
Bi-directional Log-Structured Merge Tree
Xin Zhang, Qizhong Mao, Ahmed Eldawy, Vagelis Hristidis, Yihan Sun

{xzhan261,qmao002,eldawy}@ucr.edu,{vagelis,yihans}@cs.ucr.edu
University of California, Riverside

Riverside, California, USA

ABSTRACT
The Log-StructuredMerge (LSM) Tree has become a popular storage
scheme for modern NoSQL and New SQL database systems. The
LSM-tree scheme achieves high write throughput by first buffering
writes in memory, then flushing them to the disk with sequential
I/O. LSM-tree is an out-of-place structure, so the key range of a level
in the tree can overlap with those of other levels. This negatively
impacts range query performance, as multiple levels have to be
scanned. Note that range queries are fundamental operators for
other types of queries such as joins or spatiotemporal queries. To
improve the read performance of LSM-trees, this paper proposes
the Bi-directional LSM-tree, which differs from the classical LSM-
tree in that hot records can move to higher levels to improve the
overall LSM organization and benefit future range queries. The
Bi-directional LSM-tree reuses the work performed during range
queries to selectively generate a special type of components, called
sentinel components. Our experiments show that the Bi-directional
LSM-tree can savemore than 10% of disk I/O compared to a standard
Leveled LSM-tree.
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1 INTRODUCTION
Due to the growing popularity of write-intensive workloads, the
Log-Structured Merge (LSM) Tree [10] is widely used in mod-
ern database systems, such as AsterixDB [1], LevelDB [5], and
RocksDB [4]. To achieve high write throughput, the LSM-tree
buffers writes into components in memory and flushes the memory
components to disk via sequential I/O when it is full. An LSM-tree
may need to read multiple disk components to answer a query, as it

This work is licensed under a Creative Commons Attribution International
4.0 License.

SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9667-7/22/07.
https://doi.org/10.1145/3538712.3538730

generally has higher read amplification than traditional B+-trees [6].
To reduce the read amplification, LSM-tree performs compactions
(a.k.a. merges) regularly to organize the records into a sorted order.

One of the most widely used LSM-tree architectures is Leveled,
which was first implemented in LevelDB, and later adopted in
RocksDB [4] A Leveled LSM-tree groups disk components into
levels, and disk components in each level have disjoint key ranges.
The level size is controlled by a hyper-parameter size ratio (or fan
factor)T , such that the maximum size of level i +1 (i ≥ 1) isT times
larger than that of level i . When level i is full, a disk component in
this level is selected to merge with all disk components in level i + 1
that overlap with the selected component. Via compactions, records
(usually cold) can only be moved from upper (and smaller) levels to
lower (and larger) levels in a single-directional flow. This design
can effectively reduce the read amplification of point queries.

Although leveled LSM-tree has good point query performance,
its range query performance is sub-optimal [13], which impacts
several types of queries that use range queries (scans) as a basic
operator, such as joins or spatial queries. The matching records
may be distributed across many components in almost all levels,
as illustrated in Figure 1a. Given a range query Q = [32, 44], the
red components are operational components which may contain
matching records in the range from 32 to 44. The system must read
the red components from every level to answer the range query Q .
Besides, more random I/O also leads to lower cache hit rate, which
further reduces range query throughput. Compactions can alleviate
this problem to some extent, but they are expensive.

To improve the performance of range queries, we propose the
Bi-directional LSM-tree, which selectively generates components on
higher levels (referred to as sentinel components) to optimize the
execution of future hot range queries. This effectively means that
records can also move to higher levels, in contrast to the traditional
LSM scheme. Tominimize the cost for creating sentinel components,
we piggyback off the work already performed during range queries,
that is, the scan of disk components to obtain a stream of sorted and
distinct records (thus handling anti-matters/tombstones [1]). These
sentinel components, which are created only for hot ranges, are then
used to answer future queries by providing more sequential disk
access. A lightweight in-memory data structure is used to maintain
the hotness of each range. In Figure 1b, the blue components are
sentinel components built based on the hot range [30, 50]. Sentinel
components can directly answer any future range queries in [30, 50]
without checking components in the lower levels. Compared with
the LSM-tree in Figure 1a, Bi-directional LSM-tree saves disk I/O
and provides more sequential disk access.

In summary, this work makes the following contributions:

• We proposed the Bi-directional LSM-tree, which utilizes sen-
tinel components created from range queries to improve
range query performance (Section 3).
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(a) A leveled LSM-tree with three levels on the disk.
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(b) The Bi-directional LSM-tree built based on the above LSM-tree. [30, 50] is the detected hot range.

