
Parallel Strong Connectivity Based on Faster Reachability
LetongWang Xiaojun Dong Yan Gu Yihan Sun

University of California, Riverside

Motivation

Given a directed graph G = (V, E),
we say

v is reachable to u if there is a
path from v to u.

Two vertices v and u are strongly
connected if v is reachable to u
and u is reachable to v.

1

8753

62

94

𝑽𝟎

𝑽𝟏 𝑽𝟐

10𝑽𝟑One SCC containing 1

Reachable to 1

Reachable from 1

Not reachable to
or from 1

A Strongly Connected Component (SCC) is a maximal subgraph that all pairs of

vertices are strongly connected

SCC problem is to find all SCCs in the graph

Sequentially, Kosaraju’s algorithm [1] and Tarjan’s algorithm [6] have O(n + m) cost.
However, existing implementations do not parallelize well for large-diameter graphs.

We observed that existing

parallel SCC algorithms on a

96-core machine can even

be slower than Tarjan’s se-

quential algorithm on many

k-NN and lattice graphs.

#cores=96

Graphs size:

Social, Web, KNN:Type Social Web KNN Grid
#Graphs 2 4 8 4

Ours 129.6 33.4 5.23 9.15
GBBS 67.3 10.8 0.63 0.84

MultiStep 33.6 - 0.46 0.93
Sequential 1.0 1.00 1.00 1.00

>40
30
20
10
5
2
1

0.5
0

All real-world graphs.

Up to 3.6B vertices and
129B edges per graph.

- Sequential = Tarjan’s sequential SCC algorithm.
- Reporting geometric mean of all graphs of the same type.

We proposed Vertical Granularity Control (VGC) technique to improve the

parallelism of reachability searches on large-diameter graphs.

We design Parallel Hash Bags to efficiently maintain the frontiers in VGC.

Preliminary: BGSS Algorithm and Parallel BFS

Our algorithm is based on the BGSS algorithm [2] but improves the performance by

avoiding O(D) rounds of synchronizations in the breadth-first search (BFS), where D is

the diameter of the graph, and thus reducing the scheduling overhead.

BGSS SCC Algorithm

It divides V into log n batches with sizes 1, 2, 4, 8, . . . in a prefix doubling manner.

It does forward-backward reachability queries on each batch, then finds SCCs and

remove cross edges.

Algorithm 1: The BGSS algorithm for parallel SCC [2]
Input: A directed graph G = (V, E)
Output: The component label L[·] of each vertex.
L← {−1, . . . ,−1}
Partition V into log n batches P1.. log n, where |Pi| = 2i−1

V ′← V
for i← 1, . . . , log n do

F ← {v ∈ Pi ∩ V ′} . Initial frontier
// MultiReach skips an edge (u, v) if L(u) 6= L(v)
Lout ← MultiReach(G, L,F) . Forward reachable pairs
Lin ← MultiReach(GT , L,F) . Backward reachable pairs
Mark vertices in the same SCC with the same L(·), and
remove cross edges∗.

return L

cross edge∗: Its two endpoints have different reachability info.

If a vertex u is
forward and

backward

reachable from a

vertex v, then u
and v are in the
same SCC.

If two endpoints

of an edge have

different

reachability info,

they are not in

the same SCC.

D

F

B

J

C

G

A

H

EK

I
L

Hollow squares
mean not reachable

From
A

To
A

From
G

To
G

D

F

B

J

C

G

A

H

EK

I
L

D

F

B

J

C

G

A

H

EK

I

L

(a) (b) (c)

Fig(a): Single-reachability search on A
Fig(b): Multi-reachability search on andA G
Fig(c): Result after running step (b)

SCCs: {ABCK} {DEF} {GH} {I} {J} {L} Reachability Info Representation:

Solid squares
mean reachable

reachable from A,
not reachable to A;
not reachable from G,
reachable to G

E.g., means:

Parallel BFS is a standard approach to implement reachability queries

Given a set of sources S, it maintains a frontier of vertices to process in each round.
In a round, it visits all the neighbors of the current frontier, and adds newly visited

ones to the next frontier. We use compare_and_swap to guarantee that a vertex is
only added once.

Vertical Granularity Control (VGC)

A breadth first search (BFS)
needs 6 rounds to finish.

A VGC reachability search
needs 3 rounds to finish.

Ro
un
d
1

Ro
un
d 2

Ro
un
d 3

Ro
un
d
4

Ro
un
d 5

Ro
un
d 6

Ro
un
d 1

Ro
un
d
2

Ro
un
d 3

A frontier
node only
visits its
one hop
neighbors

A frontier
node visits
𝜏 = 4 edges if
it has less than
4 neighbors.

Newly visited
nodes in round 𝑖

frontier node

not frontiers

source

Goal: Let each thread do enough work to hide the overhead of parallelism.

Technique: Let each frontier node explore at least τ edges (τ is a tunable parameter).

If a vertex is dense (has more than τ neighbors), explore it the same as normal BFS.
If a vertex is sparse (has less than τ neighbors), do a local BFS to visit τ edges.

Results: It can reduce the number of rounds to synchronize.

Parallel Hash Bag

… … … … …

tail[0]=𝜆 tail[1]=2𝜆 tail[2]=4𝜆 tail[3]=8𝜆
sample[0]=50 sample[1]=51 sample[2]=50 sample[3]=0

𝑟 = 2
CAS (&𝑟, 2, 3) when sample[2] hits 50

insert: CAS to a random position
If sampled, FAA to sample[r] by 1

CAS = compare_and_swap
FAA = fetch_and_add

Current
chunk id

insert insert

Motivation: We need a novel data structure to maintain the frontiers when using

VGC, because the frontiers generated by VGC are not deterministic.

