Parallel Cover Trees and their Applications

Yan Gu, Zachary Napier, Yihan Sun, Letong Wang
UC Riverside
SPAA 2022, Philadelphia

Efficient nearest and k-nearest neighbor search
Nearest and K-nearest neighbor search are common primitives

Classification

KNN classification

Clustering

K-means Clustering
Density-Based Clustering
Single-Linkage Clustering

Recommendation systems
Euclidean Minimum Spanning Tree

Information retrieval
Bichromatic Closest Pair
Preliminaries: metric space

A metric space (X, d_X) is defined on a set X and with a distance function $d_X : X \times X \to \mathbb{R}^*$ that satisfies properties: for $x, y, z \in X$,

$$\begin{align*}
d_X(x, y) &= 0 \iff x = y & \text{identity of indiscernibles} \\
d_X(x, y) &= d_X(y, x) & \text{symmetric} \\
d_X(x, y) &\leq d_X(x, z) + d_X(z, y) & \text{triangle inequality}
\end{align*}$$
Exact NNS on general metrics is challenging

Can we do it in sub-linear work on arbitrary input?
Exact NNS on general metrics is challenging

Can we do it in sub-linear work on arbitrary input?

How to measure how “good” a distribution is?
Metrics in real-world usually have nice properties to explore

- Low “Expansion Rate”
- Bounded “Aspect Ratio”
Metrics in real-world usually have nice properties to explore

Low “Expansion Rate”

Bounded “Aspect Ratio”
Low “Expansion Rate” [Karger, Ruhl 2002]

For each point, when doubling a radius, the number of points within the new radius is at most c times that within the original radius

\[\text{low expansion rate} \quad \rightarrow \quad c = O(1) \]

lower $c \rightarrow$ more smoothly the density changes

- $c = \Theta(n)$
- $c = O(1)$

Metrics in real-world usually have nice properties to explore

- Low “Expansion Rate”
- Bounded “Aspect Ratio”
Bounded “Aspect Ratio”

Aspect ratio is defined as the ratio of the maximum distance over smallest distance

\[
\Delta = \frac{\max\{d(x, y) \mid x, y \in X\}}{\min\{d(x, y) \mid x, y \in X\}}
\]

\[
\Delta = \frac{1.27 \times 10^7}{7 \times 10^{-5}} < 2 \times 10^{11}
\]

\[
n \geq 1 \times 10^6
\]

\[
\Delta < n^2
\]

\[
\Delta < n^K \text{ for some constant } K > 0
\]
Cover tree [BKL 2006] is a canonical solution supporting NNS

- Low “Expansion Rate”
- Bounded “Aspect Ratio”

Cover tree

Nesting

The bottom level contains all the points
The tree nodes at one level is a subset of nodes at the lower level

What is the parent of tree node?
A node can cover the nodes in the lower level within the covering radius.
Cover tree

Covering

A node can cover the nodes in the lower level within the covering radius. A node is covered by some node at a higher level.

- **Level 2**, $r = 2^2$
- **Level 1**, $r = 2^1$
- **Level 0**, $r = 2^0$
Covering tree

A node can cover the nodes in the lower level within the covering radius. A node is covered by some node at a higher level.

Level 2, \(r = 2^2 \)

Level 1, \(r = 2^1 \)

Level 0, \(r = 2^0 \)
Cover tree

Separation: All tree nodes at the same level are separated by the covering radius

Level 2, \(r = 2^2 \)

Limit the number of nodes

Level 1, \(r = 2^1 \)

Level 0, \(r = 2^0 \)
Cover tree

Nesting Covering Separation

Level 2, $r = 2^2$
Level 1, $r = 2^1$
Level 0, $r = 2^0$
Cover tree

- **Nesting**: The number of children of any node is no more than c^4
- **Covering**: The height of the tree $\leq [1 + \log(\Delta)]$
- **Separation**: Tree height $[1 + \log \Delta]$
Insert/delete/NNS-query has logarithmic cost

The number of children of any node is no more than c^4

Low “Expansion Rate”\[\rightarrow\] c is a constant\[\rightarrow\] Bounded degree

The height of the tree is no more than $\lceil 1 + \log(\Delta) \rceil$

Bounded “Aspect Ratio”\[\rightarrow\] $\Delta < n^K$\[\rightarrow\] Logarithmic height

Can cover trees be highly parallelized?

Tree height $[1 + \log \Delta]$ \n
$\leq c^4$ children

Level 1, $r = 2^1$

Level 0, $r = 2^0$
Parallel updates on a cover tree are hard

Two papers “claimed” they parallelized the cover tree, but neither preserves the theoretical bound

- Sharma and Joshi’s algorithm [2010] has no bound.
- Izbicki and Shelton’s version [2015] relaxes the separation property (query is linear).

