Parallel Strong Connectivity Based on Faster Reachability

Letong Wang Xiaojun Dong Yan Gu Yihan Sun

R I VE R s I D E University of California, Riverside

Motivation
Given a directed graph G = (V, F),
we say One SCC containing 1
= v is reachable to w if there is a Reachable to 1

< V
path from v to w. Reachable from 1 0 @)
= Two vertices v and u are strongly ()Not reachable to v [/2
connected if v is reachable to u or from 1 14

and w is reachable to w.

= A Strongly Connected Component (SCC) is a maximal subgraph that all pairs of
vertices are strongly connected

= SCC problem is to find all SCCs in the graph

» Sequentially, Kosaraju's algorithm [1] and Tarjan’s algorithm [6] have O(n + m) cost.
- However, existing implementations do not parallelize well for large-diameter graphs.

1 0 Type Social Web KNN Grid Social, Web, KNN:
VWe observed that existing O.5l #Graphs 2 4 8 4 Al real-world graphs.
parallel SCC algorithms on a ;_ | Ours 129.6 33.4 5.23 9.15 Graphs size:

96-core machine can even 5= GBBS Up to 3.6B vertices and

S 10= MultiStep 129B edges per graph.
be slower than Tarjan's se- | ,1_ sequential Heore<=96

guential algorithm on many 30= - Sequential = Tarjan’s sequential SCC algorithm.
L-NN and lattice graphs >40= - Reporting geometric mean of all graphs of the same type.

= We proposed Vertical Granularity Control (VGC) technigue to improve the
parallelism of reachability searches on large-diameter graphs.

= We design Parallel Hash Bags to efficiently maintain the frontiers in VGC.

Preliminary: BGSS Algorithm and Parallel BFS

Our algorithm is based on the BGSS algorithm [2] but improves the performance by
avoiding O(D) rounds of synchronizations in the breadth-first search (BFS), where D is

the diameter of the graph, and thus reducing the scheduling overhead.

= BGSS SCC Algorithm

- It divides V' into log n batches with sizes 1,2,4,8, ... in a prefix doubling manner.
- |t does forward-backward reachability queries on each batch, then finds SCCs and
remove cross edges.

Algorithm 1: The BGSS algorithm for parallel SCC |2]

Input: A directed graph G = (V, E) *Ifavertexu is
Output: The component label L[-] of each vertex. forward and
Le{-1,... -1} backward
Partition V' into log n batches P 14, ,, Where |P;| = 2! reachable from a
V'V vertex v, then u
fori<1,...,logn do and v are in the

F+—{ve PNV} > Initial frontier ~ same SCC.

// MULTIREACH skips an edge (u,v) if L(u) # L(v) - |f two endpoints

Loyt < MultiReach(G, L, F) > Forward reachable pairs of an edge have

Lin + MultiReach(G*, L, F) © Backward reachable pairs different

Mark vertices in the same SCC with the same L(-), and reachability info,

remove cross edges”. they are not in

return L the same SCC.

cross edge®: Its two endpoints have different reachability info.

) o0 IZIIZl
% GA

OO OO
" we

SCCs: {ABCK} {DEF} {GH} {1} {J} {L} Reachability Info Representation: E.g.,Cimmeans:
Fig(a): Single-reachability search on @& From|| To | Hollow squares reachable from A,
Fig(b): Multi-reachability search on@® and G 8 & | mean not reachable MG MEEIAEIE 10 o

10’ 4 From|[To | Solid squares not reachable from G,
Fig(c): Result after running step (b) G || © | mean reachable reachable to G

= Parallel BFS is a standard approach to implement reachability queries

- Given a set of sources S, it maintains a frontier of vertices to process in each round.

- In a round, it visits all the neighbors of the current frontier, and adds newly visited
ones to the next frontier. We use compare _and_swap to guarantee that a vertex is
only added once.

Vertical Granularity Control (VGC)

= Goal: Let each thread do enough work to hide the overhead of parallelism.
= Technique: Let each frontier node explore at least 7 edges (7 is a tunable parameter).

- |f a vertex is dense (has more than 7 neighbors), explore it the same as normal BFS.
- |f a vertex is sparse (has less than 7 neighbors), do a local BFS to visit T edges.

= Results: It can reduce the number of rounds to synchronize.

Parallel Hash Bag

insert: CAS to a random position Currenf\t CAS = corrlpare_and_swap
. = /7 <, 3

. . { o
EEEEEEARN]

i i i I
tail[0]=4 tail[1]=21 tail[2]=41 tail[3]=81
sample[0]=50 sample[1]=51 sample[2]=50 sample[3]=0

= Motivation: We need a novel data structure to maintain the frontiers when using
VGC, because the frontiers generated by VGC are not deterministic.
- Properties of a desired data structure:
- O(1) expected cost for concurrent insertion and dynamic resizing.
= O(s) cost to pack all elements in it, where s is the number of elements.
= A high-level approach:
= Preallocate a O(n) size of array, where n is the upper bound of elements size.
- Divide the array into chunks with prefix-doubling sizes. Only one is actively in use.

= [nsertion: Hash to a random position in the active chunk to store the element .
= Resizing: Mark the next chunk as the active chunk.

