
Provably Fast and Space-Efficient Parallel Biconnectivity
Xiaojun Dong

UC Riverside

xdong038@ucr.edu

Letong Wang

UC Riverside

lwang323@ucr.edu

Yan Gu

UC Riverside

ygu@cs.ucr.edu

Yihan Sun

UC Riverside

yihans@cs.ucr.edu

Abstract
Computing biconnected components (BCC) of a graph is a

fundamental graph problem. The canonical parallel BCC al-

gorithm is the Tarjan-Vishkin algorithm, which has𝑂 (𝑛+𝑚)
optimal work and polylogarithmic span on a graph with

𝑛 vertices and 𝑚 edges. However, Tarjan-Vishkin is not

widely used in practice. We believe the reason is the space-

inefficiency (it uses 𝑂 (𝑚) extra space). In practice, existing

parallel implementations are based on breath-first search

(BFS). Since BFS has span proportional to the diameter of

the graph, existing parallel BCC implementations suffer from

poor performance on large-diameter graphs and can be slower

than the sequential algorithm on many real-world graphs.

We propose the first parallel biconnectivity algorithm

(FAST-BCC) that has optimal work, polylogarithmic span,

and is space-efficient. Our algorithm creates a skeleton graph

based on any spanning tree of the input graph. Then we use

the connectivity information of the skeleton to compute the

biconnectivity of the original input. We carefully analyze the

correctness of our algorithm, which is highly non-trivial.

We implemented FAST-BCC and compared it with exist-

ing implementations, including GBBS, Slota and Madduri’s

algorithm, and the sequential Hopcroft-Tarjan algorithm.We

tested them on a 96-core machine on 27 graphs with varying

edge distributions. FAST-BCC is the fastest on all graphs. On
average (geometric means), FAST-BCC is 3.1× faster than

the best existing baseline on each graph.

CCSConcepts: •Theory of computation→ Sharedmem-
ory algorithms; Graph algorithms analysis; Parallel
algorithms.

Keywords: Parallel Algorithms, Graph Algorithms, Bicon-

nectivity, Connectivity, Graph Analytics

1 Introduction
Graph biconnectivity is one of the most fundamental graph

problems. Given an undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 =

|𝑉 | vertices and 𝑚 = |𝐸 | edges, a connected component

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0015-6/23/02.

https://doi.org/10.1145/3572848.3577483

(CC) is a maximal subset in 𝑉 such that every two vertices

in it are connected by a path. A biconnected component
(BCC) (or blocks) is a maximal subset 𝐶 ⊆ 𝑉 such that

𝐶 is connected and remains connected after removing any

vertex 𝑣 ∈ 𝐶 . In this paper, we use BCC (or CC) for both the

biconnected (or connected) component in the graph and the

problem of computing all BCCs (or CCs). BCC has extensive

applications such as planarity testing [8, 24, 46], centrality

computation [48, 59, 60], and network analysis [7, 56].

Sequentially, the Hopcroft-Tarjan algorithm [45] for BCC

uses 𝑂 (𝑛 +𝑚) work. However, this algorithm requires gen-

erating a spanning tree of𝐺 based on the depth-first search

(DFS), which is considered hard to be parallelized [57]. Later,

Tarjan and Vishkin proposed the canonical parallel BCC al-

gorithm [65]. It uses an arbitrary spanning tree (AST) (a
spanning tree with any possible shape) of the graph instead

of the depth-first tree. Tarjan-Vishkin algorithm has𝑂 (𝑛+𝑚)
optimal work (number of operations) and polylogarithmic

span (longest dependent operations), assuming an efficient

parallel CC algorithm.

Although the Tarjan-Vishkin algorithm is theoretically

considered “optimal” in work and span, significant chal-

lenges still remain in achieving a high-performance imple-

mentation in practice. The main issue in Tarjan-Vishkin is

space-inefficiency. Tarjan-Vishkin generates an auxiliary

graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) (which we refer to as the skeleton),
where every edge 𝑒 ∈ 𝐸 maps to a vertex in 𝑉 ′

. Tarjan and

Vishkin showed that computing CC on 𝐺 ′
gives the BCC

on 𝐺 , and we refer to this step as the connectivity phase.

This skeleton-connectivity framework is adopted in many

later papers. Such algorithms first generate a skeletonas an

auxiliary graph𝐺 ′
from𝐺 , and then finds the CCs on𝐺 ′

that

reflect BCC information on the input graph𝐺 . Unfortunately,

in Tarjan-Vishkin, generating the skeleton𝐺 ′
and computing

CC on𝐺 ′
take𝑂 (𝑚) extra space, which greatly increases the

memory usage and slows down the performance.

In practice, most existing parallel BCC implementations

also follow the skeleton-connectivity framework but over-

come the space issue by using other skeletons based on

breadth-first search (BFS) trees [25, 26, 29, 31, 40, 64, 68].

These algorithms either use skeletons with𝑂 (𝑛) size [25, 26,
29, 40, 68] or maintain implicit skeletons with𝑂 (𝑛) auxiliary
space [31, 64]. We say a BCC algorithm is space-efficient
if it uses 𝑂 (𝑛) auxiliary space (other than the input graph).

However, since computing BFS has span proportional to

the graph, these BFS-based algorithms can be fast on small-

diameter graphs (e.g., social and web graphs), but have poor

performance on large-diameter graphs (e.g., 𝑘-nn and road

https://doi.org/10.1145/3572848.3577483

Ours GBBS SM'14 SEQ Ours GBBS SM'14 SEQ

So
cia

l

YT 5.88 4.36 3.15 1.00

K-
NN

HH5 7.01 1.14 n 1.00
OK 30.51 19.91 5.66 1.00 CH5 4.11 0.37 n 1.00
LJ 17.92 11.77 n 1.00 GL2 6.24 1.64 n 1.00

TW 34.21 17.42 2.40 1.00 GL5 8.53 1.44 n 1.00
FT 39.26 18.93 10.22 1.00 GL10 10.59 4.31 n 1.00

MEAN 21.23 12.75 4.57 1.00 GL15 11.88 5.91 n 1.00

W
eb

GG 8.92 5.65 n 1.00 GL20 11.84 6.88 n 1.00
SD 29.74 16.46 n 1.00 COS5 14.16 6.86 n 1.00
CW 30.37 17.52 n 1.00 MEAN 8.68 2.42 - 1.00

HL14 32.46 19.96 n 1.00
Sy

nt
he

tic
SQR 18.50 1.59 10.56 1.00

HL12 33.99 29.15 n 1.00 REC 12.48 0.36 3.02 1.00
MEAN 24.53 15.68 - 1.00 SQR' 8.06 0.85 n 1.00

Ro
ad

CA 5.15 0.55 n 1.00 REC' 7.81 0.48 n 1.00
USA 6.69 0.49 0.60 1.00 Chn7 11.97 0.04 0.08 1.00
GE 10.77 1.43 2.44 1.00 Chn8 11.97 0.04 0.06 1.00

MEAN 7.18 0.73 1.21 1.00 MEAN 11.30 0.27 0.18 1.00
TOTAL MEAN 12.89 2.50 0.96 1.00

10 .5 2 4 8 16 32 >32
MEAN = geometric mean
n = no support

Figure 1. The heatmap of relative speedup for parallel BCC al-
gorithms over the sequential Hopcroft-Tarjan algorithm [45]
using 96 cores (192 hyper-threads). Larger/green means better.

The numbers indicate how many times a parallel algorithm is faster

than sequential Hopcroft-Tarjan (< 1 means slower). The two base-

line algorithms are from [31, 64]. Complete results are in Tab. 2.

graphs). In our experiments, we observe that existing par-

allel implementations can even be slower than sequential

Hopcroft-Tarjan on many real-world graphs (see GBBS [31]

and SM’14 [64] in Fig. 1).

In this paper, we give the first space-efficient (𝑂 (𝑛)
auxiliary space) parallel biconnectivity algorithm that
has efficient 𝑂 (𝑚 + 𝑛) work and polylogarithmic span.
Our skeleton𝐺 ′

is based on an arbitrary spanning tree (AST).

Unlike Tarjan-Vishkin, our 𝐺 ′
is a subgraph of 𝐺 and can

be maintained implicitly in 𝑂 (𝑛) auxiliary space. The key

idea is to carefully identify some fence edges, which indicate

the “boundaries” of the BCCs. At a high level, we categorize

all graph edges into fence tree edges, plain (non-fence) tree

edges, back edges, and cross edges. Our skeleton𝐺 ′
contains

the plain tree edges and cross edges. Using 𝑂 (𝑛) space, we
can efficiently determine the category of each edge in 𝐺 .

When processing the skeleton, we use the input graph 𝐺

but skip the fence and back edges. We show that the BCC

information of𝐺 can be constructed from the CC information

of𝐺 ′
plus some simple postprocessing. Since our algorithm

is based on Fencing an Arbitrary Spanning Tree, we call
our algorithm FAST-BCC. More details of FAST-BCC are

in Fig. 2. We note that conceptually our algorithm is simple,

but the correctness analysis is highly non-trivial.

We implement our theoretically-efficient FAST-BCC al-

gorithm and compare it to the state-of-the-art parallel BFS-

based BCC implementations GBBS [31] and SM’14 [64]. We

also compare FAST-BCC to the sequential Hopcroft-Tarjan

algorithm. We test 27 graphs, including social, web, road,

𝑘-NN, and synthetic graphs, with significantly varying sizes

and edge distributions. The details of the graphs and results

are given in Tab. 2. We also show the relative running time

in Fig. 1, normalized to the sequential Hopcroft-Tarjan.

On a machine with 96 cores, FAST-BCC is the fastest on

all tested graphs. We use the geometric means to compare

the “average” performance across multiple graphs. Due to

work- and space-efficiency, our algorithm running on one

core is competitive with Hopcroft-Tarjan (2.8× slower on

average). Polylogarithmic span leads to good parallelism

for all types of graphs (15–66× self-relative speedup on

average). On small-diameter graphs (social and web graphs),

although GBBS and SM’14 also achieve good parallelism,

FAST-BCC is still 1.2–2.1× faster than the best of the two,

and is 5.9–39× faster than sequential Hopcroft-Tarjan. For

large-diameter graphs (road, 𝑘-nn, grid, and chain graphs),

existing BFS-based implementations can perform worse than

Hopcroft-Tarjan. Due to low span, FAST-BCC is 1.7–295×
faster than GBBS (10× on average), and 4.1–18.5× faster

than sequential Hopcroft-Tarjan (9.2× on average). On all

graphs, FAST-BCC is 3.1× faster on average than the best

of the three existing implementations. Our code is publicly

available [36]. We present more results and analyses in the

full version of this paper [37].

2 Preliminaries
Computational Model. We use the work-span (or work-

depth) model for fork-join parallelism with binary forking to

analyze parallel algorithms [15, 30], which is recently used

in many papers on parallel algorithms [3, 10, 11, 13, 14, 16–

22, 33–35, 42, 43, 62, 71]. We assume a set of threads that

share a common memory. A process can fork two child soft-
ware threads to work in parallel. When both children com-

plete, the parent process continues. Thework of an algorithm

is the total number of instructions and the span (depth) is the

length of the longest sequence of dependent instructions in

the computation. We say an algorithm iswork-efficient if its
work is asymptotically the same as the best sequential algo-

rithm. We can execute the computation using a randomized

work-stealing scheduler [6, 23] in practice. We assume unit-

cost atomic operation compare_and_swap(𝑝, 𝑣old, 𝑣new) (or
CAS), which atomically reads the memory location pointed

to by 𝑝 , and write value 𝑣new to it if the current value is 𝑣old .

