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Abstract—In this paper, we share our experience in teach-
ing parallel algorithms with the binary-forking model. With
hardware advances, multicore computers are now ubiquitous.
This has created a substantial demand in both research and
industry to harness the capabilities of parallel computing. It is
thus important to incorporate parallelism in computer science
education, especially in the early stages of the curriculum.
However, it is commonly believed that understanding and using
parallelism requires a deep understanding of computer systems
and architecture, which complicates introducing parallelism to
young students and non-experts.

We propose to use the binary-forking model in teaching parallel
algorithms, proposed by our previous research work. This model
is meant to capture the performance of algorithms on modern
multicore shared-memory machines, which is a simple abstrac-
tion to isolate algorithm design ideas with system-level details.
The abstraction allows for simple analysis based on the work-
span model in theory, and can be directly implemented as parallel
programs in practice. In this paper, we briefly overview some
basic primitives in this model, and provide a list of algorithms
that we believe are well-suited in parallel algorithm courses.

I. INTRODUCTION

With the advent of Intel’s dual-core E6320, and AMD’s
dual-core Athlon 64 in 2005, parallelism moved into the
mainstream of processor design. Today, a typical laptop,
desktop, or server has 4 to 200 cores that each can be
hyper-threaded. Hardware advances have created a substan-
tial demand in both research and industry to harness the
capabilities of parallel computing. Take the June 2023 issue
of VLDB as an example, 9 out of 23 papers incorporate
multithreading in their implementation, regardless of whether
their primary focus is on parallelism. Despite the excitement
generated by parallelism, there is still a huge gap between the
growing demand and the delay in educating students on how to
effectively utilize parallelism. Most CS curriculums, especially
in the fundamental courses on algorithms and programming,
still focus on the sequential setting. Usually, parallelism is not
introduced in the curriculum until upper-division or graduate-
level classes, and is usually not part of the required courses.

Indeed, parallel programming is notoriously hard and is
believed to involve a deep understanding of systems and
architecture. This makes parallel algorithm design and pro-
gramming much harder than the sequential setting in ed-
ucation: sequentially, the RAM (random access machine)
model bridges algorithm design/analysis with programming,
and isolates system-level details. Students learn algorithms
and understand their efficiency with the intuitive measure of
“time complexity”. With these tools, it is not too hard to teach
middle school students, or non-CS audiences, to design simple
algorithms and write codes. In parallel, however, both theory
and programming seem to be much harder.

One major hurdle in introducing parallelism to young
students or non-experts with limited knowledge of computer
systems is the absence of the “RAM” model in parallel
contexts. This is not due to a lack of theoretical models in
parallel settings; in fact, there is a rich history of the study
of parallel computational models (and algorithms on them).
For example, one of the most influential parallel models, the
Parallel Random Access Machine (PRAM) model [65], was
proposed in the 1980s. During the 80s and early 90s, there
were hundreds of papers and several textbooks and survey
articles [8, 52, 54, 61] for parallel algorithms on PRAM; many
ideas are still relevant today. We refer the audience to the
original paper [23] for a more detailed literature review.

Unfortunately, directly using the PRAM in teaching parallel
algorithms and programming has several major challenges.
First, the PRAM model assumes that P threads share the
memory and run in parallel in lockstep, which contradicts the
inherent nature of today’s machines—they are highly asyn-
chronous. Second, due to sharing with other jobs, the number
of processors available can change over time, and is not a
fixed number P . For these reasons, and more discussed in [21],
existing parallel programming languages usually assume dy-
namic creation of threads, a dynamic scheduler to map threads
to processors, and no assumption of tight synchronization. The
model is the so-called fork-join / nested-parallelism model.
It has also been used in research papers, but oftentimes, the
results on fork-join models are reinterpreted on the PRAM
to make fair comparisons with earlier results. Many of them
assume a constant cost to fork an arbitrary number of threads,
as is in PRAM. As a result, many strong theoretical results
rely on utilizing tight synchronization, and may need extra
engineering effort to achieve high performance on today’s
multicore machines. Such an issue complicates the way to
teach these algorithms. An instructor usually needs to cover
both the analysis and extra techniques to program them.

