
Problem Definitions and Notations
• Given a sequence of integers 𝐴 of size 𝑛 in the range [0, 𝑟], 

order the elements by their integer keys.

Parallel Integer Sort - Theory and Practice (appeared at PPoPP ’24)
Xiaojun Dong

Experimental Results
• Experimental setup: 96 cores and 1.5TB of main memory. 
• Baselines algorithms:
• Integer sort: PLIS: ParlayLib integer sort [3] (PLIS), 

IPS2Ra integer sort [2] (IPS2Ra), Region sort [7] (RS)
• Comparison sort: ParlayLib sample sort [3,4] (PLSS), 

IPS4o sample sort [2] (IPS4o)

Laxman Dhulipala Yan Gu Yihan Sun
Full Version: https://arxiv.org/abs/2401.00710 Code: https://github.com/ucrparlay/DovetailSort

References
[1] Susanne Albers and Torben Hagerup. 1997. Improved parallel integer sorting without concurrent writing. 
Information and Computation 136, 1 (1997), 25–51.
[2] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. 2022. Engineering in-place (shared-memory) 
sorting algorithms. ACM Transactions on Parallel Computing (TOPC) 9, 1 (2022), 1–62.
[3] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib — a toolkit for parallel algorithms on 
shared-memory multicore machines. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
[4] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms. In 
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
[5] Xiaojun Dong, Laxman Dhulipala, Yan Gu, and Yihan Sun. 2024. Parallel Integer Sort: Theory and Practice. In ACM 
Symposium on Principles and Practice of Parallel Programming (PPOPP).
[6] Marek Kokot, Sebastian Deorowicz, and Maciej Dlugosz. [n. d.]. Even Faster Sorting of (Not Only) Integers. In Man-
Machine Interactions 5 - 5th International Conference on Man-Machine Interactions, ICMMI 2017, Kraków, Poland, 
October 3-6, 2017.
[7] Omar Obeya, Endrias Kahssay, Edward Fan, and Julian Shun. 2019. Theoretically-Efficient and Practical Parallel In-
Place Radix Sorting. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 213–224.
[8] Uzi Vishkin. 2010. Thinking in parallel: Some basic data-parallel algorithms and techniques. (2010).

𝐴[1. . 𝑛] Original input array with size 𝑛
[𝑟] The range of the integer keys 0, . . . , 𝑟 − 1
𝛾 Number of bits in a “digit” (sorted by each level)
𝜃 Base case size threshold
𝑑 Number of remaining “digits” to be sorted

DovetailSort

Base Cases

Distributing

Recursing

DTSort(𝐴 0. . 𝑛 − 1 , 𝑑)
if 𝑑 = 0 then return 𝐴
if 𝐴 < 𝜃 then return ComparisonSort(𝐴) 
Detect heavy keys by sampling
Distribute each integer to buckets using the 𝑑-th 
digit as the bucket id
Parallel_for_each bucket 𝑩 DTSort(𝐵, 𝑑 − 1)
Merge the heavy keys with the light keys

Sampling

Merging

Challenges and Our Contributions
• Theoretical challenge: the best work bound of practical 

implementations for the range of [0, 𝑟] is 𝑂(𝑛 log 𝑟), 
which is no better than comparison sort when 𝑟 = Ω 𝑛 . 
Can we theoretically explain, why integer sort is practically 
faster than comparison sort?

We proved that a class of practical parallel integer sort 
implementations, including our new one, have 𝑂(𝑛 log 𝑟)
work
• Practically challenge: Can integer sort consistently 

outperform comparison sort (particularly with heavy 
duplicates)?

