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/ Problem Definitions and Notations \

Experimental Results

* Given a sequence of integers A of size n in the range [0, 7], ’ Exper.imental setup: 96 cores and 1.5TB of main memory.
order the elements by their integer keys. * Baselines algorithms:
* Integer sort: PLIS: ParlayLib integer sort [3] (PLIS),
A[1..n] |Original input array with size n IPS2Ra integer sort [2] (IPS?Ra), Region sort [7] (RS)
] |The range of the integer keys 0,..., 7 — 1 * Comparison sort: ParlayLib sample sort [3,4] (PLSS),
¥ |Number of bits in a “digit” (sorted by each level) IPS40 sample sort [2] (IPS*0)
v Base case size threshold Integer Comparison _
d Number of remaining “digits” to be sorted Ours PLIS IPS?Ra RS |PLSS IPS%o|  Underiine: stable
& dls 10° [1.00 1.07 1.34 1.44 138|  Aug - GeoMean
€ 107 |1.00 1.09 1.20 1.41 1.21 '
£ 10° [1.00 1.13 1.24 1.46 1.36
g 1.17 1.24 1.00 ' Fewer duplicates
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/Challenges and Our Contrlbutlons\ YAl s
* Theoretical challenge: the best work bound of practical : % i:gg lMore duplicates

Exponential
ol

implementations for the range of [0, r] is O(nlogr), 1.00
[ |
which is no better than comparison sort when r = Q(n). 7 11.00 !
: : ) ) ) 10 [ 1.00 1.1
Can we theoretically explain, why integer sort is practically 06 100 k.
faster than comparison sort? S 0.8 [1.00 i 1'5
We proved that a class of practical parallel integer sort =1 112 ig(z) .2'
N . .
implementations, including our new one, have O(n,/logr) 1.5 | 1.00 I4
work Avg. 1.01 >4
o PraCt|Ca”y Cha”enge. Can |nteger SOrt COﬂSIStenﬂy ° The heatmap ShOWS relative Speedups over the fastest
outperform comparison sort (particularly with heavy implementation on each input distribution with n = 10°.
duplicates)?  DTSort achieves the best performance on 13 out of 15
We proposed DovetailSort that combines the advantages of test cases and a 28% speedup over the next best
integer and sample sort and is consistently faster than all implementation on geometric mean average.
existing algorithms in most tested cases 1.5
%\ 1 DTSort
 The bar graph shows the & BN Plain
: : A 1.0
. running time of our code <
DovetailSort nning =
with (DTSort) and £
DTSort(A[0..n — 1], d) without (Plain) heavy 0%
if d = 0 thenreturn 4 i i — S
Base Cases key detection with n E
if |[A| < 6 then return ComparisonSort(A) 109 0.0
) Unif Unnc Exp Exp Zipf Zipf BExp BExp
BREELTIEE Detect heavy keys by sampling 10° 10 06 15 10 300
Distributing Distribute each integer to buckets using the d-th * The overhead of doing sampling and merging is very
digit as the bucket id small (See Unif-10°).
ACVIS-8 Parallel_for_each bucket B DTSort(B, d — 1) * It can achieve up to 2x speedup compared to Plain (See
\ITe-{lo -8 Verge the heavy keys with the light keys BExp-300).
e Our algorithm follows the most-significant digit (MSD)
framework (given by the black boxes) that partitions all k
| (given by the bl ) that partitions all keys References
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Step 1: Take samples (boxed), detect heavy keys, assign bucket ids Input (6|4 0/4|8|2|6 4|7|9/11 5 15/4(|13109|4/14 5|911/6
Samples: [4|x 3 [2|x1|6|x2|9|x2 |7|x1

— 4 light buckets: for MSD (highest two bits) 00, 01, 10, 11 light light heavy (158N heavy light heavy light

3 heavy buckets: for 4, 6, 9 keys 0-3  keys 0-3 key 4 key 6 keys 8-11 key 9 keys 12-15

( maore d Eta I |S g'Ve nin t h e pa p e r) . QRadix Sorting. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 213-224.

Step 2: Distribute records to corresponding buckets 02/|7 56514444466 6!//18$1110119 9 9 9//1151314

N

Step 3: Recursively integer sort each light bucket on the next 2 bits 02//55 714 4444626 6//810111119 9 9 911131415

Step 4: Merge heavy and light buckets within the same MSD 02{144444556¢6¢6 7(189 99 9101111131415
\ MSD=00 MSD=01 MSD=10 MSD ]y
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