Motivated by these issues, the authors (along with others)
formalized the parallel binary-forking model in 2020 [21]. The
model is meant to capture the performance of algorithms on
modern multicore shared-memory machines in a simpler yet
more accurate way, such that algorithms with good theoretical
guarantees can directly lead to high performance. For teaching
purposes, we usually use the binary fork-join model formalized
in that paper, allowing for certain atomic operations such
as compare-and-swap. In this model, a computation starts
with one thread. Each thread acts like a regular RAM with
two additional operations: a fork operation that dynamically
creates two child threads to run in parallel, and a join to
synchronize the previously forked child threads, after which



the parent thread continues. As we will discuss in Section II,
both asynchrony and binary-forking (as opposed to arbitrary-
way forking) are important to make the model practical. Such
assumptions closely resemble how a multicore algorithm is
actually being executed by state-of-the-art schedulers, and can
be easily implemented by most programming languages. With
this model, students can learn and design algorithms similar
to the sequential approach. The additional detail to specify is
that the following two tasks can run in parallel. Theoretical
analysis can be done using the standard work-span analysis
(see details in Section II).

In this paper, we will discuss how this model is especially
suitable for classes (even for entry-level classes). In fact,
we have taught parallel algorithms on this model in various
classes, including a sophomore-level course at CMU (15-210)
and an intermediate-level undergraduate algorithm course at
UCR (CS 141), both of which are required in the correspond-
ing CS program. This model has also been taught in elective
courses at both undergraduate and graduate levels, including
CMU 15-853, UCR CS142 and CS214, UMD CMSC858N,
and MIT 6.886. We have also used the model to give overview
talks to K-12 students to introduce parallel algorithms.

In the following, we start by introducing the model, and
discuss the advantages of using this model in teaching parallel
algorithms. Section III reviews some simple building blocks
in this model, which we believe fit in a one-week overview of
parallel algorithms in classes. In Section IV, we further select
more advanced algorithms that can be covered in a complete
course about parallelism. Most of them have strong theoretical
guarantees and available open-source code.

II. THE MODEL

In this section, we introduce the binary fork-join model
in [21], which we consider to be well-suited for teaching
parallel algorithms. This model assumes a collection of threads
that share memory. The threads can be created dynamically
and can run asynchronously in parallel. A computation starts
with one thread. Each thread acts like a standard Random-
Access Machine (RAM) with two additional operations: fork
and join. The fork operation creates two child threads to work
in parallel. The join operation synchronizes the two child
threads when they complete, after which the parent thread
continues. A parallel for-loop can be simulated by using fork
for a logarithmic number of levels. Costs are measured in work
(the total number of instructions executed among all threads)
and span (the longest sequence of dependent instructions). An
algorithm is work-efficient if its work is asymptotically the
same as the best sequential algorithm.

Variants of this model have been widely studied before we
formalized the discussion [2, 3, 9, 11–15, 17, 24, 25, 29, 31–
33, 40, 72]. The fork-join paradigm is also widely used
in practice, and supported by programming systems such
as Cilk [44], the Java fork-join framework [53], X10 [28],
Habanero [27], Intel Threading Building Blocks (TBB) [51],
and the Microsoft Task Parallel Library [73]. This model is
recently added in the textbook Introduction to Algorithms [33]

1 int reduce(A[1..n]) {
2 if (n = 1) return A[1];
3 parallel_do {
4 x = reduce(A[1..n/2]);
5 y = reduce(A[(n/2+1)..n]); }
6 return x + y;
7 }

(a) Pseudocode for parallel reduce
1 int reduce(int* A, int n) {
2 if (n = 1) return A[0];
3 int x, y;
4 cilk_scope {
5 x = cilk_spawn reduce(A, n/2);
6 y = reduce(A + n/2, n - n/2); }
7 return x + y; }

(b) Implementation in OpenCilk [62]

Figure 1: The reduce primitive and its implementation.

(3rd and 4th editions) when discussing parallel algorithms as
an optional, advanced topic to cover in algorithm courses.

