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Efficient nearest and k-nearest neighbor search



Nearest and K-nearest neighbor search are common primitives
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Euclidean Minimum Spanning Tree Bichromatic Closest Pair
Recommendation systems Information retrieval

classification

?

KNN classification K-means Clustering
Density-Based Clustering
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Preliminaries: metric space
A metric space  is defined on a set  and with a distance function 

 that satisfies properties: for , 

                         

                                       

                      

(X, dX) X

dX : X × X → ℝ* x, y, z ∈ X

dX(x, y) = 0 ⟺ x = y

dX(x, y) = dX(y, x)

dX(x, y) ≤ dX(x, z) + dX(z, y)
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triangle inequality
symmetric 

identity of indiscernibles



Exact NNS on general metrics is challenging
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Can we do it in sub-linear work on arbitrary input? 
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Can we do it in sub-linear work on arbitrary input? 

How to measure how “good” a distribution is?

Exact NNS on general metrics is challenging



Metrics in real-world usually have nice properties to explore

Low “Expansion Rate” Bounded “Aspect Ratio”
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Metrics in real-world usually have nice properties to explore

Low “Expansion Rate” Bounded “Aspect Ratio”
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Low “Expansion Rate”[Karger, Ruhl 2002]

For each point, when doubling a radius, the number of points within 
the new radius is at most
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[Karger, Ruhl 2002] David R. Karger, and Matthias Ruhl. "Finding nearest neighbors in growth-restricted 
metrics." ACM symposium on Theory of computing(STOC). 2002.

c times that within the original radius

c = Θ(n) c = O(1)

low expansion rate c = O(1)
lower  c more smoothly the density changes 



Metrics in real-world usually have nice properties to explore

Low “Expansion Rate” Bounded “Aspect Ratio”
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Aspect ratio is defined as the ratio of the maximum distance over smallest distance

Bounded “Aspect Ratio”

Δ =
max{d(x, y) |x, y ∈ X}
min{d(x, y) |x, y ∈ X}

Δ =
1.27 × 107

7 × 10−5
< 2 × 1011

n ≥ 1 × 106

Δ < n2

 for some constant Δ < nK K > 0

m 1.27 × 107

source: NASA 

Earth

m 7 × 10−5

Hair
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Cover tree [BKL 2006] is a canonical solution supporting NNS

Low “Expansion Rate” Bounded “Aspect Ratio”
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[BKL 2006] Beygelzimer, Alina, Sham Kakade, and John Langford. "Cover trees for nearest neighbor." Proceedings of 
the 23rd International Conference on Machine Learning (ICML). 2006.
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Nesting
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The tree nodes at one level is a subset of nodes at the lower level

Cover tree
Nesting

C
DAE
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G F Level 0

AB C
Level 1

A Level 2

The bottom level contains all the points
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What is the parent of tree node?
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Covering
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A node can cover the nodes in the lower level within the covering radius.
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Cover tree
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Covering A node can cover the nodes in the lower level within the covering radius.
A node is covered by some node at a higher level.
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Cover tree
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Covering A node can cover the nodes in the lower level within the covering radius.
A node is covered by some node at a higher level.



All tree nodes at the same level are separated by the covering radiusSeparation
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Cover tree
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limit the number of nodes



Nesting Covering Separation

Cover tree
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Nesting

Covering

Separation

Cover tree
The number of children of any node is no more than c4

The height of the tree  ≤ ⌈1 + log(Δ)⌉

Tree height  ⌈1 + log Δ⌉
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 children≤ c4
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The number of children of any node is no more than c4

The hight of the tree is no more than ⌈1 + log(Δ)⌉

Low “Expansion Rate”  is a constantc Bounded degree

Insert/delete/NNS-query has logarithmic cost

Bounded “Aspect Ratio” Δ < nK Logarithmic height

Tree height  ⌈1 + log Δ⌉
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 children≤ c4

Can cover trees be highly parallelized?



Parallel updates on a cover tree are hard
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Two papers “claimed” they parallelized the cover tree, but neither preserves 
the theoretical bound

Sharma and Joshi’s algorithm [2010] has no bound. 
Izbicki and Shelton’s version [2015] relaxes the separation property 
(query is linear).

