
Parallel Cover Trees and their Applications
Yan Gu

UC Riverside
ygu@cs.ucr.edu

Zachary Napier
UC Riverside

znapi001@ucr.edu

Yihan Sun
UC Riverside

yihans@cs.ucr.edu

Letong Wang
UC Riverside

lwang323@ucr.edu

ABSTRACT
The cover tree is the canonical data structure that efficiently main-
tains a dynamic set of points on a metric space and supports near-
est and 𝑘-nearest neighbor searches. For most real-world datasets
with reasonable distributions (constant expansion rate and bounded
aspect ratio mathematically), single-point insertion, single-point
deletion, and nearest neighbor search (NNS) only cost logarithmi-
cally to the size of the point set. Unfortunately, due to the compli-
cation and the use of depth-first traversal order in the cover tree
algorithms, we were unaware of any parallel approaches for these
cover tree algorithms.

This paper shows highly parallel and work-efficient cover tree
algorithms that can handle batch insertions (and thus construc-
tion) and batch deletions. Assuming constant expansion rate and
bounded aspect ratio, inserting or deleting 𝑚 points into a cover
tree with 𝑛 points takes 𝑂 (𝑚 log𝑛) expected work and polyloga-
rithmic span with high probability. Our algorithms rely on some
novel algorithmic insights. We model the insertion and deletion
process as a graph and use a maximal independent set (MIS) to
generate tree nodes without conflicts. We use three key ideas to
guarantee work-efficiency: the prefix-doubling scheme, a careful
design to limit the graph size on which we apply MIS, and a strat-
egy to propagate information among different levels in the cover
tree. We also use path-copying to make our parallel cover tree a
persistent data structure, which is useful in several applications.

Using our parallel cover trees, we show work-efficient (or near-
work-efficient) and highly parallel solutions for a list of problems
in computational geometry and machine learning, including Eu-
clidean minimum spanning tree (EMST), single-linkage clustering,
bichromatic closest pair (BCP), density-based clustering and its hi-
erarchical version, and others. To the best of our knowledge, many
of them are the first solutions to achieve work-efficiency and poly-
logarithmic span assuming constant expansion rate and bounded
aspect ratio.

CCS CONCEPTS
•Theory of computation→ Sharedmemory algorithms;Data
structures design and analysis.
KEYWORDS
cover tree, parallel algorithms, parallel data structures, nearest neigh-
bor search, euclidean minimum spanning tree, single-linkage clus-
tering

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9146-7/22/07.
https://doi.org/10.1145/3490148.3538581

ACM Reference Format:
Yan Gu, Zachary Napier, Yihan Sun, and LetongWang. 2022. Parallel Cover
Trees and their Applications. In Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’22), July 11–14, 2022,
Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3490148.3538581

1 INTRODUCTION
Nearest neighbor search (NNS) on ametric space is one of the most
widely-used primitives in algorithm design, which has applications
in computational geometry, computer graphics, machine learning,
computer vision, and many other areas. Finding (or even approxi-
mating) nearest neighbor for general metrics requires linear time1.
However, the metrics in real-world applications and of practical in-
terest usually do exhibit nice properties that can be exploited. Some
widely-studied properties include the low expansion rate, which
indicates that the density of points in the metric space changes
smoothly, and bounded aspect ratio (defined in Sec. 2),

A canonical data structure that exploits such a property is the
cover tree [8], which is usually considered as the “standard” solu-
tion for NNS on metric space, both theoretically and practically.
Theoretically, the point-insert, point-delete, and NNS query only
take logarithmic time, assuming the metric space has constant ex-
pansion rate and bounded aspect ratio. Practically, highly-optimized
software for cover trees from [8, 39] demonstrates good perfor-
mance on a large variety of real-world instances. Cover tree is sim-
pler than several related data structures around the time [23, 41,
44], but it is only simple conceptually. Although cover trees were
proposed in 2006, many tricky details and corrections are discussed
and made in later works [26, 31, 43]. In fact, it was only until re-
cently that Elkin and Kurlin [31] corrected the single-update and
query bounds, which will be reviewed in Sec. 3.

A cover tree𝑇 organizes a set 𝑆 of points in somemetric space [8].
It consists of a number of levels. Every level consists of nodes, each
corresponding to a point in 𝑆 . Note that a point can correspond
to multiple nodes across different levels. The cover tree is defined
to maintain three key invariants (formal definition in Sec. 3): (1)
Nesting: tree nodes at level 𝑖 is a subset of nodes at level 𝑖 − 1.
(2) Covering tree: for all 𝑖 , each tree node at level 𝑖 − 1 must be
covered by some tree nodes in level 𝑖 within distance 2𝑖 (one cor-
responding node at level 𝑖 will be the parent of that at level 𝑖 − 1).
(3) Separation: any two tree nodes at level 𝑖 are separated by dis-
tance 2𝑖 . We show an illustration in Fig. 1. A cover tree for a set 𝑆 of
points is not unique. As long as the three invariants hold, the log-
arithmic bound for point insertion, deletion, and NNS query holds
(assuming low expansion rate and bounded aspect ratio).

1A simple example is a uniform metric space [5] where all pairwise distances are
similar so that we can take no structural advantage [8].

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

259

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490148.3538581
https://doi.org/10.1145/3490148.3538581
https://doi.org/10.1145/3490148.3538581

AB
C

C

DA
E

F

B
G H

A

Level 2, radius=22

Level 1, radius=21

Level 0, radius=20

Figure 1:An example cover treewith 8 points in 3 levels. No points
are in other points’ circles at the same level (separation distance),
and each point is in at least one point’s circle at a higher level
(covering distance).

Given the wide applications of cover trees, parallelizing it is of
interest both in theory and in practice. There are two major chal-
lenges in parallelizing it. The first one is the complication in the
algorithms mentioned above, especially in the analysis. The sec-
ond and main reason is that the existing cover tree algorithms are
also inherently sequential—both the insertion and the deletion are
in a depth-first order (see Alg. 1 and 2: the algorithms need to tra-
verse as deep as possible, and modify the cover tree during back-
tracking). Hence, the result of a single-insert/delete can drastically
change the position of another operation. An example is presented
in Fig. 2. The two inserted nodes, even when they will be inserted
to different branches in the tree, can interact and conflict with each
other. Hence it is highly non-trivial to parallelize the original algo-
rithm to handle parallel insertions on two or more points. To solve
such conflicts, we need some proximity information for each point
(e.g., the points close to it), but such information is not known be-
fore the point is inserted into the cover tree. This chicken-and-egg
issue adds extra difficulty to parallelizing the cover tree. To the best
of our knowledge, we are only aware of two papers that “claimed”
that they parallelized the cover tree [39, 57]. Sharma and Joshi’s
algorithm [57] missed many details and it remains unclear what
their algorithms and the cost bounds are. Izbicki and Shelton’s ver-
sion [39] relaxed the separation property in cover trees. Hence,
their tree is more similar to a quadtree, and the cost of an NNS can
be linear as opposed to logarithmic in the original cover tree [8].
As a result, it has been open for 15 years on parallelizing the cover
tree proposed in 2006, while maintaining logarithmic query and
update costs.
Contribution in this paper. We show highly parallel and work-
efficient cover tree algorithms that can handle batch insertions
(and thus construction) in Alg. 4 and batch deletions in Alg. 5. In
particular, we show algorithms with the following bounds onwork
(number of operations) and span (longest dependent operations,
formally defined in Sec. 2):

TheoRem 1.1. Assuming constant expansion rate and bounded as-
pect ratio, inserting or deleting𝑚 points into a cover tree with𝑛 points
takes𝑂 (𝑚 log𝑛) expected work and polylogarithmic span with high
probability.

This also indicates that constructing a cover tree of size 𝑛 takes
𝑂 (𝑛 log𝑛) expectedwork and polylogarithmic spanwith high prob-
ability.Themore precise versions of the results are given inThm. 4.9,

4.10 and 4.12. Our algorithms are work-efficient (modulo random-
ization) as they spend the same operations as the sequential al-
gorithm. NNS queries are naturally parallelized since they do not
modify the cover tree, but cluster queries, as discussed in many
applications in Sec. 5, require batch-deletion on the persistent par-
allel cover tree.

We note that designing the parallel algorithms for batch-insertion
and batch-deletion is highly non-trivial, both in algorithm design
and in analyzing the correctness and cost bounds. Our key idea is
that, instead of inserting or deleting the points using depth-first
traversal, we consider all points to be inserted or deleted at each
level as a whole, and process the levels either top-down (for in-
sertion) or bottom-up (for deletion). Take the batch insertion as
an example. To process a set of points 𝑆 to be inserted at level 𝑖 ,
the main challenge is to identify a subset 𝑆 ′ of them that can be
added to this level, such that (1) they are well-separated and (2) all
other points in 𝑆 will be covered either by the existing points at
this level or points in 𝑆 ′. Our key insight is to model the points as
a graph 𝐺 to illustrate the pairwise conflict relationship (i.e., two
points cannot both be put at this level because they are too close
to each other). Then any maximal independent set (MIS) on this
graph gives a feasible set of points that can be inserted at this level,
while other points are guaranteed to be covered by some of the se-
lected points at this level. Using this MIS approach gives a valid
cover tree, but its efficiency is not straightforward—considering
constructing a cover tree by batch-inserting 𝑛 points to an empty
tree. Constructing the graph 𝐺 already takes at least 𝑂 (𝑛2) work,
but the sequential algorithm only uses 𝑂 (𝑛 log𝑛) work. To make
our algorithm work-efficient and highly parallel, in addition, we
need to consider: (1) the prefix doubling approach such that the
“additional information” that each sub-batch adds to the cover tree
is limited (to bound the number of edges in𝐺); (2) to minimize the
number of point pairs to check when constructing edges in𝐺 and
avoid checking pairwisely in the batch; and (3) to efficiently prop-
agate information between the levels. With detailed solutions and
justifications given in Sec. 4, we can show that with our design,
the additional work to resolve the conflicts caused by parallel in-
sertions (constructing 𝐺 and running MIS on 𝐺) is asymptotically
bounded by the work of the sequential insertion, in expectation.
Also, using parallel MIS [4, 12] with polylogarithmic span enables
polylogarithmic span for the entire algorithm since a cover tree has
Θ(log𝑛) levels assuming low expansion rate and bounded aspect
ratio. Putting all pieces together, our batch-insertion algorithm is
work-efficient and highly parallel, with the cost bounds given in
Thm. 4.9 and 4.10. Batch-deletion can be solved similarly, but it
does not require the prefix-doubling scheme.

Given the wide applications of NNS in computational geome-
try and machine learning, our new algorithms for cover tree give
the first work-efficient and highly parallel solutions to a list of
problems given in Sec. 5, again assuming low expansion rate and
bounded aspect ratio. While for many of the applications, we can
just replace the sequential cover treewith our parallel one, we high-
light our algorithm for Euclidian minimum spanning tree (EMST)
and single-linkage clustering. To support parallel cluster queries
in these applications, we need to make our cover tree a functional
data structure. For single-linkage clustering, which is one of the

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

260

A

A
B

A
B

Y

X

B

AB

A

A B

AB

A

AX B

AB

A

AY

B

AB

A

AX Y B

AB

A

AX

YX

B

AB

A

AY

YX

(a) (b) (c)

(d) (e) (f)

Y
X

Figure 2: An example of the challenge for parallel insertion. Points A and B are already in the tree and we now want to insert points X and
Y. Figure (a) shows the original cover tree before the insertions, and figures (b) and (c) give the tree if either X or Y is inserted, respectively.
However, if both insertions are applied in parallel and independently, then the tree shown in figure (d) becomes invalid since points X and
Y are not separated in this level. In the sequential algorithm, figure (e) shows the final cover tree when we first insert X and then Y, and
figure (f) gives the tree after inserting point Y then X. Both versions are valid cover trees, but a correct parallel algorithm needs to identify
the potential conflict between point pairs like X and Y, and yield a correct output tree (either figure (e) or (f)). Our solution requires a few
key observations and an efficient parallel MIS (maximal independent set) algorithm as a subroutine, and is explained in more details in
Sec. 4.1.

most widely-used methods for hierarchical agglomerative cluster-
ing, we combine our parallel EMST algorithm with a recent al-
gorithm by Wang et al. [66], and achieve the first nearly-work-
efficient parallel algorithm with polylogarithmic span.