For simplicity, we can write (pseudo) code in this model
by simply using two more keywords in the language: a
parallel do that specifies the next two statements can run
in parallel, and a parallel for that allows all iterations in a
for-loop to run in parallel. A parallel do means to wrap the
two statements with a fork-join pair. paralle for is essentially
simulated by using logarithmic levels of forking and joining
them back at the end. To design a parallel algorithm, one can
just identify the independent components in the algorithm, and
specify that they can run in parallel.

As an example, consider the reduce operation that com-
putes the sum of all values in an array (see Figure 1). A
simple solution is to consider a divide-and-conquer scheme,
which splits the array into two halves, computes the sum of
the two halves in parallel, and when they both finish, returns
the sum of the two recursive calls. We present the pseudocode
in Figure 1. The algorithm is as straightforward as a sequential
divide-and-conquer approach, with the key observation being
that the two recursive calls can be executed in parallel. The
students will be told that the actual execution will be finished
by a scheduler to map each task to a processor. The number
of available processors does not need to be specified.

In general, we require the algorithms to be race-free, i.e., if
two logically parallel operations can access the same memory
location, both of them must be read. When it is necessary to
use concurrent writes, atomic operations will be introduced. In
the model used in class, we assume unit-cost atomic operation
compare-and-swap, which is supported in modern architecture.

There are several reasons that we recommend to use this
model in classes. First of all, the model assumes the threads
to run asynchronously, and allows threads (tasks) to be created
dynamically by the fork operation. This closely resembles how
a modern machine executes parallel code. Asynchrony is im-
portant because the processors (cores) on modern machines are
themselves highly asynchronous, due to varying delays from
cache misses, processor pipelines, branch prediction, hyper-
threading, changing clock speeds, interrupts, the operating
system scheduler, and several other factors.

Second, most programming languages support fork-join



semantics. Still take the reduce function as an example,
the actual C++ code is very intuitive and similar to the
pseudocode. Figure 1 also shows the code in OpenCilk [62].
OpenCilk (and many other parallel libraries and programming
languages) directly support the parallel do semantics. It is
easy for students to translate the algorithmic ideas learned
in class into parallel programs. There is only one additional
implementation technique that needs to be mentioned, which is
granularity control. In particular, to achieve high performance,
the base case size needs to be set to a larger value, instead of
1. This is a common practice in parallel programming, aiming
to avoid having too small parallel tasks such that the work to
manage the threads is more expensive than the computation.

Third, the model allows simple theoretical analysis of the
algorithms based on the work-span model. The work of an
algorithm can be viewed as the time complexity when the
algorithm is executed sequentially, and the span is the number
of dependent steps when an infinite number of processors are
available. More concretely, given two statements with work
W1 and W2, and span S1 and S2, we can calculate the work
and the span of their sequential and parallel composition as [1]:

Work Span
Executed sequentially O(1) +W1 +W2 O(1) + S1 + S2

Executed in parallel O(1) +W1 +W2 O(1) + max(S1, S2)

With this idea, one can simply compute the work and span
for the reduce algorithm by recurrences:

W (n) = 2W (n/2) +O(1)

S(n) = S(n/2) +O(1)

which solves to O(n) work and O(log n) span.
Finally, binary forking (as opposed to arbitrary-way forking)

is important to the simulation and scheduling results [2, 5, 25].
Any computation in the binary-forking model that has W
work and S span can be simulated (scheduled) on P loosely
synchronous processors in W/P + O(S) time with high
probability in W [25]—similar bounds hold when the number
of processors and their relative processing rates change over
time. In class, students will understand how the theoretical
analysis of W and S affects the actual running time. Modern
multicore machines usually have up to thousands of proces-
sors. Therefore, for a parallel algorithm where S ≪ W ,
the running time is usually dominated by the term W/P .
Rather than prioritizing span optimization, which is common
in most PRAM algorithms, a practical algorithm typically aims
for minimal work while maintaining a satisfactory level of
parallelism (e.g., polylogarithmic or o(n) span).

In the following, we will present a list of simple algorithms
in this model in section III, and then show more advanced
topics in section IV. The algorithms in section III are well-
suited for a one-week introduction to parallel algorithms, and
those in section IV can be covered in a complete schedule on
parallel algorithms in 8–16 weeks.

