
7

Joinable Parallel Balanced Binary Trees

GUY BLELLOCH, Carnegie Mellon University, USA

DANIEL FERIZOVIC, Karlsruhe Institute of Technology, Germany

YIHAN SUN, University of California, Riverside, USA

In this article, we show how a single function, join, can be used to implement parallel balanced binary

search trees (BSTs) simply and efficiently. Based on join, our approach applies to multiple balanced tree data

structures, and a variety of functions for ordered sets and maps. We describe our technique as an algorithmic

framework called join-based algorithms. We show that the join function fully captures what is needed for

rebalancing trees for a variety of tree algorithms, as long as the balancing scheme satisfies certain properties,

which we refer to as joinable trees. We discuss four balancing schemes that are joinable: AVL trees, red-black

trees, weight-balanced trees, and treaps. We present a variety of tree algorithms that apply to joinable trees,

including insert, delete, union, intersection, difference, split, range, filter , and so on, most of them also parallel.

These algorithms are generic across balancing schemes. Many algorithms are optimal in the comparison

model, and we provide a general proof to show the efficiency in work for joinable trees. The algorithms are

highly parallel, all with polylogarithmic span (parallel dependence). Specifically, the set-set operations union,

intersection, and difference have work O (m log(n
m + 1)) and polylogarithmic span for input set sizes n and

m ≤ n.

We implemented and tested our algorithms on the four balancing schemes. In general, all four schemes

have quite similar performance, but the weight-balanced tree slightly outperforms the others. They have

the same speedup characteristics, getting around 73× speedup on 72 cores (144 hyperthreads). Experimental

results also show that our implementation outperforms existing parallel implementations, and our sequential

version achieves close or much better performance than the sequential merging algorithm in C++ Standard

Template Library (STL) on various input sizes.

CCS Concepts: • Theory of computation → Sorting and searching; Shared memory algorithms; •

Computing methodologies→ Shared memory algorithms;

Additional Key Words and Phrases: Balanced binary trees, searching, parallel, union

ACM Reference format:

Guy Blelloch, Daniel Ferizovic, and Yihan Sun. 2022. Joinable Parallel Balanced Binary Trees. ACM Trans.

Parallel Comput. 9, 2, Article 7 (April 2022), 41 pages.

https://doi.org/10.1145/3512769

This is an extended version for paper [14] published in Symposium on Parallel Algorithms and Architectures (SPAA) 2016.

This research was supported by NSF grants CCF-2103483, CCF-1901381, CCF-1910030, and CCF-1919223.

Authors’ addresses: G. Blelloch, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; email:

guyb@cs.cmu.edu; D. Ferizovic, Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe, 76131, Germany; email:

dani93.f@gmail.com; Y. Sun, 900 University Ave, Riverside, CA 92521, USA; email: yihans@cs.ucr.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

2329-4949/2022/04-ART7

https://doi.org/10.1145/3512769

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

https://doi.org/10.1145/3512769
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3512769

7:2 G. Blelloch et al.

1 INTRODUCTION

Many important and fundamental data structures used in algorithm design and programming are
based on various forms of binary search trees (BSTs). Importantly, the in-order traversal of such
trees provides an elegant and efficient mechanism to organize ordered data.1 Typically, we say a
binary tree is “balanced” if the length of the path to all nodes (i.e., the depth) is asymptotically
logarithmic in the number of nodes. In the sequential setting of “point” updates to the tree (i.e.,
single insertions or deletions), many balancing schemes for binary trees have been widely stud-
ied and are widely used, such as AVL trees [4], red-black trees [10], weight-balanced trees [52],
splay trees [57], treaps [56], and many others. Some guarantee the logarithmic depth with high
probability, or when amortized across node accesses.

With the recent prevalence of multi-processor (core) parallel computers, it is important to study
balanced binary trees in the parallel setting.2 Although tree algorithms are fundamental and well
studied in the sequential setting, applying them in the parallel setting is challenging. One approach
is to make traditional updates such as insertions and deletions safe to apply concurrently. To work
correctly, this requires various forms of locking and non-blocking synchronization [8, 9, 21, 24, 25,
30, 68]. Such concurrent updates can come with significant overhead, but more importantly only
guarantee atomicity at the level of individual updates. Another approach is to update the trees
in parallel by supporting “bulk” operations such as inserting a collection of keys (multi-insert),
taking the union of two trees, or filtering the tree based on a predicate function. Here parallelism
comes from within the operation. We refer to such algorithms as bulk parallel, or just parallel, as
opposed to concurrent.

Recently, Blelloch et al. proposed an algorithmic framework [14] for such parallel bulk updates,
which unifies multiple balancing schemes. Their algorithms have been applied to various applica-
tions [11, 60–62] and have been implemented in a parallel library PAM [59, 62]. Their framework
bases all tree algorithms on a single primitive called join, which captures all the balancing criteria.
As a result, many tree algorithms (most of them parallel) can be designed in a balancing-scheme-
independent manner. Similar ideas of using join as a primitive for balanced binary trees, sequen-
tially or in parallel, have also been considered in previous work [2, 3, 16, 64]. The original paper
of Blelloch et al. about join-based algorithms shows that the framework works for four balancing
schemes. However, the authors did not answer the more general question about what makes a

balancing scheme fit in the join-based algorithm framework. This article extends the topic in [14]
about efficient join-based parallel algorithms on binary trees, and specifically formalizes the pre-
ferred property for a balancing scheme to be joinable, which allows all join-based algorithms to be
efficient on this balancing scheme.

As mentioned above, all the tree algorithms in this article are built on top of a single primitive
join. For discussion purposes, we assume that a binary tree T can be either empty (a nil-node), or
can be a node with a left treeTL , data entryu (e.g., a key, or key-value), and a right treeTR , denoted
as node(TL,u,TR). The function join (TL,k,TR) for a given balancing scheme takes two balanced
binary trees TL and TR , and a key (or key-value) k as input arguments, and returns a new valid
balanced binary tree that has the same entries and the same in-order traversal as node(TL,k,TR).
The output has to be valid in satisfying the balancing criteria. We call the middle key k the pivot of
the join. An illustration of the join function is presented in Figure 1. In this article, we use join as the

1Beyond BSTs, balanced binary trees can also be used to represent a sequence (list) of elements that are ordered by their

position, but not necessarily by their value [40].
2In this article, we focus on the shared-memory multi-core setting. We note that comparing the superiority of different

platforms is beyond the scope of this work. In Section 7, we will discuss some related work in the concurrent and distributed

setting.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:3

Fig. 1. An example of the join algorithm on AVL trees. The function join (TL ,k,TR) takes two AVL trees TL

and TR , and key k as input arguments, and returns a new valid AVL tree that has the same entries and the
same in-order traversal as node(TL ,k,TR). The above figure shows one possible output of join (TL ,k,TR).

only primitive for connecting and rebalancing. Since rebalancing involves settling the balancing
invariants, the join algorithm itself is specific to each balancing scheme. However, we note that in
general, the join operation is oblivious to the values of the keys and depends only on the shape of
the two trees.

One important observation of the join-based algorithms is that join captures all balancing criteria
of each balancing scheme. As such, various tree algorithms (except join itself) can be implemented
generically across balancing schemes. These algorithms need not be aware of the operated balanc-
ing scheme, but can just rely on the corresponding join algorithm for rebalancing. These join-based
algorithms range from simple insertions and deletions, to more involved bulk operations. More-
over, the generality is not at the cost of efficiency in asymptotical cost or practical performance.
In fact, the generic code leads to similar good performance for different balancing schemes (see
Section 6). Also, all the join-based algorithms are still optimal in sequential work, and most of them
can be parallelized with poly-logarithmic span (parallel dependency chain). These include some
non-trivial and interesting theoretical results. For example, the join-based union algorithm, which
combines two balanced binary search trees into one (keeping the ordering), costsO (m log(n

m
+ 1))

work and O (logn logm) span on two trees with sizes m and n ≥ m. This work bound is optimal
under the comparison model [37].

To show the cost bounds of the join-based algorithms, one also must consider multiple balancing
schemes. Fortunately, join also unifies the theoretical analysis. The key idea is to define a rank

function for each balancing scheme, that maps every (sub-)tree to a real number, called its rank.
The rank can be thought, roughly, as the abstract “height” of a tree. For example, for AVL trees
the rank is simply the height of the tree, and for weight-balance trees, it is the log of the size. We
then define a set of rules about rank and the join algorithm, that ensure a balancing scheme to be
joinable. These rules apply to at least four existing balancing schemes. Based on these rules, we
are able to show generic algorithms and analysis for all joinable trees. Our bounds for join-based
algorithms then hold for any balancing scheme for which these properties hold.

We also implemented our algorithms and compare the performance with existing implemen-
tations, sequentially and in parallel. For merging two sets S1 and S2, we compare our union

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:4 G. Blelloch et al.

algorithm to existing data structures that support batch updates of a batch S2 on a tree of S1. Our
implementation has close performance when |S1 | is large or close to |S2 |, and outperforms existing
implementations by about 8× when |S2 | is much larger than |S1 |. We also compare our sequential
version with STL tree and vector merging algorithms. Our implementation running on one core is
about 8× faster for union of two equal sized maps (108 each) than STL-tree, and over four orders
of magnitude faster than STL-vector when one is of size 104 and the other 108. This is because our
implementation is asymptotically more efficient than the STL implementation.

In the rest of the article, we will first show some preliminaries in Section 2. We will then present
the useful properties that make a balancing scheme joinable in Section 3. We then present the
join algorithms for four balancing schemes and show that they are all joinable in Section 4. In Sec-
tion 5, we show several join-based algorithms, and present their cost bound. Finally, we show some
experimental results in Section 6. Some related work and discussions are presented in Section 7.

2 PRELIMINARY

Parallel Cost Model. Our algorithms are based on nested fork-join parallelism and no other
synchronization or communication among parallel tasks.3 All analysis is using the binary-forking

model [15], which is based on nested fork-join, but only allows for two branches in a fork. All
our algorithms are deterministic.4 To analyze asymptotic costs of a parallel algorithm, we use
work W and span (or depth D), where work is the total number of operations and span is the
length of the critical path. In the algorithm descriptions, the notation of s1 | | s2 indicates that
statement s1 and s2 can run in parallel. Any computation with W work and D span will run in
time T < W

P
+ D assuming a PRAM (random access shared memory) [38] with P processors

and a greedy scheduler [18, 20, 34], or in time T < W
P
+ D w.h.p. (defined below) when using a

work-stealing scheduler [19]. We assume concurrent reads and exclusive writes (CREW).

Notation. We use 〈·, ·〉 to denote a pair (similarly for tuples and sequences). We sayO (f (n)) with

high probability (w.h.p.) in n to indicate O (c f (n)) with probability at least 1 − n−c for c ≥ 1.
When clear from context, we drop the “in n.”

2.1 Balanced Binary Trees

A binary tree is either a nil-node, or a node consisting of a left binary tree Tl , a data entry k ,
and a right binary tree Tr , which is denoted as node(Tl ,k,Tr). We use the nil-node to refer to an
external (empty) node with no data stored in it. The data entry can be simply a value (e.g., a key),
or also hold data associated with the value. The size of a binary tree, or |T |, is 0 for a nil-node and
|Tl | + |Tr | + 1 for a node(Tl ,k,Tr). The weight of a binary tree, or w (T), is one more than its size
(i.e., the number of nil-nodes in the tree). The height of a binary tree, or h(T), is 0 for a nil-node,
and max(h(Tl),h(Tr)) + 1 for a node(Tl ,k,Tr). Parent, child, ancestor, and descendant are defined as
usual (ancestor and descendant are inclusive of the node itself). We use lc(T) and rc(T) to extract
the left and right child (subtree) ofT , respectively. A node is called a leaf when both of its children
are nil nodes. The left spine of a binary tree is the path of nodes from the root to a nil-node always
following the left child, and the right spine the path to a leaf following the right child. The in-order

values of a binary tree is the sequence of values returned by an in-order traversal of the tree. When
the context is clear, we use a node u to refer to the subtree Tu rooted at u, and vice versa.

3This does not preclude using our algorithms in a concurrent setting.
4Note that the bounds and the data structure themselves are not necessarily deterministic. For example, the treaps depends

on random priorities. However, as long as the priorities are known (independently of the algorithms), the algorithm does

not use randomization.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:5

Fig. 2. The balancing schemes used in this article. rank(·) is defined in Section 4 for each balancing scheme.

A balancing scheme for binary trees is an invariant (or set of invariants) that is true for every
node of a tree, and is for the purpose of keeping the tree nearly balanced. In this article, we consider
four balancing schemes that ensure the height of every tree of size n is bounded byO (logn). When
keys have a total order and the in-order values of the tree are consistent with the order, then we
call it a BST. We note that the balancing schemes defined below, although typically applied to BSTs,
do not require that the binary tree be a search tree.

We will then briefly introduce the balancing schemes that we use in this article. An illustration
of these balancing schemes is shown in Figure 2.

AVL Trees [4]. AVL trees have the invariant that for every node(Tl , e,Tr), the height of Tl and Tr

differ by at most 1. This property implies that any AVL tree of size n has height at most logϕ (n+1),

where ϕ = 1+
√

5
2 is the golden ratio.

Red-Black (RB) Trees [10]. RB trees associate a color with every node and maintain two invari-
ants: (the red rule) no red node has a red child, and (the black rule) the number of black nodes
on every path from the root down to a leaf is equal. All nil nodes are always black. Unlike some
other presentations, we do not require that the root of a tree is black. Although this does not affect
the correctness of our algorithms, our proof of the work bounds requires allowing a red root. We

define the black height of a nodeT , denoted ĥ(T) to be the number of black nodes on a downward
path from the node to a nil-node (inclusive of the node and the nil-node). Any RB tree of size n has
height at most 2 log2 (n + 1).

Weight-Balanced (WB) Trees [52]. WB trees with parameter α (also called BB[α] trees) maintain

for everyT = node(Tl , e,Tr) the invariant α ≤ w (Tl)
w (T) ≤ 1 − α . We say two WB treesT1 andT2 have

like weights if node(T1, e,T2) is WB. Any α WB tree of size n has height at most log 1
1−α

n. For
2
11 < α ≤ 1 − 1√

2
, insertion and deletion can be implemented on WB trees using just single and

double rotations [17, 52]. We require the same condition for our implementation of join, and in
particular use α = 0.29 in experiments. We also denote β = 1−α

α
, which means that either subtree

cannot have a size that is more than β times the size of the other subtree.

Treaps [56]. Treaps associate a uniformly random priority with every key and maintain the
invariant that the priority of the key at each node is no greater than the priority of its two children.
Any treap of size n has heightO (logn) w.h.p.. The priority can usually be decided by a hash value
of the key, and thus for operations across search trees we assume equal keys have equal priorities.