It returns true if successful and false otherwise.
Notation. Given an undirected graph 𝐺 = (𝑉 , 𝐸), we use
𝑛 = |𝑉 |, 𝑚 = |𝐸 |. Let diam(𝐺) be the diameter of 𝐺 , and

𝑥–𝑦 be an edge between 𝑥 and 𝑦. CC and BCC are defined

in Sec. 1. An articulation point (or cut vertex) is a vertex
s.t. removing it increases the number of CCs. A bridge (or
cut edge) is an edge s.t. removing it increases the number of

CCs. A spanning tree𝑇 of a connected graph𝐺 is a spanning

subgraph of𝐺 that contains no cycles. The spanning forest is

defined similarly if𝐺 is disconnected. For simplicity, we as-

sume𝐺 is connected, but our algorithm and implementation

𝐺 = (𝑉 , 𝐸) : Input Graph 𝑇 = (𝑉 , 𝐸𝑇): A spanning tree in 𝐺

𝑎,𝑏, 𝑐,𝑢, 𝑣, ℎ,𝑤, 𝑥,𝑦, 𝑧,𝑢 ′, 𝑣 ′, 𝑐 ′ · · · ∈ 𝑉 : Vertices in 𝐺

𝑥–𝑦 ∈ 𝐸 : An edge in 𝐺 𝐶,𝐶𝑖 : A BCC in 𝐺

𝑇𝑢 : 𝑢’s subtree in 𝑇 ℎ𝐶 : The BCC head of 𝐶

𝑝 (𝑢) : 𝑢’s parent in 𝑇 𝑥 ~ 𝑦 : A tree path in 𝑇

𝑃 = 𝑥–𝑦–· · · : A path 𝐺 ′
: The skeleton

Fence edge : (𝑝 (𝑣), 𝑣) ∈ 𝐸𝑇 , � (𝑥,𝑦) ∈ 𝐸, s.t. 𝑥 ∈ 𝑇𝑣 and 𝑦 ∉ 𝑇𝑝 (𝑣)
(no edge from 𝑣 ’s subtree escapes from 𝑝 (𝑣)’s subtree)

Plain edge : (𝑝 (𝑣), 𝑣) ∈ 𝐸𝑇 , (𝑝 (𝑣), 𝑣) is not a fence edge
Back edge, Cross edge : Edges in 𝐸 \ 𝐸𝑇 , defined as usual

Skeleton 𝐺 ′ = (𝑉 , 𝐸 ′) in FAST-BCC : 𝐸 ′ = {plain& cross edges}
Table 1. Notations and terminologies in this paper.

work on any graph. Given a graph 𝐺 and a rooted spanning

tree 𝑇 , an edge is a tree edge if it is in 𝑇 . A non-tree edge

is a back edge if one endpoint is the ancestor of the other
endpoint, and a cross edge otherwise. Fig. 2 Step 3 shows an

illustration. If𝑇 is a BFS tree, there are no back edges; if𝑇 is

a DFS tree, there are no cross edges. We use 𝑥 ~𝑦 to denote

the tree path between 𝑥 and 𝑦 on 𝑇 . We denote the parent

of vertex 𝑢 as 𝑝 (𝑢), and the subtree of 𝑢 as 𝑇𝑢 . The notation

used in this paper is given in Tab. 1.

We use 𝑂 (𝑓 (𝑛)) with high probability (whp) in 𝑛 to mean

𝑂 (𝑐 𝑓 (𝑛)) with probability at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1.

Euler tour technique (ETT). ETT is proposed by Tarjan

and Vishkin [65] in their BCC algorithm to root a spanning

tree. Later, ETT becomes a widely-used primitive in both

sequential and parallel settings, including computational ge-

ometry [2], graph algorithms [5, 28, 67], maintaining subtree

or tree path sums [30], and many others. ETT is needed in

Tarjan-Vishkin because when an arbitrary spanning tree is

generated for a graph (e.g., from a CC algorithm), it is not

rooted, and thus we do not have the parent-child information

for the vertices. Given an unrooted tree 𝑇 with 𝑛 − 1 edges,

ETT finds an Euler tour of 𝑇 , which is a cycle traversing

each edge in 𝑇 exactly twice (once in each direction). ETT

first constructs a linked list on the 2𝑛 − 2 directed tree edges,

and runs list ranking on it. We refer the audience to the text-

books on parallel algorithms [47, 58] for more details on ETT.

Using the semisort algorithm from [15, 44] and list ranking

from [15], ETT costs𝑂 (𝑛) expected work and𝑂 (log𝑛) span
whp. Given𝑇 , we can set any vertex as the root of𝑇 , and use

ETT to determine the directions of the edges. We can then

determine the parent of any vertex, and whether an edge is

a tree edge, back edge, or cross edge in 𝑂 (1) work.

3 Existing BCC Algorithms
This section reviews the existing BCC algorithms and imple-

mentations. We will use the skeleton-connectivity framework
to describe the existing BCC algorithms. The skeleton phase
generates a skeleton 𝐺 ′

from𝐺 , which is an auxiliary graph.

Then the connectivity phase computes the connectivity on

𝐺 ′
to construct the BCCs of𝐺 . Existing BCC algorithms can

be categorized by how the skeleton 𝐺 ′
is generated. The

Hopcroft-Tarjan algorithm uses DFS-based skeletons; the

Tarjan-Vishkin Algorithm generates a skeleton based on an

arbitrary spanning tree (AST); almost all other BCC algo-

rithms (see Sec. 3.3) use BFS-based skeletons.

3.1 The Hopcroft-Tarjan Algorithm
Sequentially, Hopcroft-Tarjan BCC algorithm [45] has𝑂 (𝑛 +
𝑚) work using a depth-first search (DFS) tree 𝑇 . Based on

𝑇 , two tags first [·] and low [·] are assigned to each vertex.

first [𝑣] is the preorder number of each vertex in 𝑇 . low [𝑣]
gives the earliest (smallest preorder) vertex incident on any

vertex 𝑢 ∈ 𝑇𝑣 via a non-tree edge and 𝑢 itself. More formally,

low [𝑣] = min{𝑤1 [𝑢] | 𝑢 ∈ 𝑉 is in the subtree rooted at 𝑣}
𝑤1 [𝑢] = min{{first [𝑢]} ∪ {first [𝑢 ′] | (𝑢,𝑢 ′) ∉ 𝑇 }}
To compute the BCCs, an additional stack is maintained.

Each time we visit a new edge, it is pushed into the stack.

When an articulation point 𝑝 (𝑢) is found by 𝑢 (low [𝑢] ≥
first [𝑝 (𝑢)]), edges are popped from the stack until 𝑢–𝑝 (𝑢) is
popped. These edges and the relevant vertices form a BCC.

Conceptually, the skeleton in Hopcroft-Tarjan is the DFS

tree without the “fence edges” of 𝑢–𝑝 (𝑢) when low [𝑢] ≥
first [𝑝 (𝑢)]. This insight also inspires our BCC algorithm.

3.2 The Tarjan-Vishkin Algorithm
Hopcroft-Tarjan uses a DFS tree as the skeleton, but DFS is in-

herently serial and hard to be parallelized [57]. To parallelize

BCC, the Tarjan-Vishkin algorithm [65] uses an arbitrary

spanning tree (AST) instead of a DFS tree. This spanning tree

𝑇 can be obtained by any parallel CC algorithm. The algo-

rithm then uses ETT (which was also proposed in that paper)

to root the tree 𝑇 (see Sec. 2). Then the algorithm builds a

skeleton𝐺 ′ = (𝐸, 𝐸 ′) and runs a connectivity algorithm on

it. We describe𝐺 ′
in more details in the full paper [37], and

only briefly review it here. The vertices in 𝐺 ′
correspond

to the edges in 𝐺1
. To determine the edges in 𝐺 ′

, the algo-

rithm uses four tags (first [·], last [·], low [·], and high[·]) for
each vertex. Here first [𝑢] and last [𝑢] are the first and last

appearance of vertex 𝑢 in the Euler tour (note that this is

not the same first [·] in Hopcroft-Tarjan, but conceptually

equivalent). low [·] is the same as defined in Hopcroft-Tarjan,

and high[·] is defined symmetrically:

high[𝑣] = max{𝑤2 [𝑢] | 𝑢 ∈ 𝑉 is in the subtree rooted at 𝑣}
𝑤2 [𝑢] = max{{first [𝑢]} ∪ {first [𝑢 ′] | (𝑢,𝑢 ′) ∉ 𝑇 }}
All tags can be computed in 𝑂 (𝑛 +𝑚) expected work and

𝑂 (log𝑛) span whp using ETT. Tarjan-Vishkin then finds the

CCs on𝐺 ′
to compute the BCCs of𝐺 . However,𝐺 ′

in Tarjan-

Vishkin can be large, making the algorithm less practical.

Assuming an efficient ETT and a parallel CC algorithm,

Tarjan-Vishkin uses 𝑂 (𝑛 +𝑚) optimal expected work and

polylogarithmic span. However, the space-inefficiency ham-

pers the practicability of Tarjan-Vishkin since 𝐺 ′
contains

1
In a later paper [39], it was shown that the number of vertices in𝐺′

can

be reduced to𝑂 (𝑛) , but |𝐸′ | is still𝑂 (𝑚) .

𝑂 (𝑚) edges. In our experiments, Tarjan-Vishkin takes up to

11× extra space than our FAST-BCC or GBBS. On our ma-

chine with 1.5TBmemory, Tarjan-Vishkin ran out of memory

when processing the Clueweb graph [54], although it only

takes about 300GB to store the graph (see discussions in the

full version [37]). The large space usage forbids running

Tarjan-Vishkin on large-scale graphs on most multicore ma-

chines. Even for small graphs, high space usage can increase

memory footprint and slow down the performance.

Some existing BCC implementations (e.g., GBBS [31] and

TV-filter [29]) were also described as Tarjan-Vishkin algo-

rithms, probably because they also use the skeleton-connectivity

framework. We note that their correctness relies on BFS-

based skeletons (i.e., sparse certificates [27]), and we catego-

rized them below together with a few other algorithms.

3.3 Other Existing Algorithms / Implementations
Before Tarjan-Vishkin, Savage and JáJá [61] showed a par-

allel BCC algorithm based on matrix-multiplication with

𝑂 (𝑛3 log𝑛) work. Tsin and Chin [66] gave an algorithm that

uses an AST-based skeleton. It is quite similar to Tarjan-

Vishkin, but uses 𝑂 (𝑛2) work.
To achieve space-efficiency, many later parallel BCC algo-

rithms use BFS-based skeletons [25, 26, 29, 31, 40, 50, 64, 68].

Many of them use the similar idea of sparse certificates [27].

BCC is much simpler with a BFS tree—all non-tree edges

are cross edges with both endpoints in the same or adja-

cent levels. Cong and Bader’s TV-filter algorithm [29] uses

the skeleton as the BFS tree 𝑇 and an arbitrary spanning

tree/forest for 𝐺 \𝑇 (𝑂 (𝑛) total size). Slota and Madduri’s

algorithms [64] and Dhulipala et al.’s algorithm [31] use the

skeletons as the input graph𝐺 excluding𝑂 (𝑛) vertices/edges.
The other algorithms [25, 26, 40, 68] use a BFS tree as the

skeleton, and compute connectivity dynamically. All these

algorithms are space-efficient. Their skeleton graphs either

have 𝑂 (𝑛) size [25, 26, 29, 40, 68] or can be implicitly repre-

sented using 𝑂 (𝑛) information [31, 64]. However, the span

to generate a BFS tree is proportional to the diameter of the

graph, which is inefficient for large-diameter graphs.

