m Provably Fast and Space-Efficient Parallel Biconnectivity (PPoPP’23 Best Paper)

Xiaojun Dong

RIVERSIDE
/ Problem Definitions

* Given an undirected graph
G =(V,E)withn = |V|
vertices and m = |E| edges
* A connected component (CC)
IS @ maximal subset in V such
that every two vertices in it
are connected by a path

* Two vertices are biconnected if they are connected and
remain connected after removing any other single vertex

~

Letong Wang
Full Version: https://arxiv.org/abs/2301.01356 Code: https://github.com/ucrparlay/FAST-BCC

* A biconnected component (BCC) (or a block) is a maximal
w)set of biconnected vertices /

The Skeleton-Connectivity Framewor

‘»

“Skeleton” ¢' = (V', E")

Connectivity of G’
(some postprocessing may be needed)

G=,E)
Biconnectivity of G

 Many BCC algorithms follow the skeleton-connectivity
framework

* Challenge: generating the skeleton (time-)efficiently and
Qoring the skeleton (space-)efficiently! /

Related Work

Algorithms

Generating Skeleton Storing Skeleton

Sequential Not stored (processed on-

. DFS Tree
Hopcroft-Tarjan x Hard to parallelize! the-fly) .
[HT73] v’ Space-efficient
Parallel i i
Tarian-Vishkin Arbitrary Spanning Tree Skeleton needs O (m) extra space
[TV185] v Work- and span-efficient! % Space-inefficient!

BFS Tree

(Span proportional to

graph diameters!)

x Low parallelism in the
worst case

Existing Parallel
Implementations
[CBO5, DBS18,
SM14]

O (n) space, or maintained
implicitly in O(n) space
v’ Space-efficient

Yan Gu Yihan Sun - S 78

Experimental Results

Ours GBBS SM'14 SEQ
7.01
4.11
6.24
8.53
10.59
11.88
11.84
14.16
8.68

Ours GBBS SM'14 SEQ

HH5

CH5

GL2

GL5
GL10

GL15
GL20

COS5

Social

K-NN

Web

1.59 10.56

Synthetic

Road

TOTAL MEAN | 12.89 2.50

N = no support
\"/|Z4)| = geometric mean
* The heatmap shows relative speedups for parallel BCC

algorithms over the sequential Hopcroft-Tarjan algorithm
(SEQ) using 96 cores (192 hyper-threads)

* On large-diameter graphs, GBBS and SM’14 only achieve
0.18-2.42x speedup. Can be slower than SEQ!

* FAST-BCC achieves the best performance on all graphs

* On average, it is significantly faster than all baselines!
* About 13x faster than SEQ
* About 5x faster than GBBS (previous best implementation)

—— GBBS —— SM'14 —— TV'85
USA GLS REC

AL

124824 96 124824 96(124824 96 124824 96 1248 24 96
Small-diameter graphs Large-diameter graphs
* The relative speedups over SEQ on 96-core (higher is better)

 GBBS and SM’14 don’t scale well on large-diameter graphs

__— R
16 32 >32

—— Qurs

W SD

20; 3
O3 's
1- 3

3

Arbitrary Spanning Tree
v Work- and span-
efficient!

Maintained implicitly using
O (n) space
v’ Space-efficient

Our algorithm
(FAST-BCC)

* FAST-BCC and Tarjan-Vishkin achieve almost-linear
scalability on all graphs

4 References

[1] Guojing Cong and David Bader. 2005. An experimental study of parallel biconnected components algorithms on
symmetric multiprocessors (SMPs). In IEEE International Parallel and Distributed Processing Symposium (IPDPS). |EEE.
[2] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically efficient parallel graph algorithms can be fast
and scalable. ACM Transactions on Parallel Computing (TOPC) 8, 1 (2021), 1-70.

[3] Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023. Provably Fast and Space-Efficient Parallel Biconnectivity.
ACM Symposium on Principles and Practice of Parallel Programming (PPOPP) (2023), 52—-65.

[4] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM
16, 6 (1973), 372-378.

[5] George Slota and Kamesh Madduri. 2014. Simple parallel biconnectivity algorithms for multicore platforms. In /EEE

QRobert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnectivity algorithm. SIAM J. on Computing 14, 4

International Conference on High Performance Computing (HiPC). IEEE, 1-10.
(1985), 862—-874. /

Algorithm Overview

Input Graph G: contains 3 BCCs
{s,u}, {r,s, t,v,w, x}, {t, vy, z}.

Step 2: Rooting. Generate rooted spanning trees.

Step 2.1: Based on the
spanning tree T of G. Create
the linked list of the Euler
tour of T.

Step 2.2: Set any vertex as the
root and run list ranking. The
result implies the tree edge
directions.

Step 3: Tagging.

Compute tags (first/last/low/high/...) for each
vertex. Use these tags to identify fence, plain,
cross, and back edges.

Tree edge:
> Fence edge
—» Plain edge

Non-tree edge:

Step 1: First CC. Find the CCsof G || — ¢ O w04 — — — — > {\ — — — x Back edge
and a spanning tree (forest). — Cross edge
Step 4: Last CC. Run CC on the ske Step 4.2: Assign the BCC1 {s, u}:
Step 4.1: Find the CCs of the component P,\ead to Head s + {u}
skeleton G’ only with cross and each CCin G'. Each BCC2 {s, t, v, w, x}:
plain edges in G (solid edges in CCin G with its | Head r+{s, t,v, w, x}
Step 3). Ignore the root. component head is BCC3 {t, y, z}:

a BCC. Head t + {y, z}

https://arxiv.org/abs/2301.01356
https://github.com/ucrparlay/FAST-BCC