2 PRELIMINARIES
We use the term 𝑂 (𝑓 (𝑛)) with high probability (whp) in 𝑛 to
indicate the bound 𝑂 (𝑘 𝑓 (𝑛)) holds with probability at least 1 −
1/𝑛𝑘 for any 𝑘 ≥ 1. With clear context we drop “in 𝑛”. We use
log𝑛 as a short form of 1 + log2 (𝑛 + 1).
Low-Expansion Metric Space. A metric (𝑋,𝑑𝑋) is defined on a
set 𝑋 and with a distance function 𝑑 : 𝑋 × 𝑋 → R∗ that satisfies
properties: (1) 𝑑𝑋 (𝑥,𝑦) = 0 ⇔ 𝑥 = 𝑦 for 𝑥,𝑦 ∈ 𝑋 , (2) 𝑑𝑋 (𝑥,𝑦) =
𝑑𝑋 (𝑦, 𝑥) for 𝑥,𝑦 ∈ 𝑋 , and (3) 𝑑𝑋 (𝑥,𝑦) ≤ 𝑑𝑋 (𝑥, 𝑧) + 𝑑𝑋 (𝑧,𝑦) for
𝑥,𝑦, 𝑧 ∈ 𝑋 . With clear context, we drop the superscript 𝑋 .

Define 𝐵𝑋 (𝑝, 𝑟) = {𝑥 ∈ 𝑋 | 𝑑 (𝑝, 𝑥) ≤ 𝑟 } as the closed ball
centered at point 𝑝 and containing all points in 𝑋 at a distance of
at most 𝑟 from 𝑝 . With clear context, we drop 𝑋 . We say a metric
has (𝜌, 𝑐)-expansion [41] iff for all 𝑝 ∈ 𝑋 and 𝑟 > 0,

|𝐵(𝑝, 𝑟) | ≥ 𝜌 =⇒ |𝐵(𝑝, 2𝑟) | ≤ 𝑐 · |𝐵(𝑝, 𝑟) |.
The parameter 𝑐 is referred to as the expansion rate of the metric
space, and we say a metric has a low or constant expansion rate
if 𝑐 = 𝑂 (1). Usually we assume 𝜌 is 𝑂 (log |𝑋 |), which guarantees
constant expansions for most real-world datasets. Intuitively, low
expansion means a smooth distribution of the points, and rules out
the case where as the ball grows, we encounter a few points, then a
long distance with no points, then suddenly a tremendous number
of points. This case is also less likely in most real-world datasets.

TheoRem 2.1 (Sampling TheoRem [41]). Given a metric with
(𝜌, 𝑐)-expansion, a uniformly random subset 𝑋 ′ with |𝑋 ′ | = 𝑚 will
have (max(𝑐𝜌,𝑂 (log𝑚)), 2𝑐)-expansion with high probability to𝑚.

We note that if we want to improve the probability to the size
of 𝑛, then the analysis in [41] implies that we just change𝑂 (log𝑚)
in the parameter to 𝑂 (log𝑛).

This theorem shows that for low-expansion metric space, a sam-
ple of this space is also low-expansion. This is crucial for our ran-
domized batch-insertion algorithm in Sec. 4.1.

The query cost for cover trees relies on the expansion rate in-
cluding or excluding the query point(s). For simplicity, we still use
𝑐 to denote the expansion rate after such modifications, if it is in-
creased. In particular, for single-point query and bichromatic clos-
est pairs, the query expansion rate includes the query point; for
Euclidean MST and single-linkage clustering, the query expansion
rate excludes the query points.
Bounded Aspect Ratio. Bounded aspect ratio is another com-
mon assumption for real-world datasets. Aspect ratio is defined
as Δ = max{𝑑 (𝑥,𝑦) | 𝑥,𝑦∈𝑋 }

min{𝑑 (𝑥,𝑦) | 𝑥,𝑦∈𝑋 } . A common assumption is that the as-
pect ratio is bounded—if the input size is 𝑛, then the aspect ratio is
𝑛𝜅 for some constant 𝜅 > 0. For instance, the ratio of the Earth’s
radius to a sand’s radius is only about 1010 ≈ 233. Most of the
real-world applications have aspect ratios smaller than this value.
Hence, for big-data applications (usually 𝑛 ≥ 106), it is reasonable
to assume Δ = 𝑛𝜅 for some constant 𝜅 > 0, and log Δ = 𝑂 (log𝑛).
The height of a cover tree H(𝑇) is ⌈1 + log2 Δ⌉. For theoretical
accuracy, we leave H(𝑇) as a parameter when analyzing existing
and our new cover tree algorithms, while in practical applications
we can assumeH(𝑇) = 𝑂 (log2 Δ) = 𝑂 (log𝑛).

For simplicity, throughout this paper, we assume min𝑑 (𝑥,𝑦) =
1, so aspect ratio is simplified as Δ = max𝑑 (𝑥,𝑦). Note that this is
only for the ease of description (e.g., the leaf level in a cover tree
is always level 0), and none of the previous cover tree algorithms
or our new ones rely on this assumption.
Functional Trees / Persistent Trees. Functional data structures
are data structures that are immutable (i.e., no operations modify
existing data), and thus any update operation will create a new ver-
sion instead of updating in place. For tree-based data structures,
recent work [10, 11, 27, 28, 61, 62] showed that using path-copying
is a both theoretically and practically efficient approach to support
functional trees. In particular, any update (including insertion or

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

261

AB
C

C

DA
E

F

B
G H

A
A’

B’

Insert X into 𝑇

X

Figure 3: A functional cover tree using path copying. The blue
nodes and lines show the original cover tree 𝑇 . When inserting a
new point 𝑋 , it follows the path from 𝐴 → 𝐵 and will be finally
inserted as a child of 𝐵. A functional insertion will copy all nodes
on the path (i.e.,𝐴 to𝐴′ and 𝐵 to 𝐵′), and insert them to the copied
nodes. The tree nodes in the original cover tree are immutable. Fi-
nally, following the root of 𝐴′, we can find the cover tree 𝑇 ′ with
the new point 𝑋 inserted, and the original cover tree 𝑇 is still ac-
cessible by reading the root 𝐴.

deletion) will copy the full path from the root to the node (or nodes,
for multi-point queries) to be updated. In this way, we can main-
tain copies of all history versions of the tree structure, which will
be useful for many applications in Sec. 5. An illustration of a per-
sistent tree using path-copying is presented in Fig. 3.
Computational Model and Notations. We use the work-span
model for fork-join parallelism with binary forking to analyze par-
allel algorithms [11, 25], which is recently used in many papers on
parallel algorithms (a short list: [2, 6, 13, 14, 21, 22, 24, 29]).

We assume a set of threads that share a common memory. Each
thread supports standard RAM instructions, and a fork instruction
that forks two new child threads. When a thread performs a fork,
the two child threads all start by running the next instruction, and
the original thread is suspended until all children terminate. A com-
putation starts with a single root thread and finishes when that
root thread finishes. An algorithm’s work is the total number of
instructions and the span (depth) is the length of the longest se-
quence of dependent instructions in the computation. We can exe-
cute the computation efficiently using a randomized work-stealing
scheduler both in theory and in practice [11, 17, 25].

Some subcomponents (MIS and semisort, see details below) used
in this paper need constant-cost atomic operation TestAndSet(𝑝),
which reads and attempts to set the boolean value pointed to by 𝑝
to true. It returns true if successful and false otherwise.
Parallel Maximal Independent Set. For a graph 𝐺 = (𝑉 , 𝐸), an
independent set is a set of vertices 𝑉 ′ ⊆ 𝑉 , such that for any
𝑢, 𝑣 ∈ 𝑉 ′, (𝑢, 𝑣) ∉ 𝐸. A maximal indepent set (MIS) is an inde-
pendent set 𝑉 ′ where ∀𝑣 ∈ 𝑉 , 𝑣 ∉ 𝑉 ′, 𝑉 ′ ∪ {𝑣} is not an indepen-
dent set. In parallel, the problem can be solved in𝑂 (|𝐸 |) work and
𝑂 (log3 |𝑉 |) span whp. Our recent work [58] improved the span to
𝑂 (log |𝑉 | log𝑑max) whp where 𝑑max is the maximum degree of
any vertex in the graph 𝐺 . In this paper, we will use parallel MIS
as a subcomponent.
Semisort. Given a sequence of key-value pairs, a semisort algo-
rithm reorders the element in the sequence such that elements

with the same key are contiguous [36]. In parallel, semisort can
be solved in 𝑂 (𝑛) expected work and 𝑂 (log𝑛) span whp [11].

3 COVER TREES
This section overviews the cover tree structure [8] and its various
properties shown in [8, 31, 43].

A cover tree consists of a number of levels that are indexed by
the integer 𝑖 , which decreases as the levels are descended. Every
level consists of nodes, each of which corresponds to a unique
point in the data set 𝑆 . Note that each point can correspond to
multiple nodes across different levels.

Let𝐶𝑖 denote the set of points in 𝑆 associated with the nodes at
level 𝑖 . The cover tree is defined to maintain three key invariants:

(1) Nesting. 𝐶𝑖 ⊂ 𝐶𝑖−1. This means that a point that is associ-
ated with a node at one level is also associated with a node
at every level below it.

(2) Covering tree. For every 𝑝 ∈ 𝐶𝑖−1, there exists a 𝑞 ∈ 𝐶𝑖
such that 𝑑 (𝑝, 𝑞) ≤ 2𝑖 and the node at level 𝑖 associated
with 𝑞 is a parent of the node at level 𝑖 − 1 associated with
𝑝 .

(3) Separation. For all distinct 𝑝, 𝑞 ∈ 𝐶𝑖 , 𝑑 (𝑝, 𝑞) > 2𝑖 .
For simplicity, we assume 𝑑 (𝑝, 𝑞) ≥ 1 for all 𝑝, 𝑞 ∈ 𝑆 , so all

critical levels in the cover tree has 𝑖 ≥ 0.
Finally, we differentiate a few different versions using compres-

sion. The plain version stores the cover tree in ⌈1 + log2 Δ⌉ levels,
so each point can show up at multiple levels. The tree height is
then H(𝑇) = ⌈1 + log2 Δ⌉. To compress the tree, one can either
compress a tree node with one child (so the tree has at most 2𝑛−1
nodes) [8], or consider all tree nodes corresponding to the same
point as a supernode [31]. We use the plain version throughout
this paper since parallelizing cover trees is already very challeng-
ing. Meanwhile, we believe that our techniques apply to the com-
pressed versions, and we leave that as future work.

3.1 Cover Tree Properties
Below are some important lemmas for cover trees that will be used
in designing algorithms for parallel cover trees.

Lemma 3.1. For each point 𝑝 , the number of points at level 𝑖 which
falls into ball 𝐵(𝑝, 2𝑖+𝜅) is 𝑐3+𝜅 for any non-negative integer 𝜅.

Proof. Let 𝑄 = 𝐵(𝑝, 2𝑖+𝜅) ∩𝐶𝑖 (𝐶𝑖 is the set of points at level 𝑖) be
the set of points described in Lem. 3.1. For all 𝑞 ∈ 𝑄 , since they are
all at level 𝑖 , the balls 𝐵(𝑞, 2𝑖−1) must be disjoint. The idea is then
to bound the number of such disjoint balls around 𝑝 . Now consider
all points within ball 𝐵(𝑝, 2𝑖+𝜅+1), which is a superset of𝑄 . Wewill
then discuss the number of disjoint balls 𝐵(𝑞, 2𝑖−1) one can pack
inside 𝐵(𝑝, 2𝑖+𝜅+1). For any 𝑞 ∈ 𝑄 , since 𝑞 ∈ 𝐵(𝑝, 2𝑖+𝜅), we have
𝑑 (𝑝, 𝑞) ≤ 2𝑖+𝜅 , and thus 𝐵(𝑝, 2𝑖+𝜅+1) ⊆ 𝐵(𝑞, 2𝑖+𝜅+2). Therefore,

|𝐵(𝑝, 2𝑖+𝜅+1) | ≤ |𝐵(𝑞, 2𝑖+𝜅+2) | ≤ 𝑐3+𝜅 |𝐵(𝑞, 2𝑖−1) |

Note that all balls𝐵(𝑞, 2𝑖−1)must be contained in ball𝐵(𝑝, 2𝑖+𝜅+1).
This proves that the total number of such points 𝑞 can be no more
than |𝐵(𝑝, 2𝑖+𝜅+1) |/|𝐵(𝑞, 2𝑖−1) | ≤ 𝑐3+𝜅 . □

We note that this lemma can be viewed as a simplified form
of the packing lemma in [31]. Since this form is exactly what is

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

262

Algorithm 1: Single-Point Insert(𝑝 , 𝑄𝑘 , 𝑘).
Input: The point 𝑝 to be inserted, a cover set 𝑄𝑘 and a

level 𝑘 .
Output: A cover tree that includes the new point 𝑝 .