The notation we use for binary trees is summarized in Table 1. Some concepts in Table 1 will be
introduced later in this article. In particular, we will define the rank(·) function for each balancing

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:6 G. Blelloch et al.

Table 1. Summary of Notation

Notation Description

|T | The size of tree T
h(T) The height of tree T

ĥ(T) The black height of an RB tree T
rank(T) The rank of tree T
w (T) The weight of tree T (i.e., |T | + 1)
p (T) The parent of node T
k (T) The key of node T
lc(T) The left child of node T
rc(T) The right child of node T

expose(T) 〈lc(T), e (T), rc(T)〉
The definition of some of them are postponed to Section 5.3.

scheme, which is generally based on their balancing criteria. We do so because that can help to
simplify the proof of bounding the cost of the join-based algorithms on trees. We note that the
rank functions are defined for the purpose of analysis. As long as the join function is implemented
correctly as defined, all the join-based algorithms will behave as expected.

3 JOINABLE TREES

Here, we define the properties that make a tree joinable. These properties are used in later sections
to prove bounds on each of our algorithms—i.e., if someone gives us a balancing scheme with
these properties, our algorithms will be efficient without needing to know anything else about
how balance is maintained. The concept of joinable trees relies on two subcomponents: a value
associated with each tree node (subtree) called the rank, and a proper join algorithm. The definition
of rank and the join algorithm depend on the balancing scheme. The rank of a tree node only relies
on the shape of the subtree rooted at it, not the set of entries. For a tree T , we denote its rank as
rank(T).

We note that the joinable properties are mainly for the purpose of analysis. In fact, as long as
the join function is implemented correctly (no need to be efficiently), all the join-based algorithms
in later sections will also be correct. However, to use the general proof to show the cost bounds,
these properties will help to simplify the analysis.

Definition 1 (Strongly Joinable Trees). A balancing schemeS is strongly joinable, if we can assign
a rank for each subtree from S, and there exists a join (T1,k,T2) algorithm on two trees from S,
such that the following rules hold:

(1) empty rule. The rank of a nil-node is 0.
(2) monotonicity rule. For C = join(A,k,B), max(rank(A), rank(B)) ≤ rank(C).
(3) submodularity rule. SupposeC = node(A, e,B) andC ′ = join(A′, e,B′). If 0 ≤ rank(A′)−

rank(A) ≤ x and 0 ≤ rank(B′) − rank(B) ≤ x , then 0 ≤ rank(C ′) − rank(C) ≤ x (increasing
side). In the other direction, if 0 ≤ rank(A) − rank(A′) and 0 ≤ rank(B) − rank(B′), then
0 ≤ rank(C) − rank(C ′) (decreasing side).

(4) cost rule. join(A,k,B) uses time O (|rank(A) − rank(B) |).
(5) balancing rule. For a node A,

max(rank(lc(A)), rank(rc(A))) + cl ≤ rank(A) ≤ min(rank(lc(A)), rank(rc(A))) + cu ,

where cl ≤ 1 and cu ≥ 1 are constants.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:7

The last rule about balancing says that the ranks of a child and its parent cannot differ by much.
This is not true for some randomization-based balancing schemes such as treaps. To generalize
our results to such balancing schemes, we define a weakly joinable tree as follows.

Definition 2 (Weakly Joinable Trees). A balancing scheme S is weakly joinable, if it satisfies the
empty rule, monotonicity rule, and submodularity rule in Definition 2, and the relaxed bal-

ancing rule and weak cost rule as follows:

• relaxed balancing rule. There exist constants cl , cu , 0 < pl ≤ 1 and 0 < pu ≤ 1, such
that for a node A and any of its child B:

(1) rank(B) ≤ rank(A) − cl happens with probability at least pl .
(2) rank(B) ≥ rank(A) − cu happens with probability at least pu .
• weak cost rule. join(A,k,B) uses time O (rank(A) + rank(B)) w.h.p.

In this article, we use joinable to refer to weakly joinable trees. Later in this section, we will
show that AVL trees, RB trees, and WB trees are strongly joinable, and treaps are weakly joinable.

We also say a tree T is strongly (weakly) joinable if T is from a strongly (weakly) joinable bal-
ancing scheme.

Here we first present some properties of joinable trees.

Property 1. For a strongly joinable tree T , clh(T) ≤ rank(T) ≤ cuh(T).

This can be inferred directly from the balancing rule.

Property 2 (Logarithmic Rank for Strongly Joinable Balanced Trees). For a strongly

joinable tree T , rank(T) = O (logw (T)), where w (T) = |T | + 1 is T ’s weight.

Proof. Let f (r) be a function denoting the minimum weight that T can have when T has rank
r , i.e., f (r) = minrank(T)=r w (T). We now look at the two children ofT , noted as L and R. Without

loss of generality (WLOG), assumew (L) ≥ w (R). In the balancing rule, we know that rank(T)−
cu ≤ rank(R) ≤ rank(T) − cl . The total weight of T is at most 2w (R). In other words,

f (r) ≥ 2 min
r−cu ≤r ′ ≤r−cl

f (r ′).

This means that f (r) ≥ c · 2r /cu for some constant c . Thus, rank(T) is at most O (logw (T)). �

From the above lemma we have the following.

Property 3 (Logarithmic Height for Strongly Joinable Balanced Trees). For a strongly

joinable tree T with weight n, h(T) = O (rank(T)) = O (logn).

From the balancing rule we have the following.

Property 4 (Similar Ranks for Balanced Strongly Joinable Trees). For a strongly joinable

tree T = node(lc(T),k, rc(T)), then rank(lc(T)) and rank(rc(T)) differ by at most a constant.

For weakly joinable trees, we also have a similar property for rank and height.

Property 5 (Logarithmic Height for Weakly Joinable Balanced Trees). For a weakly join-

able tree T with weight n, h(T) = O (rank(T)) = O (logn) w.h.p.

Proof. First of all, note that for a parent node A and a child node B, h(A) = h(B) + 1, but
rank(A) ≥ rank(B) + cl happens with a constant probability. Thus, h(T) = O (rank(T)).

Consider a node T with rank r = rank(T). We follow the path and always go to the smaller
subtree (with smaller weight). We call it a round every time we go down one level. Afterm rounds
we hit the leaf. Obviously,m ≤ logn since every time we go to the smaller side of the subtree.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:8 G. Blelloch et al.

We note that with every such round, the rank increased by no more than cu with a constant
probability. Adding all the m rounds gets r , which is the rank of T . Based on Chernoff bound, we

know that Pr[r ≥ (1 + δ)cupum] ≤ e−
δ cu pu m

3 . Let (1 + δ)cupum be c logn for sufficient large c; we
have

Pr[r ≥ c logn] ≤ e−
c log n−cu m

3

= n−c/3 · e
cu pu m

3

≤ n−c+cu pu /3· �

We then extend the monotonicity rule and prove the following theorem.

Property 6 (Bounded Rank Increasing by join). For a joinable tree C = join(A,k,B), there

exists a constant c ′ ≤ cu , such that

max(rank(A), rank(B)) ≤ rank(C) ≤ max(rank(A), rank(B)) + c ′.

Proof. The left half of the inequation holds because of the monotonicity rule.
For the right half, consider a single tree node v = node(nil-node, e, nil-node). rank(v) is at most

cu (the balancing rule). Consider v ′ = join(A,k,B), which increases the rank of both sides by at
most max(rank(A), rank(B)). Then

rank(v ′) ≤ rank(v) +max(rank(A), rank(B)) ≤ cu +max(rank(A), rank(B)). �

We then prove some useful definitions and theorems that will be used in later proofs of the
join-based algorithms.

Definition 3 (Layer i in Joinable Trees). In a joinable tree, we say a node v in layer i if i ≤
rank(v) < i + 1.

Definition 4 (Rank Root). In a joinable tree, we say a node v is a rank root, or a rank(i)-root if v
in layer i and v’s parent is not in layer i . We use si (T) to denote the number of rank(i)-root nodes
in tree T .

When the context is clear, we simply use si .

Property 7. For a joinable tree, suppose a node T has rank r ; then the number of its descendants

with rank more than r − 1 is a constant.

Proof. From the balancing rule we know that after 1/cl generations from T , the rank of the
tree node must be smaller than r −1. That is to say, there are at most 21/cl such nodes inT ’s subtree
with rank no smaller than r − 1. �

Definition 5 (Rank Cluster). For any rank root v , its rank cluster contains all tree nodes with
rank in the range (rank(v) − 1, rank(v)]. We use d (v) of a rank rootv to denote the size of its rank
cluster.

For any v , these rank clusters form a contiguous tree-structured component.

Definition 6. In a BST, a set of nodes V is called ancestor-free if and only if for any two nodes
v1,v2 in V , v1 is not the ancestor of v2.

Obviously, for each layer i , all the rank(i)-root nodes form an ancestor-free set.
The following lemma is important for proving the work bound of the join-based set-set algo-

rithms in Section 5.3.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:9

Lemma 1. There exists a constant t such that for a strongly joinable tree with size N , si ≤ N
2	i/t
 .

More precisely, t = 1 + �cu �.

Proof. We now organize all rank roots from layer kt to layer (k + 1)t − 1 into a group k , for
an integer k . Assume there are s ′

k
such rank roots in root layer k . We first prove that s ′

k
≤ s ′

k−1
/2,

which indicates that s ′
k
≤ N

2k .

For a node u in group k , we will show that its subtree contains at least two nodes in group k − 1,
one in each subtree.u’s rank is at least kt −1 (because of rounding), but at most (k+1)t −1. For the
left subtree (the right one is symmetric), we follow one path until we find a node in group k but its
children v in a group smaller than k , so rank(v) ≤ kt − 1. We will prove that v must be in group
k − 1. Because of the balancing rule, rank(u) − cu ≤ rank(v) ≤ kt − 1. Considering the range
of u’s rank, we have (k − 1)t ≤ rank(v) ≤ kt − 1. This means that v is in group k − 1. Therefore,
every node in group k corresponds to at least two nodes in group k + 1. This proves s ′

k
≤ s ′

k−1
/2.

Obviously, each set of rank(i)-root is a subset of its corresponding group. This proves the above
lemma. �

Figure 14(b) shows an example of the layers of an AVL tree, in which we set the rank of a node
to be its height. Because the rank of all AVL nodes are integers, all nodes are rank roots. Lemma 1
says that from the bottom up, every three layers, the number of nodes in an AVL shrinks by a half.5

4 THE JOIN ALGORITHMS AND RANKS FOR EACH BALANCING SCHEME

Here we describe the join algorithms for the four balancing schemes we defined in Section 2, as
well as the definition of rank for each of them. We will then prove they are joinable. For join, the
pivot can be either just the data entry (such that the algorithm will create a new tree node for it),
or a pre-allocated tree node in memory carrying the corresponding data entry (such that the node
may be reused, allowing for in-place updates).

As mentioned in Section 1, join fully captures what is required to rebalance a tree and can be
used as the only function that knows about and maintains the balance invariants. For AVL, RB,
and WB trees, we show that join takes work that is proportional to the difference in the ranks of
the two trees. For treaps, the work depends on the priority of the pivot. All the join algorithms are
sequential so the span is equal to the work. We show in this article that the join algorithms for all
balancing schemes we consider lead to optimal work for many functions on maps and sets.

At a high level, all the join algorithms try to find a “balancing point” in the larger tree, which
is a node v on its left or right spine, and is balanced with the smaller tree, join at that point, and
rebalance along the way back (see Figure 3). WLOG, we assume in join(TL,k,TR), TL has larger
or equal rank (e.g., for an AVL it means TL has larger or equal height). In this case, we go along
the right spine of TL until we reach a node that is balanced with TR . We then connect v with
TR using k , and let this new subtree replace v in TL . This guarantees that the subtree below v is
balanced, but may cause imbalance in v’s ancestors. The algorithm then will try to rebalance the
nodes on the way back to the root, and the rebalancing operations would depend on each specific
balancing scheme. This high-level idea applies to multiple balancing schemes in this article (except
for the treap join algorithm, which is slightly different because of the variant about priorities). In
the following, we will elaborate each of them, and prove the cost bounds. The main result of this
section is the following theorem.

Theorem 1. AVL, RB, and WB trees are strongly joinable, and treaps are weakly joinable.

5Actually, considering that there is no rounding issue for AVL trees, this means that from the bottom up, every two layers,

the number of nodes in an AVL tree shrinks by a half.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:10 G. Blelloch et al.

Fig. 3. The high-level idea of the join algorithm. An illustration of the high-level idea of the join algorithm
(when TL is larger than TR , and the other case is symmetric).

4.1 AVL Trees

For AVL trees, we define the rank to be the height, i.e., rank(T) = h(T). Pseudocode for AVL join

is given in Figure 4 and illustrated in Figure 5. Every node stores its own height so that h(·) takes
constant time. If the two treesTl and Tr differ by height at most one, join can simply create a new
node(Tl ,k,Tr). However, if they differ by more than one, then rebalancing is required. Suppose
that h(Tl) > h(Tr) + 1 (the other case is symmetric). The idea is to follow the right spine of Tl

until a node c for which h(c) ≤ h(Tr) + 1 is found (line 3). At this point, a new node(c,k,Tr) is
created to replace c (line 4). Since either h(c) = h(Tr) or h(c) = h(Tr)+1, the new node satisfies the
AVL invariant, and its height is one greater than c . The increase in height can increase the height
of its ancestors, possibly invalidating the AVL invariant of those nodes. This can be fixed either
with a double rotation if the invariant is invalid at the parent (line 6) or a single left rotation if the
invariant is invalid higher in the tree (line 10), in both cases restoring the height for any further
ancestor nodes. The algorithm will therefore require at most two rotations, as we summarized in
the following lemma.

Lemma 2. The join algorithm in Figure 4 on AVL trees requires at most two rotations.

This lemma directly follows the algorithm description above.

Lemma 3. For two AVL treesTl andTr , the AVL join algorithm works correctly, runs withO (|h(Tl)−
h(Tr) |) work, and returns a tree satisfying the AVL invariant with height at most 1+max(h(Tl),h(Tr)).

Proof. Consider the case where TL has a larger height (the other case is symmetric). After
connecting the small tree with tree node c (as described above and in Figure 4), all tree nodes below
k are guaranteed to be balanced. The only tree nodes that can be unbalanced are those on the right
spine ofTL and above k . The algorithm then checks them bottom-up. If the imbalance occurs upon
connection, which is as shown in Figure 4, then the double-rotation shown in the figure fixes the
imbalance. Note that, after rotation, the entire subtree height restores to h + 2, which is the same
as the subtree size in Tl before join. This means that no further rebalance is needed.