Figure 1: Each cell is a disk component. Given a range query, the red cells are regular disk components (operational compo-
nents) that contain query results. The blue components are sentinel components built eagerly based on the hot range.

• We implemented Bi-directional LSM-tree on a simulator, and
compared it with a standard Leveled LSM-tree. We showed
that our proposed method achieves lower total disk I/O than
the standard Leveled LSM-tree (Section 4).

2 RELATEDWORK
The optimization of LSM-tree has become a hot topic in the research
community [7]. Recent work has focused on reducing the write
amplification [2], merge operations [11, 12], compaction policy [8,
9], and query performance [3, 12, 13].

TRIAD [2] keeps hot data in memory for longer and only flushes
cold data to disk. Once the cold records are compacted to lower
levels in TRIAD, they cannot become hot anymore. Like TRIAD,
our method also optimizes LSM-tree by data hotness, but we al-
low cold records to move back to upper levels if they become hot
again. dCompaction [11] simulates real compactions by virtual com-
pactions, which only modifies the metadata to avoid heavy disk
I/O during real compactions. Our method also updates metadata
instead of rewriting original disk components to reduce the over-
heads. LSbM-tree [12] introduced an on-disk buffer to reduce cache
and improve query performance. It might not work well on range
queries and introduces extra overhead when querying uncached
cold records. Our method can benefit both range queries and point
queries. Monkey [3] proposed a co-tuning compaction policy to
optimize the balance between the cost of updates and reads with a
given memory budget. REMIX [13] built extra indexes to improve
the range query performance but introduced high maintenance cost
when write happens. The system needs to rebuild the index due
to the updates. Building sentinel components can benefit future
flush and merge operations, but LSbM-tree, Monkey, REMIX cannot
achieve these benefits.
3 BI-DIRECTIONAL LSM-TREE
To improve the read performance of LSM-tree, we propose Bi-
directional LSM-tree (denoted as BiLSM in the rest), a variant of
Leveled LSM-tree. BiLSM uses sentinel components to store hot
record ranges. In this section, we first discuss the properties of sen-
tinel components, and how to build sentinel components. Then, we
present an architectural overview and basic operations of BiLSM.
3.1 Sentinel Components
Let’s denote regular components as the disk components created
by flushes or compactions. Sentinel components are special regular

components created from range queries with a sentinel flag. The
system creates sentinel components based on a range K when it
identifies K as a hot range. Then, the system marks this range
K (changing its metadata) as disabled in the regular components
whose key ranges overlap withK . In Figure 1b, assume each regular
component can store 10 records, we created the two blue sentinel
components based on the hot range [30, 50] and updated “keys” in
the metadata of the four red regular components.

Compared to regular components, sentinel components have
two useful properties: 1) they have the newest version of the records
in its key range with respect to any component in lower levels, and 2)
the key range of a sentinel component does not overlap with any other
sentinel component. These two properties indicate that any future
range queries that are fully contained in the sentinel components1
only need to visit the sentinel components without going deeper
into the BiLSM. By gathering hot ranges in sentinel components,
BiLSM can access fewer components than a standard LSM-tree to
answer a query, greatly reducing disk I/O. The system can also
utilize more sequential I/O by accessing more “compact” sentinel
components on the top level of the BiLSM, instead of resulting in
random I/O accessing all levels in the tree.

Creating Sentinel Components.Anaive approach is to create
sentinel components for every range query. However, this leads to
two problems: 1) too many small sentinel components if there are
many short range queries, leading to high overhead to manage them
and scan among them; 2) too costly to create sentinel components
for cold records which will not be queried frequently. Hence, we
need to carefully identify ranges that (mostly) contain hot data and
create sentinel components for them.

To identify the hot range from an LSM-tree, we divide the whole
key space into non-overlapping Bucket Ranges and propose a cost
model to track the access frequency of each Bucket Range. We first
equally split the whole key space into a set of disjoint contiguous
Bucket Ranges. For each Bucket Range,wemaintain a reader counter
and a writer counter to keep track of the hotness information in
this Bucket Range. The hotness information is the score of the read
counter minus the score of the writer counter, which is the the
estimated benefit. The write counter stores the number of updates
in this bucket range in a certain time window. The read counter is

1In fact, this is also true for any future lookup query.
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the accumulated predicted number of disk I/O in this Bucket Range
saved by using BiLSM.