We proposed DovetailSort that combines the advantages of 
integer and sample sort and is consistently faster than all 
existing algorithms in most tested cases

Algorithm Overview
Input 6 4 0 4 8 2 6 4 7 9 11 5 15 4 1310 9 4 14 5 9 11 6 9

0 2 7 5 5 4 4 4 4 4 6 6 6 8 111011 9 9 9 9 151314

bkt 0 light
keys 0-3

0 2 5 5 7 4 4 4 4 4 6 6 6 8 101111 9 9 9 9 131415

0 2 4 4 4 4 4 5 5 6 6 6 7 8 9 9 9 9 101111 131415
MSD=01 MSD=10 MSD=11

Samples: × 17× 34 × 12 × 26 × 29
Step 1: Take samples (boxed), detect heavy keys, assign bucket ids 

4 light buckets: for MSD (highest two bits) 00, 01, 10, 11 
3 heavy buckets: for 4, 6, 9⇒

Step 2: Distribute records to corresponding buckets

Step 3: Recursively integer sort each light bucket on the next 2 bits

Step 4: Merge heavy and light buckets within the same MSD
MSD=00

3bkt 1 light
keys 0-3

bkt 2 heavy
key 4

bkt 3 heavy
key 6

bkt 4 light
keys 8-11

bkt 6 light
keys 12-15

bkt 5 heavy
key 9

• The heatmap shows relative speedups over the fastest 
implementation on each input distribution with 𝑛 = 10!.

• DTSort achieves the best performance on 13 out of 15 
test cases and a 28% speedup over the next best 
implementation on geometric mean average.

Unif
109

Unif
10

Exp
1

Exp
10

Zipf
0.6

Zipf
1.5

BExp
10

BExp
300

Instance

0.0

0.5

1.0

1.5

R
un

ni
ng

ti
m

e
(i
n

se
co

nd
s) DTSort

Plain• The bar graph shows the 
running time of our code 
with (DTSort) and 
without (Plain) heavy 
key detection with 𝑛 =
10!.

4
>4

2
1.5
1.2
1.1
1

Avg. = GeoMean

Underline: stable
Integer Comparison

Un
ifo

rm

109 1.00 1.07 1.34 1.44 2.55 1.38
107 1.00 1.09 1.20 1.41 2.27 1.21
105 1.00 1.13 1.24 1.46 2.27 1.36
103 1.17 1.17 1.24 1.42 1.86 1.00
10 1.00 2.29 3.68 1.42 3.11 1.48

Ex
po

ne
nt

ia
l 1 1.00 1.02 1.09 1.35 2.07 1.28

2 1.00 1.09 1.15 1.42 2.16 1.32
5 1.00 1.31 1.34 1.62 2.55 1.41
7 1.00 1.39 1.32 1.69 2.66 1.45

10 1.00 1.50 1.39 1.70 2.77 1.40

Zi
pf

ia
n

0.6 1.00 1.10 1.28 1.46 3.00 1.40
0.8 1.00 1.03 1.18 1.35 2.09 1.28
1 1.02 1.07 1.10 1.25 1.83 1.00

1.2 1.00 1.61 2.08 1.37 2.33 1.44
1.5 1.00 2.12 4.27 1.56 2.75 2.10

Avg. 1.01 1.29 1.49 1.46 2.39 1.35

Ours PLIS IPS2Ra RS PLSS IPS4o

Fewer duplicates

More duplicates

• The overhead of doing sampling and merging is very 
small (See Unif-10!). 

• It can achieve up to 2x speedup compared to Plain (See 
BExp-300).

• Our algorithm follows the most-significant digit (MSD) 
framework (given by the black boxes) that partitions all keys 
into buckets based on the integer encoding (i.e., 𝜆 ∈ [8,12]
highest bits), and recurses within each bucket. 
• Our algorithm can detect heavy duplicate keys by sampling 

and take advantage of them by avoiding sorting them in 
subsequent recursive levels. The heavy keys will be merged 
with the light keys after the recursion. 
• We propose DTSort to accelerate the merge subroutine 

(more details given in the paper).

https://arxiv.org/abs/2401.00710
https://github.com/ucrparlay/DovetailSort