3.4 Space-Efficient BCC Representation
Since some vertices (articulation points) appear in multiple

BCCs (see Fig. 2 as an example), we need a representation of

all BCCs in a space-efficient manner (𝑂 (𝑛) space). We use a

commonly used representation [11, 31, 40] in our algorithm.

Given a spanning tree 𝑇 , we assign a label for each vertex

except for the root of 𝑇 , indicating which BCC this vertex

is in. For all vertices with the same label, we find another

vertex called the component head (see details in Sec. 4.1)

attached to this label. All vertices with the same label and the

corresponding component head form a BCC. An example of

this representation is given in Fig. 2. It is easy to see that this

representation uses 𝑂 (𝑛) space since we have 𝑛 − 1 labels

for all vertices and at most 𝑛 − 1 component heads.

Algorithm 1: The FAST-BCC algorithm

Input: An undirected graph 𝐺 = (𝑉 , 𝐸)
Output: The labels 𝑙 [·] for vertices, and the component head

for each BCC

1 Compute the spanning forest 𝐹 of 𝐺 ⊲ First CC

2 Root all trees in 𝐹 using the Euler tour technique ⊲ Rooting

3 Compute tags (e.g., low, high) of each vertex based on the

Euler tour ⊲ Tagging

4 Compute the vertex label 𝑙 [·] using connectivity on 𝐺 with

edges satisfying InSkeleton(𝑢, 𝑣) = true ⊲ Last CC

5 ParallelForEach 𝑢 ∈ 𝑉 with 𝑙 [𝑢] ≠ 𝑙 [𝑝 (𝑢)]
6 Set the component head of 𝑙 [𝑢] as 𝑝 (𝑢)
7 Function InSkeleton(𝑢, 𝑣) ⊲ Decide if 𝑢–𝑣 is in skeleton 𝐺 ′

8 if (𝑢, 𝑣) is a tree edge then
9 return ¬ Fence(𝑢, 𝑣) and ¬ Fence(𝑣,𝑢)

10 else return ¬ Back(𝑢, 𝑣) and ¬ Back(𝑣,𝑢)

11 Function Fence(𝑢, 𝑣) ⊲ Decide if tree edge is fence edge

12 return first [𝑢] ≤ low [𝑣] and last [𝑢] ≥ high[𝑣]
13 Function Back(𝑢, 𝑣) ⊲ Decide if non-tree edge is back edge

14 return first [𝑢] ≤ first [𝑣] and last [𝑢] ≥ first [𝑣]

4 The FAST-BCC Algorithm
In this section, we present our FAST-BCC algorithm with

analysis. Our algorithm is the first parallel BCC algorithm

that is work-efficient, space-efficient, and has polylogarith-

mic span. Recall that BFS-based algorithms are space-efficient,

but BFS itself does not parallelize well. Tarjan-Vishkin is

based on AST and is highly parallel, but generating the skele-

ton is space-inefficient. To achieve both high parallelism and

space efficiency, we need novel algorithmic insights.

Interestingly, our key idea is to revisit the sequential DFS-

based Hopcroft-Tarjan algorithm (Sec. 3.1). Although DFS

is inherently sequential, the insights in Hopcroft-Tarjan in-

spire our parallel BCC algorithm. The (implicit) skeleton

in Hopcroft-Tarjan is simple and the skeleton size is small

(𝑂 (𝑛)). Unlike many later parallel BCC algorithms with the

high-level ideas to combine cycles (based on Fact 4.2), the

idea in Hopcroft-Tarjan is the “fencing” condition as follows.

When computing the CC on the skeleton 𝐺 ′
(the DFS tree)

and traversing the edge from 𝑣 to 𝑝 (𝑣), the CC on𝐺 ′
(BCC on

𝐺) is fenced if low [𝑣] ≥ first [𝑝 (𝑣)]. This condition partitions

the DFS tree 𝑇 into multiple CCs that correspond to BCCs

in 𝐺 . Note that 𝐺 ′
in Hopcroft-Tarjan only contains edges

from the DFS tree, because there are no cross edges in DFS

trees and all back edge information is captured by low [·].
Now we try to generalize this idea to an arbitrary span-

ning tree (AST). Directly using the “fencing” condition in

Hopcroft-Tarjan does not work since we need to deal with

cross edges. Note that a fence edge 𝑣–𝑝 (𝑣) in Hopcroft-Tarjan
means that vertices in 𝑢’s subtree do not have an edge that
escapes (i.e., the other endpoint is outside) 𝑝 (𝑢)’s subtree. We

define our fence edges also based on this condition. More for-

mally, we say a tree edge (𝑢, 𝑣) where𝑢 = 𝑝 (𝑣) is a fence edge

if there is no edge (𝑥,𝑦) ∈ 𝐸 such that 𝑥 ∈ 𝑇𝑣 and 𝑦 ∉ 𝑇𝑢 . In-

tuitively, it means 𝑣 ’s subtree𝑇𝑣 is “isolated” from other parts

outside 𝑝 (𝑣)’s subtree, and only interacts with the outside

world through 𝑝 (𝑣). To get an equivalent condition for an

AST, we borrow the idea from Tarjan-Vishkin and also com-

pute four axillary arrays first [·], last [·], low [·], and high[·].
The “fencing” condition then becomes low [𝑣] ≥ first [𝑝 (𝑣)]
and high[𝑣] ≤ last [𝑝 (𝑣)]. A non-fence tree edge is referred

to as a plain edge. Note that the information for back edges

is already captured by the low [·] and high[·] arrays, which
will also be used to decide fence edges. Our algorithm will

ignore back edges as in Hopcroft-Tarjan, and our skeleton𝐺 ′

contains plain tree edges and cross edges. Since the main

approach in our algorithm is Fencing an Arbitrary Spanning

Tree, we call our algorithm FAST-BCC. We note that the

high-level idea of fencing (finding some special edges on the

spanning tree) is also used in some existing work [11, 31, 64].

Our design of the skeleton and the fencing condition is the

first to achieve work-efficiency, polylogarithmic span, and

space-efficiency for the BCC problem.

The outline of the algorithm is given in Fig. 2, and the

pseudocode is in Alg. 1. Although our fencing algorithm

is simple, we note that formally proving the correctness

(Sec. 4.2) is highly non-trivial.

4.1 Algorithmic Details
Our FAST-BCC algorithm has four steps: First-CC (gener-

ate spanning trees), Rooting (root the spanning trees using

ETT), Tagging (compute first [·], last [·],𝑤1 [·],𝑤2 [·], low [·],
high[·], 𝑝 [·]), and Last-CC (run CC on the skeleton and post-

processing). In the skeleton-connectivity framework, the

first three steps are the skeleton phase (compute the skele-

ton 𝐺 ′
), and the last step is the connectivity phase (run CC

on 𝐺 ′
to find all BCCs in 𝐺).

First-CC (Step 1 in Fig. 2, Line 1 in Alg. 1). This step finds

all CCs in 𝐺 and generates a spanning forest 𝐹 of 𝐺 . For

simplicity, in the following, we focus on one CC and its

spanning tree 𝑇 , which is unrooted at this moment. If 𝐺

contains multiple CCs, they are simply processed in parallel.

Running CC only requires 𝑂 (𝑛) auxiliary space.

Rooting (Step 2 in Fig. 2, Line 2 in Alg. 1). We use the Euler

tour technique (ETT) in Sec. 2 to root 𝑇 , which implies the

tree edge directions (Fig. 2, Step 2). ETT requires𝑂 (𝑛) space.
Tagging (Step 3 in Fig. 2, Line 3 in Alg. 1). This step generates
the tags used in the algorithm, including𝑤1 [·],𝑤2 [·], low [·],
high[·], first [·], last [·] (same as in Tarjan-Vishkin, see Sec. 3)

and the parent array 𝑝 [·]. low [·] and high[·] values are com-

puted by looping over all edges and getting arrays𝑤1 and𝑤2,

and applying 𝑛 1D range-minimum queries (RMQ). This step

takes in 𝑂 (𝑛 +𝑚) work and 𝑂 (log𝑛) span [15]. These tags

will help to decide the four edge types (see details below).

All the tag arrays have size 𝑂 (𝑛).
Last-CC (Step 4 in Fig. 2, Line 4–6 in Alg. 1). As men-

tioned, our skeleton graph 𝐺 ′
contains plain tree edges and

cross edges. To achieve space efficiency, we do not explic-

itly store 𝐺 ′
. Since 𝐺 ′

is a subgraph of 𝐺 , we can directly

use 𝐺 but skip the fence edges and back edges, which can

be determined using the tags generated in Step 3 (Line 7–

14). Then we compute the CCs on the skeleton𝐺 ′
(Line 4),

which assigns a label 𝑙 [𝑣] to each vertex (Fig. 2, Step 4.1). In

Lem. 4.11, we show that if two vertices are connected in 𝐺 ′
,

they must be biconnected on the input graph 𝐺 . We then

assign the head to each label (Lines 5 and 6) by looping over

all fence edges (Fig. 2, Step 4.2). For a fence edge 𝑢–𝑝 (𝑢), if
𝑢 and 𝑝 (𝑢) have different labels (Line 5), 𝑝 (𝑢) (intuitively)
isolates vertices below 𝑢 with the other parts in the graph.

Thus, we assign 𝑝 (𝑢) as the component head of 𝑢’s CC in𝐺 ′
.

We prove the correctness of this step in Lem. 4.9 and 4.12.

This step also only requires 𝑂 (𝑛) auxiliary space, which is

needed by running CC on 𝐺 but skip certain edges.

4.2 Correctness for the FAST-BCC Algorithm
Wenow prove the correctness of our algorithm. Note that our

algorithm will identify the spanning forest in the first step

and deal with each CC respectively. For simplicity, through-

out the section, we focus on one CC in 𝐺 .

In the following, when we use the concepts about a span-

ning tree of the graph (e.g., root, parent, child, and subtree),

we refer to the specific spanning tree identified in Step 1

of our algorithm, and use 𝑇 to represent it. Recall that 𝑇𝑢
denotes the subtree rooted at vertex 𝑢, and 𝑢 ~ 𝑣 denotes the

tree path on 𝑇 from 𝑢 to 𝑣 . Some other notation is given

in Tab. 1. In a spanning tree, we say a node 𝑢 is shallower

(deeper) than 𝑣 if 𝑢 is closer (farther) to the root than 𝑣 . We

use node and vertex interchangeably.

We note that although Alg. 1 is simple, the correctness

proof is sophisticated. We show the relationship of facts,

lemmas, and theorems in Fig. 2. Due to the space limit, the

proofs for Fact 4.1 and 4.2 and Lem. 4.3 to 4.5 are given in the

full version of the paper, and we mainly focus on the proofs

that reflect some key ideas in our new algorithm.

We first show some facts for BCCs based on the definition.

Fact 4.1. Two BCCs share at most one common vertex.

Fact 4.2. For a cycle in a graph, all vertices on the cycle are
in the same BCC.

Lemma 4.3. Given a graph 𝐺 , vertices in each BCC 𝐶 ⊆ 𝑉

must also be connected in an arbitrary spanning tree 𝑇 for 𝐺 .

Since each BCC𝐶 must be connected in the spanning tree

in 𝑇 , there must exist a unique shallowest node in this BCC

on 𝑇 . We call this shallowest node the BCC head of the

BCC 𝐶 , and denote it as ℎ𝐶 .