1 𝑄 ← {Children(𝑞) | 𝑞 ∈ 𝑄𝑘 }
2 if 𝑑 (𝑝,𝑄) > 2𝑘 then return false
3 else
4 𝑄𝑘−1 ← {𝑞 ∈ 𝑄 | 𝑑 (𝑝, 𝑞) ≤ 2𝑘 }
5 if Insert(𝑝,𝑄𝑘−1, 𝑘 − 1) = false then
6 if 𝑑 (𝑝,𝑄𝑘) ≤ 2𝑘 then
7 𝑞 ← any point in 𝑄𝑘 satisfying 𝑑 (𝑝, 𝑞) ≤ 2𝑘

8 Insert 𝑝 into 𝑞’s children
9 return true and exit

10 else
11 return false

needed to analyze our parallel cover tree, we provide this analysis
here, and hopefully it provides some insights to the readers on how
the expansion rate affects the properties of the cover tree. Based on
this lemma, it is easy to bound the number of children for any tree
node in a cover tree.

CoRollaRy 3.2. The number of children of any tree node is ≤ 𝑐4

in a cover tree.

For a tree node at level 𝑖 , all children are at level 𝑖 − 1 and must
be in 𝐵(𝑝, 2𝑖). Plugging in 𝜅 = 1 gives the stated bound. This is a
simple use case of Lem. 3.1, and in Sec. 4, we will extensively use it
to bound the work and span for the parallel cover tree algorithms.

Lemma 3.3 (QeRy cost [31]). A nearest neighbor query takes
𝑂 (𝑐10H(𝑇)) work, and a 𝑘-nearest neighbor query takes 𝑂 (𝑐7 (𝑘 +
𝑐3) log𝑘 · H (𝑇)) work.

The analyses are given by Elkin and Kurlin in [31]. The nearest
neighbor query algorithm loops over all tree levels in a top-down
manner. At each level, it visits at most 𝑐6 tree nodes. Then the al-
gorithm will check all their children, multiplying another 𝑐4. The
𝑘-NN search can be analyzed similarly.

3.2 Sequential Cover Tree Algorithms
We now review a few useful sequential primitives on cover trees.
Elkin and Kurlin [31] recently pointed out some fatal issues in the
analysis of the original cover tree paper. Here, we formally analyze
the sequential algorithms first. We do not consider the analysis in
this section as a contribution of this paper, but we need the results
to correctly bound our parallel algorithms.
Single-point insertion.We present the single insertion algorithm
on the cover tree in Alg. 1, originally from [43].

It iterates over the levels of the tree from top to bottom, and at
each level it has a set𝑄𝑖 of nodes that 𝑝 could possibly be a descen-
dent of. Specifically, any node within a distance of 2𝑖+1 from 𝑝 is
a candidate. In the first iteration, 𝑄𝑖 contains only the root node.
We construct a set 𝑄𝑖−1 for the next level down by taking all the
children of nodes in 𝑄𝑖 and filtering out those that are not candi-
dates. We then make a recursive call with 𝑄𝑖−1, which represents
an attempt to insert 𝑝 as a descendent of one of 𝑄𝑖−1. If that fails,

Algorithm 2: Single-Point Delete(𝑝 , {𝑄𝑘 , 𝑄𝑘+1, ..., 𝑄∞},
𝑘).
Input: The point 𝑝 to be deleted, a set of cover sets

{𝑄𝑘 , 𝑄𝑘+1, ..., 𝑄∞}, and the current level 𝑘 .
Output: The modified cover tree that excludes the point 𝑝 .

1 𝑄 ← {Children(𝑞) : 𝑞 ∈ 𝑄𝑘 }
2 𝑄𝑘−1 ← {𝑞 ∈ 𝑄 | 𝑑 (𝑝, 𝑞) ≤ 2𝑘 }
3 Delete(𝑝 , {𝑄𝑘−1, 𝑄𝑘 , ..., 𝑄∞}, 𝑘 − 1)
4 if 𝑑 (𝑝,𝑄) = 0 then
5 Remove 𝑝 from𝐶𝑘−1 and from the children of Parent(𝑝)
6 for 𝑝 ′ ∈ Children(𝑝) do
7 𝑘 ′ ← 𝑘 − 1
8 while 𝑑 (𝑝 ′, 𝑄𝑘′) > 2𝑘

′ do
9 Insert 𝑝 ′ into 𝐶𝑘′ (and 𝑄𝑘′)

10 𝑘 ′ ← 𝑘 ′ + 1
11 𝑞′ ← any point in 𝑄𝑘′ satisfying 𝑑 (𝑝 ′, 𝑞′) ≤ 2𝑘

′

12 Make 𝑞′ as the parent of 𝑝 ′

then nodes for 𝑝 at any levels below 𝑖 fulfill the separation condi-
tion, so if a node at this level in 𝑄𝑖 covers 𝑝 , we can insert 𝑝 as its
child and exit. If no such node covers 𝑝 , then we return false.

TheoRem 3.4 (Single inseRtionwoRK). A single point insertion
uses 𝑂 (𝑐5H(𝑇)) work.
Proof. The insertion algorithm traverses all levels in the tree, and
visits all tree nodes 𝑞𝑖 at level 𝑘 − 1 if 𝑑 (𝑝, 𝑞𝑖) ≤ 2𝑘 , and their
children 𝑞′𝑗 . Note that all balls 𝐵(𝑞′𝑗 , 2

𝑘−1) must be in 𝐵(𝑝, 2𝑘+1),
so based on Lem. 3.1, there can only be 𝑐5 of such points. Hence,
the insertion algorithm uses 𝑂 (𝑐5H(𝑇)) work. □

Here this bound seems tighter than the bound by Elkin and
Kurlin [31], given that their bound is 𝑂 (𝑐8H(𝑇)). However, we
note that the definition of tree height in [31] is different from us—
their tree height only counts for non-empty levels while our tree
height includes all levels. Hence, either bound can be better, de-
cided by the input distribution.
Single-point deletion. The deletion algorithm again starts from
the top of the tree and goes down one level at a time, and again
at each iteration it starts with a set of nodes at this level 𝑄𝑖 that
are within two times the covering distance of 𝑝 . The recursive call
will remove 𝑝 from every level below this level, and also find new
parents for the orphaned nodes. After the recursive call returns,
we only need to remove 𝑝 from this level and find parents for the
newly orphaned nodes. For each orphaned node, it must be covered
by some node in𝑄 , so we just check each𝑄 in order, starting from
this level and going up the levels until we find the first level that
covers us. The only exception is when the root is deleted, and we
can process that separately. Then once we find the new parent of
the orphaned node, we will update the pointers.

Lemma 3.5 (Single deletionwoRK). A single point deletion uses
𝑂 (𝑐8H(𝑇)) work.
Proof. Beygelzimer et al. [8] showed that in the deletion algorithm,
only one point from each level can promote more than two levels
(Line 8–10). At each level, the deleted point 𝑝 has at most 𝑐4 chil-
dren, which is compared to at most 𝑐4 tree nodes in𝑄𝑘′ for at most

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

263

Algorithm 3: Traverse(𝑇 , 𝑝)
Input: The cover tree 𝑇 and the point 𝑝 to be checked.
Output: A list of tree nodes 𝑁 that contains tree nodes 𝑞𝑖

on level 𝑘 such that 𝑑 (𝑝, 𝑞𝑖) < 2𝑘+1.

1 𝑁 ← {virtual-root}
2 𝑄 ← {𝑇 .root}
3 for 𝑘 from root level to leaf level do
4 𝑄 ′ ← {𝑞 ∈ 𝑄 | 𝑑 (𝑝, 𝑞) < 2𝑘+1}
5 𝑁 ← 𝑁 ∪𝑄 ′
6 𝑄 ← {Children(𝑞) | 𝑞 ∈ 𝑄 ′}
7 return 𝑁

twice. Given that the tree height is H(𝑇), multiplying the three
terms gives the stated single deletion work bound. □

Traversing the cover tree. Another commonly used sequential
algorithm on cover trees is to traverse the tree w.r.t. a point 𝑝 , in or-
der to extract all tree nodes covering 𝑝 (based on the corresponding
radius at each level). The set of these nodes is simply the concate-
nation of all the sets𝑄 ′ in each iteration of Line 4.The algorithm is
given in Alg. 3. Similar to single insertion/deletion, we keep track
of the tree nodes that are sufficiently close to the point, in a top-
down manner. The cost for traversal is the same as insertion since
they touch the same set of tree nodes.

We note that the traversal cost is cheaper than an NNS on the
cover tree (Lem. 3.3). The reason is that NNS can visit nodes that
Alg. 3 does not visit. For instance, the tree node for the nearest
neighbor of a query point does not necessarily cover the query
point. Hence, a tighter work bound for Alg. 3 can be obtained.

4 THE PARALLEL COVER TREE ALGORITHM
In this section, we discuss the parallel cover tree algorithms. We
note that the queries on cover trees are already parallel since they
do not change the data structure, so multiple queries can directly
be applied simultaneously. Now we will introduce our algorithms
for batch insertion and batch deletion that are work-efficient and
have polylogarithmic span, assuming constant expansion rate and
bounded aspect ratio.

4.1 The Batch-Insertion Algorithm
Thechallenge of a parallel insertion algorithm is illustrated in Fig. 2.
In short, we want to identify all potential point pairs that would
violate the separation property if we inserted them independently,
while maintaining the work-efficiency. For instance, checking all
point pairs in a batch of size 𝑚 will lead to 𝑂 (𝑚2) work, which
is suboptimal when 𝑚 = 𝜔 (log𝑛) since the sequential insertion
takes 𝑂 (𝑚 log𝑛) work. Hence, we need two key components in
our insertion algorithm (Alg. 4)—one is the maximal independent
set that enables parallel insertions and resolves the conflicts, and
the other is prefix doubling that guarantees work-efficiency.

To tackle the possible conflicts between point pairs, we note the
following fact:

Lemma 4.1. For every point pair 𝑝𝑖 and 𝑝 𝑗 that are both inserted
at level 𝑖 as single insertions and violate the separation property, for
𝑝𝑖 ’s parent 𝑝 𝑓 , we have 𝑑 (𝑝 𝑓 , 𝑝 𝑗) < 3 · 2𝑖 .

Notation Definition
General:

𝑇 The original cover tree
𝑆 The batch that contains points to be inserted or

deleted
𝑝𝑖 Referring to a point in 𝑆
𝑞𝑖 Referring to an tree node in 𝑇

Specific for batch-insert:
𝑆𝑖 The 𝑖-th inserted batch based on prefix doubling
𝑆𝑖 𝑇 ∪ 𝑆0 ∪ · · · ∪ 𝑆𝑖
𝑃𝑖 The parent tree node 𝑝𝑖 ∈ 𝑆 should be inserted if

done sequentially in isolation
𝑙𝑖 The level 𝑝𝑖 ∈ 𝑆 should be inserted if done sequen-

tially in isolation
𝐿𝑘 𝐿𝑘 ← {𝑝𝑖 | 𝑙𝑖 = 𝑘}
Π𝑞𝑖 The “conflict set” for tree node 𝑞𝑖 ∈ 𝑇 that is {𝑝 𝑗 ∈

𝑆 | 𝑑 (𝑞𝑖 , 𝑝 𝑗) < 2𝑘+1}, where 𝑞 𝑗 is at the 𝑘-th level
Specific for batch-delete:

𝐴𝑖 Point 𝑝𝑖 ’s ancestor at the level being processed
𝐿𝑘 All tree nodes that should be deleted at level 𝑘
𝑋 The current set of uncovered (orphaned) tree nodes

due to deletions
Π𝑞𝑖 The “conflict set” for tree node 𝑞𝑖 ∈ 𝑇 that is {𝑞 𝑗 ∈

𝑋 | 𝑑 (𝑞𝑖 , 𝑞 𝑗) < 2𝑘+1}, where 𝑞 𝑗 is at the 𝑘-th level

Table 1: Notations used in parallel cover trees and analysis.