= Listing all: Pack all non-empty slots in the chunks that have been activated.

Experiment Results

We tested on 18 graphs including social networks, web graphs, k-NN graphs and
lattice graphs. We run the experiments on a 96 cores (192 hyperthreads) machine with
1.5T memory. We compared our algorithm to GBBS|3], iSpan [4], and Multi-step [5].

Social KNN

Overall Performance LU TW MEAN| HH5 CH5 GL2 GL5 GL10 GL15 GL20 COS5 MEAN

. . Ours 75.8 317 155 5,67 5,58 6.24 5.42 560 586 5.26
= Qur algorithm is the fastest cees |225 185 67.3 e =

on 16 over 18 graphs. On et 507

1.08 3.29

avera ge our a | go rlth m |S Seq 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00
’ Web Lattice Overall
6% faster than the best of SD CW HL14 HL12 MEAN| SQR REC SQR' REC' MEAN| MEAN
. . Ours |52.7 33.4 30.1 19.1 31.7 | 26.8 9.08 | 12.9
other implementations. GBBS | 19.7 5.05 10.8 2.13

. iSpan 237 - : 0.26 6-70 1.18
= Qur algorithm has MultiStep | 55.8 0.30 [FXTH 0.92 1.35

dominant advantages on Seq 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00
. & Figure 1. The heatmap of relative speedup for parallel SCC algorithms over the
large-diameter graphs. sequential algorithm using 96 cores (192 hyperthreads).

Qur algorithm is 8.3x and 9.4 x faster than the best existing parallel algorithms on
k-NN and lattice graphs separately.

Breakdown of SCC to show the effect of VGC and hash bags

= Plain is our implementation that only applies the parallel hash bags. VGC is our
implementation that applies VGC and parallel hash bags.

B First SCC Multi-search B Others

= First SCC and Multi-search steps W SD CW HL12

mainly query reachability info, which %7 40 1
: : I 4 300 -
s the main focus of our = - I I I
.. . c 0.2 1] 20 - — 200 |
optimizations. S I I l 210 = B B 0
Q 7 B =
. . n
= Comparing GBBS and Plain, hash Eo.o- imm HAN SSE
: = GL20 COS5 SQR SQR!
bags bring 2x speedup on average. F 1s- - >0 2
. . 2 10 - 101 4
» Comparing Plain and VGC, VGC has = 10-I I
. .
a small effect on low-diameter 2 . 5 - 51 20 B
[| [
graphs (1.13x speedup on average), i - O_IJ_‘ O N B !
but a large effect on large-diameter © & O © &Y © & O © & O
g g ég?q\ro AO ég)q\@ AO é‘)bq\fb AO éébq\rzy AQ

oraphs (3.32x speedup).
Figure 2. Comparing the breakdown with GBBS.

Scalability
= Ours is the only one that

achieves almost linear w12 644
speedup on assorted graphs. - GQ:W 12:
= The speedups of other Lo 15
existing parallel algorithms
stop increasing or even
decrease on some graphs
(TW, SD, GL5, SQR’) when
the number of threads is

—&— Ours &— GBBS Multi-step *— [Span
CW

64
16

rjan's

__COS5

16 641

Sy l

1-
25-

running time/Ta

N’VV%,Q/,\Y&O(%Z)Q NV QY
number of processors

Figure 3. Comparing speedup over Tarjan’s sequential algorithm on different

N " 60) b\’ " more than 24. algorithms on different number of processors.
A frontier \\}\6 006 Oo° A frontier o‘\’Q \)ob
. . O
node only o N3y < node visits < < References
one hop S it has less than | | |
. . o Alfred, opcroft John, man Jeffrey, o Alfred, rac enn, opkin Kenneth, anley Julian, Brachu Jean-Pierre, Brown
Q\O [1] V Aho Alfred, E H ft John, D Ul Jeffrey, V Aho Alfred, H Bracht Gl D Hopkin K th, C Stanley Jul Brachu J P B A
neighbors 4 neighbors | |
% 8 y Samler, Brown A Peter, et al. Data structures and algorithms. USA: Addison-Wesley, 1983.
(\6 O O [2] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized incremental algorithms. J. ACM, 2020.
Q\O\\’ >ource 3] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E Blelloch, and Julian Shun. The graph based benchmark suite (GBBS). In International Workshop on
O frontier node o Graph Data Management Experiences & Systems (GRADES), pages 1-8, 2020.
6(0 ‘ QE) (4] Yuede Ji, Hang Liu, and H Howie Huang. ispan: Parallel identification of strongly connected components with spanning trees. In International
OS\\ O not frontiers <2\o\\ Conference for High Performance Computing, Networking, Storage, and Analysis (SC), pages 731-742. IEEE, 2018.
<& [5] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. Bfs and coloring-based parallel algorithms for strongly connected components
Newly visited O and related problems. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 550-559. IEEE, 2014.
nodes in round i [6] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. on Computing, 1(2):146-160, 1972.
UCR PAL.: https://pal.cs.ucr.edu Symposium on Principles of Database Systems (SIGMOD 23) https.//arxiv.org/abs/2303.04934

https://pal.cs.ucr.edu
https://arxiv.org/abs/2303.04934

	References

