
Analysis of Work-Stealing and
Parallel Cache Complexity

Yan Gu

UC Riverside

ygu@cs.ucr.edu

Zachary Napier

UC Riverside

znapi001@ucr.edu

Yihan Sun

UC Riverside

yihans@cs.ucr.edu

ABSTRACT
Parallelism has become extremely popular over the past

decade, and there have been a lot of new parallel algorithms

and software. The randomized work-stealing (RWS) sched-

uler plays a crucial role in this ecosystem. In this paper, we

study two important topics related to the randomized work-

stealing scheduler.

Our first contribution is a simplified, classroom-ready ver-

sion of analysis for the RWS scheduler. The theoretical effi-

ciency of the RWS scheduler has been analyzed for a variety

of settings, but most of them are quite complicated. In this

paper, we show a new analysis, which we believe is easy to

understand, and can be especially useful in education. We

avoid using the potential function in the analysis, and we as-

sume a highly asynchronous setting, which is more realistic

for today’s parallel machines.

Our second and main contribution is some new parallel

cache complexity for algorithms using the RWS scheduler.

Although the sequential I/O model has been well-studied

over the past decades, so far very few results have extended

it to the parallel setting. The parallel cache bounds of many

existing algorithms are affected by a polynomial of the span,

which causes a significant overhead for high-span algorithms.

Our new analysis decouples the span from the analysis of

the parallel cache complexity. This allows us to show new

parallel cache bounds for a list of classic algorithms. Our

results are only a polylogarithmic factor off the lower bounds,

and significantly improve previous results.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

APoCS’22, January 12, 2022 , Alexandria, Virginia
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Hardware advances in the last decade have brought multi-

core parallel machines to the mainstream. While there are

multiple programming paradigms and tools to enable paral-

lelism in multicore machines, the one based on nested paral-
lelism with randomized work-stealing (RWS) scheduler
is with no doubt the most popular and widely used. The

nested parallelism model and its variants have been sup-

ported by most parallel programming languages (e.g., Cilk,

TBB, TPL, X10, Java Fork-join, and OpenMP), introduced in

textbooks (e.g., Cormen, Leiserson, Rivest and Stein [43]),

and employed in a variety of research papers (to list a few:

[6, 12, 13, 18, 22, 24, 25, 27–31, 35, 42, 44, 45, 55, 72? ? –74]).
At a high level, this model allows an algorithm to recur-

sively and dynamically create (fork) parallel tasks, which
will be executed on 𝑃 processors by a dynamic scheduler.

This nested (binary) fork-join provides a good abstraction

for shared-memory parallelism. On the user (algorithm de-

signer or programmer) side, it is a simple extension to the

classic programmingmodel with additional keywords for cre-

ating new tasks (e.g., fork) and synchronization (e.g., join)
between tasks.

The randomized work-stealing (RWS) scheduler plays
a crucial role in this ecosystem. It automatically and dy-

namically maps a nested parallel algorithm to the hardware

efficiently both in theory and in practice. In this paper, we

study two important topics related to the RWS scheduler.

First, we show a new, simplified, and classroom-ready
version of analysis for the RWS scheduler, which we be-

lieve is easier to understand than existing ones. Second, we

provide some new analyses for parallel cache complexity
for nested-parallel algorithms based on the RWS scheduler.

We provide a list of almost optimal bounds listed in Table 1,

and more discussions will be given later.

Our first contribution is a simplified analysis for the RWS

scheduler. The theoretical efficiency of the RWS scheduler

was first given by Blumofe and Leiserson [32], and is later

analyzed for a variety of settings (to list a few: [1–3, 10, 12,

19, 63, 69, 70]). Although these analyses essentially consider

more complex settings (e.g., to also consider external I/Os),

the analyses themselves are quite complicated. To the best of

our knowledge, the details of the proofs are covered in very

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

few courses related to parallelism, and in most cases, RWS

is just treated as a black box. Hence, we simply consider the

goal of bounding the number of steals of the RWS scheduler,

and we want to answer the question of what the simplest

analysis for the RWS scheduler can be, or what is the most

comprehensible version in education.

This paper presents a simplified analysis in Section 3. Un-

like most of the existing analyses, our version does not rely

on defining the potential function for a substructure of the

computation, which we believe is easy to understand. Our

analysis is inspired by a recent analysis [19] that is simi-

lar to [7, 71]. Our analysis differs from [19] in two aspects.

First, unlike [19], we do not assume all processors run in

lock-steps (the PRAM setting). Instead, we assume a highly

asynchronous setting, which is more realistic for today’s

parallel machines. Second, we separate the math calculation

from the details of the RWS algorithm, which may be helpful

for classroom teaching.