Another case is that, the imbalance does not directly occur at node p (k’s parent in the output).
Some other nodes on the right spine were affected to unbalanced because its right subtree height
increased by 1. Assume the lowest such node is B, with left child A and right child C . Assume
h(A) = h. This case happens only when h(C) was h + 1, but increased to h + 2 after join. In other
words, h(rc(C)) = h + 1 after join, and h(lc(C)) must be h (both before and after join, since the
shape ofC ′’s left subtree is not affected by join). In that case, a single rotation on B will rebalance
the subtree, getting a new subtree rooted atC with height h + 2. Note that this is also the original
height of the subtree in TL rooted at B. As a result, no further rebalance is needed.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:11

Fig. 4. The join algorithm on AVL trees. joinLeftAVL is symmetric to joinRightAVL.

Fig. 5. An example for join on AVL trees. An example for join on AVL trees (h(Tl) > h(Tr)+1). We first follow
the right spine of Tl until a subtree of height at most h(Tr) + 1 is found (i.e., T2 rooted at c). Then, a new
node(c,k,Tr) is created, replacing c (Step 1). If h(T1) = h and h(T2) = h + 1, the node p will no longer satisfy
the AVL invariant. A double rotation (Step 2) restores both balance and its original height.

Since the algorithm only visits nodes on the path from the root to c , and only requires at most
two rotations (Lemma 2), it does work proportional to the path length. The path length is no more
than the difference in height of the two trees since the height of each consecutive node along
the right spine of Tl differs by at least one. Along with the case when h(Tr) > h(Tl) + 1, which
is symmetric, this gives the stated work bounds. The resulting tree satisfies the AVL invariants
since rotations are used to restore the invariant. The height of any node can increase by at most
one, so the height of the whole tree can increase by at most one. �

Theorem 2. AVL trees are strongly joinable.

Proof. The AVL invariant and the definition of AVL trees’ rank ensure the empty rule and
balancing rule (cl = 1, cu = 2). Lemma 3 ensures the cost rule and monotonicity rule. We
prove the submodularity rule as follows.

We start with the increasing side.
First note that the ranks of AVL trees are always integers. For C = node(A,k,B) and C ′ =

join(A′,k,B′), WLOG suppose rank(A) ≥ rank(B).
When 0 ≤ rank(A′) − rank(A) ≤ x and 0 ≤ rank(B′) − rank(B) ≤ x , the larger rank of A′ and B′

is within rank(A)+x . Then, the rank ofC ′ is in the range [rank(A), rank(A)+x +1] (Lemma 4). On

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:12 G. Blelloch et al.

Fig. 6. The join algorithm on RB trees. joinLeftRB is symmetric to joinRightRB.

the other hand,C = node(A,k,B), rank(C) is no smaller than rank(A)+1 (based on AVL invariants).
Thus, 0 ≤ rank(C)− rank(C ′) ≤ x except for when rank(C ′) = rank(A) and rank(C) = rank(A)+1.
We will show that this is impossible.

First of all, rank(C ′) = rank(A) means that rank(A′) = rank(A). Also, rank(B′) must be at
most rank(A) − 2, otherwise the join will directly connect A′ and B′, and rank(C ′) will be at least
rank(A) + 1. Considering rank(B′) ≥ rank(B), this means that A and B cannot be balanced, which
leads to a contradiction.

This proves the increasing side of submodularity rule. We then prove the decreasing side.
Both rank(A) and rank(B) are at most rank(C) − 1. Based on Lemma 3, joining them back gets C ′

with rank at most rank(C). �

4.2 RB Trees

In RB trees, rank(T) = 2(ĥ(T)−1) ifT is black and rank(T) = 2ĥ(T)−1 ifT is red. Tarjan describes
how to implement the join function for RB trees [64]. Here, we describe a variant that does not
assume the roots are black (this is to bound the increase in rank in some join-based algorithms).

The pseudocode is given in Figure 6. We store at every node its black height ĥ(·). One special issue
for the RB trees is to decide the color of the pivot. Therefore, we introduce a special parameter

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:13

flag in the join function of RB trees, which indicates if we want to assign a specific color to the
pivot in certain circumstances. This will be used in other join-based algorithms in Section 5.2. In
particular, we will set the color for the middle node (the new node to hold the pivot) to be red by
default. However, when flag is true, and when the two input trees are already balanced, we will
set the color for the middle node to black. This is to avoid decreasing in rank when we re-join two
black subtrees with their black parent.6 In the join-based algorithms, we set this flag to be true
only when the pivot we use is from a double-black node, i.e., when the node and all its children are
black.

In the algorithm, the first case is when ĥ(Tr) = ĥ(Tl). As mentioned above, if flag is true, we
will still use it as a black node and directly concatenate the two input trees. This increases the rank
of the input trees by at most 2. Otherwise, if both root (Tr) and root (Tl) are black, we create red
node(Tl ,k,Tr). When either root (Tr) or root (Tl) is red, we create black node(Tl ,k,Tr).

The second case is when ĥ(Tr) < ĥ(Tl) = ĥ (the third case is symmetric). Similarly to AVL trees,

join follows the right spine ofTl until it finds a black node c for which ĥ(c) = ĥ(Tr). It then creates
a new red node(c,k,Tr) to replace c . Since both c and Tr have the same height, the only invariant
that can be violated is the red rule on the root ofTr , the new node, and its parent, which can all be
red. In the worst case, we may have three red nodes in a row. This is fixed by a single rotation: if
a black node v has rc(v) and rc(rc(v)) both red, we turn rc(rc(v)) black and perform a single left
rotation onv , turning the new node black, and then perform a single left rotation onv . The update
is illustrated in Figure 7. The double- or triple-red issue is resolved after the rotation. The rotation,
however, makes the new subtree root red, which can again violate the red rule between the root
of the rotated tree and its parent. This imbalance can propagate to the root. If the original root of
Tl is red, the algorithm may end up with a red root with a red child, in which case the root will

be turned black, turningTl rank from 2ĥ − 1 to 2ĥ. If the original root ofTl is black, the algorithm

may end up with a red root with two black children, turning the rank of Tl from 2ĥ − 2 to 2ĥ − 1.
In both cases, the rank of the result tree is at most 1 + rank(Tl).

We note that the rank of the output can increase the larger rank of the input trees by 2 only
when the pivot was a double-black node, and the two input trees are balanced and both have black
roots. This additional condition is to guarantee the submodularity rule for RB trees.

Lemma 4. For two RB treesTl andTr , the RB join algorithm works correctly, runs withO (|rank(Tl)−
rank(Tr) |) work, and returns a tree satisfying the RB invariants and with rank at most 2 +
max(rank(Tl), rank(Tr)).

Proof. The base case whereh(Tl) = h(Tr) is straightforward. For symmetry, here we only prove
the case when h(Tl) > h(Tr). We prove the proposition by induction.

We first show the correctness. As shown in Figure 7, after appending Tr to Tl , if p is black, the
rebalance has been done, and the height of each node stays unchanged. Thus, the RB tree is still
valid. Otherwise, p is red, and p’s parent д must be black. By applying a left rotation on p and д,
we get a balanced RB tree rooted at p, except the root p is red. If p is the root of the whole tree, we
change p’s color to black, and the height of the whole tree increases by 1. The RB tree is still valid.
Otherwise, if the current parent of p (originally д’s parent) is black, the rebalance is done here.
Otherwise, a similar rebalance is required on p and its current parent. Thus, finally we will either

6In particular, in some of our algorithms, we may need to get t ′ =join(lc(t), t, rc(t)), which ideally should just get t ′ the

same as the original (sub-)tree t . However, consider when all tree nodes are black. If we call such join operation on all nodes

in t , setting pivot to be red will cause the rank of t ′ to be only a half of the original tree t . This will affect the analysis of

some join-based algorithms.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:14 G. Blelloch et al.

Fig. 7. An example of join on red-black trees. An example of join on red-black trees (ĥ = ĥ(Tl) > ĥ(Tr)). We
follow the right spine of Tl until we find a black node with the same black height as Tr (i.e., c). Then a new
red node(c,k,Tr) is created, replacing c (Step 1). The only invariant that can be violated is when either c’s
previous parent p or Tr ’s root d is red. If so, a left rotation is performed at some black node. Step 2 shows
the rebalance when p is red. The black height of the rotated subtree (now rooted at p) is the same as before
(h + 1), but the parent of p might be red, requiring another rotation. If the red-rule violation propagates to
the root, the root is either colored red, or rotated left (Step 3).

find the current node valid (current red node has a black parent), or reach the root, and change the
color of root to be black. Thus, when we stop, we will always get a valid RB tree.

Since the algorithm only visits nodes on the path from the root to c , and only requires at most
a single rotation per node on the path, the overall work for the algorithm is proportional to the
depth of c in Tr . This in turn is no more than twice the difference in black height of the two trees
since the black height decrements at least every two nodes along the path. This gives the stated
work bounds.

For the rank, note that throughout the algorithm, before reaching the root, the black rule is
never invalidated (or is fixed immediately), and the only invalidation occurs on the red rule. If the
two input trees are originally balanced, the rank increases by at most 2. The only case that the
rank increases by 2 is when k is from a double node, and both root (Tr) and root (Tl) are black.

If the two input trees are not balanced, the black height of the root does not change before the
algorithm reaches the root (Step 3 in Figure 7). There are then three cases:

(1) The rotation does not propagate to the root, and thus the rank of the tree remains as

max(ĥ(Tl), ĥ(Tr)).
(2) (Step 3 Case 1) The original root color is red, and thus a double-red issue occurs at the root

and its right child. In this case, the root is colored black. The black height of the tree increases
by 1, but since the original root is red, the rank increases by only 1.

(3) (Step 3 Case 2) The original root color is black, but the double-red issue occurs at the root’s
child and grandchild. In this case, another rotation is applied as shown in Figure 7. The black
height remains, but the root changed from black to red, increasing the rank by 1. �

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:15

Theorem 3. RB trees are joinable.

Proof. The RB invariant and the definition of RB trees’ rank ensures the empty rule and bal-

ancing rule (cl = 1, cu = 2). Lemma 4 ensures the cost rule and monotonicity rule. We prove
the submodularity rule as follows.

We start with the increasing side.
First note that the ranks of RB trees are always integers. For C = node(A,k,B) and C ′ =

join(A′, e,B′). WLOG suppose rank(A) ≥ rank(B).
When 0 ≤ rank(A′) − rank(A) ≤ x and 0 ≤ rank(B′) − rank(B) ≤ x , the larger rank of A′ and

B′ is within rank(A) + x . Then the rank ofC ′ is in the range [rank(A), rank(A) + x + 2] (Lemma 4).
On the other hand,C = node(A,k,B);C is either rank(A) + 1 or rank(A) + 2 (because all ranks are
integers). Thus, 0 ≤ rank(C ′) − rank(C) ≤ x except for the following cases.

(1) rank(C ′) = rank(A) = r .
(2) rank(C ′) = r + 1, but rank(C) = r + 2.
(3) rank(C ′) = r + x + 2, but rank(C) = r + 1.

We first show that case (1) is impossible.
First of all, rank(A′) ≥ rank(A) = rank(C ′). On the other hand, rank(C ′) ≥ rank(A′) because

C ′ = join(A′, e,B′). Therefore, rank(A′) = rank(C ′) = rank(A).
Also, rank(B) is at least r − 1 because A and B are balanced. Considering rank(B′) ≥ rank(B),

rank(B′) is at least r − 1, but at most rank(C ′) = r .
If A′ and B′ are balanced, the rank of C ′ is at least rank(A) + 1, which leads to a contradiction.
If A′ and B′ are not balanced, their ranks differ by only 1. This is only possible when one of

them has black height h with a black root, and the other one has black height h − 1 with a red
root. However, the join algorithm results in double-red on the root’s child and its grandchild. After
fixing it the rank also increases by 1, which leads to a contradiction.

We then show that case 2 is impossible.
First of all, rank(B) is at least rank(A)−1 becauseA and B are balanced. Considering rank(B′) ≥

rank(B), rank(B′) is at least rank(A′) − 1.
If rank(C) = r + 2,C must be a double-black node. This means that rank(A) = rank(B) = r , and

they are both black. rank(A′) ≥ rank(A) = rank(C ′) − 1. On the other hand, rank(C ′) ≥ rank(A′)
becauseC ′ = join(A′,k,B′). Therefore, rank(A′) = rank(C ′) or rank(A′) = rank(C ′)−1 = rank(A).

(1) If rank(A′) = rank(C ′), from the same statement of case (1), we can show this is impossible.
This is because the join algorithm will always lead to the result where C ′ has rank larger
than A′.

(2) If rank(A′) = rank(C ′) − 1 = rank(A), A′ must be black since rank(A) is even. In this case,
rank(B′) is r , or r + 1.

If rank(A′) = rank(B′) = r , B′ is also black. In this case, the algorithm will result in
C ′ = r + 2. This leads to a contradiction.

If rank(B′) = r + 1, B′ is red but is still balanced with A′. In this case, the algorithm also
results in C ′ with rank r + 2. This also leads to a contradiction.

Finally, we prove that case (3) is impossible.
rank(C ′) = r +x + 2 means that A′, B′, andC ′ are all black. Also, A′ and B′ must both have rank

r + x and black roots. This means thatC ′ (and alsoC) is a double-black node. Thus, rank(C) must
be r + 2, which leads to a contradiction.

This proves the increasing side of the submodularity rule. Next, we look at the decreasing
side. There are two cases.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:16 G. Blelloch et al.

Fig. 8. The join algorithm on weight-balanced trees – joinLeftWB is symmetric to joinRightWB.

(1) Both rank(A′) < rank(A) and rank(B′) < rank(B) hold. They have to decrease by at least
one because the rank of an RB tree is always an integer. First of all, we know that rank(C ′) ≤
max(rank(A′), rank(B′)) + 2.

If rank(C ′) = max(rank(A′), rank(B′)) + 2, C ′ must be a double-black node. rank(C) is
rank(A) + 2 (also rank(B) + 2). Also, A, B,C , A′, B′, andC ′ are all black. Then, rank(A′) and
rank(B′) can be at most rank(A) − 2 and rank(B) − 2, respectively. joining A′ and B′ increase
the maximum rank by at most 2. Therefore, rank(C ′) is no more than rank(C) holds.

If rank(C ′) ≤ max(rank(A′), rank(B′)) + 1, joining them back results in an output tree of
rank at most max(rank(A′), rank(B′)) + 1. This proves rank(C ′) ≤ rank(C).

(2) Either rank(A′) = rank(A) or rank(B′) = rank(B). WLOG assume rank(A′) = rank(A) and
rank(B′) ≤ rank(B). There are three cases.