Properties of a desired data structure:

O(1) expected cost for concurrent insertion and dynamic resizing.
O(s) cost to pack all elements in it, where s is the number of elements.

A high-level approach:

Preallocate a O(n) size of array, where n is the upper bound of elements size.
Divide the array into chunks with prefix-doubling sizes. Only one is actively in use.

Insertion: Hash to a random position in the active chunk to store the element .

Resizing: Mark the next chunk as the active chunk.

Listing all: Pack all non-empty slots in the chunks that have been activated.

Experiment Results

We tested on 18 graphs including social networks, web graphs, k-NN graphs and
lattice graphs. We run the experiments on a 96 cores (192 hyperthreads) machine with

1.5T memory. We compared our algorithm to GBBS[3], iSpan [4], and Multi-step [5].

Overall Performance

Our algorithm is the fastest

on 16 over 18 graphs. On

average, our algorithm is

6× faster than the best of
other implementations.

Our algorithm has

dominant advantages on

large-diameter graphs.

>32
16
8
4
2
1
0.5
0.25
0

Social KNN
LJ TW MEAN HH5 CH5 GL2 GL5 GL10 GL15 GL20 COS5 MEAN

Ours 75.8 317 155 2.16 0.77 5.67 5.58 6.24 5.42 5.60 58.6 5.26
GBBS 24.5 185 67.3 0.11 0.05 1.13 0.46 0.76 0.83 0.92 15.8 0.63
iSpan 58.5 c - 0.57 0.20 t t 0.26 0.39 0.49 t 0.36

MultiStep 20.7 54.4 33.6 0.20 0.02 0.41 0.25 1.30 1.07 1.08 3.29 0.46
Seq 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Web Lattice Overall
MEANSD CW HL14 HL12 MEAN SQR REC SQR' REC' MEAN

Ours 52.7 33.4 30.1 19.1 31.7 26.8 13.5 5.00 3.75 9.08 12.9
GBBS 19.7 14.6 9.22 5.05 10.8 1.39 0.41 1.45 0.60 0.84 2.13
iSpan 21.7 n n n - 3.47 1.32 0.26 0.70 0.96 1.18

MultiStep 55.8 n n n - 1.23 0.30 2.16 0.92 0.93 1.35
Seq 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Figure 1. The heatmap of relative speedup for parallel SCC algorithms over the

sequential algorithm using 96 cores (192 hyperthreads).

Our algorithm is 8.3× and 9.4× faster than the best existing parallel algorithms on
k-NN and lattice graphs separately.

Breakdown of SCC to show the effect of VGC and hash bags

Plain is our implementation that only applies the parallel hash bags. VGC is our

implementation that applies VGC and parallel hash bags.

First SCC andMulti-search steps

mainly query reachability info, which

is the main focus of our

optimizations.

Comparing GBBS and Plain, hash

bags bring 2× speedup on average.
Comparing Plain and VGC, VGC has

a small effect on low-diameter

graphs (1.13× speedup on average),
but a large effect on large-diameter

graphs (3.32× speedup).

0.0

0.2

0.4
TW

0

2

4

SD

0

20

40
CW

First SCC Multi-search Others

0

100

200

300

HL12

GB
BS

Pla
in

VG
C

0

5

10

15
GL20

GB
BS

Pla
in

VG
C

0

5

10

COS5

GB
BS

Pla
in

VG
C

0

5

10

SQR

GB
BS

Pla
in

VG
C

0

2

4

SQR'

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ru
nn

in
g

Ti
m

e(
se

co
nd

)

Figure 2. Comparing the breakdown with GBBS.

Scalability

Ours is the only one that

achieves almost linear

speedup on assorted graphs.

The speedups of other

existing parallel algorithms

stop increasing or even

decrease on some graphs

(TW, SD, GL5, SQR’) when

the number of threads is

more than 24.

8
64

512

1

TW

4
16
64

1

SD
Ours GBBS Multi-step iSpan

.25

4
16
64

1

CW

1 2 4 8 24 9612 48 96
h

.125

8
1

SQR'

1 2 4 8 24 9612 48 96
h

.25

4
16

1

GL5

1 2 4 8 24 9612 48 96
h

.25
4

16
64

1

COS5

0.0 0.2 0.4 0.6 0.8 1.0

number of processors

0.0

0.2

0.4

0.6

0.8

1.0

ru
nn

in
g

tim
e/

Ta
rja

n'
s

Figure 3. Comparing speedup over Tarjan’s sequential algorithm on different

algorithms on different number of processors.

References

[1] V Aho Alfred, E Hopcroft John, D Ullman Jeffrey, V Aho Alfred, H Bracht Glenn, D Hopkin Kenneth, C Stanley Julian, Brachu Jean-Pierre, Brown A

Samler, Brown A Peter, et al. Data structures and algorithms. USA: Addison-Wesley, 1983.

[2] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized incremental algorithms. J. ACM, 2020.

[3] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E Blelloch, and Julian Shun. The graph based benchmark suite (GBBS). In International Workshop on

Graph Data Management Experiences & Systems (GRADES), pages 1–8, 2020.

[4] Yuede Ji, Hang Liu, and H Howie Huang. ispan: Parallel identification of strongly connected components with spanning trees. In International

Conference for High Performance Computing, Networking, Storage, and Analysis (SC), pages 731–742. IEEE, 2018.

[5] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. Bfs and coloring-based parallel algorithms for strongly connected components

and related problems. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 550–559. IEEE, 2014.

[6] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. on Computing, 1(2):146–160, 1972.

UCR PAL: https://pal.cs.ucr.edu Symposium on Principles of Database Systems (SIGMOD 23) https://arxiv.org/abs/2303.04934

https://pal.cs.ucr.edu
https://arxiv.org/abs/2303.04934

	References

