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Motivation
Given a directed graph G = (V, F),
we say One SCC containing 1
= v is reachable to w if there is a Reachable to 1

< V
path from v to w. Reachable from 1 0 @)
= Two vertices v and u are strongly ()Not reachable to v [/2
connected if v is reachable to u or from 1 14

and w is reachable to w.

= A Strongly Connected Component (SCC) is a maximal subgraph that all pairs of
vertices are strongly connected

= SCC problem is to find all SCCs in the graph

» Sequentially, Kosaraju's algorithm [1] and Tarjan’s algorithm [6] have O(n + m) cost.
- However, existing implementations do not parallelize well for large-diameter graphs.
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= We proposed Vertical Granularity Control (VGC) technigue to improve the
parallelism of reachability searches on large-diameter graphs.

= We design Parallel Hash Bags to efficiently maintain the frontiers in VGC.

Preliminary: BGSS Algorithm and Parallel BFS

Our algorithm is based on the BGSS algorithm [2] but improves the performance by
avoiding O(D) rounds of synchronizations in the breadth-first search (BFS), where D is

the diameter of the graph, and thus reducing the scheduling overhead.

= BGSS SCC Algorithm

- It divides V' into log n batches with sizes 1,2,4,8, ... in a prefix doubling manner.
- |t does forward-backward reachability queries on each batch, then finds SCCs and
remove cross edges.

Algorithm 1: The BGSS algorithm for parallel SCC |2]

Input: A directed graph G = (V, E) *Ifavertexu is
Output: The component label L[-] of each vertex. forward and
Le{-1,... -1} backward
Partition V' into log n batches P 14, ,, Where |P;| = 2! reachable from a
V'V vertex v, then u
fori<1,...,logn do and v are in the

F+—{ve PNV} > Initial frontier ~ same SCC.

// MULTIREACH skips an edge (u,v) if L(u) # L(v) - |f two endpoints

Loyt < MultiReach(G, L, F) > Forward reachable pairs of an edge have

Lin + MultiReach(G*, L, F)  © Backward reachable pairs  different

Mark vertices in the same SCC with the same L(-), and reachability info,

remove cross edges”. they are not in

return L the same SCC.

cross edge®: Its two endpoints have different reachability info.
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= Parallel BFS is a standard approach to implement reachability queries

- Given a set of sources S, it maintains a frontier of vertices to process in each round.

- In a round, it visits all the neighbors of the current frontier, and adds newly visited
ones to the next frontier. We use compare _and_swap to guarantee that a vertex is
only added once.

Vertical Granularity Control (VGC)

= Goal: Let each thread do enough work to hide the overhead of parallelism.
= Technique: Let each frontier node explore at least 7 edges (7 is a tunable parameter).

- |f a vertex is dense (has more than 7 neighbors), explore it the same as normal BFS.
- |f a vertex is sparse (has less than 7 neighbors), do a local BFS to visit T edges.

= Results: It can reduce the number of rounds to synchronize.

Parallel Hash Bag

insert: CAS to a random position Currenf\t CAS = corrlpare_and_swap
. = /7 <, 3
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sample[0]=50 sample[1]=51 sample[2]=50 sample[3]=0

= Motivation: We need a novel data structure to maintain the frontiers when using
VGC, because the frontiers generated by VGC are not deterministic.
- Properties of a desired data structure:
- O(1) expected cost for concurrent insertion and dynamic resizing.
= O(s) cost to pack all elements in it, where s is the number of elements.
= A high-level approach:
= Preallocate a O(n) size of array, where n is the upper bound of elements size.
- Divide the array into chunks with prefix-doubling sizes. Only one is actively in use.

= [nsertion: Hash to a random position in the active chunk to store the element .
= Resizing: Mark the next chunk as the active chunk.

= Listing all: Pack all non-empty slots in the chunks that have been activated.

Experiment Results

We tested on 18 graphs including social networks, web graphs, k-NN graphs and
lattice graphs. We run the experiments on a 96 cores (192 hyperthreads) machine with
1.5T memory. We compared our algorithm to GBBS|3], iSpan [4], and Multi-step [5].
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Qur algorithm is 8.3x and 9.4 x faster than the best existing parallel algorithms on
k-NN and lattice graphs separately.

Breakdown of SCC to show the effect of VGC and hash bags

= Plain is our implementation that only applies the parallel hash bags. VGC is our
implementation that applies VGC and parallel hash bags.
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