Our second and main contribution of this paper is on

the parallel cache complexity for algorithms using the RWS

scheduler. On today’s machines, the memory access cost

usually dominates the running time of most combinatorial

algorithms. To capture this, sequentially, Aggarwal and Vit-

ter [5] first formalized the external-memorymodel to capture

the I/O cost of an algorithm, which was refined by Frigo et

al. [48] as the ideal-cache model. The cost measure is called

I/O complexity [5] (noted as 𝑄1) or cache complexity [48]

when specifying the communication cost between the cache

and the main memory. While this model has received great

success in the algorithm and database communities, so far,

few results have extended it to the parallel (distributed cache)

setting, which we summarize in Section 2.4. Among them,

Acar, Blelloch and Blumofe [2] first defined and showed that

the parallel cache complexity𝑄𝑃 is at most𝑄1 +𝑂 (𝑃𝐷𝑀/𝐵),
where 𝑃 , 𝐷 , 𝑀 and 𝐵 are the number of processors, span

(aka. depth, the longest critical path of dependences), cache

size, and cache block size, respectively (definitions in Sec-

tion 2). However, this bound is pessimistic and usually too

loose. Frigo and Strumpen [50] and later work by Cole and

Ramachandran [39, 40] showed tighter parallel cache com-

plexity for many cache-oblivious algorithms summarized

Table 1. However, the bounds have a polynomial overhead
1

on the input size when the span is polynomial to the input

size. Such overhead can easily dominate the cache bound

when plugging in the real-world input size, as discussed in

the caption of Table 1. It remained an open question on how

to close this gap.

In this paper, we significantly close this gap for a vari-

ety of algorithms. The polynomial overhead in the previous

1
Such an overhead is usually 𝑛𝑎 , where 𝑎 is a constant and 1/2 ≤ 𝑎 < 1.

analysis [2, 39, 40, 50] is due to the high span of these al-

gorithms (a polynomial of the algorithm’s span shows up

in the bound). The key insight in our analysis is to break

such polynomial correlation between the algorithm’s span

and the overhead for parallel cache complexity. Our new

analysis is inspired by the abstraction of 𝑘-d grid proposed

recently by Blelloch and Gu [26], which was previously used

to show sequential cache bounds. We extend the idea for

analyzing parallel cache complexity. Our analysis directly

studies the “real” dependencies in the computation structure

of these algorithms, instead of those caused by parallelism.

In particular, the core of our analysis is just the recurrences
of these algorithms. As a result, the parallel dependency of

the computation (the algorithm’s span) does not show up in

the analysis. This helps us avoid the complication of digging

into the details of the scheduling algorithms in the analysis,

and the analysis is no more complicated than just solving re-

currences. To do this, we define the (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence,
which effectively models the pattern of recurrences of many

classic algorithms, and show a general theorem, Theorem 4.2,

to solve these recurrences. By applying these results, we can

achieve the new bounds in Table 1. The parallel overheads

are polylogarithmic instead of polynomial to the input size,

compared to the lower bounds by [11, 26]. We believe the

methodology is of independent interest, and could be use-

ful in analyzing other parallel or sequential algorithms. We

leave this as future work.

The contributions of this paper are as follows.

(1) We show a new analysis for the randomized work-

stealing scheduler, which avoids the use of potential

functions and is very simple.

(2) We propose the (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence and a general

theorem (Theorem 4.2) for solving it, which applies to

solving the parallel cache complexity for many classic

parallel algorithms.

(3) We show new cache complexity bounds for a variety

of algorithms, shown in Table 1, which significantly

improves existing results, and is very close to the lower

bounds (only a polylogarithmic overhead).

2 PRELIMINARIES
2.1 Nested Parallelism
The nested parallelism model is a programming model for

shared-memory parallel algorithms. This model allows algo-

rithms to recursively and dynamically create new parallel

tasks (threads). The computation will be simulated (sched-

uled) on 𝑃 loosely synchronized processors, and explicit

synchronization can be used to let threads reach consen-

sus. Some commonly-used examples include the (binary)

fork-join model and binary forking model. More precisely,

2

Algorithm

Seq. Parallel Overhead

Bound New in this paper Previous best [26, 39, 50] Lower Bound [11, 26]

