
ParlayANN: Scalable and Deterministic Parallel
Graph-Based Approximate Nearest Neighbor Search

Algorithms
Magdalen Dobson Manohar

Carnegie Mellon University
mrdobson@cs.cmu.edu

Zheqi Shen
UC Riverside

zshen055@ucr.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Laxman Dhulipala
University of Maryland

laxman@umd.edu

Yan Gu
UC Riverside

ygu@cs.ucr.edu

Harsha Vardhan Simhadri
Microsoft Research

harshasi@microsoft.com

Yihan Sun
UC Riverside

yihans@cs.ucr.edu

Abstract
Approximate nearest-neighbor search (ANNS) algorithms

are a key part of the modern deep learning stack due to
enabling efficient similarity search over high-dimensional
vector space representations (i.e., embeddings) of data.
Among various ANNS algorithms, graph-based algorithms
are known to achieve the best throughput-recall tradeoffs.
Despite the large scale of modern ANNS datasets, existing
parallel graph-based implementations suffer from signifi-
cant challenges to scale to large datasets due to heavy use of
locks and other sequential bottlenecks, which 1) prevents
them from efficiently scaling to a large number of proces-
sors, and 2) results in non-determinism that is undesirable
in certain applications.
In this paper, we introduce ParlayANN, a library of de-

terministic and parallel graph-based approximate nearest
neighbor search algorithms, along with a set of useful tools
for developing such algorithms. In this library, we develop
novel parallel implementations for four state-of-the-art
graph-based ANNS algorithms that scale to billion-scale
datasets. Our algorithms are deterministic and achieve high
scalability across a diverse set of challenging datasets. In
addition to the new algorithmic ideas, we also conduct a de-
tailed experimental study of our new algorithms as well as
two existing non-graph approaches. Our experimental re-
sults both validate the effectiveness of our new techniques,

This work is licensed under a Creative Commons Attribution International
4.0 License.
PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0435-2/24/03.
https://doi.org/10.1145/3627535.3638475

and lead to a comprehensive comparison among ANNS al-
gorithms on large scale datasets with a list of interesting
findings.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms; • Information systems → Re-
trieval tasks and goals.

Keywords: nearest neighbor search, vector search, parallel
algorithms
ACM Reference Format:
Magdalen Dobson Manohar, Zheqi Shen, Guy E. Blelloch, Lax-
man Dhulipala, Yan Gu, Harsha Vardhan Simhadri, and Yihan
Sun. 2024. ParlayANN: Scalable and Deterministic Parallel Graph-
Based Approximate Nearest Neighbor Search Algorithms. In The
29th ACM SIGPLAN Annual Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP ’24), March 2–6, 2024, Edin-
burgh, United Kingdom. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3627535.3638475

1 Introduction
The adoption of deep learning methods over the past

decade have led to high-dimensional vector representations
of objects a.k.a. embeddings becoming widely used. These
representations are typically obtained by training deep neu-
ral networks. As a result, machine learning datasets usu-
ally contain billions of vectors representing embeddings of
users, documents, search queries, images, among many other
kinds of objects. These embeddings can span hundreds to
thousands of dimensions. The algorithms producing these
embeddings are trained so that similar objects have “close”
embeddings (e.g., in 𝐿2 distance). As a result, an important
problem is to find the nearest and thus most similar set of 𝑘
objects for a query point in the embedding space R𝑑 .
This problem is known as 𝑘-nearest neighbor search, and

is notoriously hard to solve exactly in high-dimensional
spaces [21]. Since solutions for most real-world applications

270

https://doi.org/10.1145/3627535.3638475
https://doi.org/10.1145/3627535.3638475
https://doi.org/10.1145/3627535.3638475
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627535.3638475&domain=pdf&date_stamp=2024-02-20

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

can tolerate small errors, most deployments focus on the ap-
proximate nearest neighbor search (ANNS) problem, which
has been widely applied as a core subroutine for search
recommendations, machine learning, and information re-
trieval [71], as well as large language models (LLMs) used
in ChatGPT [9] and other applications combining LLMs and
vector search [10, 28, 67, 70]. Considering that embeddings
and similarity search are at the heart of these and many other
modern AI applications, it is increasingly important to build
scalable and efficient parallel ANNS solutions that can scale
to massive modern datasets.

Some of the best-performing ANNS algorithms today are
graph-based ANNS algorithms, which are able to achieve
high recall (i.e., fraction of the true 𝑘-NNs returned by the
query) while obtaining high throughput (queries per second,
or QPS). Graph-based ANNS algorithms construct a prox-
imity graph over the points that connects each point with
closeby points. ANNS queries search for the 𝑘-nearest neigh-
bors of a query point by traversing the proximity graph from
a seed point, greedily exploring points that are closer to the
query until the search converges. Among various types of
ANNS algorithms, graph-based algorithms in general achieve
superior recall and QPS, as shown in many recent bench-
marking papers [38, 55, 56, 58, 68].
Despite the focus on efficiency and benchmarking in the

ANNS literature, there is very little work (algorithmic ideas or
benchmarking) that systematically studies how parallel graph-
based ANNS algorithms perform as we scale the input size and
the number of processors.On the algorithmic side, some graph-
based algorithms do have parallel implementations, but rely
on per-vertex locks to enable parallelism which raises two
major issues affecting both performance and “correctness”.
First, due to the use of locks, most existing implementations
tend to only scale well to tens of threads. Fig. 1 demonstrates
parallel scalability curves for four state-of-the-art (SOTA)
implementations of graph-based algorithms (grey lines), on a
well-known ANNS benchmark [16] with 1M points. None of
them achieve significant speedup beyond 50 threads. Further-
more, using locks results in non-deterministic outputs, i.e.,
multiple runs of the algorithm may yield different proximity
graphs due to lock acquisition order. Non-determinism can
be a serious issue for applications that require persistence,
crash recovery, or replication, e.g., for vector databases such
as Pinecone, Weaviate, and Lucene [8, 11, 12].

On the benchmarking side, existing results [16, 71] focus
on relatively small input sizes (usually million-scale), and
evaluate algorithms based on their sequential performance.
Therefore, techniques that perform well on existing ANNS
benchmarks may not be suitable (or are unclear to be suit-
able) for a significantly larger dataset or more cores. Due to
the lack of benchmarking studies focusing on parallelism, we
also find that some of the scalability issues for existing par-
allel implementations are from some sequential bottlenecks
that do not appear until a large number of cores or sock-

ets are used, or until they are run on much larger datasets.
Therefore, understanding how different ANNS algorithms
scale frommillion to billion-scale as a function of the number
of cores, and across a diverse set of datasets is an important
open problem.

To address this problem, in this paper we develop
ParlayANN, a parallel ANNS library that scales to
billion-scale datasets, scales to more than a hundred
threads, and is deterministic. To achieve these goals,
we exploit multi-threading (specifically, using fork-join
parallelism) as much as possible to reduce the build time,
which can be weeks on a single thread at such a scale.
We provide new general techniques for building ANNS
graphs in parallel, such as prefix doubling and batch up-
dates. We then apply our general techniques to four SOTA
graph-based algorithms: DiskANN [68], HNSW [55], HC-
NNG [58] and PyNNDescent [56]. In addition to new
general techniques, we also developed several algorithmic
optimizations to remove scalability bottlenecks for each spe-
cific algorithm, such as very large per-thread hash-tables (in
HNSW, see Sec. 4.2), and certain data structures overflowing
the L3 cache (in HCNNG, see Sec. 4.3). Our implementa-
tions, ParlayDiskANN, ParlayHNSW, ParlayHCNNG and
ParlayPyNN, are deterministic, and achieve much better scal-
ability than the best existing parallel implementations for
each of them.

Many of the tools in our library are of general use; to give
an idea of the generality and practicality of ParlayANN, Par-
layANN contains about 5000 lines of code, of which around
2000 are specific to one algorithm and the remaining 3000
are shared.
In Figure 1, we present the scalability of our implemen-

tations relative to existing implementations of graph-based
ANNS algorithms on 1M points (all numbers are relative
to the one-thread running time of the original implementa-
tion in each kind). Our implementations scale well up to all
48 cores on the machine we use, with further performance
improvements from hyperthreading.
We carefully benchmarked our new implementations

along with two existing SOTA non-graph algorithms (FAISS
and FALCONN [13, 48]) on diverse real-world datasets with
a billion points, including one dataset for out-of-distribution
(OOD) queries (see more details in Sec. 5.1). Three of our
implementations (ParlayDiskANN, ParlayHNSW and Par-
layHCNNG) scale to billion-size datasets with reasonable
preprocessing time for index building (around 10h) with
high-quality query results (up to .99 recall with about 104
QPS). Our graph-based implementations achieve the best
tradeoffs between recall and QPS across the recall spectrum,
while the non-graph approaches failed to achieve a recall
higher than 95% on billion-size datasets, even with very
low QPS. We believe this is the first work that scales
deterministic parallel ANNS algorithms to billions of
points with high recall.

271

ParlayANN: Parallel Graph-Based Approximate Nearest Neighbor Search Algorithms PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

By supporting these algorithms in a unified framework
(e.g., same parallel framework, primitives, and work-stealing
scheduler) and applying similar optimization effort across all
of them, our results also provide a fair comparison of the al-
gorithmic ideas among the existing graph-based approaches,
both for index quality and their potential for parallelism.
Benchmarking these algorithms at a billion-scale required
significant programmer and computational effort; for exam-
ple, building all of the ANNS indexes shown in Sec. 5.1 (six
algorithms each with three datasets) tookmore than 90 hours
of computation time on a machine with 64 cores. Our efforts
led to a variety of interesting new findings about how ANNS
algorithms perform as dataset sizes are scaled.We believe
this work is also the first to depict an accurate picture
of performance comparison among ANNS algorithms
on billion-scale datasets.

In summary, our results include both algorithmic contribu-
tions and new experimental findings about the performance
of ANNS algorithms at very large scales, listed as follows.
We plan to release our code. Due to page limits, we provide
the full paper with appendix in the supplemental material.
1. A variety of general and specific techniques to parallelize

existing graph-basedANNS algorithms to scale to billions
of points (Sec. 3).

2. High-performance parallel implementation ParlayANN,
which contains four graph-based ANNS algorithms.

3. In-depth experimental study of existing and our algo-
rithms on a variety of billion-scale datasets, including a
special dataset for out-of-distribution queries (Sec. 5).