Parallelizing cover trees has been open for 15 years.

No known other parallel data structure have the same theoretical guarantee.

Why parallel is so hard?
Parallel insertion on a cover tree is hard

Insert X and Y to a cover tree with two points
Insert X independently

Separation

Covering
Parallel insertion on a cover tree is hard

Insert X and Y to a cover tree with two points
Insert Y independently
Parallel insertion on a cover tree is hard

Parallel insert X and Y independently
Parallel insertion on a cover tree is hard

Parallel insert X and Y independently

Separation
Parallel insertion on a cover tree is hard

first insert X then Y

first insert Y then X
Parallel insertion on a cover tree is hard

Parallel insert X and Y independently
Our parallel cover tree algorithms
Parallel Insertion
Parallel Insertion

Not all of them can be inserted at this level.
Model the conflict relations as a graph
Model the conflict relations as a graph

If two points distance is smaller than r, we add and edge between them.

Separation For each edge, **at most one** endpoint can be selected

Some of them have to be inserted, why?
Model the conflict relations as a graph

If two points distance is smaller than r, we add an edge between them.

Separation: For each edge, at most one endpoint can be selected. Some of them have to be inserted, why?

Covering
Model the conflict relations as a graph

If two points distance is smaller than r, we add and edge between them.
For each edge, at most one endpoint can be selected
For each point and its neighbor(s), at least one of them must be selected

A MIS is a feasible solution!
Maximal Independent Set (MIS)

Independent: each edge has at most one endpoint selected.
For each edge, \textbf{at most one} endpoint can be selected.

Maximal: we can not add more vertices while maintaining independent.
For each point and its neighbor(s), \textbf{at least one} of them must be selected.

\[I = \{Q, W, S, V\} \]

An MIS exactly gives us what we need.
Maximal Independent Set (MIS)

Insert points in MIS to the current level
The rest points will be dealt with recursively in lower levels

$I = \{Q, W, S, V\}$
Key Techniques

Maximal Independent Set (MIS) → a valid cover tree → Work-efficiency
Key Techniques

Maximal Independent Set (MIS) → a valid cover tree

Work-efficiency

Insert m points to an empty tree in parallel? Each point will conflict with all the other points.

- $O(m^2)$ edges
- $O(m \log m)$ sequential work
Key Techniques

Maximal Independent Set (MIS) \rightarrow a valid cover tree

Prefix-doubling
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ sub-batches with size $1, 1, 2, 4, 8, \ldots$
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ sub-batches with size 1, 1, 2, 4, 8, ...
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ sub-batches with size $1, 1, 2, 4, 8, \ldots$.
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ sub-batches with size 1,1,2,4,8,...
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ sub-batches with size 1,1,2,4,8,...
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ sub-batches with size 1, 1, 2, 4, 8, ...
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ sub-batches with size 1,1,2,4,8,⋯

The current cover tree contains at least as many points as the group being inserted
Prefix doubling

Partition the insertion batch S into $\log_2 |S|$ groups with size $1, 1, 2, 4, 8, \ldots$.

The number of neighbors of a point is $O(1)$ in expectation and $O(\log n)$ whp.

Bound the cost running MIS \[[\text{Lemma 4.7}] \]
Computational Model and Notations

• Binary-forking model (with test-and-set)
• Standard Work-Span evaluation:
 • Work: total number of operations
 • Span (depth): number of operations on the longest dependence chain
• Work-efficiency:
 • The work is asymptotically the same as the best sequential solution
Cost Analysis for MIS

- Binary-forking model (with test-and-set)
- Parallel Maximal Independent Set on a graph $G = (V, E)$ [Shen et al. 2022]
 - Work: $O(|V| + |E|)$
 - Span: $O(\log |V| \log d_{\text{max}})$ whp, where d_{max} is the maximum degree
- When inserting m points to a cover tree with n points

The number of a point’s neighbors is $O(1)$ in expectation and $O(\log n)$ whp

$$|V| = O(m)$$
$$|E| = O(m) \text{ in expectation}$$
$$d_{\text{max}} = O(\log n) \text{ whp}$$

Work: $O(m)$ in expectation
Span: $O(\log m \log \log n)$ whp
Parallel insertion is work-efficient

Inserting m points to a cover tree with n points

$O(c^5 m H(T))$ expected work \hspace{1cm} $H(T)$ is tree height

$O(H(T) \log m (\log c + \log m \log \log n))$ \hspace{0.5cm} \text{span} \hspace{0.5cm} \text{whp}$
Parallel insertion is work-efficient