Gaussian Elimination 𝑛3

𝐵
√
𝑀
+ 𝑛2

𝐵
+ 1 𝑃1/3 log2/3 𝑛 · 𝑛2

𝐵
+ 𝑃𝑛 𝑃1/3𝑛1/3 · 𝑛2

𝐵
+ 𝑃𝑛 log𝐵 𝑃1/3 · 𝑛2

𝐵Kleene’s algorithm for APSP

Triangular System Solver
𝑛3

𝐵
√
𝑀
+ 𝑛2

𝐵
+ 1 𝑃1/3 log5/3 𝑛 · 𝑛2

𝐵
+ 𝑃𝑛 𝑃1/3𝑛1/3 · 𝑛2

𝐵
+ 𝑃𝑛 log𝐵 𝑃1/3 · 𝑛2

𝐵

Cholesky Factorization 𝑛3

𝐵
√
𝑀
+ 𝑛2

𝐵
+ 1 𝑃1/3 log5/3 𝑛 · 𝑛2

𝐵
+ 𝑃𝑛 log𝑛 𝑃1/3𝑛1/3 log1/3 𝑛 · 𝑛2

𝐵
+ 𝑃𝑛 log𝑛 𝑃1/3 · 𝑛2

𝐵LU Decomposition

LWS Recurrence
𝑛2

𝐵𝑀
+ 𝑛

𝐵
+ 1 𝑃1/2 log2 𝑛 · 𝑛

𝐵
+ 𝑃𝑛 𝑃1/2 · 𝑛1/2 · 𝑛

𝐵
+ 𝑃𝑛 𝑃1/2 · 𝑛

𝐵

GAP Recurrence
𝑛3

𝐵𝑀
+ 𝑛2

log𝑀

𝐵
+ 1 𝑃1/2 log2 𝑛 · 𝑛2

𝐵
+ 𝑃𝑛𝜅 𝑃1/2𝑛𝜅/2 log𝑀 · 𝑛2

𝐵
+ 𝑃𝑛𝜅 𝑃1/2 · 𝑛2

𝐵

Parenthesis Recurrence
𝑛3

𝐵
√
𝑀
+ 𝑛2

𝐵
+ 1 𝑃1/3 log5/3 𝑛 · 𝑛2

𝐵
+ 𝑃𝑛𝜅 𝑃1/3𝑛𝜅/3 · 𝑛2

𝐵
+ 𝑃𝑛𝜅 𝑃1/3 · 𝑛2

𝐵

RNA Recurrence
𝑛4

𝐵𝑀
+ 𝑛2

𝐵
+ 1 𝑃1/2 log2 𝑛 · 𝑛2

𝐵
+ 𝑃𝑛𝜅 𝑃1/2𝑛𝜅/2 · 𝑛2

𝐵
+ 𝑃𝑛𝜅 𝑃1/2 · 𝑛2

𝐵

Protein Accordion Folding
𝑛3

𝐵𝑀
+ 𝑛2

𝐵
+ 1 𝑃1/2 log𝑛 · 𝑛2

𝐵
+ 𝑃𝑛 log2 𝑛 𝑃1/2𝑛1/2 log𝑛 · 𝑛2

𝐵
+ 𝑃𝑛 log2 𝑛 𝑃1/2 · 𝑛2

𝐵

Table 1: Sequential and parallel cache complexity for a list of algorithms. Here 𝑀 , 𝐵, and 𝑃 are the cache size, the

block size, and the number of processors, respectively, and 𝜅 = log
2
3 ≈ 1.58. The sequential bounds are from various existing

papers [26, 36, 45, 48]. The parallel cache complexity is the sequential cache complexity plus the parallel overhead. The

best previous parallel bounds are either from [39, 50], or what we computed based on the algorithms from [26] and the

analysis from [39, 50]. The new bounds are analyzed in Sec. 4. For all algorithms/problems, the new parallel bounds are

much tighter. Using LWS recurrence as an example, for the best previous bound, the parallel overhead always dominates

unless 𝑃1/2𝑛3/2/𝐵 < 𝑛2/𝐵𝑀 , which gives 𝑛 = 𝜔 (𝑃𝑀2) (at least 245 when plugging in real-world values for𝑀 and 𝑃 , which is

impossible to store and compute). Our new bound improve the dominating term of 𝑂 (𝑃1/2𝑛3/2/𝐵) by
√
𝑛/log2 𝑛. Similarly, for

other algorithms, our new bounds replace the 𝑛𝑎 in the dominating terms for 𝑎 = 1/2, 1/3, 𝜅/2, or 𝜅/3, with the log
𝑏 𝑛 for

𝑏 ≤ 2. In all cases, the gaps between new parallel upper bounds and the lower bounds on the specific computations are log
𝑏 𝑛

for 𝑏 ≤ 2, which were previously a polynomial factor 𝑛𝑎 for 𝑎 = 1/2, 1/3, 𝜅/2, or 𝜅/3.

in this model, we assume a set of threads that have access to

a shared memory. A computation starts with a single root

thread and finishes when all threads finish. Each thread sup-

ports the same operations as in the sequential RAM model,

but also has a fork instruction that forks a new child thread

that can be run in parallel. Threads can synchronize with

each other using some primitives. The most common syn-

chronization is join, where every fork corresponds to a

later join, and the fork and corresponding join are prop-
erly nested. In more general models (e.g., the binary-forking

model [23]) threads are also allowed to be synchronized

with any other threads, probably by using atomic prim-

itives such as test_and_set or compare_and_swap. This
model is the most widely-used model for multicore program-

ming, and is supported by many parallel languages includ-

ing NESL [17], Cilk [49], the Java fork-join framework [58],

OpenMP [65], X10 [34], Habanero [33], Intel Threading Build-

ing Blocks [57], the Task Parallel Library [76], and many

others. In this model, we usually require the computation to

be either race-free [46] (i.e., no logically parallel instructions
access the same memory location and at least one is a write),

or to only use atomic operations (e.g., test_and_set or

compare_and_swap) to deal with concurrentwrites (e.g., [21]).

2.2 Work-Span Measure
For a computation using nested parallelism, we can measure

its work and span by evaluating its series-parallel computa-

tional DAG (i.e., a DAG modeling the dependence between

operations in the computation). The work𝑊 is the number

of operations in this computation, or the costs of all tasks

in the computation DAG (the time complexity on the RAM

model). The span (or depth) 𝐷 is the maximum number of

operations over all directed paths in the computation DAG.