Proof. Since 𝑝𝑖 and 𝑝 𝑗 violate the separation property, we know
𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2𝑖 . Since 𝑝𝑖 is 𝑝 𝑓 ’s child, 𝑑 (𝑝𝑖 , 𝑝 𝑓) < 2𝑖+1. Combin-
ing with the triangle inequality, we have 𝑑 (𝑝 𝑓 , 𝑝 𝑗) ≤ 𝑑 (𝑝𝑖 , 𝑝 𝑗) +
𝑑 (𝑝𝑖 , 𝑝 𝑓) < 3 · 2𝑖 . □

Therefore, our insertion algorithm identifies these conflict pairs
by first using Alg. 3 on Line 7 to traverse the existing tree for each
point 𝑝𝑖 ∈ 𝑆 and record the tree node 𝑞 𝑗 with 𝑑 (𝑝𝑖 , 𝑞 𝑗) < 2𝑘+1

where𝑞 𝑗 is at the 𝑘-th level. At the same time, Alg. 3 also computes
the level 𝑙𝑖 and the parent tree node 𝑃𝑖 when a single point 𝑝𝑖 ∈ 𝑆
is inserted into the cover tree in the sequential algorithm.

Once we have 𝑙𝑖 and all pairs (𝑞 𝑗 , 𝑝𝑖), we can semisort them and
get 𝐿𝑘 that contains all points to be inserted at level 𝑘 (Line 9), and
Π𝑞 𝑗 that is the set of inserted points covered by tree node 𝑞 𝑗 with
distance 2𝑘+1 (Line 8), where 𝑘 is the level that tree node 𝑞 𝑗 is in.

After all the preprocessing, we come to the interesting part of
this algorithm: inserting all nodes at each level in top-down or-
der. An illustration for this step is given in Fig. 4. Consider we
are processing level 𝑘 now. For each point 𝑝𝑖 ∈ 𝐿𝑘 to be inserted,
for all tree node 𝑞 𝑗 at the 𝑘-th level, we know 𝑑 (𝑝𝑖 , 𝑞 𝑗) > 2𝑘

since otherwise 𝑝𝑖 will be inserted in 𝑞 𝑗 ’s subtree in a deeper level.
Meanwhile, we know there exists at least one tree node 𝑞 𝑗 with
𝑑 (𝑝𝑖 , 𝑞 𝑗) ≤ 2𝑘+1 since otherwise 𝑝𝑖 can be inserted at a higher
level. Hence, all points in 𝐿𝑘 must be in the annuli with distance
2𝑘 and 2𝑘+1 centered at tree nodes at level 𝑘 , as shown in the grey
region in Fig. 4.

We then build the graph 𝐺 to decide the feasible points to be
added at level 𝑘 . We in parallel enumerate each point 𝑝𝑖 ∈ 𝐿𝑘 and
check all possible conflict pairs (Line 12). As indicated by Lem. 4.1,

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

264

Algorithm 4: BatchInsert(𝑇 , 𝑆).
Input: A cover tree 𝑇 and a set of node 𝑆 .
Output: The new cover tree 𝑇 ′ that includes all nodes in 𝑆 .

1 Randomly shuffle points in 𝑆 and partition them into
groups of 𝑆0, 𝑆1, . . . 𝑆log |𝑆 |−1, s.t. |𝑆0 | = 1 and |𝑆𝑖 | = 2𝑖−1

for 𝑖 > 0
2 for 𝑖 ← 0 to log |𝑆 | − 1 do
3 BatchInseRtHelpeR(𝑇 , 𝑆𝑖)

4 Function BatchInseRtHelpeR(𝑇 , 𝑆)
5 Let 𝐶 ← ∅ be a set of pairs of (𝑞 𝑗 , 𝑝𝑖).
6 parallel foreach 𝑝𝑖 ∈ 𝑆 do
7 Run TRaveRse(𝑇 , 𝑝𝑖). For each node 𝑞 𝑗 ∈ 𝑇 with

𝑑 (𝑝𝑖 , 𝑞 𝑗) < 2𝑘+1 where 𝑞 𝑗 is at the 𝑘-th level, add
the pair (𝑞 𝑗 , 𝑝𝑖) to 𝐶 . Set 𝑃𝑖 and 𝑙𝑖 to the node that
𝑝𝑖 sould be a child of and 𝑙𝑖 to the level 𝑝𝑖 should
be inserted if done sequentially in isolation.

8 Semisort 𝐶 by 𝑞 𝑗 and set Π𝑞 𝑗 ← {𝑝𝑖 | (𝑞 𝑗 , 𝑝𝑖) ∈ 𝐶}
9 Semisort nodes in 𝑆 based on 𝑙𝑖 , and let

𝐿𝑘 ← {𝑝𝑖 | 𝑙𝑖 = 𝑘}
10 for 𝑘 from the root level to leaf level do
11 Initialize a graph 𝐺 as (𝐿𝑘 , ∅)
12 parallel foreach 𝑝𝑖 ∈ 𝐿𝑘 do
13 parallel foreach 𝑝 𝑗 ∈ Π𝑃𝑖 ∩ 𝐿𝑘 do
14 if 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2𝑘 then
15 Create an edge between 𝑝𝑖 and 𝑝 𝑗
16 Compute the MIS of 𝐺 and let 𝐼 be the selected

vertices
17 Insert the point 𝑝𝑖 ∈ 𝐼 to the cover tree based on 𝑃𝑖

from level 𝑘 to level 0 (leaf level)
18 parallel foreach 𝑝𝑖 ∈ 𝐼 do
19 parallel foreach 𝑝 𝑗 ∈ Π𝑃𝑖 do
20 Let 𝑘 ′ = ⌈log2 𝑑 (𝑝𝑖 , 𝑝 𝑗)⌉
21 if 𝑘 ′ − 1 < 𝑘 then
22 for 𝑘 from 𝑘 ′ − 1 to 𝑘 − 1 do
23 Add 𝑝 𝑗 to Π𝑞 𝑗 , where 𝑞 𝑗 is a node at

level 𝑘 corresponding to 𝑝𝑖
24 if 𝑘 ′ < 𝑙 𝑗 then
25 𝑃 𝑗 ← the tree node for 𝑝𝑖 at level 𝑘 ′
26 Remove 𝑝 𝑗 from 𝐿𝑙 𝑗
27 Add 𝑝 𝑗 to 𝐿𝑘′
28 𝑙 𝑗 ← 𝑘 ′

we only need to enumerate the points inΠ𝑃𝑖∩𝐿𝑘 (𝑃𝑖 is 𝑝𝑖 ’s parent if
𝑝𝑖 is inserted as a single point) sinceΠ𝑃𝑖 captures all points 𝑝 𝑗 with
𝑑 (𝑝𝑖 , 𝑝 𝑗) < 3 ·2𝑘 (Line 13). We then on Line 14 check if 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤
2𝑘 (violating the separation property), and if so, we add an edge
between these two points in𝐺 (Line 15). Such an example graph is
shown on the top-right in Fig. 4.

Once the graph𝐺 is constructed, wewill run amaximal indepen-
dent set (MIS) algorithm on 𝐺 and let 𝐼 to be output that contains
the selected vertices (Line 16). In Fig. 4, 𝐼 = {𝑄, 𝑆,𝑉 ,𝑊 }. All points
in 𝐼 can be inserted into the cover tree at level 𝑘 (Line 17), while at
least one of its selected neighbors will cover every other point.

C

P
Q

R
S

T

U
V

W

P
Q S

A

V

WQ

R

S

T

U

V

W

A

A

B

B

C

C

A

B

Figure 4:The parallel insertion process in a certain level. In this example,
points A, B, and C have already been inserted and are siblings in this level,
and the other points are in the inserted batch. Here the solid circles identify
the separating distance 𝑑 , long dash circles are the covering distance 2𝑑 ,
and the short dash circles indicate the distance of 3𝑑 . All inserted nodes
in this level must be in the annuli marked in gray (otherwise they either
will not be covered by A, B, or C, or will go to lower levels). We check all
point pairs in each short dash circle with distance 3𝑑 , and add an edge if
their distance is no more than 𝑑 . A graph on the top-right corresponds to
the points P to W. We run an MIS on this graph, and assume points Q, S, V,
and W are selected. These four nodes will be inserted to the tree as shown
on the bottom-right, and other points P, R, T, and U will be distributed to
either of their selected neighbors, and wait to be inserted in the next round.

After we build the tree nodes for the points in 𝐼 , we have two
more tasks. For each selected vertex in 𝐼 , we generate the conflict
sets for all inserted tree nodes corresponding to this point, exe-
cuted on Line 23 based on the definition of the conflict sets. It is
easy to see that all points in these conflict sets generated by the
point 𝑝𝑖 must be in Π𝑃𝑖 . The second task is that we need to check
if the newly inserted points invalidate the current insert positions
𝑃 𝑗 of some uninserted points 𝑝 𝑗 in 𝑆 . Consider a point 𝑝 𝑗 that is
very close to a newly inserted point 𝑝𝑖 (say 𝑑 (𝑝𝑖 , 𝑝 𝑗) = 1). In this
case, the original position for 𝑝 𝑗 can violate the separation prop-
erty if it is not in the leaf level. We need to check this and adjust
it to a valid insertion position if needed (on Line 25), and we refer
to this as the redistribution step. We will later show that the work
for these two steps are bounded by the cost to construct the graph
𝐺 and the sequential insertion cost.

We will start by showing the correctness of this algorithm.

Lemma 4.2. All possible conflict point pairs (i.e., violating separa-
tion) are captured by Π𝑃𝑖 on Line 13.

Proof. Let 𝑝𝑖 be a point we are inserting and let 𝑝 𝑗 be any other
point we are inserting, and let 𝑃𝑖 and 𝑃 𝑗 be the nodes that would
be the parents of 𝑝𝑖 and 𝑝 𝑗 respectively if we inserted each by itself.
Suppose two inserted node 𝑝𝑖 and 𝑝 𝑗 under 𝑃𝑖 and 𝑃 𝑗 violate the
separation property at some level 𝑙 and 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2𝑙 . Let 𝑙𝑖 be
the level of 𝑃𝑖 , so 𝑙𝑖 > 𝑙 . Then 𝑑 (𝑃𝑖 , 𝑝 𝑗) ≤ 𝑑 (𝑃𝑖 , 𝑝𝑖) + 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤
2𝑙𝑖 +2𝑙 ≤ 2𝑙𝑖 +2𝑙𝑖−1 = 3 ·2𝑙𝑖−1 < 2𝑙𝑖+1. Hence, 𝑝 𝑗 is also in Π𝑃𝑖 . □

We then inductively show that by the end of an iteration of
Line 10, 𝑇 is valid a cover tree (e.g., all Π𝑞𝑖 and 𝑃𝑖 for each unin-
serted point in 𝑆 satisfy the definitions in Tab. 1 for the𝑇), then𝑇 is

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

265

also valid after running another iteration of this loop. In these lem-
mas, 𝑇 refers to the tree at the end of this iteration, and 𝑇 ′ refers
to the tree at the end of the previous iteration.

Lemma 4.3. At end of an iteration of Line 10, 𝑇 is a valid cover
tree.

Proof. First, we show that the covering property is satisfied. Con-
sider a point 𝑝𝑖 that is in 𝑇 at the end of this round. If it is already
in𝑇 ′, then the covering property is satisfied since neither its level
or parent were changed. Otherwise, we inserted 𝑝𝑖 in this round
under 𝑃𝑖 . By definition, 𝑃𝑖 covers 𝑝𝑖 , so the covering property is
satisfied.

Next we show that the separation property is satisfied for each
pair of nodes in each level. Consider two tree nodes 𝑞𝑖 and 𝑞 𝑗 in
the same level in 𝑇 . If they are already in 𝑇 ′, then the separation
property is already satisfied. If 𝑞𝑖 ∉ 𝑇 ′ and 𝑞 𝑗 ∈ 𝑇 ′, then the sepa-
ration property is satisfied, because if we inserted 𝑞𝑖 into𝑇 ′ in the
sequential algorithm, it would insert into the location separated
from 𝑞 𝑗 , since otherwise we either identify this when running the
traverse algorithm on Line 7, or𝑞𝑖 will go to𝑞 𝑗 ’s subtree on Line 23
in the round that the corresponding point of 𝑞 𝑗 is inserted.The sep-
aration property is also satisfied when neither 𝑞𝑖 nor 𝑞 𝑗 are in 𝑇 ′,
because the MIS selected 𝐼 to be a set of points such that no two
points are closer than 2𝑘 .

The covering and separation properties are satisfied, so 𝑇 is a
valid cover tree. □

Lemma 4.4. At end of an iteration of Line 10, each Π𝑞𝑖 is correct.