III. BUILDING BLOCKS

We now present some simple example algorithms in this
model (see Figure 2). For the algorithms below, we select the

simplest algorithm with efficient work and low span, although
they may not be the theoretically best in terms of span. All
of the algorithms are important building blocks used in more
advanced parallel algorithms (e.g., those in Section IV).
Scan (prefix sum). Given a sequence A[1..n], its prefix sum is
an array B such that B[i] =

∑i
j=1 A[i]. The algorithm creates

a new array C by combining every two adjacent elements in A.
It then computes the prefix sum of C and uses it to recover the
prefix sum of A. The algorithm has O(n) work and O(log2 n)
span. Algorithms with O(log n) span exist [7]. The code is
slightly longer but also conceptually simple.
Pack (filter). Given a sequence A and a predicate function f
that maps each element in A to a boolean value, the pack
function packs all elements in A that satisfies f(A[i]) into a
new array B. The algorithm stores a flag array for f(A[i]),
and computes the prefix sum of it in array s. This array gives
the index of each element in the output array. The algorithm
has the same work and span as the scan algorithm used.
Partition. Given an sequence A[1..n] and a pivot p, the parti-
tion algorithm reorders elements in A such that all A[i] < p
are on the left to all A[i] ≥ p. We can compute the left part by
calling the pack function with a predicator f(x) = (x < p).
The right part can be computed symmetrically.
Merge. The merge algorithm takes two sorted arrays A and B
and merge them into a sorted array C. We can use a divide-
and-conquer scheme, which selects the median in A and binary
searches it in B. Then we can merge the left part in A with
the left part in B, and similarly for the right parts. Both of
the subproblems can be solved recursively in parallel. The
algorithm has O(n) work and O(log2 n) span, where n =
|A|+ |B|. There also exists an algorithm with O(n) work and
O(log n) span [19].
Merge sort and quicksort. Based on the partition and merge
subroutines above, we can implement merge sort and quick-
sort. Both of them are classic comparison sorts using divide-
and-conquer. For both of them, the two subproblems are
independent and can be handled in parallel, and therefore the
key component is to parallelize the partition in quicksort, and
merge in merge sort. Using the parallel partition and merge
algorithms, both sorting algorithms have O(n log n) work and
polylogarithmic span (with high probability for quicksort).

These algorithms can be covered in one-week introduction
of parallel algorithms in other classes. We have included them
in general algorithms classes (e.g., CMU 15-853: Algorithms
in the Real World, UCR CS 141: Intermediate Data Structures
and Algorithms, UCR CS142: Algorithm Engineering).

Next, we overview other algorithms that we recommend to
be included in a complete course on parallel algorithms.

IV. OTHER ALGORITHMS

To include more algorithms in a complete course on par-
allel algorithms, we carefully select the following algorithms
that can be easily understood and directly compatible with
the binary-forking model. Most of the algorithms are work-
efficient (or off by at most a polylogarithmic factor) in theory,



1 int* scan(A[1..n]) {
2 if (n is 0) return;
3 if (n is odd) n = n+1;
4 parallel_for (i = 0 to n/2)
5 C[i] = A[2i] + A[2i+1];
6 D = scan(C, n/2);
7 B[1] = A[1];
8 parallel_for (i = 2 to n)
9 if (i is even) B[i] = D[i/2];

10 else B[i] = D[i/2] + A[i];
11 return B; }

1 int* pack(A[1..n], f) {
2 parallel_for (i = 1 to n)
3 flag[i] = f(A[i]);
4 s = scan(flag, n);
5 parallel_for(i = 1 to n)
6 if (f(A[i])) B[s[i]] = A[i];
7 return B; }

1 int* merge(A[1..N], B[1..M]) {
2 n = N/2;
3 m = binary_search(B[1..M], A[n]);
4 parallel_do {
5 C[1..(n+m)] = merge(A[1..n], B[1..m]);
6 C[(n+m+1)..(N+M)] = merge(A[(n+1)..N], B[(m+1)..M]);}
7 return C; }