4. A list of interesting findings about parallel ANNS algo-
rithms on large scale datasets (Sec. 5).

2 Preliminaries
Parallel Model. We use the fork-join model of paral-
lelism [24, 33]. We assume a set of threads that access a
shared memory. A process can fork two child software
threads to work in parallel. When both children complete,
the parent process continues. A parallel for-loop over 𝑛
items can be simulated by recursively forking log𝑛 levels.
Computations in the model can be efficiently executed using
a randomized work-stealing scheduler [14, 26].

We say a parallel computation is deterministic if it gives
the same output across multiple runs, i.e., the output is not af-
fected by the runtime scheduler. For randomized algorithms,
we assume the randomness is supplied as part of the input
(e.g., as a random seed).
Parallel Semisort. Many of our algorithms use a parallel
semisort [41] as a subroutine. Given a sequence 𝐴 of entries,
each associated with a key, a semisort reorders 𝐴 such that
all entries with the same key are consecutive. Note that the
entries or keys do not need to be fully sorted.
Approximate Nearest Neighbor Search (ANNS). In this
work, we study a set P ⊆ R𝑑 of 𝑛 points (vectors) in 𝑑 dimen-

0 20 40 60 80 48h
0

20

40
38x
51x

ParlayDiskANN Original

0 20 40 60 80 48h
0

10

20

30
26x

36x

ParlayHNSW Original

0 20 40 60 80 48h
0

100

200

28x

258x

ParlayHCNNG Original

0 20 40 60 80 48h
0

10

20

2x

28x

ParlayPyNN Original

Sp
ee

d-
up

 R
el

at
iv

e
to

 th
e

Or
ig

in
al

Im

pl
em

en
ta

tio
n

on
 O

ne
-th

re
ad

Threads
Figure 1. Scalability of original and our new implemen-
tations of four ANNS algorithms on various number of
threads. Within each subfigure, all numbers are speedup
numbers relative to the original implementation on one
thread. Higher is better. Results were tested on a machine with
48 cores using dataset BIGANN-1M (106 points). “48h”: 48 cores
with hyperthreads. The two implementations in the same subfig-
ure always use the same parameters and give similar query quality
(recall-QPS curve).

sions. We denote the distance between two points 𝑝, 𝑞 ∈
R𝑑 as ∥𝑝, 𝑞∥. Smaller distance indicates greater similarity.
Commonly-used distance functions include Euclidean dis-
tance (𝐿2 norm), and cosine distance (1 − cos(\)).

Definition 2.1. (𝑘-NNS) Given a set of points P in 𝑑-
dimensions and a query point 𝑞, the 𝑘 nearest neighbor
search (𝑘-NNS) problem finds a set K ⊆ P with size |K | =
𝑘 , such that max𝑝∈K ∥𝑝, 𝑞∥ ≤ min𝑝∈P\K ∥𝑝, 𝑞∥.

We define 𝑘-ANNS as 𝑘-approximate NNS. With clear
context, we omit 𝑘 and call them NNS and ANNS. We now
introduce the most commonly-used measure of accuracy for
ANNS, frequently referred to as recall.

Definition 2.2. (𝑘@𝑘 ′ recall) Let P be a set of points in 𝑑-
dimensions and 𝑞 a query point. Let K be the true 𝑘-nearest
neighbors of 𝑞 in P. Let K ′ ⊂ P be an output of an ANNS
algorithm of size 𝑘 ′. Then the 𝑘@𝑘 ′ recall of 𝑞 is |K∩K

′ |
|K | .

The most common choice of recall is 10@10 recall.
Throughout the paper, we use the term “recall” to refer to
10@10 recall of an entire query set, i.e., the average recall
over all points in the query set.

3 General Techniques for Graph-Based
ANNS Algorithms

In this section, we describe our new techniques for parallel
graph-based algorithms. We first present the high-level idea
underpinning graph-based ANNS algorithms. We then intro-
duce two major existing approaches: incremental algorithms
and clustering trees, as well as our new general techniques

272

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

A
D

B

C

F
H

GE

ℒ:
⇒

ℒ:
⇒

ℒ:
⇒

ℒ:

𝒱: ∅ 𝒱: 𝒱: 𝒱:

𝑞

𝑞

Starting from A, 𝐿 = 3

The processed point 𝑝∗ ∈ ℒ, i.e., the
closest point to 𝑞 in ℒ ∖ 𝒱.

query point

Removed from ℒ because ℒ > 𝐿.
Only the 𝐿 closest points in ℒ are kept.

A

A

H A D B

Finish here: all points in ℒ are in 𝒱.
Nearest neighbor found is H.

A H

H F A D H F A G D

A H F

+BDH +FD +DHG

A

A

A

Points in ℒ (the beam set)

A Points in 𝒱 (set of processed vertices)

A

Figure 2. An example of ANNS graph and a greedy search. The
blue arrows represent directed edges in the proximity graph, which
is a mix of long and short edges. Below is an example of NNS query
on point 𝑞 (red point). The algorithm starts with adding the starting
point 𝐴 as the only point in the beam L, and then in every step,
finds the closest unprocessed point in L (to 𝑞) and adds its out-
neighbors. Once |L| goes beyond 𝐿, it is refined to keep only the
𝐿 nearest points. A setV is maintained for all processed vertices.
When all vertices in L are also inV , the algorithm finishes.

to make them parallel and deterministic. In the next section,
we show how these general techniques can be applied to
four graph-based ANNS algorithms.
High-Level Approach. Given point set P, anANNS graph
𝐺P refers to a directed graph with vertices representing
points in P. For a point 𝑝 ∈ P, we define 𝑁out (𝑝), or the
out-neighbors of 𝑝 . We illustrate an example of an ANNS
graph on them in Fig. 2. The neighborhood of a point in the
graph roughly corresponds to other nearby points, while
some “long edges” are also needed (see details below).
Greedy (Beam) Search. Almost all ANNS graph algo-
rithms use a variant of greedy (beam) search to answer
NNS queries (see Fig. 2 and Alg. 1). Such a search for a
query 𝑞 maintains a beam L with size at most 𝐿 as a set of
nearest neighbor candidates of 𝑞. We call 𝐿 the width of
the beam. The beam starts with a single starting point 𝑠 . In
each step, the algorithm pops the closest vertex to 𝑞 from
L, and processes it by adding all its out-neighbors to the
beam. We use a visited set V to maintain all points that have
been processed (i.e., the neighborhood of the point has been
traversed and added to the beam). If |L| exceeds 𝐿, the 𝐿
closest points are kept.
Intuitively, for greedy search to converge quickly and

produce accurate answers, the ANNS graph should contain
a mix of long edges (connecting with neighbors that are far
away) and short edges (connecting with neighbors that are
close). Long edges enable fast navigation from the starting
point towards the region close to a query point, and short
edges enable the search to quickly converge once it reaches
this region of the graph.
3.1 Incremental Algorithms

One class of graph-based ANNS algorithms is incremental
algorithms, which work by inserting all points into the graph
in some order; when inserting 𝑝 , the algorithm adds new

Algorithm 1: greedySearch(𝑝, 𝑠, 𝐿, 𝑘).
Input: Point 𝑞, starting point 𝑠 , beam width 𝐿, integer 𝑘 .
Output: SetV of visited points and set K of 𝑘-nearest

neighbors to point 𝑞.
1 V ← ∅
2 L ← {𝑠}
3 while L \V ≠ ∅ do
4 𝑝∗ ← argmin(𝑝∈L\V) ∥𝑝, 𝑞∥
5 V ←V ∪ {𝑝∗}
6 L ← L ∪ 𝑁out (𝑝∗)
7 if |L| > 𝐿 then retain only 𝐿 closest points to 𝑞 in L
8 K ← 𝑘 closest points to 𝑞 inV
9 returnV,K

Algorithm 2: insert(𝑝, 𝑠, 𝑅, 𝐿).
Input: Point 𝑝 , starting point 𝑠 , beam width 𝐿, degree bound 𝑅.
Output: Point 𝑝 is inserted into the nearest neighbor graph.

1 V,K ← greedySearch(𝑝, 𝑠, 𝐿, 1)
2 𝑁out (𝑝) ← prune(𝑝,V, 𝑅)
3 for 𝑞 ∈ 𝑁out (𝑝) do
4 𝑁out (𝑞) ← 𝑁out (𝑞) ∪ {𝑝}
5 if |𝑁out (𝑞) | > 𝑅 then 𝑁out (𝑞) ← prune(𝑞, 𝑁out (𝑞), 𝑅)

edges between 𝑝 and the existing points in the graph so that
𝑝 can be discovered by queries. Among the algorithms we
study, DiskANN and HNSW are incremental algorithms.
Most incremental graph algorithms, such as DiskANN,

HNSW, and NSG [38, 55, 68] use a greedy search procedure
as a substep during insertion. Alg. 2 presents the high-level
idea of this insert routine. Inserting a point 𝑝 (Alg. 2) first
does a greedy search on the existing graph, and then chooses
the out-neighbors of 𝑝 from the visited setV of the search
by performing a prune routine. The prune(𝑝,V, 𝑅) routine
selects a subset from a candidate setV as the neighbors of 𝑝 ,
which ideally should cover a diverse range of edge lengths
and directions. Pruning also ensures that the size of 𝑁out(𝑝)
has at most a given degree bound 𝑅; smaller 𝑅 typically
results in fast but less accurate searches compared to a larger
𝑅. In addition to selecting out-neighbors of 𝑝 , the insert
algorithm must add 𝑝 as the out-neighbors of other points
so 𝑝 is reachable during a search. This is done by adding 𝑝 to
each of 𝑝’s out-neighbor 𝑞, and calling prune on 𝑞 to ensure
the degree bound 𝑅. The pruning strategies are specific to
each graph-based algorithms, and we describe them in Sec. 4.
Challenges for Incremental Algorithms. To parallelize
incremental ANN algorithms, many existing implementa-
tions (e.g., DiskANN) insert all points in a single parallel
loop over all the points, with per-point locks to ensure that
the points are accessed safely. This can cause performance
issues and cause non-determinism.
New Technique in ANNS: Prefix Doubling. We now
present our first technique to avoid using locks in incre-
mental graph-based algorithms. Note that the main reason
of using locks in the existing implementations is that the

273

ParlayANN: Parallel Graph-Based Approximate Nearest Neighbor Search Algorithms PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

points being inserted in parallel all start from an empty index
(graph), and therefore need a way to “see” each other and
to “bootstrap”. Using locks effectively sequentializes all con-
flicts and achieve a result close to the sequential algorithm,
but introduces performance and non-determinism issues.