Parallelizing cover trees has been open for 15 years. 
No known other parallel data structure have the same theoretical guarantee.

Why parallel is so hard?



Insert X and Y to a cover tree with two points

Parallel insertion on a cover tree is hard
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Insert X independently

X Separation

XB A Covering



Parallel insertion on a cover tree is hard
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Insert X and Y to a cover tree with two points
Insert Y independently



Parallel insert X and Y independently

Parallel insertion on a cover tree is hard
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Parallel insertion on a cover tree is hard
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Parallel insert X and Y independently

Separation



first insert X then Y

Parallel insertion on a cover tree is hard
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Parallel insertion on a cover tree is hard
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Parallel insert X and Y independently



Our parallel cover tree algorithms
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Not all of them can be inserted at this level.

< r

Separation
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Model the conflict relations as a graph
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If two points distance is smaller than , we add and edge between them.r

Model 
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W
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Model the conflict relations as a graph

Some of them have to be inserted, why? 
For each edge, at most one endpoint can be selected
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If two points distance is smaller than , we add and edge between them.r

Model 

B

A

C

< r
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Model the conflict relations as a graph
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Some of them have to be inserted, why? 
For each edge, at most one endpoint can be selectedSeparation
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If two points distance is smaller than , we add and edge between them.r
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Model the conflict relations as a graph

For each point and its neighbor(s), at least one of them must be selected
A MIS is a feasible solution!

For each edge, at most one endpoint can be selected
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Maximal Independent Set (MIS)
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Independent: each edge has at most one endpoint selected.

Maximal: we can not add more vertices while maintaining independent.
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I = {Q, W, S, V}

For each edge, at most one endpoint can be selected

For each point and its neighbor(s), at least one of them must be selected

An MIS exactly gives us what we need.
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Maximal Independent Set (MIS)

35

P
Q

R

S

T

U V

W

P
Q

R

S

T

W

I = {Q, W, S, V}

Insert points in MIS to the current level
The rest points will be dealt with recursively in lower levels

⋯⋯



Maximal Independent Set (MIS)

Key Techniques

a valid cover tree

36

Work-efficiency



Maximal Independent Set (MIS)

Key Techniques

a valid cover tree

Insert  points to an empty tree in parallel?m
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Each point will conflict with all the other points.
 edgesO(m2)

Work-efficiency

 sequential workO(m log m)



Maximal Independent Set (MIS)

Prefix-doubling

Key Techniques

a valid cover tree

38



Prefix doubling
Partition the insertion batch  into  sub-batches with size 1,1,2,4,8,…S log2 |S |
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Prefix doubling
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Partition the insertion batch  into  sub-batches with size 1,1,2,4,8,…S log2 |S |



Prefix doubling
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Partition the insertion batch  into  sub-batches with size 1,1,2,4,8,…S log2 |S |



Prefix doubling
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Partition the insertion batch  into  sub-batches with size 1,1,2,4,8,…S log2 |S |



Prefix doubling
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Partition the insertion batch  into  sub-batches with size 1,1,2,4,8,…S log2 |S |



Prefix doubling
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Partition the insertion batch  into  sub-batches with size 1,1,2,4,8,…S log2 |S |



Prefix doubling

The current cover tree contains  
at least as many points as the group being inserted
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Partition the insertion batch  into  sub-batches with size 1,1,2,4,8,…S log2 |S |



Prefix doubling

Partition the insertion batch  into  groups with size 1,1,2,4,8,……S log2 |S |

The number of neighbors of a point is  in expectation and   
[Lemma 4.7]

O(1) O(log n) whp

Bound the cost running MIS
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Computational Model and Notations

•Binary-forking model (with test-and-set) 

•Standard Work-Span evaluation: 

•Work: total number of operations 

•Span (depth): number of operations on the longest dependence chain 

•Work-efficiency: 

•The work is asymptotically the same as the best sequential solution
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Cost Analysis for MIS

•Binary-forking model (with test-and-set) 

•Parallel Maximal Independent Set on a graph  [Shen et al. 2022] 

•Work:  

•Span:  , where  is the maximum degree

G = (V, E)

O( |V | + |E | )

O(log |V | log dmax) whp dmax

Work:  in expectation 

Span:  