Lemma 4.4. Each non-root BCC head is an articulation point.
An articulation point must be a BCC head.

Lemma 4.5. The function InSkeleton (Line 7) in Alg. 1 can
correctly skip the fence and back edges.

Figure 2. The outline of the FAST-BCC algorithm and a running example. The four steps are explained in detail in Sec. 4.1.

Figure 3. The structure of the correctness proof for Alg. 1.

Next, we show a useful property of the plain tree edges.

Lemma 4.6. For a plain tree edge 𝑥–𝑦 where 𝑥 is the parent
of 𝑦, let 𝑧 be 𝑥 ’s parent, then 𝑥,𝑦, 𝑧 are biconnected.

Proof. Since 𝑥–𝑦 is not a fence edge, there must be an edge

𝑎–𝑏, s.t. 𝑎 ∈ 𝑇𝑦 and 𝑏 ∉ 𝑇𝑥 . The cycle 𝑦 ~𝑎–𝑏 ~ 𝑧–𝑥–𝑦 then

contains 𝑥 , 𝑦, and 𝑧. Due to Fact 4.2, 𝑥 , 𝑦, and 𝑧 are in the

same BCC. □

Next, we show that Alg. 1 can correctly identify all BCCs.

We will show two directions. First, if two vertices 𝑢 and 𝑣 are

biconnected, Alg. 1 must put them in a BCC. Second, for any

two vertices 𝑢 and 𝑣 in a BCC found by Alg. 1, they must be

biconnected.

Theorem 4.7. For 𝑢, 𝑣 ∈ 𝑉 , if they are biconnected, Alg. 1
assigns them to the same BCC.

To prove Thm. 4.7, we discuss two cases: 1) one of 𝑢 and 𝑣

is a BCC head, and 2) neither of them is a BCC head.

Lemma 4.8. For a BCC 𝐶 and two vertices 𝑢, 𝑣 ∈ 𝐶 \ {ℎ𝐶 },
they are connected in the skeleton 𝐺 ′ and will get the same
label in Alg. 1.

Proof. If all tree edges connecting 𝐶 \ {ℎ𝐶 } are plain tree

edges, 𝑢 and 𝑣 are already connected in 𝐺 ′
. Next, we show

that the two endpoints of every fence edge are also connected

in 𝐺 ′
. To do so, we first sort (only conceptually) all vertices

in 𝐶 \ {ℎ𝐶 } by their depth in 𝑇 . Then we inductively show

from bottom up (deep to shallow) that, given a vertex 𝑣 ∈ 𝐶 ,

𝑇𝑣 ∩𝐶 (𝑣 ’s subtree in 𝐶) is connected in 𝐺 ′
.

The base case is the deepest vertices in𝐶\{ℎ𝐶 }. In this case,
their subtree contains only one vertex so they are connected.

We now consider the inductive step—if for all vertices

with depth ≥ 𝑑 , their subtrees in 𝐶 are connected in 𝐺 ′
,

then for all vertices with depth 𝑑 − 1, their subtrees in 𝐶

are also connected in 𝐺 ′
. Consider a vertex 𝑢 ∈ 𝐶 \ {ℎ𝐶 }

with depth 𝑑 − 1. If 𝑢 has only one child 𝑣 in 𝐶 , then 𝑢–𝑣 is

a plain tree edge since otherwise 𝑣 ’s subtree cannot escape

𝑢’s subtree and 𝑢 is an articulation point (disconnecting 𝑣

and 𝑝 (𝑢)), contradicting Lem. 4.4. Assume 𝑢 has multiple

children 𝑐1, . . . , 𝑐𝑘 in 𝐶 . Let 𝑢–𝑣 be a fence edge that is not

in𝐺 ′
, where 𝑣 = 𝑐𝑖 is a child of 𝑢. We will show that 𝑢 and 𝑣

are still connected in 𝐺 ′
.

Since 𝑢 is not a BCC head, 𝑝 (𝑢) must also be in 𝐶 . Based

on the definition of BCC, if we remove 𝑢, 𝑣 and 𝑝 (𝑢) are
still connected 𝐶 . Let the path be 𝑃 = 𝑣–𝑥1–𝑥2–...–𝑥𝑘–𝑝 (𝑢)
where 𝑥𝑖 ∈ 𝐶 and 𝑥𝑖 ≠ 𝑢. We will construct a path in𝐺 ′

from

𝑃 that connects 𝑣 and 𝑢. Let 𝑥 𝑗+1 be the first vertex on path

𝑃 that is not in 𝑇𝑢 . We will use the path 𝑣 = 𝑥0–𝑥1–𝑥2–...–𝑥 𝑗 .

All nodes in this path have depths ≥ 𝑑 . Due to the induction

hypothesis, if some of the edges are back or fence edges, we

can replace them with the paths in 𝐺 ′
, and denote this path

as 𝑃 ′
. Then, since 𝑥 𝑗+1 ∉ 𝑇𝑢 is connected to 𝑥 𝑗 ∈ 𝑇𝑢 , all edges

on tree path 𝑥 𝑗 ~𝑢 are plain tree edges. As a result, 𝑢 and 𝑣

are connected in 𝐺 ′
using the path 𝑃 ′

from 𝑣 to 𝑥 𝑗 , and the

tree path from 𝑥 𝑗 to 𝑢 (all edges are in 𝐺 ′
). By the induction,

all vertices in 𝐶 \ {ℎ𝐶 } are connected in 𝐺 ′
, and hence get

the same label after Line 4. □

Lemma 4.9. Any BCC head will be correctly identified as a
component head in Alg. 1.

Proof. Consider a BCC 𝐶 and its BCC head ℎ𝐶 . Among all

the children of ℎ𝐶 , a subset 𝑆 of them are in the same BCC𝐶 .

Consider any 𝑐 ∈ 𝑆 . We will show that the edge 𝑐–ℎ𝐶 must

be identified correctly in Line 5.

We first show that 𝑐–ℎ𝐶 must be a fence. If ℎ𝐶 is the root

of 𝑇 , and in this case, all tree edges connecting to ℎ𝐶 are

fence edges. Otherwise, this can be inferred from the contra-

positive of Lem. 4.6. If 𝑐–ℎ𝐶 is a plain tree edge, 𝑐 , ℎ𝐶 , and

𝑝 (ℎ𝐶) must be biconnected, which means 𝑝 (ℎ𝐶) is also in

the BCC 𝐶 . This contradicts the assumption that ℎ𝐶 is the

shallowest node (BCC head) in the BCC.

We then show that after we run the CC on the skeleton𝐺 ′

(Line 4), ℎ𝐶 and 𝑐 have different labels (i.e., ℎ𝐶 and 𝑐 are not

connected in 𝐺 ′
). Assume to the contrary that there exists a

path 𝑃 from 𝑐 to ℎ𝐶 on 𝐺 ′
. Consider the last node 𝑡 on the

path before ℎ𝐶 . Because ℎ𝐶–𝑐 is a fence edge and is ignored

in 𝐺 ′
, 𝑐 ≠ 𝑡 . We discuss three cases. (1) 𝑡 is not in the ℎ𝐶 ’s

subtree 𝑇ℎ𝐶 . Consider the first edge 𝑥–𝑦 on the path 𝑃 such

that 𝑥 ∈ 𝑇ℎ𝐶 and 𝑦 ≠ 𝑇ℎ𝐶 . Since 𝑥–𝑦 escapes ℎ𝐶 ’s subtree,

the tree path 𝑃 ′ = 𝑥 ~ℎ𝐶 only contains plain tree edges.

Let 𝑐 ′ be ℎ𝐶 ’s child on the path 𝑃 ′
. From Lem. 4.6, 𝑐 ′, ℎ𝐶 ,

and 𝑝 (ℎ𝐶) are biconnected. In this case, ℎ𝐶–𝑐 ~𝑥 ~ 𝑐
′
–ℎ𝐶 is

a cycle, and Fact 4.2 shows that 𝑐 ′, ℎ𝐶 and 𝑐 are biconnected.

The contrapositive of Fact 4.1 indicates that 𝑐 ′, ℎ𝐶 , 𝑐 , and
𝑝 (ℎ𝐶) are all biconnected, contradicting the assumption that

ℎ𝐶 is the BCC head (the shallowest node in the BCC). (2)

𝑡 ∈ 𝑇ℎ𝐶 , but 𝑡 is not ℎ𝐶 ’s child. This is impossible because

𝑡–ℎ𝐶 is a back edge, which is not in 𝐺 ′
. (3) 𝑡 is a child of ℎ𝐶 .

This case is similar to (1). By replacing 𝑐 ′ in the previous

proof by 𝑡 , we can get the same contradiction. Combining

all cases proves that there is no path in 𝐺 ′
between ℎ𝐶 and

its children in 𝐶 , so 𝑙 [ℎ𝐶] is different from the labels of its

children in 𝐶 . □

Combining Lem. 4.8 and 4.9, we can prove Thm. 4.7.

We then show the other direction—all the BCCs computed

by Alg. 1 are indeed biconnected.

Theorem 4.10. If two vertices 𝑢 and 𝑣 are identified as in the
same BCC by Alg. 1, they must be biconnected.

Similar to the previous proof, we consider two cases: (1)

none of the two vertices is a component head (they are con-

nected in 𝐺 ′
), proved in Lem. 4.11, and (2) one of them is

identified as a component head in Line 6, proved in Lem. 4.12.

Lemma 4.11. If two vertices 𝑢 and 𝑣 are connected in the
skeleton 𝐺 ′, they are biconnected.

Proof. Since 𝑢 and 𝑣 are connected in 𝐺 ′
, there exists a path

𝑃 from 𝑢 to 𝑣 only using edges in𝐺 ′
. Let 𝑃 be 𝑢 = 𝑝0–𝑝1–...–

𝑝𝑘−1–𝑝𝑘 = 𝑣 . We will show that after removing any vertex

𝑝𝑖 where 1 ≤ 𝑖 < 𝑘 on 𝑃 , 𝑝𝑖−1 and 𝑝𝑖+1 are still connected,
meaning that 𝑢 and 𝑣 are biconnected. We summarize all

possible local structures in three cases, based on whether

𝑝𝑖−1 (and 𝑝𝑖+1) is a child of 𝑝𝑖 in 𝑇 .

Case 1: both 𝑝𝑖−1 and 𝑝𝑖+1 are 𝑝𝑖 ’s children. Since 𝑝𝑖−1–𝑝𝑖 is
not a fence edge, there must be an edge 𝑥–𝑦 s.t. 𝑥 ∈ 𝑇𝑝𝑖−1 and

𝑦 ∉ 𝑇𝑝𝑖 . Similarly, for 𝑝𝑖–𝑝𝑖+1, there exists an edge (𝑥 ′, 𝑦 ′)
s.t. 𝑥 ′ ∈ 𝑇𝑃𝑖+1 and 𝑦

′ ∉ 𝑇𝑃𝑖 . Hence, without using 𝑝𝑖 , 𝑝𝑖−1 and

𝑝𝑖+1 are still connected by the path 𝑝𝑖−1 ~𝑥–𝑦 ~𝑦 ′
–𝑥 ′

~𝑝𝑖+1.
Here since 𝑦,𝑦 ′ ∉ 𝑇𝑝𝑖 , 𝑦 ~𝑦

′
does not contain 𝑝𝑖 .