To address this, we use prefix-doubling [25, 34, 39, 40, 65].
The high-level idea is to insert points in batches of expo-
nentially increasing size (but upper bounded by a parameter
\ , see details below), as shown in the while-loop in Alg. 3.
Each point will add itself based on the snapshot at the end
of the last batch, and therefore points do not conflict with
each other. Initially, the batches are relatively small, which
more closely resembles the sequential version, allowing for
a more accurate index initially. When the index becomes
reasonably large, larger batches are allowed, which also en-
ables high parallelism. Compared to the sequential version
where point 𝑖 is inserted based on the index of 𝑖 − 1 points,
this approach allows point 𝑖 to deterministically see an index
with 𝑂 (𝑖) points (roughly 𝑖/2), while extracting significant
parallelism. For potential conflicts when adding multiple
points to the neighborhood of an existing point, we care-
fully merge them together using a deterministic semisort.
Prefix-doubling provides balance between parallelism (most
of the batches are sufficiently large to utilize a large num-
ber of threads), progress (no contention or race within each
batch), and accuracy (each point see a reasonably accurate
snapshot of the index).
New Technique in ANNS: Batch Insertion and Pruning.
Abasic building block in our incremental algorithms is batch
insertion, which adds a batch of points to the current index.
In Alg. 3, inserting each batch involves two steps: (1) build-
ing the neighborhood for the newly-inserted points (Lines
7–9), and (2) adding the reversed edges to the existing points
(Lines 11–14). Step 1 deals with each point in the batch in
parallel, which uses a greedy search on the immutable snap-
shot index to find a candidate set, followed by pruning the
candidates. In this step, all points in the batch construct their
own neighborhood independently on an immutable snap-
shot, and thus does not affect each other. Therefore, this step
is parallel and deterministic, and no locks are needed.
In the next step, the edges are reversed and any ver-

tices whose neighborhood exceeds the degree threshold are
pruned. To do this in deterministic manner without using
locks, we collect all edges to be added in B in the format
(𝑢, 𝑣), where 𝑢 is a newly-added point in this batch, and
𝑣 is an existing point in the graph. We then run a paral-
lel semisort (see Sec. 2) on B by the key of 𝑣 , such that all
edges incident the same existing point 𝑣 are consecutive,
and thus can be added together without locks.
Optimization: Batch Size Truncation. While allowing
each point to see an index that is roughly half the size it sees
in the sequential setting, prefix-doubling may still lose signif-
icant information in the last few rounds when the batches are

very large. To avoid this, we upper bound the batch size by \ ,
which we empirically set to 0.02𝑛. This relaxation does not
affect parallelism or scalability in practice; for large datasets,
2% of the input is more than enough to utilize all threads
on modern multi-core computers. With this optimization,
our prefix-doubling index achieved similar quality as the se-
quential version: ParlayDiskANN with 𝑅 = 64, 𝐿 = 128 on
a benchmark dataset BIGANN-1M differs within 1% of the
QPS from the sequentially-built index, at the same level of
recall.
3.2 Clustering-Based Algorithms
Another approach for building an ANN graph is to use

clustering trees. At a high-level, the algorithm splits the in-
put into two pieces, and keeps recursively splitting until the
number of points drops below a given threshold, reaching
a leaf cluster. The structure of splitting points form a tree-
like structure, called a cluster tree. The splitting step usually
involves randomization, e.g., we can generate a random hy-
perplane and split points based on which side of the plane
they fall. Within each of the leaf clusters, a local ANN graph
with stronger conditions (e.g., connecting each point with
some exact nearest neighbors) is built.
Using different random seeds to generate different clus-

ter trees, we can generate multiple (overlapping) local ANN
graphs. The overall algorithm will obtain an ANN graph
as the union of all local ANN graphs, and obtains the final
ANN graph by performing some postprocessing. These algo-
rithms differ in the methodology in generating the clustering
tree, building the local ANN graphs, and/or postprocessing.
Among the algorithms in this paper, HCNNG and PyNNDe-
scent use the clustering trees.
Challenges for Clustering-Based Algorithms. There are
several challenges to efficiently construct ANN graphs in
parallel using this approach. Firstly, some existing systems
achieve parallelism simply by parallelizing the construction
of the 𝑇 trees (each tree is constructed sequentially). Since
empirically the best value of 𝑇 is tens of trees (e.g., about 30
for HCNNG) [58], the algorithm naturally cannot scale to
more than 𝑇 threads in the tree construction step, which is
also the main reason that the original HCNNG implementa-
tion in Fig. 1 does not improve beyond 30 threads. Secondly,
existing parallel implementations also take per-point locks
when merging the edges from all the local ANN graphs,
which causes contention and non-determinism if pruning is
used. Lastly, some subroutines, such as the local ANN graph
construction, can generate costly (in terms of time or space)
local structures, which can become a performance bottleneck
when the data size or the number of threads is large.

Next, we present our general ideas to achieve better par-
allelism for clustering trees. In Sec. 4.3 and 4.4, we further
discuss our new ideas to address the scalability issue in HC-
NNG and PyNNDescent.
Parallelizing Clustering-Based Algorithms. To paral-

274

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

Algorithm 3: batchBuild(P, 𝑠, 𝑅, 𝐿).
Input: Point set P, starting point 𝑠 , beam width 𝐿, degree

bound 𝑅.
Output: An ANN graph consisting of all points in P.

1 start ← 1
2 while start ≤ |P| do // Prefix-doubling
3 end ← min(start × 2, start + \, |P |) // \ : batch size upper

bound
4 BatchInsert(P[start ..end])
5 start ← end + 1
6 Function BatchInsert(P ′) // Insert a batch P ′ to the current

index
7 parallel for 𝑝 ∈ P ′ do
8 V,K ← greedySearch(𝑝, 𝑠, 𝐿, 1)
9 𝑁out (𝑝) ← prune(𝑝,V, 𝑅)

10 B ← ⋃
𝑝∈P′ 𝑁out (𝑝) // All (existing) affected points

11 parallel for 𝑏 ∈ B do
// N : all points in P ′ that added 𝑏 as their neighbors

12 N ← {𝑝 | 𝑝 ∈ P ′ ∧ 𝑏 ∈ 𝑁out (𝑝)}
13 𝑁out (𝑏) ← 𝑁out (𝑏) ∪ N
14 if |𝑁out (𝑏) | > 𝑅 then 𝑁out (𝑏) ←

prune(𝑏, 𝑁out (𝑏), 𝑅)

lelize the clustering-based algorithms, we apply two general
ideas. First, we parallelize the construction of each clustering
tree. We then use parallel divide-and-conquer to always deal
with both branches in parallel, and use a parallel partition-
ing primitive [22, 46] to assign points to different branches
in parallel. This approach offers abundant parallelism across
all leaves, instead of just over the trees. Although this is a
natural idea, exposing more parallelism causes some chal-
lenges, e.g., for HCNNG, more threads running in parallel
causes some space issues which we explain more in Sec. 4.3.
The second general technique is to avoid per-point lock

when combining edges in all local ANN graphs. Instead of
adding all edges concurrently, our idea is to collect all edges
in an array and run a semisort on it (see Sec. 2), such that
the edges incident the same point are consecutive. The graph
can be built accordingly.

4 ParlayANN Algorithms
In this section, we further describe four graph-based

ANNS algorithms that benefit from our techniques proposed
in Sec. 3. In addition to the general techniques, we also em-
ploy specific optimizations for each individual algorithm to
improve their scalability, which will be introduced below.
4.1 DiskANN
DiskANN [68] is a system consisting of an incremental

in-memory ANNS graph algorithm as well as a system for
storing the graph on an SSD. We focus on only the incre-
mental ANNS graph algorithm as our work focus on the
in-memory ANNS system. The in-memory DiskANN algo-
rithm is almost completely described by Alg. 2, with the
exception of the pruning step. In the paper on the navigating

spreading-out graph (NSG) [38], Fu et al. proposed a prun-
ing method on the visited listV: roughly, they repeatedly
select the point 𝑝∗ closest to 𝑝 in V , then filter out points
𝑝 ′ that are (𝛼 times) closer to 𝑝∗ than to 𝑝 (i.e., remove all 𝑝 ′
s.t. 𝛼 ∥𝑝∗, 𝑝 ′∥ ≤ ∥𝑝, 𝑝 ′∥). This can be thought of as stream-
lining navigation by pruning out long edges of triangles. As
this technique is general, we also apply the 𝛼 parameter to
other algorithms in this paper to reduce their degrees (and
thus make the ANN graph sparser) when possible, in order
to make a more fair comparison.
To adapt DiskANN for machines to be scalable to hun-

dreds of cores in the in-memory setting, we used the prefix-
doubling approach as described in the previous section.
4.2 HNSW
The hierarchical navigable small world (HNSW) algo-

rithm [55] is an incremental algorithm that constructs a
hierarchical structure (intuitively the structure is similar to
a skip list); each layer of the hierarchy is a navigable small
world (NSW) graph [62]. In a NSW graph, nodes tend to be
connected to their near neighbors, while ensuring that the
overall graph is navigable, i.e., a search can reach any node
in a small number of hops.
HNSW builds multiple layers of NSW graphs so that the

lower layers are supersets of the upper layers. The number
of vertices in each layer increases geometrically from top to
bottom, and the bottom layer contains all the input points
(conceptually this is similar to a skip list). Insertion in an
NSW graph is also similar to Alg. 2. The prune scheme in
HNSW is similar toDiskANN in that it prunes out long edges
of triangles, but also includes some additional heuristics.
For search, HNSW traverses through the layers one at a

time. It starts at the top layer, looks for the 1-nearest neighbor
𝑝 of the query point using Alg. 1 with beam size 1, and shifts
down to the next layer at 𝑝 to repeat the procedure until
reaches the last layer. Then, taking the current result as the
entry point, it runs Alg. 1 to obtain the 𝑘-nearest neighbors
at the bottom layer.

In our implementation (ParlayHNSW), we utilize parallel
prefix-doubling. To adapt prefix-doubling to the the multi-
level hierarchical structure, we simply use batch insertion
for each layer. We also carefully remove locks in all internal
data structures in HNSW.
4.3 HCNNG

The hierarchical clustering-based nearest neighbor graph
(HCNNG) [58] uses the clustering-based approach. The clus-
tering works by randomly selecting two points 𝑝1 and 𝑝2,
and partitioning the input by deciding whether a point is
closer to 𝑝1 or 𝑝2. Leaf clusters are obtained when the num-
ber of points is below a given threshold. Within a leaf, the
local ANN graph is a degree-bounded minimum spanning
tree (MST), i.e., an MST where each point has degree at most
𝐾 . Pruning is then applied to remove redundant edges.
Reducing Work and Space using Edge-Restricted MSTs.