(a) A (so is A′) is black with rank 2h, and C is red with rank 2h + 1. rank(B′) ≤ rank(B) = 2h.
Therefore, rank(C ′) ≤ rank(A′) + 1 = rank(C).

(b) A (so is A′) is black with rank 2h, and C is black with rank 2h + 2. rank(B′) ≤ rank(B) ≤
2h + 1. When rank(B′) ≤ 2h, rank(C ′) ≤ rank(A′) + 2 = rank(C). When rank(B′) = 2h + 1,
B is red andC ′ is not a double-black node. Therefore, we also get rank(C ′) ≤ rank(B′)+1 =
rank(C).

(c) A (so is A′) is red with rank 2h + 1, andC is black with rank 2h + 2. rank(B′) ≤ rank(B) ≤
2h + 1. Therefore, rank(C ′) ≤ rank(A′) + 1 = rank(C).

In summary, the submodularity rule holds for RB trees. RB trees are strongly joinable. �

4.3 WB Trees

For WB trees, rank(T) = log2 (w (T)) − 1. We store the weight of each subtree at every node. The
algorithm for joining two WB trees is similar to that of AVL trees and RB trees. The pseudocode is
shown in Figure 8. The like function in the code returns true if the two input tree sizes are balanced
based on the factor of α , and false otherwise. IfTl andTr have like weights, the algorithm returns a
new node(Tl ,k,Tr). Suppose |Tr | ≤ |Tl |; the algorithm follows the right branch ofTl until it reaches
a node c with like weight to Tr . It then creates a new node(c, r ,Tr) replacing c . The new node will
have weight greater than c and therefore could imbalance the weight of c’s ancestors. This can be
fixed with a single or double rotation (as shown in Figure 9) at each node assuming α is within the
bounds given in Section 2.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:17

Fig. 9. An illustration of single and double rotations possibly needed to rebalance weight-balanced trees –
In the figure the subtree rooted at u has become heavier due to joining in Tl and its parent v now violates
the balance invariant.

Lemma 5. For two α WB trees Tl and Tr and α ≤ 1 − 1√
2
≈ 0.29, the WB join algorithm works

correctly, runs with O (| log(w (Tl)/w (Tr)) |) work, and returns a tree satisfying the α WB invariant

and with rank at most 1 +max(rank(Tl), rank(Tr)).

The proof can be found in [13].
Notice that this upper bound is the same as the restriction on α to yield a valid WB tree when

inserting a single node. Then, we can induce that when the rebalance process reaches the root, the
new WB tree is valid. The proof is intuitively similar as the proof stated in [17, 52], which proved
that when 2

11 ≤ α ≤ 1 − 1√
2
, the rotation will rebalance the tree after one single insertion. In fact,

in our join algorithm, the “inserted” subtree must be along the left or right spine, which actually
makes the analysis easier.

Theorem 4. WB trees are strongly joinable when α ≤ 1 − 1√
2
≈ 0.29.

Proof. The WB invariant and the definition of WB’s rank ensures the empty rule and balanc-

ing rule (cl = log(1−α) 2, cu = logα 2). Lemma 5 ensures the cost rule and the monotonicity

rule.
For the submodularity rule, note that rank(C) = log2 (w (A) + w (B)), and rank(C ′) =

log2 (w (A′) + w (B′)). When either A or B changes their weight by more than log2 x , obviously
the total weight of C will not increase or decrease by a factor of log2 x . �

4.4 Treaps

For treaps rank(T) = log2 (w (T)) − 1. The treap join algorithm (as in Figure 10) first picks the key
with the highest priority among k , k (Tl), and k (Tr) as the root. If k is the root, then we can return
node(Tl ,k,Tr). Otherwise, WLOG, assume k (Tl) has a higher priority. In this case, k (Tl) will be the
root of the result, lc(Tl) will be the left tree, and rc(Tl), k , andTr will form the right tree. Thus, join

recursively calls itself on rc(Tl), k , andTr and uses the result as k (Tl)’s right child. When k (Tr) has
a higher priority, the case is symmetric. The cost of join is therefore the depth of the key k in the
resulting tree (each recursive call pushes it down one level). In treaps, the shape of the result tree,
and hence the depth of k , depend only on the keys and priorities and not the history. Specifically,

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:18 G. Blelloch et al.

Fig. 10. The join algorithm on treaps. prior(k1,k2) decides if the node k1 has a higher priority than k2.

if a key has the t-th highest priority among the keys, then its expected depth in a treap is O (log t)
(also whp). If it is the highest priority, for example, then it remains at the root.

Lemma 6. For two treapsTl andTr , if the priority of the pivot k is the t-th highest among all keys in

Tl ∪ {k } ∪Tr , the treap join algorithm works correctly, runs withO (log t + 1) work in expectation and

whp, and returns a tree satisfying the treap invariant with rank at most 1+max(rank(Tl), rank(Tr)).

Theorem 5. Treaps are weakly joinable.

Proof. The empty rule and monotonicity rule hold from the definition of rank. The sub-

modularity rule holds for the same reason as the WB tree.
For the relaxed balancing rule, note that the weight of the tree shrinks by a factor of 1/3 to

2/3 with probability 1/3. This means that going down from a parent to a child, the rank of a node
decreases by a constant between log2 3 and log2 3/2 with probability 1/3. This proves the relaxed

balancing rule.
For weak cost rule, note that the cost of join is at most the height of the larger input tree, which

is O (rank(T)) whp. �

We also present Lemma 7, which is useful in the proofs in a later section. Recall that we use
d (v) to denote the size of a rank rootv’s rank cluster. In treaps, each rank cluster is a chain. This is
because if two children of one nodev are both in layer i , the weight ofv is more than 2i+1, meaning
that v should be layer i + 1. This means that for a treap node v , d (v) is the number of generations
to take from v to reach a node u with rank at most rank(v) − 1. The lemma below means that the
expected size of a rank cluster E[d (v)] is also a constant.

Lemma 7. If v is a rank root in a treap, d (v) is less than a constant in expectation.

Proof. Consider a rank(k)-root v that has weight N ∈ [2k , 2k+1). The probability that d (v) ≥ 2
is equal to the probability that one of its grandchildren has weight at least 2k . This probability P is

P =
1

2k

N∑
i=2k+1

i − 2k

i
(1)

≤ 1

2k

2k+1∑
i=2k+1

i − 2k

i
(2)

≈ 1 − ln 2. (3)

We denote 1 − ln 2 as pc . Similarly, the probability that d (v) ≥ 4 should be less than p2
c , and

the probability shrinks geometrically as d (v) increase. Thus, the expected value of d (v) is a
constant. �

Finally, we prove that Lemma 1 also holds for treaps.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:19

Fig. 11. split and join2 algorithms – They are both independent of balancing schemes.

Lemma 8. For a treap with size N , si ≤ N
2	i/2
 .

This holds trivially from the definition of the rank of a treap, which is log2 N for a treap of
size N .

As a summary of this section, we present the following theorem.

Theorem 6. AVL, RB, and WB trees are strongly joinable, and treaps are weakly joinable.

5 ALGORITHMS USING JOIN

The join function, as a subroutine, has been used and studied by many researchers and program-
mers to implement more general set operations. In this section, we describe algorithms for various
functions that use just join for rebalancing. The algorithms are generic across balancing schemes.
The pseudocodes for the algorithms in this section are shown in Figure 13. Beyond join, the only
access to the trees we make use of is through expose, which returns the left child, root entry, and
the right child. This can be done by simply reading the root. The set-set operations, including
union, intersection, and difference, are efficient in work, which means the work of the algorithm
is asymptotically the same as the best known sequential algorithm. In particular, the cost of the
join-based algorithms are optimal in the number of comparisons performed (see more details be-
low). The pseudocode for all the algorithms introduced in this section is presented in Figures 11,
13, and 15. We note that for RB trees, for every invocation of join, we need to give an extra flag to
indicate if the pivot of join is a double-black node (defined in Section 4.2). For simplicity, this is not
shown in the code given. We note that this is used only to ensure the desired theoretical bound,
and removing this condition does not affect the correctness.

As mentioned, all the join-based algorithms use join as a black box. As long as the join algorithm
is implemented correctly as defined, the join-based algorithms can behave as expected. Also, the
algorithms themselves do not require the rank function. However, to prove the efficiency in work
and span, we need more careful design and use of rank functions.

We present a summary of the cost of all join-based algorithms discussed in the article in Table 2.

5.1 Two Helper Functions: split and join2

We start with presenting two helper functions split and join2. For a BST T and key k , split (T ,k)
returns a triple (Tl ,b,Tr), where Tl (Tr) is a tree containing all keys in T that are smaller (larger)
than k , and b is a flag indicating whether k ∈ T . For two binary trees Tl and Tr , not necessarily
BSTs, join2(Tl ,Tr) returns a binary tree for which the in-order values are the concatenation of the
in-order values of the binary trees Tl and Tr (the same as join but without the middle key). For
BSTs, all keys in Tl have to be less than keys in Tr .

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:20 G. Blelloch et al.

Table 2. The Core join-based Algorithms and Their Asymptotic Costs – The Cost
is Given Under the Assumption That All Parameter Functions

Take Constant Time to Return

Function Work Span

insert, delete, update, find, first, last,
O (logn) O (logn)range, split, join2, previous, next, rank,

select, up_to, down_to

union, intersection, difference O
(
m log

(
n
m
+ 1

))
O (logn logm)

map, reduce, map_reduce, to_array O (n) O (logn)

build, filter O (n) O (log2 n)

For functions with two input trees (union, intersection and difference), n is the size of the larger

input, and m of the smaller.

Fig. 12. An example of split in a BST with key 42. We first search for 42 in the tree and split the tree by the
searching path, then use join to combine trees on the left and on the right, respectively, bottom-top.

Although both sequential, these two functions, along with the join function, are essential to
parallelize other algorithms. Intuitively, when processing a tree in parallel, we recurse on two sub-
components of the tree in parallel by spliting the tree by some key. After the recursions return, we
combine the results of the left and right parts, with or without the middle key, using join or join2.
Because of the balance of the tree, this framework usually gives high parallelism with low span
(e.g., poly-logarithmic).

Split. As mentioned above, split (T ,k) splits a BST T by a key k into Tl and Tr , along with a bit b
indicating if k ∈ T . Intuitively, the split algorithm first searches for k in T , splitting the tree along
the path into three parts: keys to the left of the path, k itself (if it exists), and keys to the right.
Then by applying join, the algorithm merges all the subtrees on the left side (using keys on the
path as intermediate nodes) from bottom to top to form Tl , and merges the right parts to form Tr .
Writing the code in a recursive manner, this algorithm first determines if k falls in the left (right)
subtree, or is exactly the root. If it is the root, then the algorithm directly returns the left and the
right subtrees as the two return trees and true as the bit b. Otherwise, WLOG, suppose k falls in
the left subtree. The algorithm further split the left subtree into TL and TR with the return bit b ′.
Then, the return bit b = b ′, the Tl in the final result will be TL , and Tr means to join TR with the
original right subtree by the original root. Figure 12 gives an example.

The cost of the algorithm is proportional to the rank of the tree. Intuitively (and informally),
this is because the cost of split is the sum of the cost of a sequence of join algorithms, which is
O (|r (TL) − r (TR) |). For the chain of trees involved, the middle terms cancel out, and the total cost
is then O (r (T)). We summarize and prove the cost of the split algorithm in the following theorem.

Theorem 7. The work of split(T ,k) is O (h(T)) for all strongly joinable trees and treaps. The two

resulting trees Tl and Tr will have rank at most rank(T) + c0 for some constant c0.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:21

Fig. 13. join-based algorithms for set-set operations. They are all independent of balancing schemes. The
syntax S1 | |S2 means that the two statements S1 and S2 can be run in parallel based on any fork-join
parallelism.

Proof. We only consider the work of joining all subtrees on the left side. The other side is
symmetric. Suppose we have l subtrees on the left side, denoted from bottom to top asT1,T2, . . .Tl .
As stated above, we consecutively join T1 and T2 returning T ′2 , then join T ′2 with T3 returning
T ′3 and so forth, until all trees are merged. The overall work of split is the sum of the cost of
l − 1 join functions. One observation is that, the pivot of the join of T ′i−1 and Ti , denoted as ei ,
used to be Ti ’s parent. Meanwhile, T ′i−1 is a subset of Ti ’s original sibling, denoted as Xi . We use
T (ei) = node(Xi , ei ,Ti) to denote the original subtree rooted at ei in the input.

We first prove by induction that computing T ′i = join(T ′i−1, ei ,Ti) gets T ′i with rank no more
than rank(Xi+1).

From the induction hypothesis, we know that rank(T ′i−1) ≤ r (Xi). Considering T ′i =

join(T ′i−1, ei ,Ti) andT (ei) = node(Xi , ei ,Ti), from the submodularity rule, we can get rank(T ′i) ≤
rank(T (ei)). Considering T (ei) is a subtree in Xi+1, we have

rank(T ′i) ≤ rank(T (ei)) ≤ rank(Xi+1).

We next prove the cost. The cost of the i-th join is Wi ≤ c |rank(Ti) − rank(T ′i−1) |. Note that
rank(T ′i−1) ≤ rank(Xi) ≤ rank(Ti) + cu − cl . Also, note that T ′i is achieved by joining Ti and
another tree. Therefore, rank(Ti) − rank(T ′i−1) ≤ rank(T ′i) − rank(T ′i−1).

This means that either Wi = c (rank(T ′i) − rank(T ′i−1)), or Wi is a constant no more than c2 =

c · (cu − cl). Therefore,Wi ≤ c (rank(T ′i) − rank(T ′i−1) + 2c2).

h (T)∑
i=1

Wi ≤
h (T)∑
i=1

c (rank(T ′i) − rank(T ′i−1) + 2c2)

≤ 2c · c2 · h(T) + rank(T ′i)

≤ O (h(T)) + rank(T (eh (T))) ≤ O (h(T)).

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:22 G. Blelloch et al.

For treaps, each join uses the key with the highest priority since the key is always on an upper
level. Hence, by Lemma 6, the complexity of each join is O (1) and the work of split is at most
O (h(T)). Obviously for treaps we have rank(Tl) and rank(Tr) at most rank(T). �

Join2. As stated above, the join2 function is defined similar to join without the middle entry. The
join2 algorithm first choose one of the input trees, and extract its last (if it is Tl) or first (if it is Tr)
element k . The two cases take the same asymptotical cost. The extracting process is similar to the
split algorithm. The algorithm then uses k as the pivot to join the two trees. In the code shown in
Figure 11, the split_last algorithm first finds the last element k (by following the right spine) in Tl

and on the way back to root, joins the subtrees along the path. We denote the result of dropping k
inTL asT ′. Then, join (T ′,k,Tr) is the result of join2. Unlike join, the work of join2 is proportional
to the rank of both trees since both split and join take at most logarithmic work.