1 int* partition(A[1..n], p) {
2 let function f(x) = (x<p);
3 L = pack(A[1..n], f); // left side
4 ... //symmetric for the right half
5 Concatenate L and R into A;
6 return size(L); }

1 int* mergesort(A[1..n]) {
2 parallel_do {
3 L = mergesort(A[1..n/2]);
4 R = mergesort(A[(n/2+1)..n]); }
5 return merge(L[], R[]); }

1 int* quicksort(A[1..n]) {
2 p = random(1, n);
3 m = partition(A[1..n], A[p]);
4 parallel_do {
5 quicksort(A[1..m]);
6 quicksort(A[(m+1)..n]); } }

Figure 2: Examples of algorithmic building blocks in the
binary-forking model.

and are implementable with high parallelism in practice.
Almost all of them have open-source code available.

The following topics can be covered in 8–16 weeks.
Other Algorithmic Building Blocks

• The list ranking algorithm in [69] (or [21]). List ranking
is a fundamental building block that can be considered
as prefix sum but on link lists. They are widely used in
parallel algorithms for trees and graphs listed below.

• Random permutation (Knuth’s shuffle) in [21, 69].
• Sorting: samplesort [14], integer sort [43], semisort [47].

Data Structures
• The batch-parallel hash table in [68].
• The join-based balanced binary tree in [18, 39, 71].
• The concurrent linked list in [57].

Graph Algorithms
• Breadth-first search (BFS) in [6, 67]. It is a simple

combination of the building blocks set up earlier.

• The maximal independent set algorithms in [16, 55] and
related problems such as graph coloring [50].

• Single-source shortest-path (Bellman-Ford, ∆-stepping
in [56], ρ-stepping and ∆∗-stepping in [41]).

• Connectivity algorithms. Connectivity in [36, 58, 66], bi-
connecitivity in [42], and strong connectivity in [22, 75].

• Minimum spanning tree in [26, 76].
Advanced Topics. These advanced topics (or a subset of them)
can be covered for a graduate-level course for 12–16 weeks.

• Geometry algorithms (e.g., convex hull [23, 46], Delau-
nay triangulation [22]), and data structures [20, 49, 70].

• I/O-efficient parallel algorithms [10, 14, 30, 45].
• Advanced graph algorithms: low-diameter decomposi-

tion [58], k-core and other graph-mining problems [34,
63, 64], graph processing systems [37, 38, 60, 67], and
dynamic graph algorithms/processing [4, 35, 39, 74].

• Scheduling algorithms [2, 25, 48].
• Other concurrent data structures (e.g., [59]).

V. STUDENT EVALUATION IN PREVIOUS CLASSES

As mentioned, the binary-forking model can be used for
teaching parallel algorithms in classes with different purposes,
levels, and focus. As an example, we show student evaluation
results from (anonymous) surveys in two previous courses. The
first one is an undergraduate course UCR CS 142 (Algorithm
Engineering) in Winter’23, which included introduction-level
parallel algorithms in one-week lectures. These lectures cov-
ered the model and algorithms in section III. At the end of
the class, students were asked to choose 3–10 topics that they
found the most interesting from 20 topics covered in class. The
topic of parallel reduce, scan, filter, and quicksort algorithms
is the most-liked topic (56.7% of students chose it).

In another course UCR CS 214: Parallel Algorithms, we
surveyed how the model helps to combine theory and practice.
The model is introduced at the beginning to support both
theoretical analysis and programming. In the survey, students
were asked if the class balances theory and practice on a scale
of 1–5 (1 = too much focus on theory; 5 = too much focus
on programming). All the answers are within the range of 2–
4, and 47.6% of them chose 3 (a perfect balance of theory
and practice). We will keep collecting more evaluations and
feedback from students in the future.

VI. CONLUSION

In this paper, we discussed how to use the binary-forking
model in teaching parallel algorithms. This model provides a
simple abstraction for parallel algorithm design. Algorithms
in this model can be easily analyzed in the work-span model,
and can be implemented with languages supporting fork-join
parallelism. For these reasons, we believe it is well-suited for
classes and can help students understand both the theory and
practice of parallel algorithms.
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