275

ParlayANN: Parallel Graph-Based Approximate Nearest Neighbor Search Algorithms PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

We parallelized HCNNG without locks by constructing the
clustering trees and merging edges in parallel as mentioned
in Sec. 3.2. However, extra challenges emerge when a large
number of threads can run in parallel. In particular, the MST
is of the complete graph containing all pairwise distances
of points in a leaf. When hundreds of threads perform this
process on different leaves in parallel, the temporarymemory
usage can be very high. In our experience, storing all pairwise
edges exceeds the L3 cache on our machines, and severely
limited speedup. To remedy this, instead of building the MST
over all potential edges, we build an edge-restricted MST :
instead of generating all pairwise edges, the MST is based
on a graph where each point is connected with its 𝑙-nearest
neighbors for some small 𝑙 (we use 10). This optimization
significantly saved space and in turn improved parallelism
with no drop in QPS for a given recall. Our ParlayHCNNG is
up to 12× faster than the original HCNNG implementation
(see Fig. 1), and achieves good self-relative speedup.
4.4 PyNNDescent

The PyNNDescent [56] algorithm uses a combination of a
clustering-based approach to find an initial set of out edges
along with iterative refinement to improve the set. The clus-
tering initially used to construct the graph is based on choos-
ing random hyperplanes. The local ANN graphs connects
each point to the exact 𝐾 nearest neighbors within each leaf.
In addition to the clustering-based approach, PyNNDescent
also includes a special postprocessing called nearest neighbor
descent, which runs in an iterative way. Each round begins
by undirecting the graph, i.e., adding the opposite edge of
each directed edge. Then, each point 𝑝 computes its two-
hop neighborhood Q and retains the 𝐾 closest candidates
among the points 𝑞 ∈ Q. The algorithm terminates once
only a small fraction of edges change on each round (i.e.,
converges). We then use a pruning algorithm to prune out
the long edges of all triangles.
Optimizing Parallelism and Random Edge Sampling.
We had to significantly modify the PyNNDescent algorithm
to scale to large datasets, and indeed as shown in Sec. 5,
despite our optimization efforts we were not able to scale
PyNNDescent to datasets with billions of points. However,
our techniques still make it achieve reasonable QPS and
recall on inputs with ∼100 million points.
The fundamental challenge is that calculating the neigh-

bors of neighbors of a vertex requires work (and space) pro-
portional to the square of the degree. We used two ideas to
address this challenge. First, note that undirecting the graph
edges can significantly increase the degree of a vertex. Thus,
in edge undirecting, we limit each vertex’s degree to be at
most 2000 by randomly sampling edges, which makes the
quadratic work more manageable. Also, we compute sets of
two-hop neighborhoods in batches rather than all at once
(i.e., we limit parallelism to limit the amount of intermedi-
ate memory used). With these optimizations, we were able

to make our implementation, ParlayPyNN, scale to 100M
points, but the amount of temporary memory required to
store two-hop graph made it infeasible to scale to a billion
points.
4.5 Search and Layout Optimizations
In our experiments we use the same beam search algo-

rithm across all of our implementations of ParlayDiskANN,
ParlayHCNNG and ParlayPyNN since they all generate a
graph in the same format. The only difference is in how we
select a start vertex. Our search algorithm for ParlayHNSW
is also very similar, but slightly different since it needs to
move between levels of the hierarchy. We have made a hand-
ful of modest optimizations to the search for all algorithms
over the generic form given in Alg. 1, which we describe
here.

Firstly we use an optimized approximate hash table with
one-sided errors to quickly identify whether a point is in
the visited setV . Each point is inserted to the hash table by
finding a random position. When two vertices map to the
same position, only one will be stored, and the second will
be revisited if encountered. The table size is set as the square
of the beam size, which is large enough that revisiting is rare
but is small enough to fit the table in the first-level cache.
This is especially useful for improving the performance of
the original HNSW, where a per-point flag array is used
to check membership in V , and in general improved the
performance for all our algorithms by 28.6%–44.5%.
We also avoid levels of indirection in the graph layout.

In particular the edge-list for each vertex is kept at a fixed
length so we can calculate its offset from the vertex id. We
also use an (1 + 𝜖) pruning during the search as suggested
by Iwasaki and Miyazaki [45]. In particular we only search
vertices which have a distance to the search point that are
within a factor of (1+𝜖) of the current 𝑘-th nearest neighbor.
The 𝜖 is tuned based on the desired accuracy, but is never
greater than .25. When sweeping the query parameters to
obtain different points on the QPS/recall tradeoff curve, we
therefore sweep two parameters: the beam size and 𝜖 .

5 Experimental Evaluations
In this section, we evaluate ParlayANN and present inter-

esting findings from experiments at the end. We implement
ParlayANN using C++ using ParlayLib [22] to support fork-
join parallelism. We also use some standard building blocks
(e.g., sorting, semisorting, partition) from ParlayLib.
5.1 Experimental Setup
Datasets. We utilize three billion-size datasets for the ma-
jority of our experiments; we accessed these datasets through
the BigANN Benchmarks competition framework, and some
of these datasets were released for the competition [66]. The
widely used BIGANN dataset1 consists of SIFT image sim-

1Note that throughout the paper we use BigANN to refer to the benchmark-
ing framework, and BIGANN to refer to the dataset.

276

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

ilarity descriptors applied to images [48, 49, 66]. It is en-
coded as 128-dimensional vectors using 1 byte per vector
entry. The Microsoft SPACEV dataset (MSSPACEV) encodes
web documents and web queries sourced from Bing using
the Microsoft SpaceV Superior Model. The goal is to match
web queries with appropriate web documents; the dataset
consists of 1 byte signed integers in 100 dimensions [32].
The Text2Image dataset (TEXT2IMAGE), released by Yandex
Research, consists of a set of images embedded using the
SeResNext-101 model, and a set of textual queries embed-
ded using a DSSM model. Its vectors are represented using 4
byte floats in 200 dimensions [19].
Machines. For most experiments, we used an AWS c6i-
series virtual machinewith two 3rdGeneration Intel®Xeon®
Gold Processors with 128 vCPUs available to the user, and 1
TB main memory.

For the billion-scale results on TEXT2IMAGE, we used an
AWS x2idn-series virtual machine with two 3rd Generation
Intel® Xeon® Platinum Processors with 128 vCPUs available
to the user, and 2 TB main memory.
For Figure 1 we used an AWS c7i-series virtual machine

with one 4th Generation Intel® Xeon® Gold Processor with
96 vCPUs available to the user, and 192 GiB main memory.
Measurement. We report build times and QPS using all
threads unless stated otherwise; throughout the experiments,
we use QPS as opposed to latency, since QPS is more relevant
to large multicore machines, and algorithms are typically
always within an acceptable latency range. As discussed in
Sec. 1, ANNS algorithms are primarily evaluated based on
the recall-QPS curve, i.e., a curve where the 𝑦-axis is the QPS
and the 𝑥-axis is the recall. To obtain points on this tradeoff
curve, we perform a parameter sweep. Typically this is done
by building a single (fixed) index, and then adjusting the
parameters for a search, e.g., the beam-width, and 𝜖 value.
Baseline Algorithms. We compare all our implementa-
tions with the original implementations of DiskANN [68],
HNSW [55], HCNNG [58], and PyNNDescent [56], on the
1M-scale BIGANN dataset to demonstrate the improvement
in scalability and parallelism over the existing implemen-
tations. The baseline implementations are carefully chosen
from the BigANN benchmark to select the most competitive
existing algorithms. The original HNSW implementation is
safe for concurrent operations due to using locks, but does
not exploit parallelism by default. We added a batch-parallel
interface to the original HNSW using ParlayLib. For larger
scale experiments, we compare ParlayANN to two non-graph
algorithms based on inverted indexing (IVF): FAISS and FAL-
CONN. For completeness, we describe these two algorithms
in the supplemental material, and provide a more complete
list of algorithms that we did not include in the study, along
with the reasons for their exclusion.
Algorithm Parameters. Our interest is in optimizing for
the high recall regime (from .9 to .999) at the highest QPS

BIGANN MSSPACEV TEXT2IMAGE
DiskANN .42 .35 .70
HNSW .35 .37 .94
HCNNG .45 .77 1.75

pyNNDescent .42 .73 1.23
FAISS .19 .13 .22

Table 1. Build times (hours) on hundred million scale datasets.

possible. For reproducibility, we provide our choices of pa-
rameters in the supplemental material, which are chosen to
give the best performance based on both our own experi-
ments and the literature.
Code Availability. Our source code is available at https:
//github.com/cmuparlay/ParlayANN.
5.2 Comparison with ANN Benchmarks

First of all, we demonstrate the single thread performance
of ParlayANN on BIGANN-1M in Fig. 5. We refer to the pa-
rameter settings in the ANN Benchmarks framework [16],
and compare to the publicly-available numbers on the web-
site. The single-thread performance of ParlayANN roughly
match the results on ANN Benchmarks website [18]. Due
to FALCONN’s poor performance BIGANN-1M, and its cor-
respondingly low performance on the hundred million and
billion size datasets, we do not include FALCONN in further
figures.
5.3 Parallelism and Scalability

To substantiate our claims of improving the parallelism of
each graph-based algorithm as well as illustrate issues with
the parallelism of the original implementations, we compare
ParlayANN with the original implementations of each al-
gorithm. We present the performance of building the index
(graph) as the number of threads increases in Fig. 1. For
the same algorithm, all numbers (both original and ours)
presented are running time speedup relative to the origi-
nal implementation on one core. Therefore, the curve pro-
vides a direct running time comparison between the original
implementation and our implementation (higher is better).
For each algorithm, the two implementations always use
the same parameters, and achieve similar query quality (ex-
cept for some where ParlayANN also improved queries and
achieved better query quality).
For DiskANN, we find about 1.2× improvement in per-

formance by ParlayANN. The original DiskANN scales well
to 30 to 60 threads but eventually the use of locks leads to
performance degradation on more threads. HNSW suffers
from similar locking-related issues, and ParlayHNSW per-
forms much better with more than 50 threads, and eventually
achieves 1.4× better performance. As mentioned in Sec. 3,
the original HCNNG only exploits parallelism by building
all clustering trees in parallel, and fails to scale beyond 𝑇
threads as a result. Our ParlayHCNNG was both faster on a
single thread and even better when the number of threads
increases, and eventually becomes 12× faster than their im-

277

https://github.com/cmuparlay/ParlayANN
https://github.com/cmuparlay/ParlayANN

ParlayANN: Parallel Graph-Based Approximate Nearest Neighbor Search Algorithms PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