Theorem 8. The work of T = join2(Tl ,Tr) is O (r (Tl) + r (Tr)) for all joinable trees. Furthermore,

rank(T) ≤ max(rank(Tl), rank(Tr)) + c ′, where c ′ is defined in Theorem 6.

Proof. The cost bound holds because split_last and join both take work asymptotically no more
than the larger tree rank. We next prove the range of rank(T). First of all, splitting the last fromTl

only decreases its rank (Theorem 7). Therefore, based on Theorem 6, T =join (T ′,k,Tr) has rank
no more than max(rank(Tr), rank(Tl)) + c ′. This proves the theorem. �

5.2 Set Functions Using join

In this section, we will present join-based algorithms on BSTs for set-set functions, including union,
intersection, and difference. Many other set operations, such as symmetric difference, can be imple-
mented by a combination of union, intersection, and difference with no extra asymptotical work. We
will start with presenting some background of these algorithms, and then explain in detail about
the join-based algorithms. Finally, we show the proof of their cost bound.

Background. The parallel set functions are particularly useful when using parallel machines since
they can support parallel bulk updates. As mentioned, although supporting efficient algorithms for
basic tree operations (e.g., insertion and deletion) are rather straightforward, it is more difficult to
implement efficient bulk operations. This is more challenging considering parallelism and dealing
with multiple balancing schemes. For example, combining two ordered sets of size n and m ≤ n
in the format of two arrays would take work O (m + n) using the standard merging algorithm in
the merge sort algorithm. In this case, even inserting a single element into a set of size n will have
linear cost. Another simple implementation is to store both sets as balanced trees, and insert the
elements in the smaller tree into the larger one, costing O (m logn) work. It overcomes the issue
of redundant scanning and copying, because many subtrees in the larger tree remain untouched.
However, this results in O (n logn) work for combining two ordered sets of the same size n, while
it is easy to make itO (n) by arrays. This is because the algorithm fails to make use of the ordering
in the smaller tree.

The lower bound for comparison-based algorithms for union, intersection, and difference for in-

puts of size n and m ≤ n, and returning an ordered structure,7 is log2

(
m+n

n

)
= Θ(m log(n

m
+ 1)),

which is the number of possible ways n keys can be interleaved withm keys [37]. Brown and Tar-
jan first matched these bounds, asymptotically, using a sequential algorithm based on RB trees [22].
Although designed for merging, the algorithm can be adapted for union, intersection, and difference

with the same bounds. The bound is interesting since it shows that implementing insertion with

7By “ordered structure,” we mean any data structure that can output elements in sorted order without any further compar-

isons (e.g., a sorted array, or a binary search tree).

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:23

union, or deletion with difference, is asymptotically efficient (O (logn) time), as is taking the union
of two equal sized sets (O (n) time). However, the Brown and Tarjan algorithm is complicated, only
works on RB trees, and is completely sequential.

Adams later described very elegant algorithms for union, intersection, and difference, as well
as other functions based on join [2, 3]. Adams’ algorithms were proposed in an international com-
petition for the Standard ML community, which is about implementations on “set of integers.”
Prizes were awarded in two categories: fastest algorithm, and most elegant yet still efficient pro-
gram. Adams won the elegance award, while his algorithm is almost as fast as the fastest program
for very large sets, and was faster for smaller sets. Because of the elegance of the algorithm, at
least three libraries use Adams’ algorithms for their implementation of ordered sets and tables
(Haskell [48] and MIT/GNU Scheme, and SML). The idea of Adams’ algorithm enlightens our par-
allel join-based set algorithms and the implementation in the PAM library, for which the sequential
version on WB trees is exactly the same as Adams’ algorithm.

Although only considering WB trees, Adams’ algorithms actually show that in principle all
balance criteria for search trees can be captured by the single function join. As long as a valid
join algorithm on a certain balancing scheme is provided, the correctness of the join-based set
operations can be guaranteed on the corresponding balancing scheme.

Surprisingly, however, there have been almost no results on bounding the work (time) of Adams’
algorithms, in general or on specific tree types. Adams informally argues that his algorithms take
O (n +m) work for WB tree, but that is a very loose bound. Blelloch and Reid-Miller later show
that similar algorithms for treaps [16] are optimal for work (i.e., Θ(m log(n

m
+ 1))), and are also

parallel. Their algorithms, however, are specific for treaps. The problem with bounding the work
of Adams’ algorithms, is that just bounding the time of split, join, and join2 with logarithmic
costs is not sufficient.8 One needs additional properties of the trees. As a result, there is no
tight bound even for Adams’ original algorithms on WB trees, not to mention other balancing
schemes.

Our work gives the first work-optimal bounds for the join-based algorithms for all four balancing
schemes in Section 2. We show that with the join algorithms in Section 4, we achieve asymptotically
optimal bounds on work for the set operations. These bounds hold when either input tree is larger
(this was surprising to us). Furthermore, the algorithms have O (logn logm) span, and hence are
highly parallel.

Algorithms. union(T1,T2) takes two BSTs and returns a BST that contains the union of all keys.
The algorithm uses a classic divide-and-conquer strategy, which is parallel. At each level of recur-
sion,T1 is split by k (T2), breakingT1 into three parts: one with all keys smaller than k (T2) (denoted
as L1), one in the middle either of only one key equal to k (T2) (when k (T2) ∈ T1) or empty (when
k (T2) � T1), and the third one with all keys larger than k (T2) (denoted as R1). Then two recur-
sive calls to union are made in parallel. One unions lc(T2) with L1, returningTl , and the other one
unions rc(T2) with R1, returningTr . Finally, the algorithm returns join (Tl ,k (T2),Tr), which is valid
since k (T2) is greater than all keys in Tl are less than all keys in Tr .

The functions intersection (T1,T2) and difference (T1,T2) take the intersection and difference of
the keys in their sets, respectively. The algorithms are similar to union in that they use one tree to
split the other. However, the method for joining and the base cases are different. For intersection,
join2 is used instead of join if the root of the first is not found in the second. Accordingly, the base
case for the intersection algorithm is to return an empty set when either set is empty. For difference,

8Bounding the cost of join, split, and join2 by the logarithm of the smaller tree is probably sufficient, but implementing a

data structure with such bounds is very much more complicated.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:24 G. Blelloch et al.

Table 3. Descriptions of Notations Used in Section 5.3

Notation Description

Tp The pivot tree
Td The decomposed tree
n max(|Tp |, |Td |)
m min(|Tp |, |Td |)

Tp (v),v ∈ Tp The subtree rooted at v in Tp

Td (v),v ∈ Tp The tree from Td that v splits9

si The number of nodes in layer i (Definition 4)
vk j The j-th node on layer k in Tp

d (v) The size of the rank cluster of a rank root v (Definition 5)

join2 is used anyway because k (T2) should be excluded in the result tree. The base cases are also
different in the obvious way.

The cost of the algorithms described above can be summarized in the following theorem.

Theorem 9. For all strongly joinable trees (and treaps), the work and span of the algorithm (as

shown in Figure 13) of union, intersection, or difference on two balanced BSTs of sizesm and n (n ≥ m)

is O (m log(
n

m
+ 1)) (in expectation for treaps) and O (logn logm), respectively (w.h.p. for treaps).

The work bound for these algorithms is optimal in the comparison-based model. In particular,
considering all possible interleavings, the minimum number of comparisons required to distin-

guish them is log
(
m+n

n

)
= Θ(m log(n

m
+ 1)) [37]. A generic proof of Theorem 9 working for four

balancing schemes will be shown in the next section. The span of these algorithms can be reduced
to O (logm) for WB trees even on the binary-forking model [15] by doing a more complicated
divide-and-conquer strategy.

5.3 The Proof of Theorem 9

We now prove Theorem 9, for all the joinable trees and all three set algorithms (union, intersection,
difference) from Figure 13.

For this purpose, we make two observations. The first is that all the work for the algorithms
can be accounted for within a constant factor by considering just the work done by the splits and
the joins (or join2s), which we refer to as split work and join work, respectively. This is because the
work done between each split and join is constant. The second observation is that the split work is
identical among the three set algorithms. This is because the control flow of the three algorithms
is the same on the way down the recursion when doing splits—the algorithms only differ in what
they do at the base case and on the way up the recursion when they join.

Given these two observations, we prove the bounds on work by first showing that the join work
is asymptotically at most as large as the split work (by showing that this is true at every node of
the recursion for all three algorithms), and then showing that the split work for union (and hence,
the others) satisfies our claimed bounds.

We start with some notation, which is summarized in Table 3. In the three algorithms, the first
tree (T1) is split by the keys in the second tree (T2). We therefore call the first tree the decomposed

tree and the second the pivot tree, denoted as Td and Tp , respectively. The tree that is returned is
denoted as T . Since our proof works for either tree being larger, we use m = min(|Tp |, |Td |) and
n = max(|Tp |, |Td |). We denote the subtree rooted at v ∈ Tp as Tp (v), and the tree of keys from Td

9The nodes in Td (v) form a subset of Td , but not necessarily a subtree. See details later.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:25

that v splits as Td (v) (i.e., split (v,Td (v)) is called at some point in the algorithm). For v ∈ Tp , we
refer to |Td (v) | as its splitting size.

Figure 14(a) illustrates the pivot tree with the splitting size annotated on each node. Since split

has logarithmic work, we have

split work = O ��
�

∑
v ∈Tp

(log |Td (v) | + 1)��
�
, 10

which we analyze in Theorem 11. We first, however, show that the join work is bounded by the
split work. We use the following Lemma.

Lemma 9. For T = union (Tp ,Td) on strongly joinable trees, then max(rank(Tp), rank(Td)) ≤
rank(T) ≤ rank(Tp) + rank(Td).

Proof. We prove it by induction on the tree size. For small trees, this conclusion obviously
holds. Note that Td will be split up into two trees Tl and Tr , with rank at most r = rank(Td)
(Theorem 7). lc(Tp) and rc(Tp) will take union with eitherTl orTr , i.e., L = union(lc(Tp),Tl) and R =
union(lc(Tp),Tl). Because of the induction hypothesis, 0 ≤ rank(L) ≤ rank(lc(Tp)) + rank(Tl) ≤
rank(lc(Tp)) + r , and similarly 0 ≤ rank(R) ≤ rank(lc(Tp)) + r . From the submodularity rule,
joining them increases the rank of Tp by at least 0 and at most rank(Td). �

Theorem 10. For each function call to union, intersection, or difference on strongly joinable trees

and treapsTp (v) andTd (v), the work to do the join (or join2) is asymptotically no more than the work

to do the split.

Proof. For intersection or difference, the cost of join (or join2) isO (log(|T |)), whereT is the result
tree. Notice that difference returns the keys in Td\Tp . Thus, for both intersection and difference we
have T ⊆ Td . The join work is O (log(|T |)), which is no more than O (log(|Td |)) (the split work).

For union, if rank(Tp) ≤ rank(Td), the join will costO (rank(Td)), which is no more than the split
work.

Consider rank(Tp) > rank(Td) for strongly joinable trees. The rank of lc(Tp) and rc(Tp), which
are used in the recursive calls, is at least rank(Tp) − cu . Using Lemma 9, the rank of the two
trees returned by the two recursive calls will be at least (rank(Tp) − cu) and at most (rank(Tp) +
rank(Td)), and differ by at mostO (rank(Td)) = O (log |Td |). Thus, the join cost isO (log |Td |), which
is asymptotically no more than the split work.

Consider rank(Tp) > rank(Td) for treaps. If rank(Tp) > rank(Td), then |Tp | ≥ |Td |. The root of

Tp has the highest priority among all |Tp | keys, so on expectation it takes at most the
|Tp |+ |Td |
|Tp | ≤ 2-

th place among all the |Td | + |Tp | keys. From Lemma 6, we know that the cost on expectation is
E[log t] + 1 ≤ logE[t] + 1 ≤ log 2 + 1, which is a constant. �

This implies the total join work is asymptotically bounded by the split work.
We now analyze the split work. We do this by layering the pivot tree starting at the leaves

and going to the root and such that nodes in a layer are not ancestors of each other. We use the
definition in Section 3. We define layers based on the ranks and denote the number of rank(i)-root
nodes as si . Lemma 1 shows that si shrinks geometrically for joinable trees, which helps us prove
our bound on the split work. Figure 14(b) shows an example of the layers of an AVL tree on the
two input trees of the join-based set functions.

Lemma 10. For any ancestor-free set V ⊆ Tp ,
∑

v ∈V |Td (v) | ≤ |Td |.

10When |Td (v) | = 0, we set loд |Td (v) | as 0.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:26 G. Blelloch et al.

Fig. 14. An illustration of splitting tree and layers. The tree in (a) isTp , and the dashed circles are the exterior
nodes. The numbers on the nodes are the sizes of the tree fromTd to be split by this node, i.e., the “splitting
size” |Td (v) |. (b) is an illustration of layers on an AVL tree.

The proof of this lemma is straightforward.
Not all nodes are rank roots. However, Property 7 shows that each rank cluster attached to a

rank root contains only a constant number of nodes, and they are all the rank root’s descendants.
By applying Lemma 1 and Property 7, we prove the split work. In the following proof, we denote

vk j as the j-th node in layer k .

Theorem 11. The split work in union, intersection, and difference on two joinable trees of size m
and n is O (m log(n

m
+ 1)).