2.3 Randomized Work-Stealing (RWS)
Scheduler

In practice, a nested-parallel computation can be scheduled

onmulticoremachines using the randomizedwork-stealing
(RWS) algorithm. More details of the RWS scheduler can

be found in [32], and here we overview the high-level ideas

that will be used in our analysis. The RWS scheduler assigns

one double-ended queue (deque) for each processor that can

3

execute a thread at a time. One processor starts with taking

the root thread. Each processor then proceeds as follows:

• If the current thread runs a fork, the processor en-

queues one thread at the front of its queue (spawned

child), and executes the other thread (continuation).

• If the current thread completes, the processor pulls a

thread from the front of its own queue.

• If a processor’s queue is empty, it randomly selects one

of the other processors, and steals a thread from the

end of that processor’s queue (victim queue). If that

fails, the processor retries until succeeds.

Since a steal can be pretty costly (involves complicated inter-

processor communication) in practice, a common practice

is to wait for at least the time for a successful steal before

retrying [2].

The overhead of executing the computation based on the

RWS scheduler is mainly on the steal attempts (both suc-

cessful ones and failed ones), plus maintaining the deque.

Hence, bounding the number of steals is of great interest for

multicore parallelism.

Theorem 2.1. Executing a series-parallel computation DAG
with work𝑊 and span 𝐷 on an RWS scheduler uses 𝑂 (𝑃𝐷)
steals whp to𝑊 ,2 where 𝑃 is the number of processors.

Theorem 2.1was first shown by Blumofe and Leiserson [32],

and was later proved in different papers (e.g.,[1–3, 10, 12, 19,

63, 69, 70]). Since RWS is an asynchronous algorithm, certain

synchronization assumptions are required. Early work [32]

assumed all processors are fully synchronized and all opera-

tions have unit cost. Later work [2] relaxed it (and thus made

it more realistic) that a steal attempt takes at least 𝑠 and at

most 𝑘𝑠 time steps where 𝑠 is the cost for a steal and 𝑘 ≥ 1

is a constant. In this paper, we further relax the assumption

of synchronization—we assume that, between a failed steal

and the next steal attempt of each processor, every other

processor can try at most 𝑘 steal attempts for some constant

𝑘 ≥ 1. Also, between two steal attempts from the same pro-

cessor, another processor that has work to do will execute at

least one instruction. We believe such a relaxation is crucial

since, in practice, processors are highly asynchronous due to

various reasons, including cache misses, processor pipelines,

branch prediction, hyper-threading, changing clock speeds,

interrupts, or the operating system scheduler. Hence, it is

hard to define what time steps mean for different proces-

sors. However, it is reasonable to assume that processors

run in similar speeds within a constant factor, and the steal

attempts are not too often (in practice the gap between two

steal attempts is usually set to be at least hundreds of to

2
We use the term𝑂 (𝑓 (𝑛)) with high probability (whp) in 𝑛 to indicate the

bound 𝑂 (𝑘𝑓 (𝑛)) holds with probability at least 1 − 1/𝑛𝑘 for any 𝑘 ≥ 1.

With clear context we drop “in 𝑛”.

thousands of cycles). In the analysis, we consider the simpler

case for 𝑘 = 1, but it is easy to see that a larger 𝑘 will not

asymptotically affect the scheduling result (Theorem 2.1) as

long as 𝑘 is a constant.

2.4 Cache Complexity
Cache complexity (aka. I/O complexity) measures the mem-

ory access cost of an algorithm, which in many cases can be

the bottleneck of the execution time, especially for parallel

combinatorial algorithms. The idea was first introduced by

Aggarwal and Vitter [5], and has been widely studied since

then. Here we use definition by Frigo et al. [48] that is the

most adopted now. Here we assume a two-level memory

hierarchy. The CPU is connected to a small-memory (cache)

of size 𝑀 , and this small-memory is connected to a large-

memory (main memory) of effectively infinite size. Both

small-memory and large-memory are divided into blocks of

size 𝐵 (cachelines), so there are𝑀/𝐵 cachelines in the cache.

The CPU can only access the memory on blocks resident

in the cache and it is free of charge. Finally, we assume an

optimal offline cache replacement policy, which is automatic,

to transfer the data between the cache and the main mem-

ory, and a unit cost for each cacheline load and evict. The

practical policy such as LRU or FIFO, are 𝑂 (1)-competitive

with the optimal offline algorithm if they have a cache with

twice the size. The cache complexity of an algorithm, 𝑄1, is

the total cost to execute this algorithm on such a model.