ParlayDiskANN ParlayHNSW ParlayHCNNG FAISS

0.00 0.25 0.50 0.75 1.00
Recall 10@10

103

104

105

106

107

Qu
er

ie
s p

er
 S

ec
on

d

Build Time
 6.7
 5.1
 6.0
 5.2

(a) BIGANN-1B QPS

0.2 0.4 0.6 0.8 1.0
Recall 10@10

103

104

105

106

Qu
er

ie
s p

er
 S

ec
on

d

Build Time
 4.3
 8.4
 4.4
 3.2

(b) MSSPACEV-1B QPS

0.00 0.25 0.50 0.75
Recall 10@10

104

105

106

Qu
er

ie
s p

er
 S

ec
on

d

Build Time
 8.24
 19.47
 15.97
 3.71

(c) TEXT2IMAGE-1B QPS

0.0 0.2 0.4 0.6 0.8 1.0
Recall 10@10

102

103

104

105

106

Di
st

 C
om

ps
 p

er
 Q

ue
ry

(d) BIGANN-1B Dist Comps

0.2 0.4 0.6 0.8 1.0
Recall 10@10

102

103

104

105

106
Di

st
 C

om
ps

 P
er

 Q
ue

ry

(e) MSSPACEV-1B Dist Comps

0.0 0.2 0.4 0.6 0.8
Recall 10@10

102

103

104

105

106

Di
st

 C
om

ps
 p

er
 Q

ue
ry

(f) TEXT2IMAGE-1B Dist Comps

Figure 3. Build time (hours), QPS, recall, and distance comparisons for all algorithms on billion-size datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Recall10@10

104

105

106

107

QP
S

QPS on BigANN100M

ParlayDiskANN
ParlayHNSW
ParlayHCNNG
ParlayPyNN
FAISS (PQ64)
FAISS (PQ128)

(a) BIGANN-100M

0.0 0.2 0.4 0.6 0.8 1.0
Recall 10@10

104

105

106

107

Qu
er

ie
s p

er
 S

ec
on

d

QPS on SPACEV100M

ParlayDiskANN
ParlayHNSW
ParlayHCNNG
ParlayPyNN
FAISS (2^16 Centroids)
FAISS (2^18 Centroids)

(b) MSSPACEV-100M

0.0 0.2 0.4 0.6 0.8 1.0
Recall 10@10

104

105

106

Qu
er

ie
s p

er
 S

ec
on

d

QPS on TEXT2IMAGE100M
ParlayDiskANN
ParlayHNSW
ParlayHCNNG
ParlayPyNN
FAISS

(c) TEXT2IMAGE-100M

0.90 0.92 0.94 0.96 0.98 1.00
Recall10@10

104

105

QP
S

QPS on BigANN100M

ParlayDiskANN
ParlayHNSW
ParlayHCNNG
ParlayPyNN

(d) BIGANN-100M

0.90 0.92 0.94 0.96 0.98 1.00
Recall 10@10

104

105

Qu
er

ie
s p

er
 S

ec
on

d

QPS on SPACEV100M

ParlayDiskANN
ParlayHNSW
ParlayHCNNG
ParlayPyNN

(e)MSSPACEV-100M

0.90 0.92 0.94 0.96
Recall 10@10

104

6 × 103

2 × 104

Qu
er

ie
s p

er
 S

ec
on

d

QPS on TEXT2IMAGE100M
ParlayDiskANN
ParlayHNSW
ParlayHCNNG
ParlayPyNN

(f) TEXT2IMAGE-100M
Figure 4. QPS-recall curves on all 100-million size datasets. The first row shows the overall QPS/recall curve, while the second row zooms
into a higher-recall regime. The build times are given in Tab. 1

plementation when using all threads. PyNNDescent’s orig-
inal implementation used Numba [52] for parallelism and
did not scale beyond 16 threads on our machine. Our imple-
mentation eventually becomes 28× faster than their parallel
implementation.

5.4 Full Billion-Scale and Hundred-Million Results
In this section we present our results for all algorithms

and for three billion-scale datasets as well as their hundred-
million scale versions.
Fig. 3 shows the QPS-recall and distance-comparison-

recall curves for all tested algorithms on the three billion-
scale dataset, along with the corresponding time to build

278

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

0.0 0.2 0.4 0.6 0.8 1.0
Recall 10@10

102

103

104

105

Qu
er

ie
s p

er
 S

ec
on

d
QPS on One Thread on BIGANN-1M

ParlayDiskANN
ParlayHNSW
ParlayHCNNG
ParlayPyNN
FAISS-PQ
FAISS-IVF
FALCONN

Figure 5. QPS on a single thread on BIGANN-1M. Shown to com-
pare with ANN-benchmarks.

their indexes presented on the side. As mentioned in Sec. 3,
ParlayPyNN is not present in the billion-scale figures since
its memory requirements were infeasible for billion-scale
datasets; it can be found in the hundred million-scale exper-
iments. It is competitive with the other algorithms at the
hundred-million scale.
In general, all our graph-based implementations achieve

similar performance in both build and query. All of them
can build the billion-scale indexes in around 10 hours.
Among them, ParlayHNSW has slightly shorter build time
(up to 2.3× faster than the other two), and ParlayDiskANN
is slightly better in query (the recall-QPS curve is almost
always at the top).

The non-graph algorithms we compared to achieved faster
index building time, where FAISS is usually 1.5–3× faster
than the graph-based algorithms. However, both of them
(especially FALCONN) struggled to get high recall on all
datasets2.
For BIGANN and MSSPACEV, FAISS did not achieve a

recall higher than 0.8 even with very low QPS. At 0.8 recall,
FAISS has orders of magnitude lower QPS than the graph-
based algorithms (although at lower recall values, the gap
between algorithms is significantly smaller).

FAISS achieves QPS close to (but still lower) the graph al-
gorithms at low recall values, but the QPS drops dramatically
when a recall higher than 0.6 is desired.

FAISS also performs especially poorly on the out-of-
distribution (OOD) dataset TEXT2IMAGE, where both of
them only achieved 0.2 recall at most.
Ultimately, higher build times may be acceptable if the

resulting index can achieve high recall and QPS. From this
perspective, we find that the graph algorithms adapt better
to achieve high-recall and QPS on billion-scale datasets com-
pared with non-graph ones. For BIGANN, all of the three
graph-based algorithms eventually can achieve close to 100%
recall at about 104 QPS. For MSSPACEV, ParlayHCNNG
achieves close to 100% recall at 104 QPS, while the other two

2We made many attempts to achieve the best query quality for FAISS and
FALCONN, including increasing the building time and using the suggested
parameters from existing resources (e.g., FAISS Wiki [47]). The results we
present are the best we achieved after extensive experiments.

can also achieve a recall above 0.9.
This advantage (high recall) of the graph-based algorithms

is especially true for queries that are out-of-distribution
(OOD). While the query quality of the non-graph algorithms
seemed to be severely affected by the OOD queries, all the
three graph-based algorithms were still capable of achiev-
ing a recall of 0.8 or more on this challenging OOD dataset
(ParlayDiskANN can even achieve a recall at 0.9). At the same
recall, the QPS of the graph-based algorithms is 12.2–19.6×
slower compared to the other non-OOD datasets.
5.5 Dataset Size Scaling
How do ANNS algorithms scale as we increase the size

of the dataset? We start with the MSSPACEV dataset as an
example to explore this question and present the result in
Fig. 6 at a fixed recall of 0.8. In addition to build times and
QPS, we also measure the average distance computations
per query for each algorithm. We study this metric because
for most ANNS algorithms on high-dimensional points, the
distance comparison are the most expensive part.

For our graph-based algorithms, we found the build times
incurred slightly superlinear increases as the dataset size in-
creased (Fig. 6a); build times increased by a multiplicative
factor of 11–12× when the size of the dataset increased by
10×. For ParlayHNSW and ParlayDiskANN, this superlin-
ear increase can be attributed to the mechanics of the beam
search: on a larger graph, beam search takes longer to termi-
nate as there are more suitable candidates in its frontier. For
ParlayPyNN, we found that the nearest neighbor descent
process consistently tookmore rounds to terminate for larger
dataset sizes. Since the nearest neighbor graph for a larger
dataset will likely have a larger diameter, two-hop explo-
ration takes longer to “propagate” through the entire graph.
For FAISS, we found an unusually small increase in build
time between the 10M and 100M datasets. We attribute this
to issues with parallelism that become less of a bottleneck at
higher numbers of data points.
For QPS (see Fig. 6b), ParlayDiskANN and ParlayHNSW

show a steady decrease in QPS as the dataset size increases.
Part of the reason for this decrease is that a beam search
with the same parameters on a larger graph will not only
be slower than the same search on a smaller graph, it will
also be less accurate since it visits a much smaller fraction of
all the vertices. Since Fig. 6b and 6c keep the recall fixed at
0.8, they must use an increased beam width at larger dataset
sizes, thus contributing to lower QPS.

ParlayHCNNG and ParlayPyNN both show steeper drops
in QPS at fixed recall than ParlayDiskANN and ParlayHNSW.
This may be because they only express close neighbor re-
lationships with their edges. As the data size grows, the
relationships they express cover smaller and smaller propor-
tions of the whole dataset. Thus, they require larger (more
costly) parameters to obtain the same level of recall as the
data size increases.

279

ParlayANN: Parallel Graph-Based Approximate Nearest Neighbor Search Algorithms PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

ParlayDiskANN ParlayHNSW ParlayHCNNG ParlayPyNN FAISS

100 101 102 103

Dataset Size (millions)

101

102

103

104

Bu
ild

 T
im

e
(s

)

(a) Build times shown on MSSPACEV as dataset
size increases.

100 101 102 103

Dataset Size (millions)

103

104

105

106

Qu
er

ie
s p

er
 S

ec
on

d

(b) QPS for fixed recall (.8) on MSSPACEV as
dataset size increases.

100 101 102 103

Dataset Size (millions)

103

104

105

106

Di
st

 C
m

ps
 P

er
 Q

ue
ry

(c) Dist computations per query for fixed recall
(.8) on MSSPACEV as dataset size increases.

Figure 6. Figures showing the effect of dataset size on different metrics using the MSSPACEVdataset.

Somewhat surprisingly, QPS and distance computations
for FAISS remained almost the same for the 100M and 1B
datasets. We confirmed that this phenomenon persisted
through a wide range of parameter choices.

In general, the non-graph based algorithms perform more
distance computations but achieve lower recall (and QPS).
This indicates that most of their distance computations are
less effective than those in graph-based algorithms (i.e., were
not contributing to finding closer neighbors). This is possibly
an important reason that they achieve much lower QPS than
graph-based algorithms on a fixed recall, and indicates the
effectiveness of graph-based algorithms for ANNS.
5.6 Conclusions from Experiments
We summarize our findings about ANNS algorithms on

billion scale pointset below.
1. Graph-based algorithms are especially capable at achiev-

ing high recall (greater than .9) at the scale of billions of
points for QPS in the 10k–200k range.