Proof. The total work of split is the sum of the log of all the splitting sizes on the pivot tree
O (

∑
v ∈Tp

log(|Td (v) | + 1)). Denote l as the number of layers in the tree. Also, notice that in the

pivot tree, in each layer there are at most |Td | nodes with |Td (vk j) | > 0. Since those nodes with
splitting sizes of 0 will not cost any work, we can assume si ≤ |Td |. We calculate the dominant
term

∑
v ∈Tp

log(|Td (v) | + 1) in the complexity by summing the work across layers. We first only

consider all rank roots.

l∑
k=0

sk∑
j=1

log
(
|Td (vk j) | + 1

)
≤

l∑
k=0

sk log

(∑
j |Td (vk j) | + 1

sk

)

=

l∑
k=0

sk log

(
|Td |
sk
+ 1

)
.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:27

We split it into two cases. If |Td | ≥ |Tp |, |Td |
sk

always dominates 1. We have

l∑
k=0

sk log

(
|Td |
sk
+ 1

)
=

l∑
k=0

sk log

(
n

sk
+ 1

)
(4)

≤
l∑

k=0

m

2 	k/c
 log

(
n

m/2 	k/c
 + 1

)
(5)

≤ c
l/c∑
k=0

m

2k
log

n

m/2k

≤ c
l/c∑
k=0

m

2k
log

n

m
+ 2

l/c∑
k=0

k
m

2k

= O
(
m log

n

m

)
+O (m)

= O
(
m log

(n
m
+ 1

))
. (6)

If |Td | < |Tp |, |Td |
sk

can be less than 1 when k is smaller, thus the sum should be divided into two

parts. Also note that we only sum over the nodes with splitting size larger than 0. Even though
there could be more than |Td | nodes in one layer in Tp , only |Td | of them should count. Thus, we
assume sk ≤ |Td |, and we have

l∑
k=0

sk log

(
|Td |
sk
+ 1

)
=

l∑
k=0

sk log

(
m

sk
+ 1

)
(7)

≤
2 logc

n
m∑

k=0

|Td | log (1 + 1)

+

l∑
k=c log2

n
m

n

2 	k/c
 log

(
m

n/2 	k/c
 + 1

)
(8)

≤ O
(
m log

n

m

)
+ c

l
c −log2

m
n∑

k ′=0

m

2k ′
log 2k ′

= O
(
m log

n

m

)
+O (m)

= O
(
m log

(n
m
+ 1

))
. (9)

From (4) to (5) and (7) to (8), we apply Lemmas 1 and 8 and the fact that f (x) = x log(n
x
+ 1) is

monotonically increasing when x ≤ n.
The above cost does not consider the nodes that are not rank roots. Recall that we use d (v) to

denote the rank cluster of a rank root v . Applying Property 7, the total cost (in expectation for

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:28 G. Blelloch et al.

treaps) is less than

l∑
k=0

xk∑
j=1

d (vk j) log((Td (vk j) + 1)

= d (vk j) × 2

l∑
k=0

xk∑
j=1

log((Td (vk j) + 1)

= O
(
m log

(n
m
+ 1

))
.

Therefore, the split work is O (m log(n
m
+ 1)) in all cases discussed in the theorem. �

Theorem 12. The total work of union, intersection, or difference of all four balancing schemes on

two trees of sizem and n (m ≥ n) is O (m log(n
m
+ 1)).

This directly follows Theorems 10 and 11.

Theorem 13. The span of union and intersection or difference on all four balancing schemes is

O (logn logm). Here, n and m are the sizes of the two trees.

Proof. For the span of these algorithms, we denote D (h1,h2) as the span on union, intersection,
or difference on two trees of height h1 and h2. According to Theorem 10, the work (span) of split

and join are both O (log |Td |) = O (h(Td)). We have

D (h(Tp),h(Td)) ≤ D (h(Tp) − 1,h(Td)) + 2h(Td)

Thus, D (h(Tp),h(Td)) ≤ 2h(Tp)h(Td) = O (logn logm). �

Combining Theorems 12 and 13, we come to Theorem 9.

5.4 Other Tree Algorithms Using join

Insert and Delete. Instead of the classic implementations of insert and delete, which are specific
to the balancing scheme, we define versions based purely on join, and hence independent of the
balancing scheme.

We present the pseudocode in Figure 15 to insert an entry e into a tree T . The base case is
when t is empty, and the algorithm creates a new node for e . Otherwise, this algorithm compares
k with the key at the root and recursively inserts e into the left or right subtree. After that, the
two subtrees are joined again using the root node. Because of the correctness of the join algorithm,
even if there is imbalance, join will resolve the issue.

The delete algorithm is similar to insert, except when the key to be deleted is found at the root,
where delete uses join2 to connect the two subtrees instead. Both the insert and the delete algo-
rithms run in O (logn) work (and span since sequential).

One might expect that abstracting insertion or deletion using join instead of specializing for a
particular balance criteria has significant overhead. Our experiments show this is not the case—and
even though we maintain the reference counter for persistence, we are only 17% slower sequen-
tially than the highly optimized C++ STL library (see Section 6).

Theorem 14. For a joinable tree T with weight n = |T |, the join-based insertion algorithm does

O (logn) work. The rank of the output tree is at most cu + rank(T).

Proof. We prove this by induction. This is obviously true for the base case. Consider T =
node(L, t ,R), assume e goes to the left subtree L, and the new left subtree is L′. Then the output

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:29

Fig. 15. Pseudocode of some join-based functions. They are all independent of balancing schemes. The syntax
S1 | |S2 means that the two statements S1 and S2 can run in parallel based on fork-join parallelism.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:30 G. Blelloch et al.

tree isT ′ = join(L′, t ,R). Because of the induction hypothesis rank(L′) ≤ rank(L) + cu . Because of
the submodularity rule, rank(T ′) ≤ rank(T) + cu . �

Theorem 15. For a joinable tree T with weight n = |T |, the join-based deletion algorithm does

O (logn) work. The rank of the output tree is at most rank(T).

Proof. We first prove this by induction. This is obviously true for the base case. Consider
T = node(L, t ,R), assume k falls in the right subtree R, and the new left subtree is R′. Then the
output tree isT ′ = join(L, t ,R′). From the induction hypothesis, rank(R′) ≤ rank(R). Based on the
decreasing side of the submodularity rule, rank(T ′) ≤ rank(T). This proves that the output tree
of delete is at most the rank of the input.

In delete, there is at most one invocation of join2, which takes time no more than logn. For
T ′ = join(L, t ,R′), we next prove the cost. Consider two cases.

(1) The keyk � k (R). WLOG assumek falls in the right subtree ofR (the other case is symmetric).
R′ =join (lc(R),R,Rr) where Rr =delete (rc(R),k). Then

rank(R′) ≥ rank(lc(R)) ≥ rank(R) − cu ≥ rank(L) − 2cu + cl .

Meanwhile, rank(R′) ≤ rank(R) as we have proved above. Therefore,

rank(R′) ≤ rank(R) ≤ rank(L) + cu − cl .

In summary, rank(L) and rank(R′) differ by a constant. The cost of a single join is a constant.
(2) The key k = k (R). R′ =join2 (lc(R), rc(R)). The cost of this join is at most O (logn), but this

only happens once.

In summary, the total cost of all join is h(T) +O (logn) = O (logn), and the cost of the join2 is at
most O (logn). This proves the above theorem. �

Build. A balanced binary tree can be created from a sorted array of key-value pairs using a
balanced divide-and-conquer over the input array and combining with join. To construct a balanced
binary tree from an arbitrary array, we first sort the array by the keys, then remove the duplicates.
All entries with the same key are consecutive after sorting, so the algorithm first applies a parallel
sorting and then follows by a parallel packing. The algorithm then extracts the median in the de-
duplicated array, and recursively constructs the left/right subtree from the left/right part of the
array, respectively. Finally, the algorithm uses join to connect the median and the two subtrees.
The work is thenO (Wsort(n) +Wremove(n) +n) and the span isO (Ssort(n) + Sremove(n) + logn). For
work-efficient sort and remove-duplicates algorithms with O (logn) span this gives the bounds in
Table 2.

Bulk Updates. We use multi_insert and multi_delete to commit a batch of write operations. The
function multi_insert (T ,A,m) takes as input a P-Tree root t , and the head pointer of an array A
with its lengthm.

We present the pseudocode of multi_insert in Figure 15. This algorithm first sortsA by keys, and
then removes duplicates in a similar way as in build. We then use a divide-and-conquer algorithm
multi_insert_s to insert the sorted array into the tree. The base case is when either the array A or
T is empty. Otherwise, the algorithm uses a binary search to locate t ’s key in the array, getting the
corresponding index b in A. d is a bit denoting if k appears in A. Then, the algorithm recursively
multi-insertsA’s left part (up toA[b]) into the left subtree, andA’s right part into the right subtree.
The two recursive calls can run in parallel. The algorithm finally concatenates the two results by
the root of T . A similar divide-and-conquer algorithm can be used for multi_delete, using join2

instead of join when necessary.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:31

Decoupling sorting from inserting has several benefits. First, parallel sorting is well studied
and there exist highly optimized sorting algorithms that can be used. This simplifies the problem.
Second, after sorting, all entries in A to be merged with a certain subtree inT become consecutive.
This enables the divide-and-conquer approach which provides good parallelism, and also gives
better locality.

The total work and span of inserting or deletion of a sorted array of lengthm into a tree of size
n ≥ m isO (m log(n

m
+1)) andO (logm logn), respectively [14]. The analysis is similar to the union

algorithm.

Range. range(T ,kL,kR) extracts a subset of tuples from T in a key range [kL,kR], and outputs
them in a new P-Tree. The cost of the range function is O (logn). The pure range algorithm copies
nodes on two paths, one to each end of the range, and uses them as pivots to join the subtrees back.
When the extracted range is large, this pure range algorithm is much more efficient (logarithmic
time) than visiting the whole range and copying it.

Filter. The filter (T ,ϕ) function returns a tree with all tuples in T satisfying a predicate ϕ. This
algorithm filters the two subtrees recursively, in parallel, and then determines if the root satisfies
ϕ. If so, the algorithm uses the root as the pivot to join the two recursive results. Otherwise, it calls
join2. The work of filter is O (n) and the depth is O (log2 n) where n is the tree size.

Map and Reduce. The function map_reduce(T , fm , 〈fr , I 〉) on a tree t (with data type E for the
tuples) takes three arguments and returns a value of type V ′. fm : E �→ V ′ is the a map function
that converts each stored tuple to a value of typeV ′. 〈fr , I 〉 is a monoid where fr : V ′ ×V ′ �→ V ′ is
an associative reduce function onV ′, and I ∈ V ′ is the identity of fr . The algorithm will recursively
call the function on its two subtrees in parallel, and reduce the results by fr afterwards.

6 EXPERIMENTS

To evaluate the performance of our algorithms, we performed several experiments across the four
balancing schemes using different set functions, while varying the core count and tree sizes. We
also compare the performance of our implementation to other existing libraries and algorithms.

In this article, we mainly show the performance for the set operations. For other join-based
algorithms, some performance evaluations are available in [11, 60–62].

Implementation Details. We implemented all the algorithms in the PAM (Parallel Augmented

Map) library [59, 62]. PAM is a C++ library supporting normal ordered maps (key-value store) and
augmented maps (as defined in [62]) based on balanced binary trees. All four discussed balancing
schemes are supported in PAM. The algorithms in PAM are based on the join-based algorithms,
which matches the versions described in this article. Our code is available online [59]. We refer to
the trees implemented in PAM as P-Trees [61].

As a general-purpose library, PAM also supports persistence (and thus multi-versioning) based
on path-copying, and reference count garbage collection. A persistent (or purely functional) update
will not modify the input tree, but generate a new version with the update as the output. To perform
an update operation using path-copying, the algorithm will copy all tree nodes on the affected path,
and the new root pointer represents the output tree. We refer the readers to [61, 62] for more details.
This means that a tree node can be shared among multiple versions, and thus we use a reference
counter for each node to aid memory management. PAM also allows for in-place updates. In our
experiments, since the two implementations that we are comparing with are not persistent, we
test the in-place version of the algorithms in PAM.

Each tree node in P-tree contains the key, the value, two child pointers (2 × 8 = 16 bytes), the
balance information (4 bytes if needed; see details below), the size of the subtree (4 bytes), and a

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:32 G. Blelloch et al.

reference count (4 bytes, used for garbage collection; see details above). The balancing information
is only needed for AVL trees (the height) and RB trees (the black height and the color). For both
cases, we use a 4-byte integer to store them (for RB tree we encoded the color as a bit in the
black height). For treaps, the priority of each node is generated by a user-specified hash function
on the key. For WB trees, the weight can be directly computed by one plus the size. This means
that for a key-value pair with 8-byte key and 8-byte value (which is the setting we used in our
experiments), each node is 40 bytes (for WB trees and treaps) or 44 bytes (for AVL and RB trees). As
discussed below, experiments show that WB trees generally show the best performance among all
the balancing schemes we tested. We believe the reason is exactly because WB tree does not store
extra balancing information, and generally has lower height than treaps. Therefore, the default
interface of PAM is using WB trees.

We note that some metadata stored in the tree nodes, such as the size and the reference counter,
are not necessary for implementing set operations. However, they are useful in supporting more
complete functionalities in the ordered map interface. For example, the size of each subtree is
useful in answering queries such as selecting the k-th element, or answering the rank of an entry
in the ordered map. The reference counter is useful in memory management for persistent updates.
This information is not maintained in the other implementations that we compare to. In Section 7,
we will present some discussions about more space-efficient search tree structures.

Experiment Setups and Baseline Algorithms. For all the experiments, we use a 72-core Dell
R930 with 4× Intel(R) Xeon(R) E7-8867 v4 (18 cores, 2.4 GHz, and 45 MB L3 cache), and 1 Tbyte
memory. Each core is two-way hyperthreaded giving 144 hyperthreads. Our code was compiled
using g++ 5.4.1. In the semantics, we only use the binary fork-join, and parallel for loop. We compile
with -O2 because this gives us more stable results. We use numactl -i all in all experiments with
more than one thread. It evenly spreads the memory pages across the processors in a round-robin
fashion.

In all our experiments„ we use keys and values of the 64-bit integer data type. Throughout this
section, n1 and n2 represent the sizes of the two input sets. We generate multiple sets varying in
size up to 108. For most of the experiments (except for Figure 17), the keys are 64-bit integers drawn
from a uniform distribution. As mentioned, some experiments using different input distributions,
and real-world data distributions (e.g., Yahoo! Cloud Serving Benchmark (YCSB) [28] using Zipfian
distribution), have been shown in some other papers [14, 61]. We note that uniform distribution
also means that the two input trees are fully interleaving with each other, which is the worst case
for our algorithms. Because our algorithms are comparison-based, the actual key distribution does
not affect the running time, but how the two sets interleaving with each other matters. To better
understand this, in Figure 17 we will also show when the two trees have different overlapping ratio
in key ranges. Our experiments show that when the two sets partially overlap with each other, our
algorithms can exhibit better performance.

We test our algorithm by comparing it to other available implementations. This includes the
sequential version of the set functions defined in the C++ Standard Template Library (STL) [50],
which we use for std::vector, and STL’s std::set (implemented by RB tree). To see how well
our algorithm performs in a parallel setting, we compare it to parallel WBB-trees [31] and the
MCSTL library [33], both supporting array-tree union. For array-tree union, we use the tree to
denote the first set (size n1) and the array as the second set (size n2). For MCSTL and WBB-trees,
the entry stored in each tree node is just a key. For STL-map, STL-set, and our implementation
based on PAM, the entries are key-value pairs.

We note that more experiments on the join-based algorithms are also available in some other
papers, e.g., on different input distributions [14], comparing with concurrent data structures

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:33

[11, 61, 62], and comparing with existing geometric libraries [60]. The PAM library has also been
tested on real-world database benchmark and micro-benchmarks, including YCSB [28] and TPC
benchmarks [1] (see more details in [61]).