The above measure is sequential. One way to extend it to

the parallel setting is the “Parallel External Memory” (PEM)

model [9] that analogs the PRAMmodel [67]. However, since

modern processors are highly asynchronous [23] instead of

running in lock-steps as assumed in PRAM, the PEM model

cannot measure the communication between cache and main

memory well. An alternative solution is to assume multiple

processors work independently, and they either share a com-

mon cache or own their individual caches. For individual

caches (aka. distributed caches), the parallel cache complex-

ity 𝑄𝑃 based on RWS is upper bounded by 𝑄1 + 𝑂 (𝑆𝑀/𝐵)
whp where 𝑆 is the number of steals [2]. This is easy to see

since each steal can lead to, at worst, an entire reload of the

cache, with cost𝑂 (𝑀/𝐵). Applying Theorem 2.1, we can get

𝑄𝑃 ≤ 𝑄1 +𝑂 (𝑃𝐷𝑀/𝐵).
There have also been studies on other cache configura-

tions, such as shared caches [24], multi-level hierarchical

caches [18, 22, 68], and varying cache sizes [14, 15].Many par-

allel cache-efficient algorithms have been designed inspired

by these measurements (e.g., [9, 18, 20, 25, 26, 36–38, 75]).

3 SIMPLIFIED RWS ANALYSIS
The randomized work-stealing (RWS) scheduler plays a cru-

cial role in the ecosystem of nested-parallel algorithms and

4

multicore platforms, and it dynamically maps the algorithms

to the hardware. RWS is efficient both theoretically and

practically. The theoretical efficiency of the RWS sched-

uler has been first given by Blumofe and Leiserson [32].

A lot of later work analyzed RWS in different settings [1–

3, 10, 12, 19, 63, 69, 70]. As mentioned, most of these analyses

are quite involved, especially when they also consider some

more complicated settings (e.g., external I/O costs). This

makes the analysis very hard to cover in undergraduate or

graduate courses, and RWS is usually treated as a black box.

Given the importance of the RWS scheduler, it is crucial to

make the analysis more comprehensible so that it can be

taught in classes. In the following, we will show a simplified

analysis for RWS, which proves Theorem 2.1.

Unlike most of the existing analyses, our version does not

rely on defining the potential function for a substructure

of the computation. We understand that this will limit the

applicability of this analysis in some settings (e.g., we do not

extend the results to consider external I/O costs), but our

goal is to provide a simple proof for a reasonably general

setting (the binary-forking model [23]), and make it easy to

understand in most parallel algorithm courses.

Our analysis is inspired by a recent analysis in [19] that

is similar to those in [7, 71]. Our analysis differs from [19]

in two aspects. First, the analysis in [19] assumes all proces-

sors run in lock-steps (PRAM setting). However, on today’s

machines, the processors are loosely synchronized with dif-

ferent relative processing rates changing over time. Hence,

the processors can run in different speeds and do not and

should not be synchronized. In our analysis, we assume, be-

tween a failed steal attempt and the next steal attempt on

each processor, every other processor can make at most 𝑘

steal attempts for some constant 𝑘 ≥ 1. We believe this is

a reasonably realistic assumption that all today’s machines

and RWS implementations satisfy. For simplicity, in our anal-

ysis we use 𝑘 = 1, and it is easy to see that this does not

affect the asymptotical bounds.

Secondly, instead of showing a single long proof, we tried

our best to improve its understandability, and separate the

math and calculation from the main idea of the proof. We

start from the most optimistic case as a motivating exam-

ple in Lemma 3.1, and then generalize it to Lemma 3.2 and

Lemma 3.3. The only mathematics tools we use are Chernoff

bound and union bound. These lemmas pave the path to, and

decouple the mathematics from, the proof of Theorem 2.1,

which involves more details and the core idea about RWS.

We believe this can be helpful for classroom teaching.

We say two steal attempts overlap with each other when

they choose the same victim processor, and happen concur-

rently. To start with, we first show the simplest case where

none of the steal attempts overlap with each other. This is

the optimal case because in fact multiple attempts may hap-

pen simultaneously and only one can succeed. We show the

lemma below as a starting point of our analysis.

Lemma 3.1. Given a victim processor Π and (𝑃 − 1) (𝐷 +
log(1/𝜖)) non-overlapping steal attempts, the probability that
at least 𝐷 tasks from the deque of the processor Π are stolen is
at least 1 − 𝜖 , where 𝑃 is the number of processors.

Here we overload the notation 𝐷 in the lemma that was

previously defined as the span of the computation. We do so

because later in the proof of Theorem 2.1, we plug in 𝐷 as

the span of the algorithm, so we just use 𝐷 for convenience.

We use the classic version of Chernoff bound that considers

independent random variables 𝑋1, . . . , 𝑋𝑡 taking values in

{0, 1}. Let 𝑋 be the sum of these random variables, and let

𝜇 = E[𝑋] be the expected value of 𝑋 , then for any “offset”

0 < 𝛿 < 1, Pr(𝑋 ≤ (1 − 𝛿)𝜇) ≤ 𝑒−𝛿
2𝜇/2

.