Proof. For every newly inserted node 𝑞𝑖 , on Line 23 we set Π𝑞𝑖 =
{𝑝 𝑗 ∈ Π𝑃𝑖 | 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2𝑘

′+1}, where 𝑘 ′ is 𝑞𝑖 ’s level. By definition,
Π𝑞𝑖 ⊆ {𝑝 𝑗 ∈ 𝑆 | 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2𝑘

′+1}. Since Π𝑃𝑖 ⊆ 𝑆 , we have already
checked all points in Π𝑃𝑖 . Let 𝑝 𝑗 ∈ 𝑆 \ Π𝑃𝑖 . From the definition
of a conflict set, 𝑑 (𝑝 𝑗 , 𝑃𝑖) > 2𝑘+2. Using the triangle inequality,
𝑑 (𝑝 𝑗 , 𝑝𝑖) ≥ 𝑑 (𝑃𝑖 , 𝑝 𝑗) − 𝑑 (𝑃𝑖 , 𝑝𝑖) > 2𝑘+2 − 2𝑘+1 = 2𝑘+1 > 2𝑘

′+1.
Therefore {𝑝 𝑗 ∈ 𝑆 | 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2𝑘

′+1} ⊆ Π𝑞𝑖 and Π𝑞𝑖 is correct.
□

Lemma 4.5. At end of an iteration of Line 10, 𝑃 𝑗 and 𝑙 𝑗 for each
uninserted point 𝑝 𝑗 is correct.

Proof. Let 𝑃 ′𝑗 and 𝑙 ′𝑗 be the values of 𝑃 𝑗 and 𝑙 𝑗 at the end of the
previous iteration. First note that, if 𝑙 𝑗 ≤ 𝑙 ′𝑗 , the separation property
is satisfied between 𝑝 𝑗 ’s nodes and all nodes in 𝑇 ′.

If 𝑝 𝑗 ∉ Π𝑃𝑖 for any 𝑝𝑖 ∈ 𝐼 , then we leave 𝑃 𝑗 = 𝑃 ′𝑗 and 𝑙 𝑗 =

𝑙 ′𝑗 . 𝑝 𝑗 ∉ Π𝑃𝑖 means 𝑑 (𝑝 𝑗 , 𝑃𝑖) > 2𝑘+2. By the triangle inequality,
𝑑 (𝑝 𝑗 , 𝑝𝑖) ≥ 𝑑 (𝑝𝑖 , 𝑃𝑖) − 𝑑 (𝑝 𝑗 , 𝑃𝑖) > 2𝑘+2 − 2𝑘+1 = 2𝑘+1. 2𝑘+1 > 2𝑙 𝑗

since 𝑙 𝑗 ≤ 𝑘 , so 𝑝 𝑗 is separated from all nodes for all 𝑝𝑖 . 𝑙 𝑗 ≤ 𝑙 ′𝑗 , so
it is separated from all nodes in𝑇 ′. Lastly 𝑃 𝑗 = 𝑃 ′𝑗 trivially satisfies
the covering property.

If 𝑝 𝑗 ∈ Π𝑃𝑖 for any 𝑝𝑖 ∈ 𝐼 , then either 𝑑 (𝑝 𝑗 , 𝑝𝑖) ≤ 2𝑙
′
𝑗 for some

𝑝𝑖 ∈ 𝐼 or 𝑑 (𝑝 𝑗 , 𝑝𝑖) > 2𝑙
′
𝑗 for all 𝑝𝑖 ∈ 𝐼 . Each of the two cases are

discussed in the next two paragraphs.
If 𝑑 (𝑝 𝑗 , 𝑝𝑖) > 2𝑙

′
𝑗 for all 𝑝𝑖 ∈ 𝐼 , we leave 𝑃 𝑗 = 𝑃 ′𝑗 and 𝑙 𝑗 = 𝑙 ′𝑗 .

𝑑 (𝑝 𝑗 , 𝑝𝑖) > 2𝑙
′
𝑗 = 2𝑙 𝑗 means separation is satisfied between all

nodes for 𝑝 𝑗 and all nodes for all 𝑝𝑖 ∈ 𝐼 . The remaining nodes in 𝑇
are the nodes that were already in𝑇 ′, and because 𝑙 𝑗 ≤ 𝑙 ′𝑗 , all nodes

for 𝑝 𝑗 are separated from all nodes in 𝑇 ′. 𝑃 ′𝑗 satisfied the covering
property, so 𝑃 𝑗 satisfies the covering property. Therefore 𝑃 𝑗 and 𝑙 𝑗
are correct.

If𝑑 (𝑝 𝑗 , 𝑝𝑖) ≤ 2𝑙
′
𝑗 for some 𝑝𝑖 ∈ 𝐼 , thenwe pick 𝑙 𝑗 = ⌈log2 𝑑 (𝑝 𝑗 , 𝑝𝑖)⌉

and set 𝑃 𝑗 to 𝑝𝑖 ’s node at level 𝑙 𝑗 + 1. This means 2𝑙 𝑗 < 𝑑 (𝑝 𝑗 , 𝑝𝑖) ≤
2𝑙 𝑗+1, so 𝑃 𝑗 covers 𝑝 𝑗 and that 𝑝 𝑗 is separated from all nodes for
𝑝𝑖 . For all 𝑝ℎ ∈ 𝐼 \ {𝑝𝑖 }, the triangle inequality gives 𝑑 (𝑝 𝑗 , 𝑝ℎ) ≥
𝑑 (𝑝𝑖 , 𝑝ℎ) − 𝑑 (𝑝 𝑗 , 𝑝𝑖) ≥ 2𝑘 − 2𝑘−1 = 2𝑘−1 > 2𝑙 𝑗 , so separation is
satisifed with all the other newly inserted nodes. Lastly, 𝑙 𝑗 ≤ 𝑙 ′𝑗 , so
separation is satisfied with all nodes in 𝑇 ′. Therefore 𝑃 𝑗 and 𝑙 𝑗 are
correct. □

Lemma 4.6. The new cover tree is a valid cover tree.

Proof. This follows by induction using Lem. 4.3 to 4.5 and by as-
suming the correctness of the traverse algorithm. At the start of
the algorithm, 𝑇 is given as a valid cover tree. The loop around
Line 7 computes each 𝑃𝑖 and Π𝑞𝑖 correctly, so the invariant holds
at the beginning of the first iteration. By induction on the previous
three lemmas, the invariant holds at the beginning and end of any
iteration. Nothing happens after the last iteration, so 𝑇 is a valid
cover tree at the end of the algorithm. □

However, just doing the above-mentioned steps does not guar-
antee work-efficiency. Considering a tree𝑇 with just one root node
and |𝑆 | = 𝑛. Then for some tree node 𝑝𝑖 in level 𝑘 cover set Π𝑝𝑖 ∩𝐿𝑘
may contain 𝑂 (𝑛) nodes, and checking them pairwise on Line 14
incurs 𝑂 (𝑛2) work. To reduce the work in these incremental con-
struction algorithms, a common approach is prefix doubling [14–
16, 59]. Here we can do the same: partition the batch 𝑆 into log2 |𝑆 |
groups, and insert each group in turn.This guarantees that the cur-
rent cover tree always has at least the same number of (randomly
chosen) points as the group to insert. As a result, each of the cover
set (Π𝑝𝑖 ∩𝐿𝑘 on Line 13) has limited size: constant on average and
logarithmic whp.

Lemma 4.7. For each point 𝑝 , the number of 𝑝’s neighbors in 𝐺
(Line 16) is 𝑂 (1) in expectation and 𝑂 (log𝑛) whp.
Proof. Now consider all neighbor points of 𝑝 , and denote them as
𝑁 (𝑝). They must all be in the current batch 𝑆𝑖 (Line 3) to be in-
serted, and 𝑁 (𝑝) ∈ 𝐵𝑆𝑖 (𝑝, 2𝑘) (𝑘 is the current level). Note that
not all points in 𝐵𝑆𝑖 (𝑝, 2𝑘) are in 𝑁 (𝑝) since the points inserted
in the previous 𝑖 − 1 batches may “capture” some of the points in
𝐵𝑆𝑖 (𝑝, 2𝑘) (Line 25) so they will be inserted to lower levels. This
will only help reducing the neighbor set size (i.e., making 𝑁 (𝑝)
smaller).

We now analyze the size of 𝑁 (𝑝) in expectation and with high
probability. Let 𝑆𝑖 = 𝑆0 ∪ · · · ∪ 𝑆𝑖 , and we have 𝐵𝑆𝑖 (𝑝, 2𝑘) ⊆
𝐵𝑆𝑖 (𝑝, 2

𝑘). Let 𝑁 ′(𝑝) ⊆ 𝐵𝑆𝑖 (𝑝, 2
𝑘) be the set of points that are

not captured by points in the original tree 𝑇 (excluding points in
𝑆𝑖 with parents at or below the 𝑘-th level). The argument is that if
any of the points in 𝑁 ′(𝑝) are in the previous 𝑖 − 1 batches (i.e.,
𝑁 ′(𝑝) ≠ 𝑁 (𝑝)), then 𝑝 cannot be inserted at level 𝑘 , but lower
than that. This is based on the separation property of the cover
tree, and indicates 𝑁 ′(𝑝) = 𝑁 (𝑝) if 𝑝 is processed at the 𝑘-th level.
Given how 𝑆𝑖 is sampled, we show that |𝑁 (𝑝) | is small. Each point
in 𝑁 ′(𝑝) has at most half the probability of being in 𝑆𝑖 . We first
consider the high probability guarantee for 𝑠 = |𝑁 (𝑝) |. For each

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

266

point 𝑞 ∈ 𝑁 ′(𝑝), Pr[𝑞 ∈ 𝑁 (𝑝)] ≤ 1/2. If 𝑠 > 𝑐 log𝑛, then

Pr
[��𝑁 ′(𝑝)�� = |𝑁 (𝑝) |] ≤ 1

2𝑠
=

1

2𝑐 log𝑛
= 𝑛−𝑐

which indicates that the number of 𝑝’s neighbors in 𝐺 is 𝑂 (log𝑛)
whp.The expected neighbor size is |𝑁 ′(𝑝) |·Pr[|𝑁 ′(𝑝) | = |𝑁 (𝑝) |] =
𝑂 (1). Note that the results holds for all levels for the point 𝑝 , if it
is redistributed and processed in multiple levels (on Line 25). □

CoRollaRy 4.8. The size of the setΠ𝑃𝑖 ∩𝐿𝑘 being check on Line 13
is 𝑂 (𝑐5) in expectation and 𝑂 (𝑐5 log𝑛) whp.

We can simply multiply the bounds in Lem. 3.1 with 𝜅 = 1 and
Lem. 4.7 and get Col. 4.8. To efficiently acquire the neighbor set
of a vertex (i.e., Π𝑃𝑖 ∩ 𝐿𝑘 on Line 13), we can generate Π𝑃𝑖 ∩ 𝐿𝑘
once Π𝑃𝑖 is generated on Line 7. We note that 𝐿𝑘 can change when
new tree nodes are generated, but we can maintain it lazily: every
time when we loop over the points in 𝐿𝑘 , we skip those that are
removed. We note that the work is only 𝑂 (𝑚H(𝑇)) to check all
points at 𝑆 in every level for a batch of𝑚 inserted points, which is
asymptotically bounded by other parts in this algorithm.

Wenow analyze thework and span bounds for the parallel batch-
insertion algorithm.

TheoRem 4.9. The batch insertion algorithm (Alg. 4) can correctly
insert a set of points 𝑆 into a cover tree 𝑇 using 𝑂 (𝑐5𝑚H(𝑇)) ex-
pected work and𝑂 (H (𝑇) log𝑚(log 𝑐 + log𝑚 log log𝑛)) span whp,
where𝑚 = |𝑆 |, 𝑛 = |𝑇 |, and𝑚 ≤ 𝑛.

Proof. Thecorrectness of this algorithm is already shown in Lem. 4.6.
First of all, Thm. 2.1 shows that after a constant number of sam-

plings, the expansion rate of the metric (𝑋, 𝐷𝑋) only changed by
at most a constant fraction, whichwill be hidden by the asymptotic
notation. In all of our analyses, we apply union bound (Boole’s in-
equality) on high probability bounds, which means our analysis
only requires sampling for one round.

