1988. On efficient parallel computations for some dynamic

programming problems. Theoretical Computer Science 59, 3 (1988), 297–307.
[79] Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequential Iterative

Algorithms Can Be Parallel and (Nearly) Work-efficient. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[80] Yuan Tang and Shiyi Wang. 2017. Brief Announcement: STAR (Space-Time

Adaptive and Reductive) Algorithms for Dynamic Programming Recurrenceswith

More Than O(1) Dependency. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). 279–281.

[81] Yuan Tang, Ronghui You, Haibin Kan, Jesmin Jahan Tithi, Pramod Ganapathi, and

Rezaul A Chowdhury. 2015. Cache-oblivious wavefront: improving parallelism

of recursive dynamic programming algorithms without losing cache-efficiency.

In ACM Symposium on Principles and Practice of Parallel Programming (PPOPP).
205–214.

[82] Vianney Kengne Tchendji, Armel Nkonjoh Ngomade, Jerry Lacmou Zeutouo,

and Jean Frédéric Myoupo. 2020. Efficient CGM-based parallel algorithms for

the longest common subsequence problem with multiple substring-exclusion

constraints. Parallel Comput. 91 (2020), 102598.
[83] Jesmin Jahan Tithi, Pramod Ganapathi, Aakrati Talati, Sonal Aggarwal, and

Rezaul Chowdhury. 2015. High-performance energy-efficient recursive dynamic

programming with matrix-multiplication-like flexible kernels. In IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 303–312.

[84] Soroush Vahidi, Baruch Schieber, Zhihui Du, and David A Bader. 2023. Parallel

Longest Common SubSequenceAnalysis In Chapel. In 2023 IEEEHigh Performance
Extreme Computing Conference (HPEC). IEEE, 1–6.

[85] Jan Van Leeuwen. 1976. On the Construction of Huffman Trees. In ICALP. 382–
410.

[86] Elad Weiss and Oded Schwartz. 2019. Computation of Matrix Chain Products on

Parallel Machines. In International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 491–500.

[87] Robert Wilber. 1988. The concave least-weight subsequence problem revisited. J.
Algorithms 9, 3 (1988), 418–425.

[88] Xiaohua Xu, Ling Chen, Yi Pan, and Ping He. 2005. Fast parallel algorithms for

the longest common subsequence problem using an optical bus. In International
Conference on Computational Science and Its Applications. Springer, 338–348.

[89] F. Frances Yao. 1980. Efficient dynamic programming using quadrangle inequali-

ties. In ACM Symposium on Theory of Computing (STOC). 429–435.
[90] F Frances Yao. 1982. Speed-up in dynamic programming. SIAM Journal on

Algebraic Discrete Methods 3, 4 (1982), 532–540.

14

	Abstract
	1 Introduction
	2 Model and Framework
	2.1 Basic Concepts in Dynamic Programming
	2.2 Parallelizing Sequential DP Algorithms
	2.3 Our Framework: the Cordon Algorithm

	3 Motivating Examples on LIS/LCS
	4 Parallel Generalized LWS
	4.1 Preliminaries
	4.2 Parallel Convex GLWS
	4.3 Parallel Concave GLWS
	4.4 Theoretical Analysis

	5 Other Parallel DP Algorithms
	5.1 Parallel Optimal Alphabetic Trees (OAT)
	5.2 The GAP Edit Distance Problem
	5.3 Other Algorithms

	6 Experiments
	7 Conclusion and Future Work
	References