Proof of Lemma 3.1. Recall that in RWS, each steal at-

tempt independently chooses a victim processor and tries to

steal a task. Hence, it has probability 1/(𝑃 −1) to choose pro-
cessor Π (and steal one task if so). We now consider each of

the steal attempts as a random variable𝑋𝑖 .𝑋𝑖 = 1 if it chooses

processorΠ, and 0 otherwise. In Chernoff Bound, let the num-

ber of random variables 𝑡 = 2(𝑃 − 1) (𝐷 + log(1/𝜖)). Then for

𝑡 steals, the expected number of hits is 𝜇 = 2(𝐷 + log(1/𝜖)).
We are interested in the probability 𝑝 that fewer than 𝐷

steal attempts hit processor Π. In this case, 𝛿 = (𝜇 − 𝐷)/𝜇,
so (1 − 𝛿)𝜇 = 𝐷 . Applying Chernoff bound, we can get

that the probability 𝑝 is no more than 𝑒−𝛿
2𝜇/2

. Here 𝛿2𝜇/2 =
(𝜇−𝐷)2/2𝜇 > (𝜇−2𝐷)/2 = ln(1/𝜖). The “>” step is because
we discard the 𝐷2/2𝜇 term that is always positive. Hence,

𝑒−𝛿
2𝜇/2 < 𝑒− ln(1/𝜖) = 𝜖 , which proves the lemma. □

Next, we consider the general case thatmultiple processors

try to steal concurrently, so the steal attempts can overlap.

In this case, although unlikely, many processors may make

the steal attempts “almost” at the same time, where only one

processor wins (using arbitrary tie-break) and the others fail.

As mentioned, we assume that between a failed steal attempt

and the next steal attempts on one processor, every other

processor can have at most one steal attempt.

Lemma 3.2. Given a specific victim processor Π and (𝑃 −
1)𝑒 (𝐷 + log(1/𝜖))/(𝑒 − 1) steal attempts from 𝑃 − 1 other
processors, the probability that 𝐷 tasks from the deque of the
processor Π are stolen is at least 1 − 𝜖 .

Proof. Although multiple processors can attempt to steal

concurrently, two steals from the same processor will never

be concurrent. Hence, based on our assumption, the most

pessimistic situation is that the 𝑃 − 1 processors always have
𝑃−1 steals at the same time, whichmaximizes the chance that

5

a steal hits the queue but fails to get the task. The probability

that at least one of the 𝑃 − 1 concurrent steals chooses this
victim processor Π (so that at least one of the tasks is stolen)

is at least 1 − (1 − 1/(𝑃 − 1))𝑃−1 > 1 − 1/𝑒 .
We can similarly use Chernoff bound to show that the

probability that fewer than 𝐷 tasks are stolen after 𝑆 ′ =
2(𝐷 + log(1/𝜖))/(1 − 1/𝑒) steps is small. We consider each

random variable as a group of 𝑃 − 1 steal attempts, with

probability of at least 1 − 1/𝑒 to choose the deque of the

specific processor Π. In this case, the expected value of the

sum 𝜇 = 2(𝐷 + log(1/𝜖)) and the offset 𝛿 = (𝜇 − 𝐷)/𝜇
remain the same as in Lemma 3.1, so the probability is also

the same. □

Here note that in the analysis, we do not need the as-

sumption that the 𝐷 tasks are in the same deque of a certain

processor. In fact, the analysis easily extends to when the

𝐷 tasks are from different processors as long as there is al-

ways one task available to be stolen. Therefore, we show the

relaxed form of Lemma 3.2.

Lemma 3.3. Given𝐷 tasks and (𝑃 −1)𝑒 (𝐷 + log(1/𝜖))/(𝑒−
1) steal attempts, the probability that these 𝐷 tasks are stolen
is at least 1 − 𝜖 , as long as at least one task is available at the
time of any steal attempt.

As discussed in Section 2.1, any nested-parallel computa-

tion can be viewed as a DAG, and each (non-termination)

node is an instruction and has either two successors (for

a fork) or one successor (otherwise). The RWS scheduler

dynamically maps each node to a processor. For each specific

path, the length is no more than the span 𝐷 of the algorithm,

based on the definition. Based on the RWS algorithm, a node

will be mapped to the same processor that executes the pre-

decessor node, except for the spawned children (definition in

Section 2.3). The spawned child of a processor Π is ready to

be stolen during the process when Π is executing the other

branch (continuation), and will be executed by Π if it is not

stolen during this process.

We now prove Theorem 2.1 by showing that the computa-

tion must have been terminated after 𝑂 (𝑃𝐷) steals. We will

use Lemma 3.3 and apply union bound.

Theorem 2.1. We consider a path in the DAG and show

that all instructions on this path will be executed with no

more than 𝑂 (𝑃𝐷) steals. Each node on this path is either

a spawned child (that can be stolen) or executed directly

after the previous node by the same processor. Now let’s

consider a processor that is not working on the instructions

on this path. When the next steal is attempted, the processor

working on this path either has added one more node 𝑣 on

this path that is ready to be stolen, or has executed the node

𝑣 . This is because we assume a processor executes at least

one instruction between two steal attempts from another

processor. The only case that the next node is not executed

is when it is a spawned child. It will not be executed imme-

diately, and needs to wait until to be stolen for execution,

or for the continuation branches to finish and execute these

nodes.