2. FAISS can achieve QPS close to the graph-based algo-
rithms at a low recall, but QPS may significantly drop
when a recall higher than 0.6 is required.

3. The IVF algorithm FAISS struggled to achieve high recall
at a billion scale, while FALCONN achieved such low
QPS that we did not include it in our experiments.

4. All algorithms struggle to achieve high QPS onOOD data,
but graph-based algorithms adapt much better: they can
achieve 0.8 or higher recall with slightly lower QPS, while
it is hard to achieve even 0.2 recall for IVF algorithms.

6 Related Work
Approximate Nearest Neighbor Search Algorithms.
Data structures for ANNS fall roughly into four categories:
graphs, inverted indices, locality-sensitive hash tables, and
trees. A graph-based algorithm constructs a graph where
the nodes represent points in the index and the edges
represent proximity relationships, and where nearest neigh-
bor queries are answered by applying a heuristic search
on the graph. Prominent examples of graph-based algo-
rithms include NSG [38], HNSW [55], DiskANN [68], but
the academic literature includes many other graph-based ap-
proaches [1, 2, 4, 6, 7, 27, 29, 35, 37, 43–45, 53, 56, 58, 64, 75].

A commonly-used type of bucketing-based algorithms is
the Inverted File Indexing (IVF) algorithms. IVF algorithms
truncate the search space of a nearest neighbor algorithm by
partitioning vectors into buckets called posting lists; queries
exhaustively search elements in only a small number of
lists instead of the entire space. One assignment method
is to use a locality-sensitive hash (LSH) function. Inverted
file structures typically use a clustering algorithm to assign
vectors to posting lists, with distance to a representative
element used to determine which lists a query is mapped
to. Some notable IVF-based algorithms include PLSH [69],
FAISS-IVF [36, 48, 50], and FALCONN [13], along with many
others [2, 4, 17, 30, 42, 51, 61, 73].

Trees such as 𝑘d-trees or cover trees are well-known data
structures for computing nearest neighbors in metric space
with low dimensionality (either actual or intrinsic) [15, 21,
40, 51], useful for many such applications [23, 31, 74]. Their
search methods are subject to the curse of dimensionality,
but there are some modified tree-based approaches for high
dimensional search [3, 5, 54, 57].
In this paper, we focus on improving the scalability of

building ANNS indexes based on graphs. There also ex-
ists work focusing on improving parallelism and scalability
for other ANNS-related topics, such as intra-query paral-
lelism [59, 60] for graph-based algorithms, and improving
scalability for tree-based algorithms on time series data [63].
ANNS at a Billion Scale. Next, we review what is cur-
rently known about scaling ANN algorithms to billion-scale
datasets. Early work on ANN measured performance on
datasets with up to a billion points using various forms of
IVF [20, 49, 69, 73]. The results for FAISS [36], the best known
of the algorithms in this class, have been reported for the
BIGANN and DEEP billion scale datasets [47]. These works
do not include comparisons to graph-based algorithms, and
focus on recall for the single nearest neighbor instead of the
𝑘 nearest neighbors (i.e., 1@𝑛 instead of 𝑘@𝑘).

Other works use secondary storage-based algorithms
to scale to billion-scale datasets. DiskANN [68], a graph-
based algorithm, gives numbers for BIGANN and DEEP
for a billion points. They present limited comparisons to
the FAISS [36] and IVFOADC+G+P algorithms [20]. The

280

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

SPANN system [30] uses an inverted index where the post-
ing lists are stored in secondary memory. On billion scale
data (BIGANN, DEEP and MSSPACEV) it only compares
to DiskANN. These existing works report the latency for
one query at a time, presumably because running multi-
ple queries across cores does not scale well due to limited
secondary memory bandwidth and/or internal parallelism
within the query [30]. The query throughput is therefore
much lower than in-memory-based systems we report on in
this paper, even accounting for machine size (i.e., number of
cores), although they have the advantage of needing less
primary memory.
Johnson, Douze, and Jégou [50] report billion scale num-

bers on a GPU-based implementation using an inverted-
index-based approach. Here again, the recall rates are low
and the implementation is only compared to another GPU-
based system [72]. Recent work on BLISS [42] uses the same
datasets as we do at a billion scale. They compare their ap-
proach to HNSW, but the numbers they report for HNSW
are much worse than those we have found and that are re-
ported here (over an order of magnitude). Several systems
work on a billion or more points, but do not report numbers
or comparisons to other systems [4, 38, 51, 55].
Benchmarking ANNS. There are two main works that
benchmark ANNS algorithms, one at the scale of millions
of points and one at the scale of billions. The first is the
ANN Benchmarks repository focusing on million-scale
datasets [16]. This is a benchmark suite of ANNS algorithms
where any contributor may submit an ANNS algorithm
to be included in their public evaluations. Each algorithm
is run by the authors on up to nine million-scale datasets.
Lastly, the Billion Scale ANNS Challenge, a competition
hosted at NeurIPS 2021 [66], focused on billion-scale ANNS
algorithms on three different hardware tracks and six differ-
ent billion-size datasets, including one range query dataset
and two datasets that exhibit OOD characteristics. These
existing benchmarks are a valuable resource, but their
user-sourced code for each algorithm is subject to imple-
mentation differences and is not necessarily a comparison
of the algorithmic ideas.

7 Conclusion and Future Work
We presented ParlayANN, which implements four paral-

lel deterministic graph-based ANNS algorithms that scale
to billion-scale inputs on a single machine with high recall.
Our implementations avoid the use of locks, achieve better
scalability than existing implementations, and also outper-
formed existing non-graph implementations in the ability of
achieving high recall, especially on OOD queries.

Our experiments illuminate many opportunities for future
work. Here we highlight some of the most interesting. One
of our most surprising conclusions is the strong performance
of HCNNG, a relatively lesser-known ANNS algorithm that
does not appear in ANN Benchmarks. This brings us to our

first open question:
Open Question 1. Can the techniques from incremental

graph algorithms be combined with insights from HCNNG
to produce an algorithm which dominates both?
Another surprising result was the clear inability of IVF

and LSH algorithms to answer out-of-distribution queries.
This brings us to the next open problem:

Open Question 2. How can IVF and LSH algorithms be
adapted to perform better on out-of-distribution queries?

While our work focuses on comparison of indexing meth-
ods, quantization and/or compression of vector data is an
important tool in approximate nearest neighbor search. An-
other open direction is:

Open Question 3. How can quantization methods be ef-
ficiently parallelized and made deterministic, and how do
such methods affect the choice of ANNS algorithms?

Some closely-related problems to ANNS are range searches
(e.g., axis-align or fixed-radius, counting or reporting all, etc.).
This brings us to the final open question:

Open Question 4. How do graph-based and other exist-
ing ANNS algorithms adapt to various range search problems
at billion or larger scale?

Acknowledgments
We thank the anonymous reviewers for their useful com-

ments. Our experimental work was supported in part by
Azure cloud compute credits granted by Microsoft Research.
The authors were supported by NSF grants DGE1745016,
DGE2140739, CCF-2103483, CCF-2238358, CCF-2227669,
CCF-2119352, CCF-1919223 and CNS-2317194.

References
[1] 2016. KGraph: A Library for Approximate Nearest Neighbor Search.

Webpage. https://github.com/aaalgo/kgraph
[2] 2021. N2. Webpage. Retrieved December 27, 2022 from https://github.

com/kakao/n2
[3] 2022. Approximate Nearest Neighbors in C++/Python optimized for

memory usage and loading/saving to disk. Webpage. Retrieved
January 1, 2023 from https://github.com/spotify/annoy

[4] 2022. OpenSearch k-NN. Webpage. Retrieved December 27, 2022
from https://github.com/opensearch-project/k-NN

[5] 2022. Spacial algorithms and data structures. Webpage. Retrieved
December 27, 2022 from https://docs.scipy.org/doc/scipy/reference/
spatial.htmla

[6] 2022. Vald: A Highly Scalable Distributed Vector Search Engine. Web-
page. Retrieved December 27, 2022 from https://github.com/vdaas/
vald

[7] 2022. vespa. Webpage. Retrieved December 27, 2022 from https:
//github.com/vespa-engine/vespa

[8] 2023. Apache Lucene. https://lucene.apache.org/
[9] 2023. CHATGPT-Retrieval-plugin/readme.md. https://github.com/

openai/chatgpt-retrieval-plugin/blob/main/README.md
[10] 2023. Microsoft Bing Search Engine. https://www.bing.com/new
[11] 2023. Pinecone: Vector Database for Vector Search. https://www.

pinecone.io/
[12] 2023. Weaviate: The AI Native Vector Database. https://weaviate.io/
[13] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn,

and Ludwig Schmidt. 2015. Practical and Optimal LSH for Angular Dis-
tance. In Annual Conference on Neural Information Processing Systems

281

https://github.com/aaalgo/kgraph
https://github.com/kakao/n2
https://github.com/kakao/n2
https://github.com/spotify/annoy
https://github.com/opensearch-project/k-NN
https://docs.scipy.org/doc/scipy/reference/spatial.htmla
https://docs.scipy.org/doc/scipy/reference/spatial.htmla
https://github.com/vdaas/vald
https://github.com/vdaas/vald
https://github.com/vespa-engine/vespa
https://github.com/vespa-engine/vespa
https://lucene.apache.org/
https://github.com/openai/chatgpt-retrieval-plugin/blob/main/README.md
https://github.com/openai/chatgpt-retrieval-plugin/blob/main/README.md
https://www.bing.com/new
https://www.pinecone.io/
https://www.pinecone.io/
https://weaviate.io/

ParlayANN: Parallel Graph-Based Approximate Nearest Neighbor Search Algorithms PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

(NeurIPS). 1225–1233.
[14] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. 2001. Thread Scheduling

for Multiprogrammed Multiprocessors. 34, 2 (01 Apr 2001).
[15] Sunil Arya and David M. Mount. 1993. Approximate Nearest Neighbor

Queries in Fixed Dimensions. In ACM/SIGACT-SIAM Symposium on
Discrete Algorithms (SODA). ACM/SIAM, 271–280.

[16] Martin Aumüller, Erik Bernhardsson, and Alexander John Faithfull.
2020. ANN-Benchmarks: A benchmarking tool for approximate nearest
neighbor algorithms. Information Systems 87 (2020).

[17] Martin Aumüller, Tobias Christiani, Rasmus Pagh, andMichael Vesterli.
2019. PUFFINN: Parameterless and Universally Fast Finding of Near-
est Neighbors. In Annual European Symposium on Algorithms (ESA),
Vol. 144. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 10:1–
10:16.