O(m)

O(log m log log n) whp

 
 in expectation 

 

|V | = O(m)

|E | = O(m)

dmax = O(log n) whp
48

The number of a point’s neighbors is  in expectation and  O(1) O(log n) whp

•When inserting  points to a cover tree with  pointsm n



Parallel insertion is work-efficient

Inserting  points to a cover tree with  pointsm n
 expected workO(c5mH(T))

 span O(H(T)log m(log c + log m log log n)) whp

c5 H(T)

49

 is tree heightH(T)



Parallel insertion is work-efficient

When assuming  and , inserting  points to a 
cover tree contains  points costs:

c = O(1) H(T) = Θ(log n) m
n

Work:  in expectationO(m log n)

Span:  with high probabilityO(log n log2 m log log n)

Inserting  points to a cover tree with  pointsm n
 expected workO(c5mH(T))

 span O(H(T)log m(log c + log m log log n)) whp
c5 H(T)

every MIStop-down on each level
prefix-doubling
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single-insertion sequentially

Constructing every graph

 is tree heightH(T)



Maximal Independent Set (MIS)

Prefix-doubling

Key Techniques

Correctness & Parallelism

Work-efficiency
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Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order
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Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order
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Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either reassigned 
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Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either redistributed or promoted up
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H

Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either redistributed or promoted up 

Run MIS on promoted nodes 
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H

Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either redistributed or promoted up 

Run MIS on promoted nodes 
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H

Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either redistributed or promoted up 

Run MIS on promoted nodes 
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Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either redistributed or promoted up 

Run MIS on promoted nodes 
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Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either redistributed or promoted up 

Run MIS on promoted nodes 
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Parallel deletion is similar to insertion
Parallel deletion is in the bottom-up order 
Orphans are either redistributed or promoted up 

Run MIS on promoted nodes 
Don’t need prefix doubling

EB D

B
G F Level 0, r = 20

Level 1, r = 21

Level 2, r = 22

 expected workO(c9mH(T))
 span O(H(T)log c(log c + log m)) whp
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Applications

Euclidean Minimum Spanning Tree

Single-Linkage Clustering

Bichromatic Closest Pair (BCP)

Density-Based Clustering

k-NN Graph Construction

 expected workÕ(n)

  span O(log3 n log log n) whp

 work 
 span 

O(kn log k log n)
O(log n ⋅ (k log k + log2 n log log n)) whp
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When assuming  
and 

c = O(1)

H(T) = Θ(log n)



Applications

Euclidean Minimum Spanning Tree

Single-Linkage Clustering

Bichromatic Closest Pair (BCP)

Density-Based Clustering

k-NN Graph Construction
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Given a set of  points , EMST finds the MST 
on the complete graph constructed from , where 
edge weights are pairwise Euclidean distances. 

n S ∈ ℝd

S

Euclidean Minimum Spanning Tree (EMST)

64

We apply parallel cover tree to Borůvka's MST algorithm



Given a set of  points , EMST finds the MST 
on the complete graph constructed from , where 
edge weights are pairwise Euclidean distances. 

n S ∈ ℝd

S

Euclidean Minimum Spanning Tree (EMST)
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Construct a cover tree on  pointsn

Delete the cluster

We apply parallel cover tree to Borůvka's MST algorithm
Cluster-NN:



Given a set of  points , EMST finds the MST 
on the complete graph constructed from , where 
edge weights are pairwise Euclidean distances.

n S ∈ ℝd

S

Euclidean Minimum Spanning Tree (EMST)

Construct a cover tree on  pointsn

Delete the cluster Query NNS Take minimum

Query cluster-NN in parallel? Persistent Trees
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We apply parallel cover tree to Borůvka's MST algorithm

Delete the cluster

Cluster-NN:



Conclusion

Cover tree Low expansion rate
Bounded aspect ratio

Parallel Insertion/Deletion MIS
Prefix-doubling

Correctness & Parallelism
Work-efficiency

Efficient NNS

Applications

Persistent-tree  expected workO(m log n)
 span O(log n log m) whpDeletion

 expected workO(m log n)
 span O(log n log2 m log log n) whp

Insertion

67

 is number of inserted/deleted points  
 is cover tree size

m
n


