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RIVERSIDE
/ Problem Definitions

* Given an undirected graph
G =(V,E)withn = |V|
vertices and m = |E| edges
* A connected component (CC)
IS @ maximal subset in V such
that every two vertices in it
are connected by a path

* Two vertices are biconnected if they are connected and
remain connected after removing any other single vertex

~
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* A biconnected component (BCC) (or a block) is a maximal
w)set of biconnected vertices /

The Skeleton-Connectivity Framewor

‘»

“Skeleton” ¢' = (V', E")

Connectivity of G’
(some postprocessing may be needed)

G=,E)
Biconnectivity of G

 Many BCC algorithms follow the skeleton-connectivity
framework

* Challenge: generating the skeleton (time-)efficiently and
Qoring the skeleton (space-)efficiently! /

Related Work

Algorithms

Generating Skeleton Storing Skeleton

Sequential Not stored (processed on-

. DFS Tree
Hopcroft-Tarjan x Hard to parallelize! the-fly) .
[HT73] v’ Space-efficient
Parallel i i
Tarian-Vishkin Arbitrary Spanning Tree Skeleton needs O (m) extra space
[TV185] v Work- and span-efficient! % Space-inefficient!

BFS Tree

(Span proportional to

graph diameters!)

x Low parallelism in the
worst case

Existing Parallel
Implementations
[CBO5, DBS18,
SM14]

O (n) space, or maintained
implicitly in O(n) space
v’ Space-efficient
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Experimental Results
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* The heatmap shows relative speedups for parallel BCC

algorithms over the sequential Hopcroft-Tarjan algorithm
(SEQ) using 96 cores (192 hyper-threads)

* On large-diameter graphs, GBBS and SM’14 only achieve
0.18-2.42x speedup. Can be slower than SEQ!

* FAST-BCC achieves the best performance on all graphs

* On average, it is significantly faster than all baselines!
* About 13x faster than SEQ
* About 5x faster than GBBS (previous best implementation)
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* The relative speedups over SEQ on 96-core (higher is better)

 GBBS and SM’14 don’t scale well on large-diameter graphs
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Arbitrary Spanning Tree
v Work- and span-
efficient!

Maintained implicitly using
O (n) space
v’ Space-efficient

Our algorithm
(FAST-BCC)

* FAST-BCC and Tarjan-Vishkin achieve almost-linear
scalability on all graphs
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Algorithm Overview

Input Graph G: contains 3 BCCs
{s,u}, {r,s, t,v,w, x}, {t, vy, z}.

Step 2: Rooting. Generate rooted spanning trees.

Step 2.1: Based on the
spanning tree T of G. Create
the linked list of the Euler
tour of T.

Step 2.2: Set any vertex as the
root and run list ranking. The
result implies the tree edge
directions.

Step 3: Tagging.

Compute tags (first/last/low/high/...) for each
vertex. Use these tags to identify fence, plain,
cross, and back edges.

Tree edge:
> Fence edge
—» Plain edge

Non-tree edge:

Step 1: First CC. Find the CCsof G || — ¢ O w04 — — — — > {\  — — — x Back edge
and a spanning tree (forest). — Cross edge
Step 4: Last CC. Run CC on the ske Step 4.2: Assign the BCC1 {s, u}:
Step 4.1: Find the CCs of the component P,\ead to Head s + {u}
skeleton G’ only with cross and each CCin G'. Each BCC2 {s, t, v, w, x}:
plain edges in G (solid edges in CCin G with its | Head r+{s, t,v, w, x}
Step 3). Ignore the root. component head is BCC3 {t, y, z}:

a BCC. Head t + {y, z}
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