Assume size ratioT (T > 1.0) and block size B bytes. In a Leveled
LSM-tree of L(L ≥ 1) levels, given a range query, assume the system
reads s bytes from level 1 and sT i−1 bytes from level i(i ≥ 1). To
answer the range query, BlocksLeveled =

∑L
i=1 (

⌈
sT i−1/B

⌉
+ 1)

blocks must be read in the worst case. In a BiLSM, a total of∑L
i=1 sT

i−1 bytesmust be read from level 1 only, which isBlocksBiLSM =⌈
(
∑L
i=1 sT

i−1)/B
⌉
+1 blocks. SinceBlocksLeveled ≥

⌈
(
∑L
i=1 sT

i−1)/B
⌉
+∑L

i=1 1 =
⌈
(
∑L
i=1 sT

i−1)/B
⌉
+ 1 + (L − 1) = BlocksBiLSM + (L − 1),

BiLSM can save up to L − 1 blocks than a Leveled LSM-tree for one
range query. Therefore, we take L − 1 as the predicted number of
saved disk blocks.

Compared with the regular LSM-tree, BiLSM pays the extra
write cost for sentinel components creation, but potentially saves
future disk I/O if the same query (or its sub-range) is performed
again. We define a cost function to decide whether to create sentinel
components for a Bucket Range or not. We have a tunable threshold
θ . For a bucket range r , if estimated benefit > θ × costcreation ,
the cost model will decide to build sentinel components for this
range. The creation cost (costcreation ) of range r is the number of
blocks that will be written to build sentinel components. A sentinel
component is valid until the next flush. Therefore, we estimated
the benefit of range r by the total number of future accesses in
r before the next flush happens. We assume the data distribution
in the workload is similar within several adjacent time windows.
The cost function uses the previous time windows’ information to
estimate the future time windows’ information. For a given bucket
range r , the cost function computes the estimated benefit for future
reads if we create a sentinel component for r . Function (1) computes
the estimated benefit for r :

FBi =
OBi

OWtotal
× FWtotal (1)

In the above functions, FBi is the future benefit for range r . OBi is
the accumulated expected number of saved disk blocks in r , which
is stored in the read counter. OWtotal is the existing write cost for
the whole range, which is stored in the write counter. FWtotal is
the future write cost of the whole space, which is the number of
pages that can be filled in the memory component before the next
flush happens. We use the total memory component size minus its
current size to be FWtotal . Since FWtotal can be computed at any
time from the memory component, for a given bucket range r , the
cost function can estimate the future benefit FBi at any timestamp
before the next flush happens.
3.2 Architecture Overview
Figure 2 shows the overall framework of the BiLSM. The left part
in Figure 2 is a BiLSM, the middle part shows the workflow of pro-
cessing the workload, and the right part is the cost model to detect
hot ranges and make the decision to build sentinel components.
Figure 2 did not include operations that are related to the memory
component of BiLSM. But the query executor of BiLSM also checks
the memory component. The goal of BiLSM is to reduce the disk I/O,
and the cost of accessing the memory component can be neglected
compared to disk access.

Read Operations. The BiLSM contains two types of read oper-
ations: Get (point queries) and Multi-Get (range queries). BiLSM

handles the point queries similar to a standard LSM-tree. Reading
starts from the memory component to the bottom level in the disk
and stops when finds the query answer in the middle. BiLSM han-
dles the range queries different with standard LSM-tree. In Figure 2,
the system first checks if regular components are flushed after cre-
ating sentinel components. If “Yes”, the query executor accesses the
new regular components. Then, checks ifQ is fully contained in the
key ranges of all sentinel components. If “Yes”, the query executor
directly outputs the query results only from sentinel components
and new regular components (if any). If “No”, the query executor
performs the scan like a standard LSM-tree. Finally, updates the
hotness information of the query range according to the cost model.

Write Operations. BiLSM contains sentinel components writes
and users writes, both write operations update writer counter in
cost model (in Figure 2 right part). After updating the hotness in-
formation and the cost model returns a hot range, BiLSM directly
inserts new sentinel components into the top level. Like a standard
LSM-tree, all the users write operations inserts to the memory com-
ponent first. If the memory component is full, BiLSM flushes it to
the disk. When the top is full, BiLSM merges old regular compo-
nents and overlapping sentinel components to lower levels. If there
is no newly flushed component, sentinel components can stay in
the top level and let the top level overflow.

4 EXPERIMENTS
To evaluate the performance of BiLSM, we implemented a simulator
for Leveled LSM-tree and BiLSM to compare their I/O cost on eight
synthetic workloads.

4.1 Experimental Settings
We tested eight workloads, each containing a loading phase of
different settings to create an initial LSM-tree. Each record is a
key-value pair of 1 kB (20 bytes key and 1004 bytes dummy value).
The whole key space is between [1, 106]. No sentinel components
were created in the loading phase.