[18] ANN Benchmarks Authors. 2023. ANN-Benchmarks. https://ann-
benchmarks.com/index.html

[19] Dmitry Baranchuk and Artem Babenko. 2021. Benchmarks for
Billion-Scale Similarity Search. Webpage. Retrieved March 16, 2023
from https://research.yandex.com/blog/benchmarks-for-billion-scale-
similarity-search

[20] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting
the Inverted Indices for Billion-Scale Approximate Nearest Neighbors.
In Computer Vision - ECCV 2018 (Lecture Notes in Computer Science,
Vol. 11216). Springer, 209–224.

[21] Alina Beygelzimer, Sham M. Kakade, and John Langford. 2006. Cover
trees for nearest neighbor. In Machine Learning, Proceedings of the
Twenty-Third International Conference (ICML) (ACM International Con-
ference Proceeding Series, Vol. 148). ACM, 97–104.

[22] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Par-
layLib - A Toolkit for Parallel Algorithms on Shared-Memory Multi-
core Machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). ACM, 507–509. https://doi.org/10.1145/3350755.
3400254

[23] Guy E. Blelloch and Magdalen Dobson. 2022. Parallel Nearest Neigh-
bors in Low Dimensions with Batch Updates. In Proceedings of the Sym-
posium on Algorithm Engineering and Experiments (ALENEX). SIAM,
195–208. https://doi.org/10.1137/1.9781611977042.16

[24] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020.
Optimal parallel algorithms in the binary-forking model. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[25] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2016. Paral-
lelism in Randomized Incremental Algorithms. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). ACM, 467–478.
https://doi.org/10.1145/2935764.2935766

[26] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multi-
threaded computations by work stealing. 46, 5 (1999), 720–748.

[27] Leonid Boytsov and Bilegsaikhan Naidan. 2013. Engineering Efficient
and Effective Non-metric Space Library. In Similarity Search and Appli-
cations (SISAP) (Lecture Notes in Computer Science, Vol. 8199). Springer,
280–293.

[28] Harrison Chase. 2023. Vector DB text generation. https:
//python.langchain.com/en/latest/modules/chains/index_examples/
vector_db_text_generation.html

[29] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery
Zhu, Jason Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018.
SPTAG: A library for fast approximate nearest neighbor search. https:
//github.com/Microsoft/SPTAG

[30] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu,
Zengzhong Li, Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-
efficient Billion-scale Approximate Nearest Neighborhood Search. In
Annual Conference on Neural Information Processing Systems (NeurIPS).
5199–5212.

[31] M. Connor and P. Kumar. 2008. Parallel Construction of k-Nearest
Neighbor Graphs for Point Clouds. In Eurographics / IEEE VGTC Sym-

posium on Volume Graphics, Hans-Christian Hege, David H. Laidlaw,
Renato Pajarola, and Oliver G. Staadt (Eds.). Eurographics Association,
25–31. https://doi.org/10.2312/VG/VG-PBG08/025-031

[32] SpaceV Contributors. 2021. SPACEV1B: A billion-Scale vector dataset
for text descriptors. Webpage. Retrieved March 16, 2023 from https:
//github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms (3rd edition). MIT Press.

[34] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoreti-
cally efficient parallel graph algorithms can be fast and scalable. ACM
Transactions on Parallel Computing (TOPC) 8, 1 (2021), 1–70.

[35] Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neigh-
bor graph construction for generic similarity measures. In Proceed-
ings of the 20th International Conference on World Wide Web (WWW),
Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravin-
dra, Elisa Bertino, and Ravi Kumar (Eds.). ACM, 577–586.

[36] Matthijs Douze, Hervé Jégou, and Florent Perronnin. 2016. Polysemous
Codes. In Computer Vision - ECCV 2016 (Lecture Notes in Computer
Science, Vol. 9906). Springer, 785–801.

[37] Cong Fu, Changxu Wang, and Deng Cai. 2022. High dimensional
similarity search with satellite system graph: Efficiency, scalability,
and unindexed query compatibility. IEEE Trans. Pattern Anal. Mach.
Intell. 44, 8 (2022), 4139–4150.

[38] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Ap-
proximate Nearest Neighbor Search With The Navigating Spreading-
out Graph. Proc. VLDB Endow. 12, 5 (2019), 461–474.

[39] Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. 2023.
Parallel Longest Increasing Subsequence and van Emde Boas Trees.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[40] Yan Gu, Zachary Napier, Yihan Sun, and Letong Wang. 2022. Parallel
Cover Trees and their Applications. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 259–272.

[41] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-
Down Parallel Semisort. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). ACM, 24–34. https://doi.org/10.1145/
2755573.2755597

[42] Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexan-
der J. Smola. 2022. BLISS: A Billion scale Index using Iterative Re-
partitioning. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD). ACM, 486–495.

[43] Ben Harwood and Tom Drummond. 2016. Fanng: Fast approximate
nearest neighbour graphs. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 5713–5722.

[44] Masajiro Iwasaki. 2016. Pruned Bi-directed K-nearest Neighbor Graph
for Proximity Search. In Similarity Search and Applications (SISAP)
(Lecture Notes in Computer Science, Vol. 9939). 20–33.

[45] Masajiro Iwasaki and Daisuke Miyazaki. 2018. Optimization of In-
dexing Based on k-Nearest Neighbor Graph for Proximity Search in
High-dimensional Data. CoRR abs/1810.07355 (2018). arXiv:1810.07355
http://arxiv.org/abs/1810.07355

[46] Joseph JáJá. 1992. Introduction to Parallel Algorithms. Addison-Wesley
Professional.

[47] Herve Jegou, Matthijs Douze, Jeff Johnson, Lucas Hosseini, Chengqi
Deng, and Alexandr Guzhva. 2023. FAISS Wiki. Webpage. Retrieved
March 21, 2023 from https://github.com/facebookresearch/faiss/wiki

[48] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product
Quantization for Nearest Neighbor Search. IEEE Trans. Pattern Anal.
Mach. Intell. 33, 1 (2011), 117–128.

[49] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg.
2011. Searching in one billion vectors: Re-rank with source coding. In
Proceedings of the IEEE International Conference on Acoustics (ICASSP).
IEEE, 861–864. https://doi.org/10.1109/ICASSP.2011.5946540

[50] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale

282

https://ann-benchmarks.com/index.html
https://ann-benchmarks.com/index.html
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1137/1.9781611977042.16
https://doi.org/10.1145/2935764.2935766
https://python.langchain.com/en/latest/modules/chains/index_examples/vector_db_text_generation.html
https://python.langchain.com/en/latest/modules/chains/index_examples/vector_db_text_generation.html
https://python.langchain.com/en/latest/modules/chains/index_examples/vector_db_text_generation.html
https://github.com/Microsoft/SPTAG
https://github.com/Microsoft/SPTAG
https://doi.org/10.2312/VG/VG-PBG08/025-031
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://doi.org/10.1145/2755573.2755597
https://doi.org/10.1145/2755573.2755597
http://arxiv.org/abs/1810.07355
https://github.com/facebookresearch/faiss/wiki
https://doi.org/10.1109/ICASSP.2011.5946540

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

Similarity Search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535–547.
[51] Alex Klibisz. 2021. Tour de Elastiknn. Webpage. Retrieved December

27, 2022 from https://elastiknn.com/posts/tour-de-elastiknn-august-
2021/

[52] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A
llvm-based python jit compiler. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC. 1–6.

[53] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2022.
HVS: Hierarchical Graph Structure Based on Voronoi Diagrams for
Solving Approximate Nearest Neighbor Search. Proc. VLDB Endow. 15,
2 (2022), 246–258.

[54] Anonymous Maciej Kula, Matthew Ward. 2019. rpforest. Webpage.
Retrieved December 20, 2022 from https://github.com/lyst/rpforest

[55] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust
Approximate Nearest Neighbor Search Using Hierarchical Navigable
Small World Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (2020),
824–836.

[56] Leland McInnes. 2020. PyNNDescent for Fast Approximate Nearest
Neighbors. Webpage. Retrieved December 15, 2022 from https://
pynndescent.readthedocs.io/en/latest/

[57] Marius Muja and David G. Lowe. 2009. Fast Approximate Nearest
Neighbors with Automatic Algorithm Configuration. In Proceedings
of the Fourth International Conference on Computer Vision Theory and
Applications (VISAPP). INSTICC Press, 331–340.

[58] Javier Alvaro Vargas Muñoz, Marcos André Gonçalves, Zanoni Dias,
and Ricardo da Silva Torres. 2019. Hierarchical Clustering-Based
Graphs for Large Scale Approximate Nearest Neighbor Search. Pattern
Recognit. 96 (2019).

[59] Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren. 2022.
Speed-ANN: Low-Latency and High-Accuracy Nearest Neighbor
Search via Intra-Query Parallelism. arXiv preprint arXiv:2201.13007
(2022).

[60] Zhen Peng, Minjia Zhang, Kai Li, Ruoming Jin, and Bin Ren. 2023.
iQAN: Fast and Accurate Vector Search with Efficient Intra-Query
Parallelism on Multi-Core Architectures. In Proceedings of the 28th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming. 313–328.

[61] Ninh Pham and Tao Liu. 2022. Falconn++: A Locality-sensitive Fil-
tering Approach for Approximate Nearest Neighbor Search. CoRR
abs/2206.01382 (2022). https://doi.org/10.48550/arXiv.2206.01382
arXiv:2206.01382

[62] Alexander Ponomarenko, Yury Malkov, Andrey Logvinov, and
Vladimir Krylov. 2011. Approximate nearest neighbor search small
world approach. In International Conference on Information and Com-
munication Technologies & Applications, Vol. 17.

[63] Amir Raoofy, Roman Karlstetter, Martin Schreiber, Carsten Trinitis,
and Martin Schulz. 2023. Overcoming Weak Scaling Challenges in
Tree-Based Nearest Neighbor Time Series Mining. In International
Conference on High Performance Computing. Springer, 317–338.

[64] Jie Ren, Minjia Zhang, and Dong Li. 2020. HM-ANN: Efficient Billion-
Point Nearest Neighbor Search on Heterogeneous Memory. In Annual
Conference on Neural Information Processing Systems (NeurIPS), Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.).