For the traversal on Line 7, the work and span for each query
is given in Sec. 3.2, multiplied that by 𝑚 gives the total work for
all points. The output size is no more than the work, so semisort-
ing them takes𝑂 (𝑐5𝑚H(𝑇)) expected work and𝑂 (log 𝑐 + log𝑚 +
log log𝑛) spanwhp. Then for the cover tree construction, based on
Col. 4.8, building the graph 𝐺 requires 𝑂 (𝑐5𝑚) expected work for
all levels, and computing the MIS on 𝐺 uses 𝑂 (𝑚) expected work.
Also, according to Lem. 4.7 since the maximum degree for each
node is𝑂 (log𝑛), computing theMIS at each level has𝑂 (log𝑚 log log𝑛)
span whp [58], and the total span for all levels is 𝑂 (H (𝑇)(log 𝑐 +
log𝑚 log log𝑛)) span whp. Adding the new tree nodes has the
same work and span bounds as the step to generate MIS.

Finally, let’s analyze the work and span to construct the Π sets
for new tree nodes (the parallel-for loop on Line 18). While there
can be many points in Π𝑃𝑖 , we note that if we look at a specific
point 𝑞, if we first insert 𝑆 \ {𝑞} and then insert 𝑞, we will run ex-
actly the same checks, but in the traversal part (Line 7). We know
the traversal work is𝑂 (𝑐5H(𝑇)) per node in the batch, which also
bounds the work for constructing the conflict sets here. To paral-
lelize this step, we can generate all the pairs and semisort them,
which is work-efficient in expectation and has span asymptotically
bounded by the MIS steps.

Hence, the work of the batch insertion algorithm is bounded
by the traversal step, and span is bounded by the MIS step. In ad-
dition, we have the prefix-doubling step that partitions the batch
into log |𝑆 | sub-batches. Prefix-doubling does not cause additional
work, but will increase the span by a factor of 𝑂 (log𝑚). Combin-
ing them together gives the stated bounds in the theorem. □

When assuming constant expansion rate (𝑐 = 𝑂 (1)) and bounded
aspect ratio (H(𝑇) = Θ(log𝑛)), Alg. 4 has 𝑂 (𝑚 log𝑛) expected
work and 𝑂 (log𝑛 log2𝑚 log log𝑛) span whp. Constructing cover
trees can also be parallelized using the same algorithm and analy-
sis.

TheoRem 4.10. Constructing a cover tree that contains 𝑛 points
takes𝑂 (𝑐5𝑛H(𝑇)) expectedwork and the span of𝑂 (H (𝑇) log𝑛(log 𝑐+
log𝑛 log log𝑛)) whp.

With the same assumptions, the work is 𝑂 (𝑛 log𝑛) in expecta-
tion, and the span is 𝑂 (log3 𝑛 log log𝑛) whp.

4.2 The Batch-Deletion Algorithm
We now discuss the parallel batch-deletion algorithm. It is inter-
esting that, unlike many other data structures, batch-deletion is
easier than batch-insertion—the hardest part in the nearest search
structure is to locate the updated points. For insertion, if too many
points are added, their proximity information and nearest neigh-
bors cannot be directly given since they can be in the inserted
points. However, for deletion, the original cover tree can provide
sufficient proximity information for the points either in the batch
or not, since they are all in the cover tree before batch-deletion.
Hence, for deletion, we do not need prefix doubling, and can finish
the entire batch-deletion in one round.

The key observation for batch-deletion is that, for each undeleted
point, if its directed parent is also not deleted, then this local struc-
ture still satisfies the cover tree properties and can remain unchanged.
For each deleted point 𝑝 , if 𝑝 is a leaf, it can be directly removed;
otherwise, it may uncover 𝑝’s direct child, who needs to be either
redistributed to another undeleted point in the same level, or pro-
moted to the current level. Meanwhile, multiple points can be pro-
moted to the same level. Similar to the batch-insertion algorithm,
we need to run an MIS for all uncovered points at one level, and
then decide those that get promoted and the others that will then
be covered.

Based on these key insights, our parallel batch-deletion algo-
rithm is shown in Alg. 5. The first step is similar to that in the
insertion algorithm—we first run the traverse algorithm to track
all tree nodes that cover each point with twice the covering dis-
tances, and the tree nodes in all levels each point in the tree. We
then semisort the output key-value pairs to transpose the keys and
values, and these precomputed results will be used later in the al-
gorithm.

Thenwe start to process each level, delete the nodes in the given
batch while maintaining the cover tree properties. This is from
Line 4. We denote the uncovered points at each level using the
set 𝑋 , and initially, when we start to process the leaf level, 𝑋 is
empty. For each level, we first delete the tree nodes corresponding
to the nodes in the delete batch, which may uncover some nodes

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

267

Algorithm 5: BatchDelete(𝑇 , 𝑆).
Input: A cover tree 𝑇 and a set of node 𝑆 .
Output: The new cover tree 𝑇 ′ that excludes all nodes in 𝑆 .

1 parallel foreach 𝑝𝑖 ∈ 𝑆 do
2 Run TRaveRse(𝑇 , 𝑝𝑖) that tracks all nodes 𝑞 𝑗 ∈ 𝑇 with

𝑑 (𝑝𝑖 , 𝑞 𝑗) < 2𝑘+1 where 𝑞 𝑗 is at the 𝑘-th level, and
record tree nodes 𝑞 𝑗 ′ for all levels 𝑝𝑖 is in 𝑇

3 Semisort pairs (𝑞 𝑗 , 𝑝𝑖) and let 𝐿𝑘 = {𝑞𝑘 | (𝑞𝑘 , 𝑝𝑖) exists}
4 𝑋 = ∅
5 for 𝑘 from the leaf level to root level do
6 Remove all tree nodes in 𝐿𝑘 , and let 𝑌 be the children

set of these nodes
7 𝑋 ← 𝑋 ∪ 𝑌
8 parallel foreach 𝑞𝑖 ∈ 𝑋 do
9 if a (undeleted) tree node 𝑞 𝑗 at level 𝑘 covers 𝑞𝑖

then
10 remove 𝑞𝑖 from 𝑋 and redirect 𝑞𝑖 ’s parent to 𝑞 𝑗
11 Semisort pairs (𝑞 𝑗 , 𝑞𝑖) (from Line 2) where 𝑞𝑖 ∈ 𝑋 and

𝑞 𝑗 is at the (𝑘 + 1)-th level, and let
Π𝑞 𝑗 = {𝑞𝑖 | (𝑞 𝑗 , 𝑞𝑖) exists}

12 Initialize a graph 𝐺 = (𝑋, ∅)
13 parallel foreach 𝑞𝑖 ∈ 𝑋 do
14 Let 𝐴𝑖 be 𝑞𝑖 ’s original ancestor at level 𝑘 + 1
15 parallel foreach 𝑞 𝑗 ∈ Π𝐴𝑖 do
16 if 𝑑 (𝑞𝑖 , 𝑞 𝑗) ≤ 2𝑘 then
17 Create an edge between 𝑞𝑖 and 𝑞 𝑗
18 Compute the MIS of 𝐺 and let 𝐼 be the selected vertices
19 Duplicate and insert the tree node 𝑞𝑖 ∈ 𝐼 at level 𝑘
20 Redirect the tree node 𝑞 𝑗 ∈ 𝑋 \ 𝐼 to be the child of a new

node 𝑞𝑖 ∈ 𝐼 that covers 𝑞 𝑗 (i.e., (𝑞𝑖 , 𝑞 𝑗) is an edge in 𝐺)
21 𝑋 ← 𝐼

22 if 𝑋 ≠ ∅ then
23 Pick an arbitrary node 𝑞𝑖 ∈ 𝑋 , duplicate it, set it as the

root, and link all other nodes as 𝑞𝑖 ’s children

denoted as the set 𝑌 (Line 6). We then merge the set 𝑌 with the un-
covered points in𝑋 from the previous level. We first check if other
tree nodes at this level can cover these points, and if so, we redirect
them to these nodes, and remove them from the set 𝑋 . Otherwise,
we need to promote them to the higher level, but we cannot do so
for all points in 𝑋 since that might violate the separation property.
Similar to the batch-insert algorithm, for each point 𝑝𝑖 ∈ 𝑋 , we
check all possible conflict points in 𝑋 ∩ Π𝑃𝑖 , and create an edge if
the distance is within 2𝑘 (𝑘 is the current level). Then we run the
parallel MIS algorithm on the graph, promote the selected ones to
level 𝑘 , and redirect the unselected ones to selected points as par-
ents. Then we repeat this process and move one level up, until we
finish all levels. Note that it is possible that𝑋 is not empty after we
process the root level. In this case, we can use an arbitrary point
from 𝑋 as the new root at level 𝑘 + 1, and it can cover all other
points since the covering distance is doubled.

Lemma 4.11. Alg. 5 correctly deletes the batch of points in 𝑆 from
a cover tree 𝑇 .

Proof. The correctness proof is similar to the batch insertion algo-
rithm, and we can in turn show that all invariants are still main-
tained after each loop iteration on Line 5.

All tree nodes are deleted in a bottom-up direction—all leaf nodes
first, then their parents, and eventually the root. The invariants of
our parallel batch deletion algorithm is that after processing the 𝑘-
th level (on Line 5), all remaining tree nodes on the 𝑘-th level and
their subtrees are valid cover trees, and all uncovered tree nodes
are captured in the set 𝑋 .

The analysis is similar to Lem. 4.1 to 4.5 of the insertion algo-
rithm, and we only highlight the difference here. The main differ-
ence here in the deletion is that for each uncovered node 𝑞𝑖 ∈ 𝑋 ,
the conflict set is automatically covered by Π𝐴𝑖 where 𝐴𝑖 is 𝑞𝑖 ’s
ancestor at level 𝑘 + 1. Hence, we do not need the complicated
technique to propagate the information between levels, but we can
directly generate Π𝐴𝑖 at each level (on Line 11). Other than this,
the rest of the correctness proof is identical, including the radius
of the conflict sets, the completeness of the conflict sets, and why
computing MIS gives a valid tree node set at each level. □

TheoRem 4.12. The batch deletion algorithm (Alg. 4) can correctly
delete a set of points 𝑆 into a cover tree 𝑇 using 𝑂 (𝑐9𝑚H(𝑇)) ex-
pected work and 𝑂 (H (𝑇) log 𝑐 (log 𝑐 + log𝑚)) span whp, where
𝑚 = |𝑆 | and 𝑛 = |𝑇 |.

Proof of Thm. 4.12. Lem. 4.11 shows the correctness of Alg. 5. We
now consider the work of Alg. 5. There are two major parts that
require the most work, one is to try other tree nodes at level 𝑘 to
cover vertices in 𝑋 (the loop on Line 8), and the other is to con-
struct and run MIS on the conflict graph 𝐺 . For the first part, for
each level, we can remove at most𝑚 tree nodes, which uncover at
most 𝑐4𝑚 tree nodes (Col. 3.2). Plus another 𝑂 (𝑐4𝑚) nodes from
the previous level (will be shown later), |𝑋 | = 𝑂 (𝑐4𝑚). For each
node 𝑞𝑖 ∈ 𝑋 , let 𝐴𝑖 be 𝑞𝑖 ’s ancestor at level 𝑘 + 1. Then, 𝑞𝑖 will
be checked with level 𝑘 nodes in 𝐵(𝐴𝑖 , 2

𝑘+1), so there can only be
𝑐4 of these nodes (using Lem. 3.1 and 𝜅 = 1). Hence, the work of
this part is 𝑂 (𝑐8𝑚) per level, and 𝑂 (𝑐8𝑚H(𝑇)) for all levels. For
the second part to construct and run MIS on the conflict graph
𝐺 , the neighbor size of each node 𝑞𝑖 is no more than 𝑐5, which is
similar to the insertion algorithm but with no randomization and
asymptotical notation.This is because all neighbors of𝑞𝑖 in𝐺 must
in 𝐵(𝐴𝑖 , 2

𝑘+1) at level 𝑘 − 1, so the number of total candidates is
bounded (using Lem. 3.1 and 𝜅 = 2). Hence, the total number of
edges in𝐺 at a certain level is bounded by𝑂 (𝑐5 |𝑋 |) = 𝑂 (𝑐9𝑚). Af-
ter running the MIS, there can only be𝑂 (𝑐4𝑚) selected tree nodes
in 𝐼 (Lem. 3.1 and 𝜅 = 1), and the rest will be covered by the pro-
moted nodes. Combining both parts together gives 𝑂 (𝑐9𝑚H(𝑇))
expected work (the randomized bound is due to semisort). Simi-
lar to the insertion algorithm, the span of the deletion algorithm is
bounded by computing the MIS on𝐺 . Given the graph has𝑂 (𝑐4𝑚)
vertices and 𝑑max = 𝑐5 (largest degree), computing the MIS has
𝑂 (log 𝑐 (log 𝑐 + log𝑚)) span whp, and we need to repeat it for all
H(𝑇) levels. This gives the stated bounds in Thm. 4.12. □

When assuming constant expansion rate (𝑐 = 𝑂 (1)) and bounded
aspect ratio (H(𝑇) = Θ(log𝑛)), Alg. 5 has 𝑂 (𝑚 log𝑛) expected
work and 𝑂 (log𝑛 log𝑚) span whp.