Workload a-d all had a read-only (denoted by R) phase. Workload
b and d had a loading phase of 1 million unique records. Workload
a and c had a loading phase of 1.09M records where 1M were
insertions and 90k were updates. Each disk component stored 2000
records. Workload a and b contained 100k range queries which
the length was 6000, workload c and d contained 5k range queries
which the length was 200.

Workload e-h all had a mix of read and write (denoted by M)
phase, they had a loading phase of 0.99M records of equal size.
Workload e and f contained 90k range queries which length was
6000 and 10k insertions, workload д-h contained 23k range queries
which length was 120 and 10k insertions.

For all the eight workloads, the hot queries (denoted by H ) were
generated based on uniform distribution, the cold queries (denoted
by C) were disjoint with each other and each only appeared once. In
workload e and д, 90% of 10k were updates of the records in loading
phase and 10%were new insertions. The insertions or updates might
happen in the queries’ range, we simulated this scenario in the
mixed workload e andд. If updates are involved in a workload, there
will be obsolete data. The experimentwith “Obsolete = Yes” (denoted
by O) simulated the obsolete data. We took a linear function to
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Figure 2: The framework of maintaining and using the BiLSM.

partition the whole key space into 500 Bucket Ranges of 2000 keys
each. The threshold θ to create sentinel component was 1.

4.2 Results Analysis
We compared BiLSM with standard Leveled LSM-tree (denoted as
Leveled) and summarized the results in Table 1. The results indicated
that BiLSM has better read performance than, or is at least com-
petitive to LSM-tree. In particular, we have the four observations:
(1) In workloads containing hot ranges (a, b, e , and f ), BiLSM can
save more than 10% of disk I/O than Leveled LSM-tree. (2) Even for
workloads without hot ranges (c and д), BiLSM can still outperform
Leveled LSM-tree. Although the queries are cold, the underlying
Bucket Ranges can be hot. (3) Building sentinel components can
merge hot data early than regular flushes happen and eliminate the
old versions of hot data in the lower levels (by updating the meta-
data file). In mixed workloads, the write amplification of hot data
in BiLSM is smaller than in LSM-tree. Overall, mixed workloads
have more benefits than read-only workloads. In Table 1, workload
e and f benefited more than workload a and b. (4) If a workload
contains updates and the updated records are queried frequently,
by merging more eagerly to create sentinel components, obsolete
data can be removed more effectively to reduce the total data size,
saving more disk I/O during reads (workload e saves more disk I/O
than f ).

To conclude, BiLSM can reduce more I/O by accessing a smaller
size of data and reducing the write amplification of the hot data.
BiLSM can have benefits if the workload contains the hot accessed
range and can benefit more in the mixed workload. The best sce-
narios of BiLSM are mixed workloads with hot queries, which are
workloads e and f .

5 CONCLUSION AND FUTUREWORK
We present Bi-directional LSM-tree to move data in both top-down
and bottom-up directions in an LSM-tree. Hot data is moved from
lower levels to upper levels with sentinel components, improving
the system’s read performance. Paying write cost to create sentinel
components beforehand but save lots of disk I/Os for future reads,
flushes, and compactions. The results showed that Bi-directional
LSM-tree outperform Leveled LSM-tree in almost all settings in the
four read-only workloads and four mixed workloads.

Currently, sentinel components can only be generated from
range queries, we are planning to add support for point queries to
generate sentinel components as well. A better function (probably
a learned function) is needed to partition the whole key space into

Workload Query Set Total I/O Cost (×103) Build SCsR/M H/C O Leveled BiLSM Benefit
a R H Y 7,050 6,213 ↓ 12% 380
b R H N 7,050 6,156 ↓ 13% 380
c R C Y 2,115 2,031 ↓ 4% 380
d R C N 2,049 2,049 – 0
e M H Y 3,535 2,834 ↓ 20% 450
f M H N 3,300 2,784 ↓ 16% 436
д M C Y 856 842 ↓ 2% 87
h M C N 756 756 – 0

Table 1: The total disk I/O cost for different workloads. I/O
cost: the number blocks read andwritten. e.g. total I/O cost =
read + written 7050 ×103 blocks, write cost to build sentinel
components = written 380 blocks. SCs: sentinel components.
R: Real-only. M: Mixed. H: Hot. C: Cold. O: Obsolete.

Bucket Ranges, which can handle different key distributions. In the
future, we will test our approach on a real system, like RocksDB [4].
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