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HH5 7.01 1.14 n 1.00
OK 30.51 19.91 5.66 1.00 CH5 4.11 0.37 n 1.00
LJ 17.92 11.77 n 1.00 GL2 6.24 1.64 n 1.00
TW 34.21 17.42 2.40 1.00 GL5 8.53 1.44 n 1.00
FT 39.26 18.93 10.22 1.00 GL10 10.59 4.31 n 1.00

MEAN 21.23 12.75 4.57 1.00 GL15 11.88 5.91 n 1.00
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GG 8.92 5.65 n 1.00 GL20 11.84 6.88 n 1.00
SD 29.74 16.46 n 1.00 COS5 14.16 6.86 n 1.00
CW 30.37 17.52 n 1.00 MEAN 8.68 2.42 - 1.00
HL14 32.46 19.96 n 1.00
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SQR 18.50 1.59 10.56 1.00
HL12 33.99 29.15 n 1.00 REC 12.48 0.36 3.02 1.00

MEAN 24.53 15.68 - 1.00 SQR' 8.06 0.85 n 1.00

Ro
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CA 5.15 0.55 n 1.00 REC' 7.81 0.48 n 1.00
USA 6.69 0.49 0.60 1.00 Chn7 11.97 0.04 0.08 1.00
GE 10.77 1.43 2.44 1.00 Chn8 11.97 0.04 0.06 1.00

MEAN 7.18 0.73 1.21 1.00 MEAN 11.30 0.27 0.18 1.00
TOTAL MEAN 12.89 2.50 0.96 1.00

• The heatmap shows relative speedups for parallel BCC 
algorithms over the sequential Hopcroft-Tarjan algorithm 
(SEQ) using 96 cores (192 hyper-threads)

• On large-diameter graphs, GBBS and SM’14 only achieve 
0.18-2.42x speedup. Can be slower than SEQ!

• FAST-BCC achieves the best performance on all graphs
• On average, it is significantly faster than all baselines!
• About 13x faster than SEQ
• About 5x faster than GBBS (previous best implementation)

MEAN = geometric mean
n = no support
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• The relative speedups over SEQ on 96-core (higher is better)
• GBBS and SM’14 don’t scale well on large-diameter graphs
• FAST-BCC and Tarjan-Vishkin achieve almost-linear 

scalability on all graphs

Letong Wang Yan Gu Yihan Sun

Problem Definitions
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• Given an undirected graph 
𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉|
vertices and 𝑚 = |𝐸| edges

• A connected component (CC) 
is a maximal subset in 𝑉 such 
that every two vertices in it 
are connected by a path

• Two vertices are biconnected if they are connected and 
remain connected after removing any other single vertex

• A biconnected component (BCC) (or a block) is a maximal 
subset of biconnected vertices

The Skeleton-Connectivity Framework

𝐺 = (𝑉, 𝐸) “Skeleton” 𝐺′ = (𝑉′, 𝐸′)

Biconnectivity of 𝐺 Connectivity of 𝐺′
(some postprocessing may be needed)

⇔
• Many BCC algorithms follow the skeleton-connectivity

framework
• Challenge: generating the skeleton (time-)efficiently and 

storing the skeleton (space-)efficiently!

Related Work
Algorithms Generating Skeleton Storing Skeleton

DFS Tree
û Hard to parallelize!

Parallel 
Tarjan-Vishkin
[TV85]

Existing Parallel 
Implementations
[CB05, DBS18, 
SM14]

Our algorithm 
(FAST-BCC)

Arbitrary Spanning Tree
üWork- and span-efficient!

Not stored (processed on-
the-fly)
ü Space-efficient

BFS Tree
(Span proportional to 
graph diameters!)
û Low parallelism in the 

worst case 

Arbitrary Spanning Tree
üWork- and span-

efficient!

Maintained implicitly using 
𝑂(𝑛) space
ü Space-efficient

𝑂(𝑛) space, or maintained 
implicitly in 𝑂(𝑛) space
ü Space-efficient

Skeleton needs 𝑂(𝑚) extra space
û Space-inefficient!

Sequential 
Hopcroft-Tarjan
[HT73]

Algorithm Overview
Input Graph 𝑮: contains 3 BCCs
{s, u}, {r, s, t, v, w, x}, {t, y, z}.

Step 1: First CC. Find the CCs of 𝐺
and a spanning tree (forest).
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Step 2.2: Set any vertex as the 
root and run list ranking. The 
result implies the tree edge 
directions.

Step 3: Tagging. 

Step 4.1: Find the CCs of the 
skeleton 𝐺′ only with cross and 
plain edges in 𝐺 (solid edges in 
Step 3). Ignore the root.

Step 4.2: Assign the 
component head to 
each CC in 𝐺′. Each 
CC in 𝐺′ with its 
component head is 
a BCC. 
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Step 2.1: Based on the 
spanning tree 𝑇 of 𝐺. Create 
the linked list of the Euler 
tour of 𝑇.

Step 2: Rooting. Generate rooted spanning trees.
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Back edge
Cross edge

Compute tags (first/last/low/high/…) for each 
vertex. Use these tags to identify fence, plain, 
cross, and back edges.

BCC1 {s, u}: 
Head s + {u}

BCC2 {s, t, v, w, x}: 
Head r + {s, t, v, w, x}

BCC3 {t, y, z}: 
Head t + {y, z}

Tree edge:

Non-tree edge:

Step 4: Last CC. Run CC on the skeleton.

Full Version: https://arxiv.org/abs/2301.01356 Code: https://github.com/ucrparlay/FAST-BCC
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