
Provably Fast and Space-Efficient Parallel Biconnectivity (PPoPP’23 Best Paper)
Xiaojun Dong

Experimental Results
Ours GBBS SM'14 SEQ Ours GBBS SM'14 SEQ

So
ci

al

YT 5.88 4.36 3.15 1.00

K-
N

N

HH5 7.01 1.14 n 1.00
OK 30.51 19.91 5.66 1.00 CH5 4.11 0.37 n 1.00
LJ 17.92 11.77 n 1.00 GL2 6.24 1.64 n 1.00
TW 34.21 17.42 2.40 1.00 GL5 8.53 1.44 n 1.00
FT 39.26 18.93 10.22 1.00 GL10 10.59 4.31 n 1.00

MEAN 21.23 12.75 4.57 1.00 GL15 11.88 5.91 n 1.00

W
eb

GG 8.92 5.65 n 1.00 GL20 11.84 6.88 n 1.00
SD 29.74 16.46 n 1.00 COS5 14.16 6.86 n 1.00
CW 30.37 17.52 n 1.00 MEAN 8.68 2.42 - 1.00
HL14 32.46 19.96 n 1.00

Sy
nt

he
tic

SQR 18.50 1.59 10.56 1.00
HL12 33.99 29.15 n 1.00 REC 12.48 0.36 3.02 1.00

MEAN 24.53 15.68 - 1.00 SQR' 8.06 0.85 n 1.00

Ro
ad

CA 5.15 0.55 n 1.00 REC' 7.81 0.48 n 1.00
USA 6.69 0.49 0.60 1.00 Chn7 11.97 0.04 0.08 1.00
GE 10.77 1.43 2.44 1.00 Chn8 11.97 0.04 0.06 1.00

MEAN 7.18 0.73 1.21 1.00 MEAN 11.30 0.27 0.18 1.00
TOTAL MEAN 12.89 2.50 0.96 1.00

• The heatmap shows relative speedups for parallel BCC
algorithms over the sequential Hopcroft-Tarjan algorithm
(SEQ) using 96 cores (192 hyper-threads)

• On large-diameter graphs, GBBS and SM’14 only achieve
0.18-2.42x speedup. Can be slower than SEQ!

• FAST-BCC achieves the best performance on all graphs
• On average, it is significantly faster than all baselines!
• About 13x faster than SEQ
• About 5x faster than GBBS (previous best implementation)

MEAN = geometric mean
n = no support

10 .5 2 4 8 16 32 >32

• The relative speedups over SEQ on 96-core (higher is better)
• GBBS and SM’14 don’t scale well on large-diameter graphs
• FAST-BCC and Tarjan-Vishkin achieve almost-linear

scalability on all graphs

Letong Wang Yan Gu Yihan Sun

Problem Definitions

r

s

v

w

u

x

y

z

t

• Given an undirected graph
𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉|
vertices and 𝑚 = |𝐸| edges

• A connected component (CC)
is a maximal subset in 𝑉 such
that every two vertices in it
are connected by a path

• Two vertices are biconnected if they are connected and
remain connected after removing any other single vertex

• A biconnected component (BCC) (or a block) is a maximal
subset of biconnected vertices

The Skeleton-Connectivity Framework

𝐺 = (𝑉, 𝐸) “Skeleton” 𝐺′ = (𝑉′, 𝐸′)

Biconnectivity of 𝐺 Connectivity of 𝐺′
(some postprocessing may be needed)

⇔
• Many BCC algorithms follow the skeleton-connectivity

framework
• Challenge: generating the skeleton (time-)efficiently and

storing the skeleton (space-)efficiently!

Related Work
Algorithms Generating Skeleton Storing Skeleton

DFS Tree
û Hard to parallelize!

Parallel
Tarjan-Vishkin
[TV85]

Existing Parallel
Implementations
[CB05, DBS18,
SM14]

Our algorithm
(FAST-BCC)

Arbitrary Spanning Tree
üWork- and span-efficient!

Not stored (processed on-
the-fly)
ü Space-efficient

BFS Tree
(Span proportional to
graph diameters!)
û Low parallelism in the

worst case

Arbitrary Spanning Tree
üWork- and span-

efficient!

Maintained implicitly using
𝑂(𝑛) space
ü Space-efficient

𝑂(𝑛) space, or maintained
implicitly in 𝑂(𝑛) space
ü Space-efficient

Skeleton needs 𝑂(𝑚) extra space
û Space-inefficient!

Sequential
Hopcroft-Tarjan
[HT73]

Algorithm Overview
Input Graph 𝑮: contains 3 BCCs
{s, u}, {r, s, t, v, w, x}, {t, y, z}.

Step 1: First CC. Find the CCs of 𝐺
and a spanning tree (forest).

r

s

v

w

u

x

y

z

t
r

s

u v w x y

z

t

Step 2.2: Set any vertex as the
root and run list ranking. The
result implies the tree edge
directions.

Step 3: Tagging.

Step 4.1: Find the CCs of the
skeleton 𝐺′ only with cross and
plain edges in 𝐺 (solid edges in
Step 3). Ignore the root.

Step 4.2: Assign the
component head to
each CC in 𝐺′. Each
CC in 𝐺′ with its
component head is
a BCC.

r
s

u v w x
y

z

t
r

s

u v w x
y

z

t

Step 2.1: Based on the
spanning tree 𝑇 of 𝐺. Create
the linked list of the Euler
tour of 𝑇.

Step 2: Rooting. Generate rooted spanning trees.

rsv

w

u

x

y

z

t

r
s

u v w x y

z

t Fence edge
Plain edge

Back edge
Cross edge

Compute tags (first/last/low/high/…) for each
vertex. Use these tags to identify fence, plain,
cross, and back edges.

BCC1 {s, u}:
Head s + {u}

BCC2 {s, t, v, w, x}:
Head r + {s, t, v, w, x}

BCC3 {t, y, z}:
Head t + {y, z}

Tree edge:

Non-tree edge:

Step 4: Last CC. Run CC on the skeleton.

Full Version: https://arxiv.org/abs/2301.01356 Code: https://github.com/ucrparlay/FAST-BCC

References
[1] Guojing Cong and David Bader. 2005. An experimental study of parallel biconnected components algorithms on
symmetric multiprocessors (SMPs). In IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE.
[2] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically efficient parallel graph algorithms can be fast
and scalable. ACM Transactions on Parallel Computing (TOPC) 8, 1 (2021), 1–70.
[3] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023. Provably Fast and Space-Efficient Parallel Biconnectivity.
ACM Symposium on Principles and Practice of Parallel Programming (PPOPP) (2023), 52–65.
[4] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM
16, 6 (1973), 372–378.
[5] George Slota and Kamesh Madduri. 2014. Simple parallel biconnectivity algorithms for multicore platforms. In IEEE
International Conference on High Performance Computing (HiPC). IEEE, 1–10.
[6] Robert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnectivity algorithm. SIAM J. on Computing 14, 4
(1985), 862–874.

Small-diameter graphs Large-diameter graphs
� � 	 � �	 �

���
�

��

��

� � 	 � �	 �

��

� � 	 � �	 �

���

� � 	 � �	 �

��

� � 	 � �	 �

���
���� ���� ����	 ����

https://arxiv.org/abs/2301.01356
https://github.com/ucrparlay/FAST-BCC