Case 2: one of 𝑝𝑖−1 and 𝑝𝑖+1 is 𝑝𝑖 ’s child. WLOG, assume

𝑝𝑖−1 is the child. Since 𝑝𝑖−1–𝑝𝑖 is not a fence edge, there must

be an edge 𝑥–𝑦 such that 𝑥 ∈ 𝑇𝑝𝑖−1 and 𝑦 ∉ 𝑇𝑝𝑖 . Also, since

𝑝𝑖+1 is either the parent of 𝑝𝑖 or connected to 𝑝𝑖 using a cross
edge, 𝑝𝑖+1 ∉ 𝑇𝑝𝑖 . Hence, without using 𝑝𝑖 , 𝑝𝑖−1 and 𝑝𝑖+1 are
still connected using the path 𝑝𝑖−1 ~𝑥–𝑦 ~𝑝𝑖+1.

Case 3: neither 𝑝𝑖−1 nor 𝑝𝑖+1 is a child of 𝑝𝑖 , and neither of
them is in𝑇𝑝𝑖 (otherwise they are connected by a back edge).

Without using 𝑝𝑖 , 𝑝𝑖−1 and 𝑝𝑖+1 are still connected using the

tree path 𝑝𝑖−1 ~𝑝𝑖+1.
Since removing any vertex on the path 𝑃 does not discon-

nect the path, all vertices in the same CC of the skeleton are

biconnected. □

Lemma 4.12. If Line 6 in Alg. 1 assigns ℎ as the component
head of a connected component (CC)𝐶 in the skeleton𝐺 ′, then
ℎ is biconnected with 𝐶 .

Proof. First of all, assume ℎ is assigned as the component

head because of its child 𝑐 , where ℎ–𝑐 is a fence edge. We

will show that the connected component 𝐶 in𝐺 ′
containing

𝑐 is biconnected with ℎ. There are two cases.

Case 1: 𝐶 only contains vertices in 𝑇𝑐 . This means that no

vertices in 𝑇𝑐 have a cross edge to another vertex outside 𝑇𝑐 .

Therefore, either all edges incident on 𝑐 ′ ∈ 𝑇𝑐 do not escape

from 𝑇𝑐 , or some node 𝑐 ′ ∈ 𝑇𝑐 is connected to nodes outside

𝑇𝑐 via back edges. In the former case, all the edges connecting

𝑐 and its children are fence edges, and thus 𝐶 only contains

𝑐 . In this case, ℎ is trivially biconnected with 𝐶 . In the latter

case, assume 𝑥 ∈ 𝑇𝑐 ∩𝐶 has a back edge connected to 𝑦 ∉ 𝑇𝑐 .

Note that 𝑦 can only be ℎ—if 𝑦 is ℎ’s ancestor, then edge

𝑥–𝑦 escapes 𝑇ℎ , so ℎ–𝑐 is a plain tree edge (contradiction).

Therefore, we can find a cycle ℎ–𝑐 ~𝑥–ℎ. From Fact 4.2, ℎ, 𝑐, 𝑥

are biconnected, and ℎ is in the same BCC as 𝑐 and 𝑥 , and

thus all vertices in 𝐶 (Lem. 4.11 and Fact 4.1).

Case 2: 𝐶 contains both vertices in 𝑇𝑐 and some vertices

in𝑇ℎ \𝑇𝑐 . Hence, there exists a cross edge 𝑥–𝑦, where 𝑥 ∈ 𝑇𝑐
and 𝑦 ∉ 𝑇𝑐 . We can find a cycle ℎ,~𝑥–𝑦 ~ℎ. From Fact 4.2,

ℎ, 𝑐,𝑢 are biconnected. ℎ is in the same BCC as 𝑐 and 𝑢. □

Combining Lem. 4.11 and 4.12 proves Thm. 4.10.

Thm. 4.7 shows that if two vertices are put in the same

BCC by Alg. 1, they are biconnected in𝐺 . Thm. 4.10 indicates

that two vertices biconnected in 𝐺 will be put in the same

BCC by Alg. 1. Lem. 4.5 indications back edges and fence

edges are identified correctly by Alg. 1. Combining them

together indicates that Alg. 1 is correct.

4.3 Cost Bounds for the FAST-BCC Algorithm
We now analyze the cost bounds of the algorithm.

Theorem 4.13. Alg. 1 computes the BCCs of a graph𝐺 with 𝑛
vertices and𝑚 edges using𝑂 (𝑛 +𝑚) expected work,𝑂 (log3 𝑛)
span whp, and 𝑂 (𝑛) auxiliary space (other than the input).

Proof. The first and last steps compute the graph connectiv-

ity twice. Graph connectivity can be computed in 𝑂 (𝑛 +𝑚)
expected work and 𝑂 (log3 𝑛) span whp [63]. In Step 2, ETT

can be performed 𝑂 (𝑛) expected work and 𝑂 (log𝑛) span
whp (see Sec. 2). In Step 3, computing low [·] and high[·] ar-
rays based on RMQ takes𝑂 (𝑚) work and𝑂 (log𝑛) span [15].

Adding all pieces together gives the work and span bounds.

For the space, all arrays for the tags have size 𝑂 (𝑛). As
mentioned, we do not generate the skeleton explicitly. In the

last step, we try all the edges in𝐺 but skipping the back and

fence edges. In all, the auxiliary space needed is 𝑂 (𝑛). □

5 Implementation Details
We discuss some implementation details of FAST-BCC in

this section.

Connectivity. Connectivity is used twice in FAST-BCC.
The only existing parallel CC implementation with good

theoretical guarantee we know of is the SDB algorithm [63]

(an initial version of GBBS is based on this algorithm). A

recent paper by Dhulipala et al. [32] gave 232 parallel CC

implementations, many of which outperformed the SDB

algorithm, but no analysis of work-efficiency was given. A

more recent version of GBBS uses the UF-Async algorithm
in [32] to compute CC. To achieve efficiency both in theory

and in practice, FAST-BCC uses the LDD-UF-JTB algorithm

from [32] and we provide a new analysis for this algorithm

to prove its theoretical efficiency.

LDD-UF-JTB consists of two steps. It first runs a low-

diameter decomposition (LDD) algorithm [55] to find a de-

composition (partition of vertices) of the graph such that

each component has a low diameter and the number of edges

crossing different components is bounded. The second step

is to use a union-find structure by Jayanti et al. [49] to union

components connected by cross-component edges. We now

show the bounds of this algorithm.

Theorem 5.1. The LDD-UF-JTB algorithm computes the CCs
of a graph 𝐺 with 𝑛 vertices and 𝑚 edges using 𝑂 (𝑛 + 𝑚)
expected work and 𝑂 (log3 𝑛) span whp.

Therefore, using LDD-UF-JTB for CC preserves the cost

bounds in Thm. 4.13. We prove Thm. 5.1 in the full version

of this paper.

We optimized LDD-UF-JTB using the hash bag and local

search techniques proposed from [69]. These optimizations

are only used in computing CCs in our algorithm, and we

do not claim them as contributions of this paper. In our

tests, using these optimizations improves the performance

of FAST-BCC by 1.5× on average (up to 5×). Some results are

shown in the full version of this paper. We note that among

all 232 CC algorithms in [32], no one is constantly faster,

and the relative performance is decided by the input graph

properties. In FAST-BCC, we currently use the same CC

algorithm for all graphs, and we acknowledge that using the

fastest CC algorithm on each graph can further improve the

performance of FAST-BCC. We choose LDD-UF-JTB mainly

because it is theoretically-efficient, and also can generate CC

as a by-product efficiently.

Spanning Forest. The spanning forest of 𝐺 is obtained as a

by-product of Step 1, which saves all edges to form the CCs.

We then re-order the vertices in the compressed sparse row

(CSR) format to let each CC be contiguous.

Euler Tour Technique (ETT). We use the standard ETT

to root the spanning trees (see Sec. 2). We replicate each

undirected edge in 𝑇 into two directed edges and semisort

them [44], so edges with the same first endpoint are con-

tiguous. Then we construct a circular linked list as the Euler

circuit. Assume a vertex 𝑣 has 𝑘 in-coming neighbors 𝑢1, 𝑢2,

· · · , 𝑢𝑘 . For every incoming edge of 𝑣 except for the last one,

we link it to its next outgoing edge (i.e., 𝑢𝑖–𝑣 is linked to

𝑣–𝑢𝑖+1 for 1 ≤ 𝑖 < 𝑘). For the last incoming edge, we link it

to the first outgoing edge of 𝑣 (i.e., 𝑢𝑘–𝑣 is linked to 𝑣–𝑢1).

After we obtain the Euler circuit of the tree, we flatten

the linked list to an array by list ranking, and acquire the

Euler tour order of each vertex. For list ranking, we coarsen

the base cases by sampling

√
𝑛 nodes. We start from these

nodes in parallel, with each node sequentially following the

pointers until it visits the next sample. Then we compute

the offsets of each sample by prefix sum, pass the offsets to

other nodes by chasing the pointers from the samples, and

scatter all nodes into a contiguous array.

Computing Tags. We use several tags 𝑤1, 𝑤2, first, last,
low, and high for each vertex, defined the same as Tarjan-

Vishkin [65] (see Sec. 3). We use CAS operations to compute

first and last as they represent the first and last appearances

of a vertex in the Euler tour order. For each tree edge (𝑢, 𝑣), if
first [𝑢] < first [𝑣], we set 𝑝 (𝑣) = 𝑢, or vice versa. Computing

low and high are similar, so we only discuss low here.We first

initialize𝑤1 [𝑣] with first [𝑣] for each 𝑣 ∈ 𝑉 . Then it traverses

all non-tree edges𝑢–𝑣 and updates𝑤1 [𝑢] and𝑤1 [𝑣] with the
minimum of first [𝑢] and first [𝑣]. We build a parallel sparse

table [15] on 𝑤1 to support range minimum queries. Note

that first [𝑣] and last [𝑣] reflect the range of 𝑣 ’s subtree in the

Euler tour order. Thus, low [𝑣] can be computed by finding

the minimum element in𝑤1 [·] in the range between first [𝑣]
and last [𝑣]. high[·] can be computed similarly.

6 Experiments
Setup. We run our experiments on a 96-core (192 hyper-

threads) machine with four Intel Xeon Gold 6252 CPUs, and

1.5 TB of main memory. We implemented all algorithms in

C++ using ParlayLib [12] for fork-join parallelism and some

parallel primitives (e.g., sorting). We use numactl -i all
in experiments with more than one thread to spread the

memory pages across CPUs in a round-robin fashion. We

run each test for 10 times and report the median.

We tested on 27 graphs, including social networks, web

graphs, road graphs, 𝑘-NN graphs, and synthetic graphs.