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

268

5 APPLICATIONS
We can use the parallel cover tree to parallelize a list of algorithms
in computational geometry and data science, which rely on nearest
neighbor search.

5.1 Euclidean Minimum Spanning Tree
Given a set of 𝑛 points 𝑆 ∈ R𝑑 , the Euclidean Minimum Span-
ning Tree (EMST) problem finds the lowest weight spanning tree
in the complete graph on 𝑆 with edge weights given by the Eu-
clidean distances between points. EMST is one of the earliest and
widely studied problems in computational geometry and graph,
as Otakar Borůvka gave an algorithm [18] when designing elec-
tricity and telegram networks in the 1920s. It is also widely used
in applications such as approximating traveling salesman problem
(TSP) [38], document clustering [67], analysis of gene expression
data [30], wireless network connectivity [45], percolation analy-
ses [9], and modeling of turbulent flows [60].

Given the importance of EMST,many implementations are avail-
able (e.g., [7, 19, 49, 52]), although few of them have non-trivial
theoretical guarantees (𝑜 (𝑛2) work). Among them, Shamos and
Hoey [56] showed algorithms based on Voronoi diagrams, and the
work is 𝑂 (𝑛 log𝑛) on 2D, but 𝑂 (𝑛2 log𝑛) on 3 or higher dimen-
sions. Yao’s algorithm [68] has 𝑂 ((𝑛 log𝑛)1.8) work on 3D and
𝑂 (𝑛2−2−𝑘−1 log1−2−𝑘−1 𝑛)work on arbitrary dimension. It is widely
conjectured that on 3 or higher dimensions, no EMST algorithms
exist with 𝑜 (𝑛1.8) work.

However, most real-world datasets are not the worst case, and
usually have small expansion constants and bounded aspect ratios.
Hence, March et al. [49] in 2010 showed an algorithm that com-
putes the EMST based on Borůvka’s MST algorithm [18], and uses
a cover tree [8] to search for the nearest neighbor of a cluster in
each step of Borůvka. When assuming a slightly stronger expan-
sion constant and bounded aspect ratio, March et al. [49] showed
that the EMST can be constructed using𝑂 (𝑛 log𝑛 log log𝑛) work.
Our new parallel algorithm. Now with the new parallel cover
tree, we can show a highly-parallelized EMST algorithm, as shown
in Alg. 6. The main body of this algorithm is the classic Borůvka’s
MST algorithm (Line 2–9), and the details can be found in text-
books (e.g., [40]). We can also construct the cover treeD in parallel
(Thm. 4.10). However, the non-trivial part is for the parallel cluster
queries. Unlike most cases that parallel queries are easy, parallel
cluster queries need to first delete all points in the cluster from the
cover tree D, then it queries the nearest neighbor for all 𝑝 ∈ 𝐶
in D, and finally restores D by inserting points in 𝐶 back. Hence,
even with the batch-delete algorithm (Alg. 5), we cannot directly
apply multiple queries simultaneously.

Our solution is based on persistent trees, which means that up-
dates do not destroy the input data structure, but yield a new ver-
sion as the output. Several recent papers [10, 11, 28, 61, 62] showed
that we can design persistent parallel trees using path-copying,
which are shown efficient both theoretically and practically. Hence,
in ClusteR-QeRy, we copy another version D ′ of the original
cover treeD using path-copying. In thisway, eachClusteR-QeRy
works on a separate version and is not affected by other parallel
queries and updates.

Algorithm 6: The parallel EMST algorithm
Input: A set 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} of points in R𝑑
Output: The EMST 𝑇

1 Construct the cover tree D on 𝑃

2 𝑆 ← {{𝑝1}, {𝑝2}, . . . , {𝑝𝑛}}
3 𝑇 ← ∅
4 while |𝑆 | > 1 do
5 parallel foreach 𝐶𝑖 ∈ 𝑆 do
6 ⟨𝑝𝑖 , 𝑞𝑖 ⟩ ← ClusteR-QeRy(𝐶𝑖)
7 Let 𝑇 ′ = ∪𝑖 {⟨𝑝𝑖 , 𝑞𝑖 ⟩} and 𝑇 ← 𝑇 ∪𝑇 ′
8 Merge the clusters using the tree edges in 𝑇 ′ and

update 𝑆
9 return 𝑇

10 function ClusteR-QeRy(𝐶)
11 D ′ ← D .B-Delete(𝐶)
12 parallel foreach 𝑝𝑖 ∈ 𝐶 do
13 𝑞𝑖 ← D ′.QeRy(𝑝𝑖)
14 𝑑𝑖 ← 𝑑 (𝑞𝑖 , 𝑝𝑖)
15 𝑖∗ = argmin𝑖 𝑑𝑖// Using a parallel reduce
16 return ⟨𝑝𝑖∗ , 𝑞𝑖∗ ⟩

TheoRem 5.1. The Euclidean Minimum Spanning Tree (EMST) on
𝑛 points can be computed in 𝑂 (𝑛 log2 𝑛) work in expectation and
𝑂 (log3 𝑛 log log𝑛) span whp, assuming constant cluster expansion,
constant dimension, and bounded aspect ratio.

Proof. For thework bound, each node is in𝑂 (log𝑛) cluster-queries
in total for all Borůvka rounds, and cost per node per query is
𝑂 (log𝑛) in deletion (Line 11) and query (Line 13) in expectation.
Taking the product gives 𝑂 (𝑛 log2 𝑛) work in expectation.

For the span bound, constructing the cover tree has the cost
of 𝑂 (log3 𝑛 log log𝑛) whp, and the batch-deletion (Line 11) costs
𝑂 (log2 𝑛) span whp each, for 𝑂 (log𝑛) calls in total.

All other steps in this algorithm are the standard Borůvka steps,
and their costs [69] are asymptotically bounded by the cover tree
costs. Combining them gives the stated bounds in the theorem. □

5.2 Single-Linkage Clustering
Given a set 𝑃 of𝑛 points, hierarchical agglomerative clustering (HAC)
starts from every single point as a cluster, and merges two clusters
with the global minimum pairwise distance for 𝑛 − 1 iterations,
creating a hierarchy for the input points. As a clustering method,
hierarchical clustering is a widely used unsupervised learning ap-
proach [1, 46, 51], with numerous other applications such as build-
ing phylogenetic trees in bioinformatics [50], constructing low-
dimension search structures in computer graphics [35, 64], iden-
tifying geographic districts in GIS [32, 54] and navigation in robot-
ics [3].

Hierarchical clustering is a high-level framework for clustering
a set of objects. When plugging in the cluster distance function
(linkage function) 𝐷 (𝑋,𝑌) (𝑋,𝑌 are two clusters), one can get a
specific algorithm, and the output is clearly defined. The simplest
and probably the most widely-used linkage function is minimum,
defined as𝐷𝑚 (𝑋,𝑌) = min{𝑑 (𝑥,𝑦) | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 } for 𝑥,𝑦 ∈ 𝑃 and

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

269

a metric 𝑑 . When we use 𝐷𝑚 as the linkage function, the resulting
clustering is referred to as single-linkage clustering.

A theoretically-efficient parallel algorithm for hierarchical clus-
tering is a long-standing open problem—even for the simplest single-
linkage clustering in Euclidean space, we are unaware of any previ-
ous parallel algorithms using 𝑜 (𝑛2) work and 𝑜 (𝑛) span for 𝑑 > 3,
even with assumptions such as low expansion rate.

Using the persistent parallel cover tree, in Sec. 5.1 we show how
to generate Euclidean MST using the work and span shown in
Thm. 5.1.We note that a recent work byWang et al. [66] introduced
an efficient parallel algorithm that converts an EMST to the dendro-
gram (cluster tree), which is the output for single-linkage cluster-
ing, in𝑂 (𝑛 log𝑛) expected work and𝑂 (log2 𝑛 log log𝑛) spanwhp.
The classic algorithms used Kruskal’s algorithm to generate the
dendrogram, which is inherently sequential. This new algorithm
is quite sophisticated, and uses algorithmic techniques such as the
Euler tour, semisorting, and a tricky divide-and-conquer approach.
However, this algorithm remains not only theoretically efficient,
but also has good practical performance [66]. Combining the new
algorithm for EMST as shown in Alg. 6, we get the following result.

TheoRem 5.2. The Single-linkage clustering on 𝑛 objects can be
computed in𝑂 (𝑛 log2 𝑛) expectedwork and𝑂 (log3 𝑛 log log𝑛) span
whp, assuming constant cluster expansion, bounded aspect ratio, and
the pairwise distance function can be computed in 𝑂 (1) work.

5.3 Bichromatic Closest Pair (BCP)
Given two sets 𝑃1 and 𝑃2, the goal of bichromatic closest pair (BCP)
is to find the closest pair (𝑝1, 𝑝2), such that 𝑝1 ∈ 𝑃1, 𝑝2 ∈ 𝑃2, and
𝑑 (𝑝1, 𝑝2) ≤ 𝑑 (𝑝 ′1, 𝑝

′
2) | ∀𝑝

′
1 ∈ 𝑃1,∀𝑝

′
2 ∈ 𝑃2.

WLOG, let’s assume |𝑃1 | =𝑚 ≤ 𝑛 = |𝑃2 |. We construct a cover
tree for 𝑃1, and query the nearest neighbor for every point in 𝑃2
in parallel. Plugging inThm. 4.10 and Lem. 3.3 gives𝑂 (𝑚 log𝑛) ex-
pected work and𝑂 (log3 𝑛 log log𝑛) span whp, assuming constant
cluster expansion and bounded aspect ratio.

5.4 Density-Based Clustering
Thedensity-based spatial clustering of applicationswith noise (DB-
SCAN) problem takes as input 𝑛 points P = {𝑝0, . . . , 𝑝𝑛−1}, a dis-
tance function 𝑑 , and two parameters 𝜖 and minPts [33]. A point
𝑝 is a core point if and only if |𝐵(𝑝, 𝜖) | ≥ minPts. We denote the
set of core points as C. DBSCAN computes and outputs subsets of
P, referred to as clusters. Each point in C is in exactly one cluster,
and two points 𝑝, 𝑞 ∈ C are in the same cluster if and only if there
exists a list of points 𝑝1 = 𝑝, 𝑝2, . . . , 𝑝𝑘−1, 𝑝𝑘 = 𝑞 in C such that
𝑑 (𝑝𝑖−1, 𝑝𝑖) ≤ 𝜖 . For all non-core points 𝑝 ∈ P \ C, 𝑝 belongs to
cluster𝐶𝑖 if 𝑝 ∈ 𝐵(𝑞, 𝜖) for any𝑞 ∈ C∩𝐶𝑖 . A non-core point belong-
ing to at least one cluster is called a border point and a non-core
point belonging to no clusters is called a noise point. In the anal-
ysis, we usually assume that minPtsis a constant, and in practice,
we usually pick minPts = 10.

Wang et al. [65] recently showed how to parallelize DBSCAN.
Unfortunately, due to the lack of an efficient parallel data struc-
ture for nearest neighbor search, their algorithms can only achieve
𝑂 (𝑛2)work and polylogarithmic span, or𝑂 ((𝑛 log𝑛)4/3) expected
work for 𝑑 = 3 and 𝑂 (𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿) expected work for any

constant 𝛿 > 0 for 𝑑 > 3, bottlenecked by computing bichro-
matic closest pairs (BCP). Using the above results for BCP gives
𝑂 (𝑛 log𝑛) expectedwork and𝑂 (log3 𝑛 log log𝑛) spanwhp to com-
pute DBSCAN. Here the assumptions include: minPts and expan-
sion rate are constant, aspect ratio is bounded, and a pairwise dis-
tance can be computed in constant time.
Hierarchical Density-Based Clustering. The output for hierar-
chical clustering (HDBSCAN) is a dendrogram (cluster tree), sim-
ilar to single-linkage clustering. The only difference is that HDB-
SCAN has the parameter minPts, so a point needs to first com-
pute itsminPts-nearest neighbors. This can be achieved efficiently
by constructing a cover tree in parallel, querying for all points,
and then using single-linkage clustering on top of it. Using the
same assumptions in DBSCAN, HDBSCAN can be computed in
𝑂 (𝑛 log2 𝑛) expected work and 𝑂 (log2 𝑛 log log𝑛) span whp.