Hence, let’s consider the worst case that all nodes on the

path are spawned children. Lemma 3.3 upper bounds the

number of steals to finish the execution of this path. Namely,

after (𝑃 − 1)𝑒 (𝐷 + log(1/𝜖))/(𝑒 − 1) steal attempts, all nodes

are stolen and executed with probability at least 1 − 𝜖 . For a
DAG with the longest path length 𝐷 , there are at most 2

𝐷

paths in the DAG. Nowwe set 𝜖 = 1/(2𝐷 ·𝑊 𝑐) where𝑊 is the

work of the computation (the number of nodes in the DAG).

For any constant 𝑐 ≥ 1, (𝑃 − 1)𝑒 (𝐷 + log(2𝐷 ·𝑊 𝑐))/(𝑒 − 1) =
𝑂 (𝑃 (𝐷+log𝑊)) steals are sufficient for executing all existing

paths. Now we take the union bound on the probability that

all 2
𝐷
paths will finish, which is 1 − 2𝐷 · 𝜖 = 1 −𝑊 −𝑐

. Since

each node in the DAG can have at most two successors, the

DAG needs to have 𝐷 = Ω(log𝑊) longest path length to

contains𝑊 nodes. Hence, the log𝑊 term will not dominate,

which simplifies the number of steals to be 𝑂 (𝑃𝐷). □

We have attempted to include this analysis in a few lec-

tures of parallel algorithm courses, and we also would like to

include the answer to a frequently asked question. The ques-

tion is, in the analysis, we apply union bound on 2
𝐷
paths,

but apparently, the𝑂 (𝑃𝐷) steals cannot cover all paths since
𝑃𝐷 is a much lower-order term than 2

𝐷
in practice. Theo-

retically, the answer is that 𝜖 = 2
𝐷 · 𝑛𝑐 is a sufficiently small

term for us to apply union bound, which can give us the

desired bound in Theorem 2.1. The more practical and easy-

to-understand answer is that we are assuming the worst

case, and in practice we do not need all spawn children to be

stolen in the execution. In fact, it is likely that most of them

are executed by the same processor that spawns this child.

Take a parallel-for-loop as an example, which can be viewed

log𝑛 level of binary-forks. For most of the paths in this DAG,

the spawn children are executed by the same processor that

executes the parent node. Because of the design of the RWS

algorithm, most of the successful steals will involve a large

chunk of work, so steal attempts are infrequent. The analy-

sis shows that, once 𝑂 (𝑃𝐷) steals are made, the path must

have finished, but it is more likely that the computation has

finished even before this number of attempts are made.

4 ANALYSIS FOR PARALLEL CACHE
COMPLEXITY

Studying parallel cache complexity for nested-parallel al-

gorithms scheduled by RWS is a crucial topic for parallel

computing and has been studied in many existing papers

6

(e.g., [2, 39, 40, 50]). The goal in these analyses is to show the

parallel overhead when scheduling using RWS, in addition

to the sequential cache complexity. We show the best exist-

ing parallel bounds for a list of widely used algorithms and

problems in Table 1. While the results in these papers are

reasonably good for algorithms with low (polylogarithmic)

span, the bounds for parallel overhead can be significant for

algorithms with linear or super-linear span. Compared to the

lower bounds for the parallel overhead, the upper bounds

given in these papers incur polynomial (usually 𝑛1/2 or 𝑛1/3)
overheads. Such parallel overhead will dominate most of the

input range when compared to the sequential cache bounds.

Meanwhile, it is known that the practical performance of

many of these algorithms is almost as good as low-span al-

gorithms [37, 66]. Hence, it remains an open problem for

decades to tightly bound the parallel overhead of such algo-

rithms.

In this section, we show a new analysis to give almost

tight parallel cache bounds for the list of problems in Table 1,

which are only a polylogarithmic factor off the lower bounds

for the main term. Unlike the previous approaches that ana-

lyze the scheduler, we directly study the recurrence relations

of such computations and find it surprisingly simple. This

new analysis is inspired by the concept of 𝑘d-grid [26] (see

more details in Section 4.2).

In the rest of this section, we first review the existing work

on this topic in Section 4.1. Section 4.2 presents the high-level

idea and the main theorem (Theorem 4.2) of our analysis,

which provides a general approach to solve the cache com-

plexity based on recurrences. In Section 4.3, we use a simple

example of Kleene’s algorithm to show how to use the newly

introduced main theorem. Finally, we show the new results

for more complicated algorithms in Section 4.4, and discuss

the applicability and open problems in Section 4.5.

4.1 Related Work
Given the importance of I/O efficiency and the RWS sched-

uler, parallel cache bounds have been studied for over 20

years. The definition on distributed cache was given by Acar

et al. [2], and they also showed a trivial parallel upper bound

on 𝑃 processors: 𝑄𝑃 ≤ 𝑄1 + 𝑂 (𝑃𝐷𝑀/𝐵). To achieve this

bound, one just needs to pessimistically assume that in each

of the 𝑂 (𝑃𝐷) steals, the stealing thread accesses the entire

cache from the original processor, which is 𝑂 (𝑀/𝐵) addi-
tional cache misses. This bound is easy to understand and

good for algorithms with polylogarithmic span, but is too

loose for linear and super-linear span algorithms. Hence, the

following later works showed tighter parallel cache bounds

for algorithms with certain structures.