Comparing Different Balancing Schemes and Set Operations. To compare the four balancing
schemes, we choose union as the representative operation. Other operations give similar results.
We compare the schemes across varying input sizes. The two input sets are of the same size vary-
ing from 105 to 108. Figure 16(a) shows the runtime of union for varying tree sizes and all four
balancing schemes on 72 cores (144 threads). The overall trend and running times are similar
across the balancing schemes. Generally speaking, WB trees have the best performance among
the four tested balancing schemes. This is because the other three balancing schemes also need
to store an extra field as the balancing information (e.g., the height for AVL trees). For WB trees,
the balancing criteria is the size of each subtree, which is maintained anyway for answering other
queries (e.g., quickly selecting the i-th element in the set). It is perhaps not surprising that all bal-
ancing schemes achieve similar performance because the dominant cost is in cache misses along
the paths in the tree, and all schemes keep the trees reasonably balanced. Treaps have the worst
performance among the four, likely due to the larger height of the tree. The difference in running
times between treaps (slowest) and WB trees (fastest) can be up to 70%. However, for AVL and RB
trees, the difference from WB trees is usually within 30%. For this reason, the PAM library uses
the WB trees as the default underlying balancing scheme.

We will use the WB tree as the representative tree in the following experiments. We first show
tests to compare different set operations. The two input sets are of the same size varying from 105

to 108. To make intersection and difference have reasonable outputs (instead of outputting an empty
set for most of the time), we select at least a half of the elements in the second set from the first set.
Figure 16(b) compares time for the union, intersection, and difference functions. The three functions
have very similar performance. For intersection and difference, the time also includes possible cost
in collecting nodes that are not in the output. For this reason, intersection and difference are slightly
more expensive than union. We note that by using a persistent version of these algorithms, one
can avoid the extra cost of garbage collection. This is out of the scope of this article, so we omit
the details.

Comparing to Existing Parallel Implementations. To see how well our algorithm performs
in the parallel setting, we compare it to parallel WBB-trees [31] and the MCSTL library [33].
WBB-trees, as well as the MCSTL, offer an interface for bulk insertions and deletions, which takes
a tree and a sorted array, and inserts (or deletes) the elements in the array into (from) the tree.
Our version is symmetric in taking both input sets as trees. If the size of the array is smaller than
the tree, array-tree unions have an inherent advantage over tree-tree unions since accessing an
array is much more cache efficient than accessing an tree. As shown in Figure 16(c), we set the
first set size (n1) as 108 and vary the other set size (n2) from 105 to 108. In this case, the smaller
set will be represented as the input array in WBB-trees and MCSTL. In this case, WBB-trees have
better performance than our implementation when n2 is small. This is probably because WBB-tree
itself has a more cache-aware layout (eight keys per cache line as opposed to one), leading to
a better cache utilization compared to both the MCSTL and our implementation. When n2 gets
larger, our implementation achieves similar performance to WBB-tree, and is much faster than
MCSTL.

In Figure 16(d), we fix the second set size n2 as 108, which is the array in the input of WBB-tree
and MCSTL. We vary the first set size (n1) from 105 to 108. In this case, the running time of both
WBB-tree and MCSTL becomes (almost) flat. In other words, lowering the second set size does
not reduce the running time for either WBB-tree or MCSTL, and the running time is proportional

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:34 G. Blelloch et al.

Fig. 16. Experimental results on join-based algorithms.

to n2. In our symmetric version, the order of the two input sizes does not make a difference. The
curves of P-Trees in Figure 16(c) and (d) show a similar trend.

Scalability Tests. We also compare the parallelism of these implementations. In Figure 16(e), we
show their performance across 72 cores (144 threads). The inputs are both of size 108, and gener-
ated from a uniform distribution of integers. The trend shows that all three tested implementations

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:35

have good speedup up to 72 threads. Our version gets some extra speedup when hyperthreading
is involved. With small number of threads, WBB-trees are slightly faster than our code, but when
it comes to all 144 threads, P-Trees are slightly faster than WBB-trees. This indicates that our algo-
rithm achieves better parallelism. On 144 threads, P-Trees get a 73-fold self-speedup, while MCSTL
and WBB-trees have self-speedup numbers as 17 and 20, respectively. Because the sequential ver-
sion of WBB-trees is about 3.5× faster than our implementation, the parallel performances using
all 144 threads of P-Trees and WBB-trees are close to each other.

To conclude, in terms of parallel performance, our code and WBB-trees are always much better
than MCSTL because of MCSTL’s slow sequential performance (indicating that it may have more
expensive work). WBB-trees achieve a slightly better performance than ours when fewer threads
are used, but when using all available threads, WBB-trees achieve similar performance to ours,
indicating that our implementation explores better parallelism. Also, when the second input set
size is small, neither MCSTL nor WBB-trees can take the advantage, while the running time of our
implementation is always proportional to the small set size.

Comparing to Sequential Implementations. The STL supports set_union, set_intersection,
and set_difference on any container class, including sets based on RB trees, and sorted vec-
tors (arrays). Since the STL does not offer any parallel version of these functions, we could only
use it for sequential experiments. For two inputs of size n1 and n2, set_union takes O (n1 + n2)
time on std::vectors by using the standard merging algorithm which uses two pointers mov-
ing from left to right on the two inputs, comparing the current values, and writing the lesser to
the end of the output. This is also the merge algorithm in a standard merge sort. For std::set
that uses RB trees, we can insert elements from the smaller set into the larger, leading to a time of
O (min(n1,n2) log(n1+n2)). These two sequential algorithms are noted as STL-tree and STL-vector
in our tests.

Figure 16(f) gives a comparison of times for union. For equal lengths, our implementation is
about a factor of 7× faster than STL-tree, and about 5× slower than STL-vector. This is not surpris-
ing since we are asymptotically faster than STL-tree. Meanwhile, for STL-vector, the theoretical
cost (O (n1 + n2)) is asymptotically the same as ours (O (n2 log(n1/n2 + 1))) when n1 = n2. How-
ever, STL-vector’s array-based implementation just reads and writes the values, one by one, from
flat arrays, and therefore has much less overhead and much fewer cache misses than ours. We
note that using trees as the representation of ordered sets has the benefit of allowing for fast
insertions and deletions, which is not supported by array-based implementations. For taking the
union of smaller and larger inputs, our union is orders of magnitude faster than either STL version.
This is because their theoretical work bound (O (n1 + n2) and O (n2 log(n1 + n2)) is worse than our
O (n2 log(n1/n2 + 1))), which is optimal in the comparison model.

Testing Different Key Range Overlapping. In all previous experiments, we use two sets with
fully interleaved key ranges. As mentioned, this is actually the worst case for our algorithms. We
also tested two sets of different key range overlapping, and show the running time in Figure 17(a)
and (b). In Figure 17(a), both sets have a key range of 109, but they have partially overlapped key
range. The first set will always have keys in range [0, 109], and the second set will have keys in
key range [i × 108, 109 + i × 108] for test i . We vary i from 0 to 10, which means the key range
overlapping of the two sets varies from 0% (fully non-overlapping) to 100% (fully interleaving).
As shown in Figure 17, as the key range overlapping ratio decreases, the total running time also
decreases linearly. This is not surprising because when the overlapping range is small, it means
that in the divide-and-conquer algorithm, the two subproblems usually have unbalanced size, and
some of the subproblems quickly reach the base case. When the two key ranges do not overlap with

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:36 G. Blelloch et al.

Fig. 17. The running time of union algorithm on two input trees with different key range overlapping. We
use WB trees and 144 threads. The numbers on the x-axis show how much the key ranges of the input sets
overlap.

each other, the union algorithm degenerates to a join2 algorithm, which has work O (log2 n). This
matches our experimental result, where when the overlapping is 0%, the running time is smaller
than 1 ms.

We also tested when the key range of a set is a subset of the other key range. In particular, in
Figure 17(b), we always set the key range of the first set to be [0, 109], and the other key range is
set to be [0, 2i × 108] for i = 1 to 5. This means the key range ofT2 is always contained inT1’s key
range, and the overlapping changes from 20% to 100%. Similar to Figure 17(a), we see that when
the overlapping ratio decreases, the performance also improves in an almost linear manner. This
is also because in many subproblems, one of the tree sizes hits 0 quickly. As a result, the total work
performed by the algorithm is much smaller than normal (i.e., when they fully interleave with
each other).

7 RELATED WORK

Join-Based Algorithms. Tarjan first studied the join and split functions in [64]. Tarjan showed
how to efficiently implement the functions on RB and splay trees but did not give any applications
for the two functions. Adams [2, 3] applied join and split on WB trees to some bulk functions
and showed an elegant way to implement union, intersection, and difference. The method was then
implemented in some languages and libraries such as MIT/GNU Scheme in Haskell [48]. Adams’
paper was reported buggy [36, 58] in parameter choosing and also in that the join (which is called
concat3 in his paper) function does not rebalance the tree, but the framework of set functions
implementation is still used and studied today. Adams did not consider parallelism in the algorithm,
but the divide-and-conquer scheme is inherently parallel.

join and split appear in the LEDA library [49] for sorted sequences, and the CGAL library for
ordered maps [67]. None of this work considered parallel algorithms based on the functions, or
how to build an interface out of just join. Frias and Singler [33] use join and split on RB trees for an
implementation of the MCSTL, a multi-core version of the C++ STL. Their algorithms are lower
level based on partitioning across processors, and are for bulk insertion and deletion. The functions
join, split and join2 are also studied and used in various previous work for trees to support multiple
applications [12, 27, 56].

Set Operations. Merging two ordered sets has been well studied in the sequential setting. Hwang
and Lin [37] describe an algorithm to merge two arrays, which costs optimal work. Their algorithm

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:37

works for arrays, and since writing back both array costs O (m + n) work, the algorithm only
returns the cross pointers between two arrays. Brown and Tarjan [22] considered input data to
be arranged in a BST, which allows the merged result to be explicitly given by a new BST in time
O (m log(n

m
+1)). Their algorithm works on AVL and 2-3 trees. None of these algorithms considered

parallelism. Katajainen et al. [42] studied the space efficiency on merging two sets in parallel. Their
focus is not on reducing time complexity. Furthermore, the above-mentioned works are not based
on join and are much more complicated than our algorithm.

There is also previous work studying parallel set operations on two ordered sets, but each pre-
vious algorithm only works on one type of balance tree. Paul et al. studied bulk insertion and dele-
tion on 2-3 trees in the PRAM model [55]. Park and Park showed similar results for RB trees [54].
These algorithms are not based on join and are not work-efficient, requiringO (m logn) work. Kata-
jainen [41] claimed an algorithm withO (m log(n

m
+1)) work andO (logn) span using 2-3 trees, but

it appears to contain some bugs in the analysis [16]. Blelloch and Reid-Miller described a similar
algorithm as Adams’ (as well as ours) on treaps with optimal work (in expectation) and O (logn)
span (with high probability) on a EREW PRAM with scan operations. This implies O (logn logm)
span on a plain EREW PRAM, and O (logn log∗m) span on a plain CRCW PRAM. The pipelining
that is used is quite complicated. Akhremtsev and Sanders [7] describe an algorithm for array-tree
union based on (a,b)-trees with optimal work and O (logn) span on a CRCW PRAM. Our focus in
this article is in showing that very simple algorithms are work efficient, have polylogarithmic span,
and generic for multiple balancing schemes, and less with optimizing the span. We note that their
algorithms use multi-way search tree instead of binary, which potentially would have better I/O
efficiency than the binary trees. We present some discussions about this at the end of this section.
There has also been work about batched updates on certain balancing schemes [5, 6].

Set Algorithms in the Concurrent and Distributed Setting. Many researchers have considered
concurrent implementations of balanced search trees (e.g., [21, 43, 44, 51]). None of these are work
efficient for union since it is necessary to insert one tree into the other requiring at least Ω(m logn)
work. Researchers have also studied distributed memory implementations of maps and sets, includ-
ing a distributed version of STL as part of the HPC++ effort [39], and the STAPL library [63]. The
emphasis of this work is on how the maps and sets are partitioned across the memories.

Discussion about Other Balancing Schemes. This article shows that the join-based algorithm
framework applies to four balancing schemes. The authors believe that similar ideas apply to other
balancing schemes. For example, a recent paper [35] proposed the WAVL tree, which uses a similar
notion of rank as our work, but only allows integer ranks. Their methodology applies to balanced
binary trees where the height of the two siblings can differ by at most 2. They also showed the
equivalence of WAVL tree to an RB tree. As a result, our join-based framework also applies to
WAVL trees. This is another recent paper on zip trees [65], which is a randomized balanced tree
structure. The join algorithms for treaps and all join-based algorithms work correctly on zip trees.
However, zip trees does not directly fit in the definition of weakly joinable trees, and thus the
bounds and analysis does not directly apply to zip trees.

Discussion about Concurrent Tree Structures. There is previous work focusing on supporting
concurrent operations on BSTs [23, 26, 45–47, 53, 66]. Some of this previous work aims at making
such operations lock-free or wait-free [9, 21, 24, 32, 68]. The supported operations usually include
insertion, deletion, update, lookup, range queries, and sometimes more complicated queries. In-
stead of focusing on supporting concurrent operations, P-Trees provide bulk functions (e.g., union

and multi_insert) to commit a batch of operations in parallel. P-Trees and the PAM library are also
safe for concurrency, but concurrency is supported by making P-Trees persistent by path-copying

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

7:38 G. Blelloch et al.

[61, 62]. This requires all concurrent threads to work on a snapshot of the tree. To allow for
serializable concurrent operations on P-Trees, one can batch all update operations and commit
them using the parallel bulk functions. Since this is not the main focus of this article, we omit the
details, and more information can be found in [11, 61].

Discussion about I/O- and Space-Efficient Search Tree Structures. One concern of using bi-
nary trees is the space overhead and I/O efficiency. In particular, each data entry is stored in a tree
node, which needs to maintain the pointers, size, reference count, and so on. For this reason, there
are also researchers attempting to design algorithms for B-tree or B-tree-like data structures.