Inserting \(m \) points to a cover tree with \(n \) points

\[
O(c^5 m H(T)) \quad \text{expected work} \quad H(T) \text{ is tree height}
\]

\[
c^5 H(T) \rightarrow \quad \text{single-insertion sequentially}
\]

\[
O(H(T) \log m (\log c + (\log m) \log \log n)) \quad \text{span \ php}
\]

When assuming \(c = O(1) \) and \(H(T) = O(\log n) \), inserting \(m \) points to a cover tree contains \(n \) points costs:

Work: \(O(m \log n) \) in expectation

Span: \(O(\log n \log^2 m \log \log n) \) with high probability
Key Techniques

Maximal Independent Set (MIS) → Correctness & Parallelism

Prefix-doubling → Work-efficiency
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order

Level 2, $r = 2^2$

Level 1, $r = 2^1$

Level 0, $r = 2^0$
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order

Level 2, $r = 2^2$

Level 1, $r = 2^1$

Level 0, $r = 2^0$
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either reassigned

Level 2, $r = 2^2$
Level 1, $r = 2^1$
Level 0, $r = 2^0$
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either redistributed or promoted up

Level 2, \(r = 2^2 \)
Level 1, \(r = 2^1 \)
Level 0, \(r = 2^0 \)
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either redistributed or promoted up
Run MIS on promoted nodes
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either redistributed or promoted up
Run MIS on promoted nodes

Level 2, $r = 2^2$
Level 1, $r = 2^1$
Level 0, $r = 2^0$
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either redistributed or promoted up
Run MIS on promoted nodes
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either redistributed or promoted up
Run MIS on promoted nodes

Level 2, $r = 2^2$
Level 1, $r = 2^1$
Level 0, $r = 2^0$
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either redistributed or promoted up
Run MIS on promoted nodes
Parallel deletion is similar to insertion

Parallel deletion is in the bottom-up order
Orphans are either redistributed or promoted up
Run MIS on promoted nodes
Don’t need prefix doubling

\[
O(c^9 mH(T)) \text{ expected work}
\]

\[
O(H(T) \log c (\log c + \log m)) \text{ span whp}
\]
Applications

- Euclidean Minimum Spanning Tree
- Single-Linkage Clustering
- Bichromatic Closest Pair (BCP)
- Density-Based Clustering
- k-NN Graph Construction

When assuming $c = O(1)$ and $H(T) = \Theta(\log n)$

- \(\tilde{O}(n)\) expected work

 \(O(\log^3 n \log \log n)\) span whp

- \(O(kn \log k \log n)\) work

 \(O(\log n \cdot (k \log k + \log^2 n \log \log n))\) span whp
Applications

- Euclidean Minimum Spanning Tree
- Single-Linkage Clustering
- Bichromatic Closest Pair (BCP)
- Density-Based Clustering
- k-NN Graph Construction
Euclidean Minimum Spanning Tree (EMST)

Given a set of n points $S \in \mathbb{R}^d$, EMST finds the MST on the complete graph constructed from S, where edge weights are pairwise Euclidean distances.

We apply parallel cover tree to Borůvka's MST algorithm
Euclidean Minimum Spanning Tree (EMST)

Given a set of \(n \) points \(S \in \mathbb{R}^d \), EMST finds the MST on the complete graph constructed from \(S \), where edge weights are pairwise Euclidean distances.

We apply parallel cover tree to Borůvka's MST algorithm Cluster-NN:

Construct a cover tree on \(n \) points

Delete the cluster
Euclidean Minimum Spanning Tree (EMST)

Given a set of n points $S \in \mathbb{R}^d$, EMST finds the MST on the complete graph constructed from S, where edge weights are pairwise Euclidean distances.

We apply parallel cover tree to Borůvka's MST algorithm

Cluster-NN:

Construct a cover tree on n points

- Delete the cluster
- Query NNS
- Take minimum

Query cluster-NN in parallel?

Persistent Trees
Conclusion

- **Cover tree**
 - Low expansion rate
 - Bounded aspect ratio
 - Efficient NNS

- **Parallel Insertion/Deletion**
 - MIS: Correctness & Parallelism
 - Prefix-doubling: Work-efficiency

- **Applications**

- **Persistent-tree**

 \[m \text{ is number of inserted/deleted points} \]

 \[n \text{ is cover tree size} \]

 - **Insertion**
 - \(O(m \log n) \text{ expected work} \)
 - \(O(\log n \log^2 m \log \log n) \text{ span whp} \)

 - **Deletion**
 - \(O(m \log n) \text{ expected work} \)
 - \(O(\log n \log m) \text{ span whp} \)