𝒏 𝒎 𝑫 #BCC |BCC1 |%
Ours GBBS SM’

SEQ
𝑻best Notespar. seq. spd. par. seq. spd. 14 /ours

So
ci
al

YT 1.13M 5.98M 23 673,661 39.83% 0.030 0.465 15.6 0.040 0.435 10.8 0.059 0.175 1.35 com-youtube [72]

OK 3.07M 234M 9 68,117 97.76% 0.103 3.08 30.0 0.158 4.86 30.8 0.297 3.14 1.53 com-orkut [72]

LJ 4.85M 85.7M 19 1,133,883 75.61% 0.104 3.02 28.9 0.159 3.34 21.0 n 1.87 1.52 soc-LiveJournal1 [9]

TW 41.7M 2.41B 23 1,936,001 95.33% 1.44 52.9 36.7 2.83 95.2 33.7 20.5
∗

49.2 1.96 Twitter [51]

FT 65.6M 3.61B 37 14,039,045 78.50% 3.10 129 41.6 6.44 260 40.5 10.9 122 2.07 Friendster [72]

W
eb

GG 876K 8.64M 24 175,274 73.31% 0.029 0.534 18.7 0.045 0.530 11.8 n 0.255 1.58 web-Google [53]

SD 89.2M 3.88B 35 16,189,065 80.36% 3.11 134 43.2 5.61 213 38.0 n 92.3 1.81 sd_arc [54]

CW 978M 74.7B 254 81,809,602 86.48% 22.9 1464 64.0 39.7 1526 38.4 n 695 1.73 ClueWeb [54]

HL14 1.72B 124B 366 124,406,075 83.25% 31.1 2057 66.0 50.7 2113 41.7 n 1011 1.63 Hyperlink14 [54]

HL12 3.56B 226B 650 410,853,262 80.63% 89.1 5435 61.0 104 5985 57.6 n 3027 1.17 Hyperlink12 [54]

R
oa

d CA 1.97M 5.53M 857 381,366 79.55% 0.040 0.824 20.6 0.372 1.05 2.82 n 0.206 5.15 roadnet-CA [53]

USA 23.9M 57.7M 8,263 7,390,330 66.90% 0.336 12.1 36.0 4.64 15.1 3.25 3.73
∗

2.25 6.69 RoadUSA [1]

GE 12.3M 32.3M 2,240 2,482,488 78.67% 0.267 11.1 41.6 2.02 11.4 5.66 1.14
∗

2.88 7.54 Germany [1]

𝒌
-N

N

HH5 2.05M 13.0M 1,859 17,408 62.55% 0.073 1.60 22.0 0.447 1.52 3.41 n 0.509 6.16 Household [38, 70], 𝑘=5

CH5 4.21M 29.7M 14,479 299 15.41% 0.128 2.85 22.2 1.44 2.38 1.66 n 0.528 4.11 CHEM [41, 70], 𝑘=5

GL2 24.9M 65.4M 13,333 10,940,922 0.03% 0.402 13.8 34.5 1.53 16.9 11.0 n 2.51 3.80 GeoLife [70, 73], 𝑘=2

GL5 24.9M 157M 21,600 1,009,434 30.07% 0.472 19.1 40.5 2.80 19.4 6.92 n 4.03 5.93 GeoLife [70, 73], 𝑘=5

GL10 24.9M 305M 3,824 51,465 86.38% 0.668 29.2 43.8 1.64 23.5 14.3 n 7.07 2.46 GeoLife [70, 73], 𝑘=10

GL15 24.9M 453M 3,664 23,149 91.11% 0.751 34.4 45.8 1.51 25.9 17.1 n 8.92 2.01 GeoLife [70, 73], 𝑘=15

GL20 24.9M 602M 2,805 13,619 93.96% 0.861 39.2 45.6 1.48 28.6 19.3 n 10.2 1.72 GeoLife [70, 73], 𝑘=20

COS5 321M 1.96B 1,180 85,283 99.74% 8.46 382 45.2 17.5 392 22.4 n 120 2.07 Cosmo50 [52, 70], 𝑘=5

Sy
nt
he

ti
c

SQR 100M 400M 10,000 1 100.00% 1.32 43.4 32.9 15.4 44.2 2.87 20.3
∗

24.4 11.7 2D grid 10
4 × 10

4

REC 100M 240M 50,500 1 100.00% 1.35 43.6 32.4 47.0 34.6 0.735 13.1
∗

16.8 12.5 2D grid 10
3 × 10

5

SQR’ 100M 400M 10,256 23,836,580 70.65% 1.31 50.1 38.1 12.5 60.9 4.88 n 10.6 8.06 sampled SQR

REC’ 100M 240M 69,014 23,826,514 70.66% 1.37 46.8 34.3 22.4 58.9 2.63 n 10.7 7.81 sampled REC

Chn7 10M 20M 10
7 − 1 10

7 − 1 0.00% 0.278 13.1 46.9 81.6 19.7 0.241 40.5
∗

3.33 12.0 Chain of size 10
7

Chn8 100M 200M 10
8 − 1 10

8 − 1 0.00% 3.25 152 46.9 957 307 0.320 703
∗

38.9 12.0 Chain of size 10
8

Table 2. Graph information, running times (in seconds), and speedups. 𝑇best/ours (highlighted in yellow) is the fastest time of
the other implementations / our time, both using all cores. “𝑛” = number of vertices. “𝑚” = number of edges. “𝐷” = approximate

diameter. “#BCC” = number of BCCs. “|BCC1 |%” = percentage of the largest BCCs. “GBBS” = GBBS’s implementation [31]. “SM’14” = Slota

and Madduri’s algorithm [64] (the faster of the two proposed algorithms). Since SM’14 has scalability issues (see Fig. 4), we report the

16-core time if it is faster, and denote as (
∗
). “SEQ” = Hopcroft-Tarjan BCC algorithm [45]. Details about the baselines are introduced in

Sec. 6. The fastest runtime for each graph is underlined. Red numbers are parallel runtime slower than the sequential algorithm. “par.” =

parallel running time (on 192 hyper-threads). “seq.” = sequential running time (on 1 thread). “spd.” = self-relative speedup. “n” = no support,

because SM’14 only works on connected graphs.

The information of the graphs is given in Tab. 2. In addi-

tion to commonly-used benchmarks of social, web and, road

graphs, we also use 𝑘-NN graphs and synthetic graphs. 𝑘-

NN graphs are widely used in machine learning algorithms

(see discussions in [70]). In 𝑘-NN graphs, each vertex is a

multi-dimensional data point and has 𝑘 edges pointing to

its 𝑘-nearest neighbors (excluding itself). We also create six

synthetic graphs, including two grids (SQR and REC), two

sampled grids (SQR’ and REC’, each edge is created with

probability 0.6), and two chains (Chn7 and Chn8). SQR and

SQR’ have sizes 10
4 × 10

4
. REC and REC’ have sizes 10

3 × 10
5
.

Each row and column in grid graphs are circular. Chn7 and

Chn8 have sizes 10
7
and 10

8
. The tested graphs cover a wide

range of sizes and edge distributions.

For directed graphs, we symmetrize them to test BCC.

We call the social and web graphs low-diameter graphs as

they have diameters mostly within a few hundreds. We call

the road, 𝑘-NN, and synthetic graphs large-diameter graphs
as their diameters are mostly more than a thousand. When

comparing the average running times across multiple graphs,

we always take the geometric mean of the numbers.

Baseline Algorithms.We call all existing algorithms that

we compare to the baselines. We implement sequential

Hopcroft-Tarjan [45] algorithm for comparison, referred to

as SEQ . We compare the number of BCCs reported by each

algorithm with SEQ to verify correctness.

We also compare to two most recent available BCC im-

plementations GBBS [31], and Slota and Madduri [64]. We

use SM’14 to denote the better of the two BCC algorithms in

Slota and Madduri [64]. On many graphs, we observe that

SM’14 is faster on 16 threads than using all 192 threads, in

which case we report the lower time of 16 and 192 threads.

1248 24 96
0.2
1
5
20

TW

1248 24 96

SD

1248 24 96

USA

1248 24 96

GL5

1248 24 96

REC
FAST-BCC GBBS SM'14

Figure 4. Scalability curves for different BCC algorithms. In
each plot, 𝑥-axis is core counts (last data point is 96 core with

hyperthreading) and 𝑦-axis is speedups normalized to SEQ (the

sequential Hopcroft-Tarjan algorithm). Higher is better. SEQ is 1.

Through correspondence with the authors, we understand

that SM’14 requires the input graph to be connected, so we

only report the running time when it gives the correct an-

swers. As few graphs we tested are entirely connected, we

focus on comparisons withGBBS and SEQ . We also compare

our breakdown and sequential running times with GBBS
since GBBS can process most of the tested graphs

2
.

Unfortunately, we cannot find existing implementations

for Tarjan-Vishkin to compare with. We are aware of two

papers that implemented Tarjan-Vishkin [29, 39]. Edwards

and Vishkin’s implementation [39] is on the XMT architec-

ture and they did not release their code. Cong and Bader’s

code [29] is released, but it was written in 2005 and uses

some system functions that are no longer supported on our

machine. For a full comparison, we implemented a faithful

Tarjan-Vishkin from the original paper [65]. As engineer-

ing Tarjan-Vishkin is not the main focus of this paper, we

provide the details in the full paper.

We note that both GBBS and SM’14 exclude the postpro-
cessing to compute the actual BCCs, but only report the

number of BCCs at the end of the algorithm. We include this

step in FAST-BCC, although this postprocessing only takes

at most 2% of the total running time in all our tests.

6.1 Overall Performance
We present the running time of all algorithms in Tab. 2.

Our FAST-BCC is faster than all baselines on all graphs,
mainly due to the theoretical efficiency—work- and space-

efficiency enables competitive sequential times over the

Hopcroft-Tarjan sequential algorithm, and polylogarithmic

span ensures good speedup for all graphs.

Sequential Running Time.We first compare the sequential
running time of SEQ , GBBS, and FAST-BCC. SEQ and FAST-
BCC use 𝑂 (𝑛 +𝑚) work. To enable parallelism, both FAST-
BCC and GBBS traverse all edges multiple times (running

CC twice in Steps 1 and 4, and computing low/high for the

skeleton in Step 3). We describe more details about GBBS
implementation in Sec. 6.2. On average, our sequential time

is 2.8× slower than SEQ , but is 10% faster than GBBS.

2GBBS updated a new version after this paper was accepted, so we also

updated the numbers using their latest version (Nov. 2022). Some new

features in the latest version greatly improved their BCC performance.

Scalability andParallelism.We report the scalability curves

for FAST-BCC, GBBS and SM’14 on five graphs (Fig. 4). For

fair comparison, the speedup numbers in Fig. 4 are normal-

ized to the running time of SEQ . On these graphs, FAST-BCC
is the only algorithm that scales to all processors. It outper-

forms GBBS and SM’14 on all graphs with all numbers of

threads (except REC on 2 cores). We noticed that SM’14 suf-
fers from scalability issues, and the best performance can

be achieved at around 16 threads. Hence, we report SM’14’s
better running time of 16 and 192 threads in Tab. 2. GBBS
has similar issues on a few graphs. However, as GBBS’s per-
formance does not drop significantly as core count increases,

we consistently report GBBS’s time on 192 threads in Tab. 2.

Our average self-relative speedups on both low-diameter

graphs and large-diameter graphs are 36×. On large-scale

low-diameter graphs with sufficient parallelism, the self-

relative speedup can be up to 66×. Even on large-diameter

graphs, FAST-BCC achieves up to 47× self-relative speedup.

In comparison, the self-relative speedup of GBBS’s BFS-

based algorithm is 29× on low-diameter graphs and 3.7× on

large-diameter graphs. This makes GBBS only 11% faster

than SEQ on large-diameter graphs (and can be slower on

some graphs), while ours is 5.1–18.5× better. Overall, our

parallel running time is 10× faster on large-diameter graphs

and 1.6× faster on low-diameter graphs thanGBBS. On some

graphs, SM’14 achieves better performance than GBBS, but
FAST-BCC is 1.7–11.1× faster than SM’14 on all the graphs.

To verify that GBBS’s performance is bottlenecked by

BFS, we created 𝑘-NN graphs GL2–20 from the set of points

but with different values of 𝑘 . When increasing 𝑘 over 5,

the graphs have more edges but smaller diameters. For both

FAST-BCC and SEQ , the running times increase when 𝑘

grows due to more edges (and thus more work), but the

trend of GBBS’s running time is decreasing. This indicates

that the BFS is the dominating part of running time for

GBBS, and the performance on GBBS is bottlenecked by

the 𝑂 (Diam(𝐺) log𝑛) span.