[65] Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequen-
tial Iterative Algorithms Can Be Parallel and (Nearly) Work-efficient.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[66] Harsha Vardhan Simhadri, George Williams, Martin Aumuller,
Matthijs Douze, Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas
Hosseini, Ravishankar Krishnaswamy, Gopal Srinivasa, Suhas Jayaram
Subramanya, and Jingdong Wang. 2021. Results of the NeurIPS’21
Challenge on Billion-Scale Approximate Nearest Neighbor Search. In
Annual Conference on Neural Information Processing Systems (NeurIPS)

(Proceedings of Machine Learning Research, Vol. 176). 177–189.
[67] Colette Stallbaumer. 2023. Introducing Microsoft 365 copi-

lot. https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/
16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/

[68] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri,
Ravishankar Krishnaswamy, and Rohan Kadekodi. 2019. DiskANN:
Fast Accurate Billion-point Nearest Neighbor Search on a Single
Node. In Annual Conference on Neural Information Processing Systems
(NeurIPS). 13748–13758.

[69] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish,
Todd Mostak, Piotr Indyk, Samuel Madden, and Pradeep Dubey. 2013.
Streaming Similarity Search over one Billion Tweets using Parallel
Locality-Sensitive Hashing. Proc. VLDB Endow. 6, 14 (2013), 1930–1941.

[70] tawalke. 2023. PR: SK Vectordb Connector Work - Merging forked
branch; PR from Fork to SK Branch by Tawalke · pull request 83 ·
Microsoft/Semantic-Kernel. https://github.com/microsoft/semantic-
kernel/pull/83

[71] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021.
A Comprehensive Survey and Experimental Comparison of Graph-
Based Approximate Nearest Neighbor Search. Proc. VLDB Endow. 14,
11 (2021), 1964–1978.

[72] P. Wieschollek, O. Wang, A. Sorkine-Hornung, and H. P. A. Lensch.
2016. Efficient large-scale approximate nearest neighbor search on the
GPU. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[73] Yan Xia, Kaiming He, Fang Wen, and Jian Sun. 2013. Joint inverted in-
dexing. In Proceedings of the IEEE International Conference on Computer
Vision. 3416–3423.

[74] Rahul Yesantharao, Yiqiu Wang, Laxman Dhulipala, and Julian Shun.
2021. Parallel Batch-Dynamic kd-Trees. CoRR abs/2112.06188 (2021).
arXiv:2112.06188 https://arxiv.org/abs/2112.06188

[75] Jiaru Zhang, Ruhui Ma, Tao Song, Yang Hua, Zhengui Xue, Chenyang
Guan, and Haibing Guan. 2022. Hierarchical Satellite System Graph
for Approximate Nearest Neighbor Search on Big Data. ACM/IMS
Trans. Data Sci. 2, 4 (2022).

283

https://elastiknn.com/posts/tour-de-elastiknn-august-2021/
https://elastiknn.com/posts/tour-de-elastiknn-august-2021/
https://github.com/lyst/rpforest
https://pynndescent.readthedocs.io/en/latest/
https://pynndescent.readthedocs.io/en/latest/
https://doi.org/10.48550/arXiv.2206.01382
https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/
https://www.microsoft.com/en-us/microsoft-365/blog/2023/03/16/introducing-microsoft-365-copilot-a-whole-new-way-to-work/
https://github.com/microsoft/semantic-kernel/pull/83
https://github.com/microsoft/semantic-kernel/pull/83
https://arxiv.org/abs/2112.06188

ParlayANN: Parallel Graph-Based Approximate Nearest Neighbor Search Algorithms PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

A Artifact Instructions
Code Availability Our repository can be found at the

following https://zenodo.org/records/10223558. The separate
repository that we use to run the algorithms and generate
plots (which you should install rather than the above) can be
found at this https://zenodo.org/records/10223597. This repo
is what you should download and install, and it contains a
Docker container for installing our other library.
A.1 Getting Started
We use the Big ANN Benchmarks (https://github.com/

harsha-simhadri/big-ann-benchmarks/tree/main) reposi-
tory to generate our plots. We have uploaded a fork of this
repository to Zenodo (same link as above); you can use it to
install a branch of our library that was also uploaded using
Zenodo.

Installation The only prerequisite is Python3.10 and
Docker. All commands are assumed to be run in the top-
level directory unless otherwise stated. You may wish to use
a conda environment for python commands.

1. Download and unzip the repo
2. Run pip install -r requirements_py3.10.txt
3. Install docker by following instructions: https://docs.

docker.com/engine/install/ubuntu/. You should also
to follow the post-install steps for running docker in
non-root user mode.

4. Install the necessary Docker images as follows by
running python3.10 install.py –algorithm
parlayann

5. Create the result folder by calling mkdir results in
the top-level directory

Datasets The evaluation assumes that datasets are stored
in the data/ directory inside the main folder. You should
use a symbolic link to a directory on an SSD depending on
your memory constraints (this is discussed further in the
Evaluation section, note that the resulting saved graphs will
also be written to this folder). Download a small toy dataset
using:

python3.10 create_dataset.py --dataset random-xs

Toy Evaluation Finally, run the algorithms on the toy
dataset to confirm that they run as expected. The ‘run.py‘
file builds a nearest neighbor graph (as described in Section
3 of our paper) and queries it, recording the results for later
analysis.

python3 . 1 0 run . py −−a l go r i t hm ParDiskANN
−−d a t a s e t random−xs −− d e f i n i t i o n s
a r t i f a c t _ e v a l . yaml

python3 . 1 0 run . py −−a l go r i t hm ParHCNNG
−−d a t a s e t random−xs −− d e f i n i t i o n s
a r t i f a c t _ e v a l . yaml

python3 . 1 0 run . py −−a l go r i t hm
ParPyNNDescent −−d a t a s e t random−xs
−− d e f i n i t i o n s a r t i f a c t _ e v a l . yaml

python3 . 1 0 run . py −−a l go r i t hm ParHNSW −−
d a t a s e t random−xs −− d e f i n i t i o n s
a r t i f a c t _ e v a l . yaml

Now, generate a plot of results:
python3.10 plot.py --dataset random-xs

The plot can be found in results/random-xs.png.
A.2 Evaluation
Our paper presents results specifically on billion-size

datasets. It took around 90 hours on an AWS c6i with 128
vCPUs to build all of the graphs, and requires around 1.5
terabytes of main memory. It additionally requires about 2
TB to store all the datasets, and then an additional 10 TB
to store all the graph indices. We assume that the reviewer
will not have the relevant time or resources for this eval-
uation. The evaluation for 100 million size took about 16
hours on an AWS c6i with 128 vCPUs to build each graph
and requires about 150 GB of main memory as well as 1 TB
storage. We assume that the reviewer may possibly be able
to do the 100 million scale evaluation, but we also provide
instructions to reproduce the results at the 10 million scale
in case that is preferred (the memory requirements scale
down by exactly a factor of 10 when going from 100 million
to 10 million).
In the next section, we describe how to reproduce the

thread scaling results in Figure 1. Then, we provide scripts
for reproducing the results in Figure 4 at either the 10 million
or 100 million scale.
A.3 Thread Scaling

In Figure 1, we show speedup of build times relative to the
original (i.e. not lock-free) algorithm on one thread. Since the
artifact does not require the use of other researchers’ code,
we instead plot build times for our own implementations on
the y-axis and number of threads on the x-axis.

First, download the dataset:
python3.10 create_dataset.py --dataset bigann-1M

The next script builds the graph for each algorithm on
[1,2,8,16,24,32,48,64,96] threads. If your evaluation machine
has fewer threads, you can access the script and comment
out the lines corresponding to the thread counts you wish to
exclude. Note that if you are monitoring thread usage using
e.g. ‘htop‘, some of the steps outside building (e.g. loading
the dataset, saving and loading the graph, etc.) may still use
all available threads.
bash thread_scaling_bigann.sh

After the run concludes, use the following commands to
generate the plot:
python3 . 1 0 p l o t . py −−d a t a s e t bigann −1M −

x t h r e a d s −y b u i l d −−out r e s u l t s /

284

https://zenodo.org/records/10223558
https://zenodo.org/records/10223597
https://github.com/harsha-simhadri/big-ann-benchmarks/tree/main
https://github.com/harsha-simhadri/big-ann-benchmarks/tree/main
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Manohar, Shen, Blelloch, Dhulipala, Gu, Simhadri, and Sun

t h r ead s ca l e _b i gann1M −Y log
You should find the plot in the ‘results‘ folder. It should

be titled threadscale_bigann1M.png.
A.4 Ten Million Scale QPS/Recall Plots (Figure 4)

First, download the datasets:
python3 . 1 0 c r e a t e _ d a t a s e t . py −−d a t a s e t

bigann −10M
python3 . 1 0 c r e a t e _ d a t a s e t . py −−d a t a s e t

msspacev −10M
python3 . 1 0 c r e a t e _ d a t a s e t . py −−d a t a s e t

t ex t2 image −10M
The download of a file occasionally fails due to connectiv-

ity and needs to be repeated. Running the download multiple
times will not download duplicates of the datasets, so just
rerun the same command if you get any error messages.

Next, run each algorithm using the following script:
bash run_10M_builds.sh

After the run concludes, use the following commands to
generate plots:
bash create_10M_plots.sh

Next, navigate to the ‘results/‘ folder. It should have gen-
erated three new QPS/recall plots, one for each dataset.
A.5 Hundred Million Scale QPS/Recall Plots

(Figure 4)
The explanation for these instructions is exactly analogous

to the instructions for 10M size datasets:
python3 . 1 0 c r e a t e _ d a t a s e t . py −−d a t a s e t

bigann −100M
python3 . 1 0 c r e a t e _ d a t a s e t . py −−d a t a s e t

msspacev −100M
python3 . 1 0 c r e a t e _ d a t a s e t . py −−d a t a s e t

t ex t2 image −100M
bash run_100M_bui lds . sh
bash c r e a t e _ 1 0 0M_p l o t s . sh

285

	Abstract
	1 Introduction
	2 Preliminaries
	3 General Techniques for Graph-Based ANNS Algorithms
	3.1 Incremental Algorithms
	3.2 Clustering-Based Algorithms

	4 ParlayANN Algorithms
	4.1 DiskANN
	4.2 HNSW
	4.3 HCNNG
	4.4 PyNNDescent
	4.5 Search and Layout Optimizations

	5 Experimental Evaluations
	5.1 Experimental Setup
	5.2 Comparison with ANN Benchmarks
	5.3 Parallelism and Scalability
	5.4 Full Billion-Scale and Hundred-Million Results
	5.5 Dataset Size Scaling
	5.6 Conclusions from Experiments

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Artifact Instructions
	A.1 Getting Started
	A.2 Evaluation
	A.3 Thread Scaling
	A.4 Ten Million Scale QPS/Recall Plots (Figure 4)
	A.5 Hundred Million Scale QPS/Recall Plots (Figure 4)