5.5 𝑘-NN Graph Construction
𝑘-NN graphs are widely used in machine learning, such as graph
clustering [34, 42, 47, 48], manifold learning [63], outlier detec-
tion [37], and proximity search [20, 53, 55]. Given a point set 𝑃
in a metric space, a 𝑘-NN graph is a directed graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 = 𝑃 and (𝑝, 𝑞) ∈ 𝐸 if 𝑞 is one of 𝑝’s 𝑘-nearest neigh-
bor in 𝑉 − {𝑝}. We first construct the cover tree on 𝑃 , then apply
𝑘-NN queries on all the points in 𝑃 in parallel, and finally con-
struct the 𝑘-NN graph according to the query results. Using our
parallel cover tree, we can get 𝑂 (𝑘𝑛 log𝑘 log𝑛) expected work
and 𝑂 (log𝑛 · (𝑘 log𝑘 + log2 𝑛 log log𝑛)) span whp by combining
Thm. 4.10 and Lem. 3.3. Here we again assume constant expansion
rate and bounded aspect ratio.

6 CONCLUSIONS
In this paper, we show parallel algorithms for batch insertions and
batch deletions on cover trees, which are work-efficient and have
polylogarithmic span. The key challenge is that the operations on
the sequential cover tree, as well as many other sequential data
structures with similar functionality, are processed in a depth-first
manner that is inherently sequential. We show a few algorithmic
ideas in this paper, and we highlight the technique to construct
conflict graphs and compute the feasible set of tree nodes using
maximal independent set (MIS) on the graphs. This technique en-
ables a depth-first algorithm to be executed in a breadth-first or-
der. We believe that this idea may of independent interest, and
we will study if we can apply it to parallelize other sequential al-
gorithms and data structures. One of such examples is the metric
skip lists [41], which provide similar (but randomized) query and
update costs to cover trees but do not need to assume bounded as-
pect ratio. We also plan to study other graph algorithms with sim-
ilar challenges, and practical nearest-neighbor search algorithms
and see if we can show theoretical guarantees parameterized by
the expansion rate.
Acknowledgement.

ACKNOWLEDGEMENT
This work is supported by NSF grant CCF-2103483.

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

270

REFERENCES
[1] C. C. Aggarwal and C. K. Reddy. Data clustering: Algorithms and applications.

Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra, 2014.
[2] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback. Provably

good scheduling for parallel programs that use data structures through implicit
batching. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2014.

[3] O. Arslan, D. P. Guralnik, and D. E. Koditschek. Coordinated robot navigation
via hierarchical clustering. IEEE Transactions on Robotics, 32(2):352–371, 2016.

[4] A. Authors. Many sequential iterative algorithms can be parallel and (almost)
work-efficient. (unpublished work, submitted to SPAA 2022), 2022.

[5] J. Bell. The uniform metric on product spaces. Lecture Notes, University of
Toronto.

[6] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C.McGuffey, and
J. Shun. Implicit decomposition for write-efficient connectivity algorithms. In
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.

[7] J. L. Bentley and J. H. Friedman. Fast algorithms for constructing minimal span-
ning trees in coordinate spaces. IEEE Trans. on Comput., 27(02):97–105, 1978.

[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In
International Conference on Machine Learning (ICML), pages 97–104, 2006.

[9] S. P. Bhavsar and R. J. Splinter. The superiority of the minimal spanning tree
in percolation analyses of cosmological data sets. Monthly Notices of the Royal
Astronomical Society, 282(4):1461–1466, 1996.

[10] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

[11] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2020.

[12] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal indepen-
dent set andmatching are parallel on average. InACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2012.

[13] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious
algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010.

[14] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-efficient algorithms and
data structures for computational geometry. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

[15] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental
algorithms. J. ACM, 2020.

[16] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental convex hull
is highly parallel. In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), 2020.

[17] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720–748, 1999.

[18] O. Boruvka. O jistém problému minimálním. Práce Mor. Prırodved. Spol. v Brne
(Acta Societ. Scienc. Natur. Moravicae), 3(3):37–58, 1926.

[19] S. Chatterjee, M. Connor, and P. Kumar. Geometric minimum spanning trees
with geofilterkruskal. In International Symposium on Experimental Algorithms
(SEA), pages 486–500. Springer, 2010.

[20] E. Chávez and E. Sadit Tellez. Navigating k-nearest neighbor graphs to solve
nearest neighbor searches. In Advances in Pattern Recognition, pages 270–280,
2010.

[21] R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi. Provably efficient schedul-
ing of cache-oblivious wavefront algorithms. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 339–350, 2017.

[22] R. A. Chowdhury, V. Ramachandran, F. Silvestri, and B. Blakeley. Oblivious
algorithms for multicores and networks of processors. Journal of Parallel and
Distributed Computing, 73(7):911–925, 2013.

[23] K. L. Clarkson et al. Nearest-neighbor searching and metric space dimensions.
Nearest-neighbor methods for learning and vision: theory and practice, pages 15–
59, 2006.

[24] R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. ACM
Transactions on Parallel Computing (TOPC), 3(4), 2017.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms (3rd edition). MIT Press, 2009.

[26] R. R. Curtin. Improving dual-tree algorithms. PhD thesis, Georgia Institute of
Technology, 2015.

[27] L. Dhulipala, G. E. Blelloch, Y. Gu, and Y. Sun. Pac-trees: Supporting parallel and
compressed purely-functional collections. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2022.

[28] L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming using
compressed purely-functional trees. In ACM Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 918–934, 2019.

[29] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and
J. Shun. Semi-asymmetric parallel graph algorithms for nvrams. Proceedings of
the VLDB Endowment (PVLDB), 13(9), 2020.

[30] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Acad-
emy of Sciences, 95(25):14863–14868, 1998.

[31] Y. Elkin and V. Kurlin. A new compressed cover tree guarantees a near linear
parameterized complexity for all 𝑘-nearest neighbors search in metric spaces.
arXiv preprint:2111.15478, 2021.

[32] D. Eppstein, M. T. Goodrich, D. Korkmaz, and N. Mamano. Defining equitable
geographic districts in road networks via stable matching. In Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 1–4, 2017.

[33] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters a density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD, 1996.

[34] P. Franti, O. Virmajoki, and V. Hautamaki. Fast agglomerative clustering using
a k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(11):1875–1881, 2006.

[35] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via ap-
proximate agglomerative clustering. In High-Performance Graphics (HPG), 2013.

[36] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 24–34,
2015.

[37] V. Hautamaki, I. Karkkainen, and P. Franti. Outlier detection using k-nearest
neighbour graph. In International Conference on Pattern Recognition, volume 3,
pages 430–433, 2004.

[38] M. Held and R. M. Karp. The traveling-salesman problem and minimum span-
ning trees. Operations Research, 18(6):1138–1162, 1970.

[39] M. Izbicki and C. Shelton. Faster cover trees. In International Conference on
Machine Learning (ICML), pages 1162–1170. PMLR, 2015.

[40] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.
[41] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted met-

rics. In Proceedings of the thiry-fourth annual ACM symposium on Theory of com-
puting, pages 741–750, 2002.

[42] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8):68–75, 1999.

[43] T. Kollar. Fast nearest neighbors, 2006.
[44] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity

search. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 798–807. Citeseer, 2004.

[45] D. Li, X. Jia, and H. Liu. Energy efficient broadcast routing in static ad hoc
wireless networks. IEEE Transactions on Mobile Computing, 3(2):144–151, 2004.

[46] G. Lin, C. Nagarajan, R. Rajaraman, andD. P.Williamson. A general approach for
incremental approximation and hierarchical clustering. SIAM J. on Computing,
39(8):3633–3669, 2010.

[47] M. Lucińska and S. T. Wierzchoń. Spectral clustering based on k-nearest neigh-
bor graph. In Computer Information Systems and Industrial Management, pages
254–265, 2012.

[48] M. Maier, M. Hein, and U. Von Luxburg. Optimal construction of k-nearest-
neighbor graphs for identifying noisy clusters. Theoretical Computer Science,
410(19):1749–1764, 2009.

[49] W. March, P. Ram, and A. Gray. Fast Euclidean minimum spanning tree: Algo-
rithm, analysis, and applications. In KDD, 2010.

[50] S. J. Matthews and T. L. Williams. Mrsrf: an efficient mapreduce algorithm for
analyzing large collections of evolutionary trees. BMC bioinformatics, 11(S1):S15,
2010.

[51] B. Moseley, S. Vassilvtiskii, and Y. Wang. Hierarchical clustering in general met-
ric spaces using approximate nearest neighbors. In International Conference on
Artificial Intelligence and Statistics, pages 2440–2448. PMLR, 2021.

[52] G. Narasimhan and M. Zachariasen. Geometric minimum spanning trees via
well-separated pair decompositions. J. Experimental Algorithmics, 6:6–es, 2001.

[53] R. Paredes and E. Chávez. Using the k-nearest neighbor graph for proximity
searching in metric spaces. In String Processing and Information Retrieval, pages
127–138, 2005.

[54] J. P. Praene, B. Malet-Damour, M. H. Radanielina, L. Fontaine, and G. Riviere. Gis-
based approach to identify climatic zoning: A hierarchical clustering on princi-
pal component analysis. Building and Environment, 164:106330, 2019.

[55] T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval in large databases.
In International Conference on Pattern Recognition (ICPR), 2002.

[56] M. I. Shamos and D. Hoey. Closest-point problems. In IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 151–162. IEEE, 1975.

[57] M. Sharma and R. Joshi. Design and implementation of cover tree algorithm on
cuda-compatible gpu. International Journal of Computer Applications, 975:8887,
2010.

[58] Z. Shen, Z. Wan, Y. Gu, and Y. Sun. Many sequential iterative algorithms can
be parallel and (nearly) work-efficient. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2022.

[59] J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Sequential random
permutation, list contraction and tree contraction are highly parallel. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 431–448, 2015.

[60] S. Subramaniam and S. Pope. A mixing model for turbulent reactive flows based
on euclidean minimum spanning trees. Combustion and Flame, 115(4):487–514,

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

271

1998.
[61] Y. Sun and G. E. Blelloch. Parallel range, segment and rectangle queries with aug-

mented maps. In SIAM Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 159–173, 2019.

[62] Y. Sun, D. Ferizovic, and G. E. Blelloch. Pam: Parallel augmented maps. In ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP), 2018.

[63] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[64] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomerative clustering for
rendering. In IEEE Symposium on Interactive Ray Tracing, pages 81–86, 2008.

[65] Y. Wang, Y. Gu, and J. Shun. Theoretically-efficient and practical parallel dbscan.
In ACM SIGMOD International Conference on Management of Data (SIGMOD),

pages 2555–2571, 2020.
[66] Y. Wang, S. Yu, Y. Gu, and J. Shun. Fast parallel algorithms for euclidean mini-

mum spanning tree and hierarchical spatial clustering. In ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD), pages 1982–1995, 2021.

[67] P. Willett. Recent trends in hierarchic document clustering: a critical review.
Information processing & management, 24(5):577–597, 1988.

[68] A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM J. on Computing, 11(4):721–736, 1982.

[69] W. Zhou. A practical scalable shared-memory parallel algorithm for computing
minimum spanning trees. Master’s thesis, Karlsruhe Institute of Technology,
2017.

Session 6: Parallel Algorithms and Data Structures SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

272

	Abstract
	1 Introduction
	2 Preliminaries
	3 Cover Trees
	3.1 Cover Tree Properties
	3.2 Sequential Cover Tree Algorithms

	4 The Parallel Cover Tree Algorithm
	4.1 The Batch-Insertion Algorithm
	4.2 The Batch-Deletion Algorithm

	5 Applications
	5.1 Euclidean Minimum Spanning Tree
	5.2 Single-Linkage Clustering
	5.3 Bichromatic Closest Pair (BCP)
	5.4 Density-Based Clustering
	5.5 k-NN Graph Construction

	6 Conclusions
	References