6.2 Performance Breakdown
To understand the performance gain of FAST-BCC over prior

parallel BFS-based BCC algorithms, we compare our perfor-

mance breakdown with GBBS in Fig. 5. We choose GBBS
because it can process all graphs. Since GBBS is also in the

skeleton-connectivity framework, we use the same four step

names for GBBS as in FAST-BCC, but there are a few dif-

ferences. (1) For First-CC, FAST-BCC generates a spanning

forest while GBBS only finds all CCs. (2) For Rooting, FAST-
BCC uses ETT to root the tree while GBBS applies BFS on

all CCs to find the spanning trees. (3) The task for Tagging is

almost the same, but GBBS computes fewer tags than FAST-
BCC since it is based on BFS trees. FAST-BCC uses 1D RMQ

queries that are theoretically-efficient, while GBBS uses a

bottom-up traversal on the BFS tree. (4) For Last-CC, both
algorithms run CC algorithms on the skeletons to find BCCs.

0.0

0.1

OK

0.0

0.1

LJ

0
1
2

TW

0.0

2.5

5.0

FT

0
2
4

SD

0

20

40
CW

First CC Rooting Tagging Last CC

0

20

40
HL14

0

50

100
HL12

0

2

4
USA

0

1

2
GE

G
BB

S
O

ur
s

0.0
0.5
1.0

CH5

G
BB

S
O

ur
s

0

1

GL2

G
BB

S
O

ur
s

0

2

GL5

G
BB

S
O

ur
s

0

1

GL10

G
BB

S
O

ur
s

0

1

GL15

G
BB

S
O

ur
s

0

1

GL20

G
BB

S
O

ur
s

0

10

COS5

G
BB

S
O

ur
s

0

10

SQR

G
BB

S
O

ur
s

0

5

10

SQR'

G
BB

S
O

ur
s

0

500

1000 Chn8

Figure 5. BCC breakdown. 𝑦-axis is the running time in seconds. The results for all the 27 graphs are in the full paper.

We first discuss the two steps First-CC and Last-CC that

use connectivity.GBBS can be faster than FAST-BCC in First-
CC on some graphs. The reason is that our algorithm also

constructs the spanning forest in First-CC, while GBBS has

to run BFS in Rooting to generate the BFS spanning forest.

In Last-CC, the two algorithms achieve similar performance,

and in many cases, FAST-BCC is faster. We note that the CC

algorithm is independent with the BCC algorithm itself. Both

the CC algorithm used in our implementation and GBBS is

based on algorithms in an existing paper [32]. As mentioned,

based on the results in [32], the “best” CC algorithm can be

very different for different types of graphs. One can also plug

in any CC algorithms to FAST-BCC or GBBS BCC algorithm

to achieve better performance for specific input graphs.

In the Rooting step (generate rooted spanning trees, the
red bar), FAST-BCC is significantly faster than GBBS. GBBS
is based on a BFS tree, and after computing the CCs of in-

put graph𝐺 , it has to run BFS on 𝐺 again, which results in

𝑂 (𝑚 + 𝑛) work and 𝑂 (Diam(𝐺) log𝑛) span. In comparison,

FAST-BCC obtains the spanning trees from the First-CC step,

and only uses ETT in the Rooting step with 𝑂 (𝑛) expected
work and 𝑂 (log𝑛) span whp. As shown in Fig. 5, this step

for GBBS is the dominating cost for large-diameter graphs,

and this is likely the case for other parallel BCC algorithms

using BFS-based skeletons. FAST-BCC almost entirely saves

the cost in this step (13× faster on average on large-diameter

graphs). For low-diameter graphs, the two algorithms per-

form similarly—FAST-BCC is about 1.1× faster in this step.

In the Tagging step (the green bars), both FAST-BCC and

GBBS compute the tags such as low and high. Since FAST-
BCC uses an AST, the values of the arrays are computed

using 1D range-minimum query (see Sec. 4.1) with 𝑂 (log𝑛)
span. GBBS computes them by a bottom-up traversal on

the BFS tree, with 𝑂 (Diam(𝐺) log𝑛) span. Hence, on large-

diameter graphs, GBBS also consumes much time on this

step, and FAST-BCC is 1.2–830× faster than GBBS. On low-

diameter graphs, GBBS also gets sufficient parallelism, and

the performance for both algorithms is similar.

In summary, on all graphs, FAST-BCC is faster than GBBS
mainly due to the efficiency in the Rooting and Tagging step,

and the reason is that our algorithm has polylogarithmic

span, while GBBS relies on the BFS spanning tree and re-

quires 𝑂 (Diam(𝐺) log𝑛) span.

6.3 The Tarjan-Vishkin Algorithm
Although engineering Tarjan-Vishkin (TV) [65] is not the

focus of this paper, for completeness, we also implemented a

faithful TV algorithm. Due to space limit, we give more de-

tails and report the numbers in the full paper, and summarize

our findings here. Due to space inefficiency, our TV imple-

mentation cannot run on the three largest graphs (CW, HL14,

and HL12) on our machines with 1.5TB memory. We note

that the smallest among them (CW) only takes about 300GB

to store the graph, and our algorithm uses 572GB memory

to process it. On all graphs, TV uses 1.2–10.8× more space

than FAST-BCC. GBBS is about 20% more space-efficient

than FAST-BCC. The reason is that they need to compute

fewer number of tags than FAST-BCC.
Regarding running time, we report the running time of

TV on all graphs in the full paper, and summarize the results

here. Due to the cost of explicitly constructing the skeleton,

TV performs slowly on small-diameter graphs, and is slower

than GBBS even on 𝑘-NN graphs. On all these graphs, the

speedup for TV on 96 cores over SEQ is only 1.4–3×. This
is consistent with the findings in prior papers [29, 64]. TV

works well on road and synthetic graphs due to small edge-

to-vertex ratio, so the 𝑂 (𝑚) work and space for generating

the skeleton does not dominate the running time. In this

case, polylogarithmic span allows TV to perform consistently

better than GBBS. TV is faster than SEQ on 96 cores on all

graphs, but slower than FAST-BCC.

7 Conclusion
In this paper, we propose the FAST-BCC (Fencing on Arbi-

trary Spanning Tree) algorithm for parallel biconnectivity.

FAST-BCC has 𝑂 (𝑚 + 𝑛) expected optimal work, polylog-

arithmic span (high parallelism), and uses 𝑂 (𝑛) auxiliary
space (space-efficient). The theoretical efficiency also en-

ables high performance. On our machine with 96 cores and

a variety of graph types, FAST-BCC outperforms all existing

BCC implementations on all tested graphs.

Acknowledgement
This work is supported by NSF grants CCF-2103483 and IIS-

2227669, and UCR Regents Faculty Fellowships. We thank

anonymous reviewers for the useful feedbacks.

References
[1] 2010. OpenStreetMap © OpenStreetMap contributors. https://www.

openstreetmap.org/.
[2] Alok Aggarwal, Bernard Chazelle, Leo Guibas, Colm Ó’Dúnlaing, and

Chee Yap. 1988. Parallel computational geometry. Algorithmica 3, 1
(1988), 293–327.

[3] Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim

Sukha, and Robert Utterback. 2014. Provably Good Scheduling for

Parallel Programs That Use Data Structures Through Implicit Batching.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[4] Daniel Anderson, Guy E Blelloch, Laxman Dhulipala, Magdalen Dob-

son, and Yihan Sun. 2022. The problem-based benchmark suite (PBBS),

V2. In ACM Symposium on Principles and Practice of Parallel Program-
ming (PPOPP). 445–447.

[5] Lars Arge, Michael Bender, Erik Demaine, Bryan Holland-Minkley, and

Ian Munro. 2002. Cache-oblivious priority queue and graph algorithm

applications. In ACM Symposium on Theory of Computing (STOC).
268–276.

[6] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. 2001. Thread Scheduling

for Multiprogrammed Multiprocessors. Theory of Computing Systems
(TOCS) 34, 2 (01 Apr 2001).

[7] Giorgio Ausiello, Donatella Firmani, and Luigi Laura. 2011. Real-time

anomalies detection and analysis of network structure, with applica-

tion to the Autonomous System network. In International Wireless
Communications and Mobile Computing Conference. IEEE, 1575–1579.

[8] Christian Bachmaier, Franz J Brandenburg, and Michael Forster. 2005.

Radial level planarity testing and embedding in linear time. In J. Graph
Algorithms and Applications. Citeseer.

[9] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang

Lan. 2006. Group formation in large social networks: membership,

growth, and evolution. In ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD). 44–54.

[10] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B.

Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. 2016. Parallel

Algorithms for Asymmetric Read-Write Costs. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[11] Naama Ben-David, Guy E. Blelloch, Jeremy T Fineman, Phillip B Gib-

bons, Yan Gu, Charles McGuffey, and Julian Shun. 2018. Implicit

Decomposition for Write-Efficient Connectivity Algorithms. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[12] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020.

ParlayLib-a toolkit for parallel algorithms on shared-memory multi-

core machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 507–509.

[13] Guy E. Blelloch, Rezaul Alam Chowdhury, Phillip B. Gibbons, Vijaya

Ramachandran, Shimin Chen, and Michael Kozuch. 2008. Provably

good multicore cache performance for divide-and-conquer algorithms.

In ACM-SIAM Symposium on Discrete Algorithms (SODA).
[14] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Har-

sha Vardhan Simhadri. 2011. Scheduling Irregular Parallel Computa-

tions on Hierarchical Caches. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

[15] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020.

Optimal parallel algorithms in the binary-forking model. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[16] Guy E. Blelloch and Phillip B. Gibbons. 2004. Effectively sharing a

cache among threads. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA).

[17] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri.

2010. Low depth cache-oblivious algorithms. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[18] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel

Write-Efficient Algorithms and Data Structures for Computational

Geometry. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA).

[19] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Randomized

Incremental Convex Hull is Highly Parallel. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[20] Guy E. Blelloch and Margaret Reid-Miller. 1998. Fast Set Operations

Using Treaps. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[21] Guy E. Blelloch andMargaret Reid-Miller. 1999. Pipeliningwith futures.

Theory of Computing Systems (TOCS) 32, 3 (1999).
[22] Guy E. Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan.

2012. Parallel and I/O efficient set covering algorithms. In ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA).

[23] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient

Scheduling of Multithreaded Computations. SIAM J. on Computing 27,

1 (1998).

[24] John M Boyer and Wendy J Myrvold. 2006. Simplified 𝑜 (𝑛) planarity
by edge addition. J. Graph Algorithms and Applications 5 (2006), 241.

[25] Meher Chaitanya and Kishore Kothapalli. 2015. A simple parallel algo-

rithm for biconnected components in sparse graphs. In International
Parallel and Distributed Processing Symposium (IPDPS) Workshop. IEEE,
395–404.

[26] Meher Chaitanya and Kishore Kothapalli. 2016. Efficient multicore

algorithms for identifying biconnected components. International
Journal of Networking and Computing 6, 1 (2016), 87–106.

[27] Joseph Cheriyan and Ramakrishna Thurimella. 1991. Algorithms for

parallel k-vertex connectivity and sparse certificates. In ACM Sympo-
sium on Theory of Computing (STOC). 391–401.

[28] Yi-Jen Chiang, Michael Goodrich, Edward Grove, Roberto Tamassia,

Darren Erik Vengroff, and Jeffrey Vitter. 1995. External-Memory Graph

Algorithms.. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
Vol. 95. 139–149.