Akhremtsev and Sanders [7] described an algorithm for array-tree set algorithms based on (a,b)-
trees. Their algorithms are also based on the (multi-)split-join framework, and are work efficient
and highly parallelized. Their data structure uses an array of pointers to the nodes on the left or
right spine of the input tree with each rank. This provides fast access to spine nodes of a given
rank, and enables theoretical efficiency. In their paper [7], their implementation was compared
to a previous version of the PAM library, and achieved better performance. Their experiments
combine a bulk (an array) to a tree structure, while our union algorithm combines two trees. As
mentioned above, our implementation maintains extra metadata such as reference count and size,
and uses binary tree. The advantage of their algorithm is likely due to the better space efficiency
(less metadata in each tree node) and I/O efficiency by using (a,b)-trees (multiple keys maintained
in one tree node). We choose to store extra information and use binary structure because we want
to support more functionalities. Because of the extra space used, our implementation supports
persistence (multi-versioning) with garbage collection, and more operations such as selecting the
k-th element (see more details in Section 6). Also, using the binary structure enables cheaper path-
copying (for persistence), which would be expensive for a regular B-tree or (a,b)-tree (see details
below). This is important for some applications such as databases with multi-versioning [61]. Al-
though these functionalities are not specifically necessary for implementing set operations, we do
so in order to support the general-purpose ordered map interface.

P-trees have also been compared with concurrent B-tree-like structures, and have been shown
to achieve competitive or better performance by batching the updates and using a divide-and-
conquer algorithm similar to union [61].

It is also possible to extend our join-based algorithms to B-tree-like data structures. One concern
of using B-trees is that the large internal nodes in B-trees are expensive to copy, and therefore
not well suited for supporting persistence. In 2019, Dhulipala et al. [29] extend the join-based
algorithms to C-trees based on treaps. Instead of supporting a full ordered map interface, C-trees
only focused on graph streaming. While C-trees are binary trees, they store multiple keys (in their
case, graph edges) in the same tree node to allow for better cache locality and compression. Each
node is represented by a randomly sampled head key k , and a subsequent chunk, which contains
all elements between k and the next head. Each chunk can further be compressed. A C-tree is
then represented as a prefix, which is the chunk before the first head, and a tree, where each node
contains a head and its subsequent chunk. When a persistent update occurs, only the head of the
relevant internal nodes need to be copied. C-trees are shown to be practical for graph streaming.
The C-tree provides useful insights for extending our work to B-tree-like data structures. To extend
our general ordered map library to B-tree or its relatives, and to enable both good theoretical
bounds and practical performance is an interesting future direction.

8 CONCLUSION

In this article, we study parallel balanced binary trees. We proposed the join-based algorithms,
along with its analysis framework. We show conditions to make trees joinable, such that the

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

Joinable Parallel Balanced Binary Trees 7:39

join-based (parallel) algorithms work correctly and efficiently. In particular, we show for the first
time that a very simple “classroom-ready” set of algorithms is indeed work optimal when used
with four different balancing schemes—AVL, RB, WB trees and treaps—and also highly parallel.
The only tree-specific algorithm that is necessary is the join algorithm. For analysis, our approach
defines the notion of rank (differently for different balancing schemes) and shows invariants on
the rank. The definition of rank, along with the join algorithm for a specific balancing scheme,
ensures that the join-based algorithms are work optimal with polylogarithmic span.

We also test the performance of our algorithm. Our experiments show that our sequential al-
gorithm is about 7× faster for union on two maps of size 108 compared to the STL RB tree imple-
mentation. In parallel, our code outperforms or is competitive to two baseline algorithms (MCSTL
and WBB-tree) on different input sizes. Our code also achieves 73× speedup on 72 cores with
hyperthreading.

ACKNOWLEDGMENTS

We thank the reviewers for their comments and suggestions.

REFERENCES

[1] [n. d.]. TPC Benchmarks. ([n. d.]). Retrieved April 2019 from http://tpc.org/.

[2] Stephen Adams. 1992. Implementing Sets Effciently in a Functional Language. Technical Report CSTR 92-10. University

of Southampton.

[3] Stephen Adams. 1993. Efficient sets—a balancing act. Journal of Functional Programming 3, 04 (1993).

[4] Georgy Adelson-Velsky and E. M. Landis. 1962. An algorithm for the organization of information. USSR Academy of

Sciences 145 (1962), 263–266. In Russian, English translation by Myron J. Ricci, Soviet Doklady 3 (1962), 1259–1263.

[5] Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim Sukha, and Robert Utterback. 2014. Provably good

scheduling for parallel programs that use data structures through implicit batching. In ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA’14). 84–95.

[6] Kunal Agrawal, Seth Gilbert, and Wei Quan Lim. 2018. Parallel working-set search structures, in Proceedings of the

30th on Symposium on Parallelism in Algorithms and Architectures (SPAA’18).

[7] Yaroslav Akhremtsev and Peter Sanders. 2016. Fast parallel operations on search trees. In 23rd IEEE International

Conference on High Performance Computing. 291–300.

[8] Maya Arbel-Raviv and Trevor Brown. 2018. Harnessing epoch-based reclamation for efficient range queries. In Pro-

ceedings of the 23rd ACM Symposium on Principles and Practice of Parallel Programming. 14–27. https://doi.org/10.1145/

3178487.3178489

[9] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy.

2017. KiWi: A key-value map for scalable real-time analytics. In Proceedings of the 22nd ACM Symposium on Principles

and Practice of Parallel Programming. 357–369. https://doi.org/10.1145/3018743.3018761

[10] Rudolf Bayer. 1972. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta Informatica 1 (1972),

290–306.

[11] Naama Ben-David, Guy Blelloch, Yihan Sun, and Yuanhao Wei. 2019. Multiversion concurrency with bounded delay

and precise garbage collection. In ACM Symposium on Parallel Algorithms and Architectures (SPAA’19).

[12] Samuel W. Bent, Daniel D. Sleator, and Robert E. Tarjan. 1985. Biased search trees. SIAM Journal on Computing 14, 3

(1985), 545–568.

[13] Guy Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Parallel ordered sets using join. arXiv preprint:1602.02120.

[14] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just join for parallel ordered sets. In Proceedings of the 28th

ACM Symposium on Parallelism in Algorithms and Architectures. ACM, 253–264.

[15] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2019. Optimal parallel algorithms in the binary-forking

model. CoRR abs/1903.04650 (2019). arXiv:1903.04650, http://arxiv.org/abs/1903.04650.

[16] Guy E. Blelloch and Margaret Reid-Miller. 1998. Fast set operations using treaps. In Proceedings of the ACM Symposium

on Parallel Algorithms and Architectures (SPAA’98). 16–26.

[17] Norbert Blum and Kurt Mehlhorn. 1980. On the average number of rebalancing operations in weight-balanced trees.

Theoretical Computer Science 11, 3 (1980), 303–320.

[18] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-efficient scheduling of multithreaded computations. SIAM

Journal on Computing 27, 1 (1998), 202–229.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

http://tpc.org/
https://doi.org/10.1145/3178487.3178489
https://doi.org/10.1145/3018743.3018761
http://arxiv.org/abs/1903.04650,
http://arxiv.org/abs/1903.04650

7:40 G. Blelloch et al.

[19] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. Journal

of the ACM 46, 5 (1999), 720–748.

[20] Richard P. Brent. 1974. The parallel evaluation of general arithmetic expressions. Journal of the ACM 21, 2 (April 1974),

201–206.

[21] Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A practical concurrent binary search

tree. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’10).

257–268.

[22] Mark R. Brown and Robert E. Tarjan. 1979. A fast merging algorithm. Journal of the ACM (JACM) 26, 2 (1979), 211–226.

[23] Trevor Brown. 2016. Lock-free Chromatic Trees in C++. Retrieved April 2019 from https://bitbucket.org/trbot86/

implementations/src/.

[24] Trevor Brown and Hillel Avni. 2012. Range queries in non-blocking k-ary search trees. In Proceedings of the 16th

International Conference on Principles of Distributed Systems, Lecture Notes in Computer Science, Vol. 7702. 31–45.

[25] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A general technique for non-blocking trees. In Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’14). 329–342.

[26] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A general technique for non-blocking trees. In Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’14).

[27] Marek Chrobak, Tomasz Szymacha, and Adam Krawczyk. 1990. A data structure useful for finding Hamiltonian cycles.

Theoretical Computer Science 71, 3 (1990), 419–424.

[28] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing. 143–154.

[29] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-latency graph streaming using compressed purely-

functional trees. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation. 918–934.

[30] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. 2010. Non-blocking binary search trees. In

ACM Symposium on Principles of Distributed Computing. See also Technical Report CSE-2010-04, EECS Department,

York University, 2010.

[31] Stephan Erb, Moritz Kobitzsch, and Peter Sanders. 2014. Parallel bi-objective shortest paths using weight-balanced

B-trees with bulk updates. In Experimental Algorithms. Springer, 111–122.

[32] Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019. Persistent non-blocking binary search trees support-

ing wait-free range queries. In Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and Architectures.

275–286. https://doi.org/10.1145/3323165.3323197

[33] Leonor Frias and Johannes Singler. 2007. Parallelization of bulk operations for STL dictionaries. In Euro-Par 2007

Workshops: Parallel Processing, HPPC 2007, UNICORE Summit 2007, and VHPC 2007. 49–58.

[34] R. L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics 17, 2 (1969),

416–429.

[35] Bernhard Haeupler, Siddhartha Sen, and Robert E. Tarjan. 2009. Rank-balanced trees. In Workshop on Algorithms and

Data Structures. Springer, 351–362.

[36] Yoichi Hirai and Kazuhiko Yamamoto. 2011. Balancing weight-balanced trees. Journal of Functional Programming 21,

03 (2011), 287–307.

[37] Frank K. Hwang and Shen Lin. 1972. A simple algorithm for merging two disjoint linearly ordered sets. SIAM Journal

on Computing 1, 1 (1972), 31–39.

[38] Joseph JáJá. 1992. An Introduction to Parallel Algorithms. Vol. 17. Addison-Wesley, Reading, MA.

[39] Elizabeth Johnson and Dennis Gannon. 1997. HPC++: Experiments with the parallel standard template library. In

International Conference on Supercomputing (ICS’97). 124–131.

[40] Haim Kaplan and Robert Endre Tarjan. 1996. Purely functional representations of catenable sorted lists. In Proceedings

of the ACM Symposium on the Theory of Computing (STOC’96). 202–211.

[41] J. Katajainen. 1994. Efficient parallel algorithms for manipulating sorted sets. In Proceedings of Computer Science Con-

ference. University of Canterbury.

[42] Jyrki Katajainen, Christos Levcopoulos, and Ola Petersson. 1992. Space-Efficient Parallel Merging. Springer.

[43] H. T. Kung and Philip L. Lehman. 1980. Concurrent manipulation of binary search trees. ACM Transactions on Database

Systems 5, 3 (1980), 354–382.

[44] Kim S. Larsen. 2000. AVL trees with relaxed balance. Journal of Computer Systems and Science 61, 3 (2000), 508–522.

[45] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The ART of practical synchronization.

In Proceedings of the 12th International Workshop on Data Management on New Hardware (DaMoN’16). 3:1–3:8.

[46] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A B-tree for New Hardware Platforms.

In Proceedings of the IEEE International Conference on Data Engineering (ICDE’13). 302–313.

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

https://bitbucket.org/trbot86/implementations/src/
https://doi.org/10.1145/3323165.3323197

Joinable Parallel Balanced Binary Trees 7:41

[47] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness for fast multicore key-value storage.

In ACM European Conference on Computer Systems. 183–196.

[48] Simon Marlow et al. 2010. Haskell 2010 language report. Available online http://www.haskell.org/(May2011).

[49] Kurt Mehlhorn and Stefan Näher. 1999. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge

University Press, New York, NY.

[50] David R. Musser, Gillmer J. Derge, and Atul Saini. 2009. STL Tutorial and Reference Guide: C++ Programming with the

Standard Template Library. Addison-Wesley Professional.

[51] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-free binary search trees. In Proceedings of the ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’14). 317–328.

[52] Jürg Nievergelt and Edward M. Reingold. 1973. Binary search trees of bounded balance. SIAM Journal on Computing

2, 1 (1973), 33–43.

[53] Otto Nurmi and Eljas Soisalon-Soininen. 1996. Chromatic binary search trees. Acta Informatica 33, 6 (1996), 547–557.

[54] Heejin Park and Kunsoo Park. 2001. Parallel algorithms for red-black trees. Theoretical Computer Science 262, 1–2

(2001), 415–435.

[55] Wolfgang J. Paul, Uzi Vishkin, and Hubert Wagener. 1983. Parallel dictionaries in 2-3 trees. In Proceedings of the

International Colloquium on Automata, Languages and Programming (ICALP’83). 597–609.

[56] Raimund Seidel and Celcilia R. Aragon. 1996. Randomized search trees. Algorithmica 16 (1996), 464–497.

[57] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update and paging rules. Communications of

the ACM 28, 2 (1985). https://doi.org/10.1145/2786.2793

[58] Milan Straka. 2012. Adams’ trees revisited. In Trends in Functional Programming. Springer, 130–145.

[59] Yihan Sun, Guy Blelloch, and Daniel Ferizovic. 2018. The PAM Library. https://github.com/cmuparlay/PAM.

[60] Yihan Sun and Guy E. Blelloch. 2019. Parallel range, segment and rectangle queries with augmented maps. In SIAM

Symposium on Algorithm Engineering and Experiments (ALENEX’19). 159–173.

[61] Yihan Sun, Guy E. Blelloch, Andrew Pavlo, and Wan Shen Lim. 2020. On supporting efficient snapshot isolation for

hybrid workloads with multi-versioned indexes. PVLDB (2020).

[62] Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. 2018. PAM: Parallel augmented maps. In ACM Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP’18).

[63] Gabriel Tanase, Chidambareswaran Raman, Mauro Bianco, Nancy M. Amato, and Lawrence Rauchwerger. 2007. As-

sociative parallel containers in STAPL. In Workshop on Languages and Compilers for Parallel Computing (LCPC’07).

156–171.

[64] Robert Endre Tarjan. 1983. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics,

Philadelphia, PA.

[65] Robert E. Tarjan, Caleb C. Levy, and Stephen Timmel. 2019. Zip trees. In Workshop on Algorithms and Data Structures.

Springer, 566–577.

[66] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael Kaminsky, and David G. Andersen.

2018. Building a Bw-tree takes more than just buzz words. In Proceedings of the 2018 International Conference on

Management of Data. ACM, 473–488.

[67] Ron Wein. 2005. Efficient Implementation of Red-black Trees with Split and Catenate Operations. Technical Report. Tel-

Aviv University.

[68] Kjell Winblad, Konstantinos Sagonas, and Bengt Jonsson. 2018. Lock-free contention adapting search trees. In Proceed-

ings of the 30th Symposium on Parallelism in Algorithms and Architectures. 121–132. https://doi.org/10.1145/3210377.

3210413

Received September 2020; revised October 2021; accepted December 2021

ACM Transactions on Parallel Computing, Vol. 9, No. 2, Article 7. Publication date: April 2022.

http://www.haskell.org/(May 2011)
https://doi.org/10.1145/2786.2793
https://github.com/cmuparlay/PAM
https://doi.org/10.1145/3210377.3210413