[29] Guojing Cong and David Bader. 2005. An experimental study of paral-

lel biconnected components algorithms on symmetric multiprocessors

(SMPs). In IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE.

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. 2009. Introduction to Algorithms (3rd edition). MIT Press.

[31] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2021. Theoreti-

cally efficient parallel graph algorithms can be fast and scalable. ACM
Transactions on Parallel Computing (TOPC) 8, 1 (2021), 1–70.

[32] Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt:

a framework for static and incremental parallel graph connectivity

algorithms. Proceedings of the VLDB Endowment (PVLDB) 14, 4 (2020),
653–667.

[33] Laxman Dhulipala, Charlie McGuffey, Hongbo Kang, Yan Gu, Guy E

Blelloch, Phillip B Gibbons, and Julian Shun. 2020. Semi-Asymmetric

Parallel Graph Algorithms for NVRAMs. Proceedings of the VLDB
Endowment (PVLDB) 13, 9 (2020).

[34] David Dinh, Harsha Vardhan Simhadri, and Yuan Tang. 2016. Ex-

tending the nested parallel model to the nested dataflow model with

provably efficient schedulers. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 49–60.

[35] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient

Stepping Algorithms and Implementations for Parallel Shortest Paths.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[36] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2022. FAST-

BCC: A Parallel Implementation for Graph Biconnectivity. https:
//github.com/ucrparlay/FAST-BCC.

[37] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023.

Provably Fast and Space-Efficient Parallel Biconnectivity. arXiv
preprint:2301.01356 (2023).

[38] Dheeru Dua and Casey Graf. 2017. UCI Machine Learning Repository.

http://archive.ics.uci.edu/ml/.

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
http://archive.ics.uci.edu/ml/

[39] James A Edwards and Uzi Vishkin. 2012. Better speedups using simpler

parallel programming for graph connectivity and biconnectivity. In

International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM). 103–114.

[40] Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Long

Yuan. 2018. Distributed computing connected components with linear

communication cost. Distributed and Parallel Databases 36, 3 (2018),
555–592.

[41] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco.

2015. Reservoir computing compensates slow response of chemosen-

sor arrays exposed to fast varying gas concentrations in continuous

monitoring. Sensors and Actuators B: Chemical 215 (2015), 618–629.
[42] Yan Gu, Zachary Napier, Yihan Sun, and Letong Wang. 2022. Parallel

Cover Trees and their Applications. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 259–272.

[43] Yan Gu, Omar Obeya, and Julian Shun. 2021. Parallel In-Place Al-

gorithms: Theory and Practice. In SIAM Symposium on Algorithmic
Principles of Computer Systems (APOCS). 114–128.

[44] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-

Down Parallel Semisort. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 24–34.

[45] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient algo-

rithms for graph manipulation. Commun. ACM 16, 6 (1973), 372–378.

[46] John Hopcroft and Robert Tarjan. 1974. Efficient planarity testing. J.
ACM 21, 4 (1974), 549–568.

[47] Joseph JáJá. 1992. Introduction to Parallel Algorithms. Addison-Wesley

Professional.

[48] Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis. 2017. Parallel

algorithm for incremental betweenness centrality on large graphs.

IEEE Transactions on Parallel and Distributed Systems 29, 3 (2017), 659–
672.

[49] Siddhartha Jayanti, Robert E Tarjan, and Enric Boix-Adserà. 2019.

Randomized concurrent set union and generalized wake-up. In ACM
Symposium on Principles of Distributed Computing (PODC). 187–196.

[50] Yuede Ji and H Howie Huang. 2020. Aquila: Adaptive parallel compu-

tation of graph connectivity queries. In ACM International Symposium
on High-Performance Parallel and Distributed Computing (HPDC). 149–
160.

[51] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a social network or a news media?. In International
World Wide Web Conference (WWW). 591–600.

[52] YongChul Kwon, Dylan Nunley, Jeffrey P Gardner, Magdalena Bal-

azinska, Bill Howe, and Sarah Loebman. 2010. Scalable clustering

algorithm for N-body simulations in a shared-nothing cluster. In Inter-
national Conference on Scientific and Statistical Database Management.
Springer, 132–150.

[53] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Ma-

honey. 2009. Community structure in large networks: Natural cluster

sizes and the absence of large well-defined clusters. Internet Mathe-
matics 6, 1 (2009), 29–123.

[54] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano

Vigna. 2014. Web Data Commons - Hyperlink Graphs. http://
webdatacommons.org/hyperlinkgraph.

[55] Gary L Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph

decompositions using random shifts. InACMSymposium on Parallelism
in Algorithms and Architectures (SPAA).

[56] MEJ Newman and Gourab Ghoshal. 2008. Bicomponents and the

robustness of networks to failure. Physical review letters 100, 13 (2008),
138701.

[57] John H Reif. 1985. Depth-first search is inherently sequential. Inform.
Process. Lett. 20, 5 (1985), 229–234.

[58] JohnH. Reif. 1993. Synthesis of Parallel Algorithms. Morgan Kaufmann.

[59] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit Çatalyi-

irek. 2013. Incremental algorithms for closeness centrality. In IEEE
International Conference on Big Data. IEEE, 487–492.

[60] Ahmet Erdem Sariyüce, Erik Saule, Kamer Kaya, and Ümit V

Çatalyürek. 2013. Shattering and compressing networks for between-

ness centrality. In Proceedings of the 2013 SIAM International Conference
on Data Mining. SIAM, 686–694.

[61] Carla Savage and Joseph JáJá. 1981. Fast, efficient parallel algorithms

for some graph problems. SIAM J. on Computing 10, 4 (1981), 682–691.
[62] Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequen-

tial Iterative Algorithms Can Be Parallel and (Nearly) Work-efficient.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[63] Julian Shun, Laxman Dhulipala, and Guy Blelloch. 2014. A Simple and

Practical Linear-work Parallel Algorithm for Connectivity. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[64] George M Slota and Kamesh Madduri. 2014. Simple parallel bicon-

nectivity algorithms for multicore platforms. In IEEE International
Conference on High Performance Computing (HiPC). IEEE, 1–10.

[65] Robert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnec-

tivity algorithm. SIAM J. on Computing 14, 4 (1985).

[66] Yung H Tsin and Francis Y Chin. 1984. Efficient parallel algorithms

for a class of graph theoretic problems. SIAM J. on Computing 13, 3

(1984), 580–599.

[67] Uzi Vishkin. 1985. On efficient parallel strong orientation. Inform.
Process. Lett. 20, 5 (1985), 235–240.

[68] Mihir Wadwekar and Kishore Kothapalli. 2017. A fast GPU algorithm

for biconnected components. In International Conference on Contem-
porary Computing (IC3). IEEE, 1–6.

[69] Letong Wang, Xiaojun Dong, Yan Gu, and Yihan Sun. 2022. Parallel

Strong Connectivity Based on Faster Reachability. In manuscript.
[70] Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun.

2021. GeoGraph: A Framework for Graph Processing on Geometric

Data. ACM SIGOPS Operating Systems Review 55, 1 (2021), 38–46.

[71] Yifan Xu, Anchengcheng Zhou, GraceQYin, Kunal Agrawal, I-TingAn-

gelina Lee, and Tao B Schardl. 2022. Efficient Access History for Race

Detection. In Algorithm Engineering and Experiments (ALENEX). SIAM,

117–130.

[72] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating net-

work communities based on ground-truth. Knowledge and Information
Systems 42, 1 (2015), 181–213.

[73] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning

transportation mode from raw gps data for geographic applications

on the web. In International World Wide Web Conference (WWW).
247–256.

http://webdatacommons.org/hyperlinkgraph
http://webdatacommons.org/hyperlinkgraph

A Artifact Description
A.1 Availability
Our artifact is available on Zenodo: https://doi.org/10.5281/
zenodo.7445964. Our code is also released on GitHub: https:
//github.com/ucrparlay/FAST-BCC. Scripts for downloading
the dataset and running the code, including a README file

on how to use them are given on the GitHub repo.

A.2 Requirements
• Hardware: any modern (2010+) x86-based multi-core

(ideally more than 32 physical cores) Intel machines.

64GB memory is required for the basic datasets (with-

out the three largest graphs). Running the complete

dataset requires about 1.5TB main memory.

• Software: Linux machines with gcc or clang support-

ing C++17 features.

A.3 Getting the Artifact
Our code is also publicly available on GitHub: https://github.
com/ucrparlay/FAST-BCC. Our source code can be acquired

using:

git clone --recurse -submodules https :// github.com/
ucrparlay/FAST -BCC.git

A.4 Download the Dataset
We provide the basic datasets on our Google Drive: https:
//tinyurl.com/FAST-BCC-Dataset. We also provide a script

to download the graphs.

$ cd scripts/
$./ download_dataset.sh

Our complete dataset contains some large graphs, which

is about 2TB data in total. Due to storage limit, we cannot

provide the largest three graphs tested in the paper. They

are available on Web Data Commons [54].

A.5 Running the benchmark
To run the FAST-BCC and Hopcroft-Tarjan, simply run:

$ cd scripts/
$./ run_fastbcc.sh
$./ run_fastbcc_sequential.sh
$./ run_hopcroft_tarjan.sh
$./ run_tarjan_vishkin.sh

The scripts will generate the results in CSV format in

the results/ folder. The running times and the number of

biconnected components are reported in these files.

A.6 Graph Formats
The application can auto-detect the format of the input graph

based on the suffix of the filename. Here is a list of supported

graph formats:

• .bin: The binary graph format from GBBS. It uses com-

pressed sparse row (CSR) format and organizes as follows:

– n: the number of vertices (64-bit variable);

– m: the number of edges (64-bit variable);

– size: the size of this file in bytes, which equals to 3 ×
8 + (𝑛 − 1) × 8 +𝑚 × 4 (64-bit variable);

– offset[]: offset[i] (inclusive) and offset[i+1] (ex-
clusive) represents the range of neighbors list of the 𝑖-th

vertex in the edges array (64-bit array of length 𝑛 + 1);

– edges[]: the edges list (32-bit array of length𝑚) and

edges[i] is a vertex id representing the other endpoint

of an edge.

• .adj The adjacency graph format from Problem Based

Benchmark Suite (PBBS) [4].

Some graphs in binary format can be found in our Google

Drive folder. See more details in Section A.4. The input

graphs need to be undirected, i.e., each edge should appear

twice in the input in both directions.

https://doi.org/10.5281/zenodo.7445964
https://doi.org/10.5281/zenodo.7445964
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
https://tinyurl.com/FAST-BCC-Dataset
https://tinyurl.com/FAST-BCC-Dataset

	Abstract
	1 Introduction
	2 Preliminaries
	3 Existing BCC Algorithms
	3.1 The Hopcroft-Tarjan Algorithm
	3.2 The Tarjan-Vishkin Algorithm
	3.3 Other Existing Algorithms / Implementations
	3.4 Space-Efficient BCC Representation

	4 The FAST-BCC Algorithm
	4.1 Algorithmic Details
	4.2 Correctness for the FAST-BCC Algorithm
	4.3 Cost Bounds for the FAST-BCC Algorithm

	5 Implementation Details
	6 Experiments
	6.1 Overall Performance
	6.2 Performance Breakdown
	6.3 The Tarjan-Vishkin Algorithm

	7 Conclusion
	References
	A Artifact Description
	A.1 Availability
	A.2 Requirements
	A.3 Getting the Artifact
	A.4 Download the Dataset
	A.5 Running the benchmark
	A.6 Graph Formats