Frigo and Strumpen [50] first analyzed the parallel cache

complexity of a class of divide-and-conquer computations,

such as matrix multiplication and 1D Stencil, where the prob-

lems have subproblem cache complexity as a “concave” func-

tion of the computation cost (see more details in [50]). Ac-

tually, the idea from [50] is general and can be applied to

a variety of algorithms as shown in Table 1. Later work by

Cole and Ramachandran [39] pointed out a missing part of

the analysis in [50]—the additional cache misses by accessing

the execution stacks after a successful steal. They carefully

studied this problem, and showed that in most cases, this

additional cost is asymptotically bounded by other terms (so

the bounds are the same as [50]). In other cases, this can

lead to a small overhead (e.g., matrix multiply in row-major

format). The authors of [39] also extended the set of applica-

ble algorithms and showed tighter parallel cache bounds for

problems such as FFT and list ranking. For the algorithms

in this paper, we assume the matrices are in bit-interleaved

format [48], so algorithms incur no asymptotic cost for ac-

cessing the execution stacks after steals. Even not, we note

that all algorithms in Table 1 do not require accesses to

the cactus stack anyway (many later RWS implementations

chose not to support that for better practicality).

In this paper, we do not consider the additional cost of

false sharing [40] or other schedulers [41, 79], but it seems

possible to extend the analysis in this paper to the other

settings. We leave this as future work.

4.2 Our Approach
As opposed to directly analyzing the algorithms on the sched-

uler in previous work [39, 40, 50], our key observation is to

directly study the computation structure of these algorithms.

Interestingly, our analysis is mostly independent with the

RWS scheduler, and only plugs in some results from [50] for

some basic primitives such as matrix multiplication. By do-

ing so, our analysis can bound the parallel cache complexity

much better than the previous results.

The idea of our analysis is motivated by the recent work

by Blelloch and Gu [26]. This work studies several parallel

dynamic programming and algebra problems, and defines a

structure called 𝑘d-grid to reveal the computational struc-

ture of these problems. It uses 𝑘d-grid with 𝑘 = 2 or 3 to

model a list of classic problems, such as matrix multiplica-

tion, to capture the memory access pattern of these problems.

By using 𝑘d-grid, their analysis decouples the parallel de-

pendency (and, effectively, the span) from the sequential

cache complexity in many parallel algorithms (see details

in [26]). Although they only applied the 𝑘d-grid analysis on

sequential cache complexity, the high-level idea motivates

us to also revisit the analysis of parallel cache complexity,

and inspired us to directly analyze the essence of the com-

putation structure (the recurrences) of the algorithms. This

effectively avoids the crux in previous analysis [2, 39, 40, 50],

7

which incurs a polynomial overhead in the cache complexity

charged by the span of the algorithm. In all of our analyses,

the span of these algorithms, no matter linear or super-linear,

do not show up in the analysis, which is very different from

previous work. Of course, larger span does lead to more par-

allel cache overhead since it increases the number of steal

attempts and each successful one incurs at least one addi-

tional cache miss. However, in all applications in this paper,

this term is bounded by either the sequential bound or the

main term for parallel overhead. Combining all together, we

summarize all cache bounds in Table 1, and our new parallel

cache bounds for linear and super-linear span algorithms

are almost as good as those of the low-span algorithms (e.g.,

matrix multiplication).

As mentioned, our analysis will use previous results to

derive the parallel cache bounds for 𝑘d-grids, and use the

recurrence relation to bound the entire algorithm. We for-

malize the recurrences we study for these algorithms and

problems, which we refer to as the (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence.

Definition 4.1 ((𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence). An (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-
recurrence is a recurrence in the following form:

𝑄 (𝑛) = 𝛼 ·𝑄 (𝑛/𝛽) +
∑︁

𝑘𝑖 · 𝑛𝑙𝑖 log𝑚𝑖 𝑛

where 𝑙𝑖 and𝑚𝑖 are non-negative numbers, and 𝑘𝑖 is a func-

tion of 𝑃 ,𝑀 and 𝐵.

In the next section, we will use Kleene’s algorithm as an

example to show an instantiation of this recurrence relation.

The (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence is easy to solve using the master

method [16]:

Theorem 4.2 (Main Theorem). The solution to 𝑄 (𝑛), an
(𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence, is:

𝑂

(∑︁
𝑘𝑖 · 𝑛𝑙𝑖 log𝑚𝑖 𝑛 +

∑︁
𝑘 𝑗 · 𝑛𝑙 𝑗 log𝑚 𝑗+1 𝑛 +

∑︁
𝑘𝑟𝑛

log𝛽 𝛼
)

for 𝑙𝑖 > log𝛽 𝛼 , 𝑙 𝑗 = log𝛽 𝛼 , and 𝑙𝑟 < log𝛽 𝛼 .

As shown here and in the next section, the parallel de-

pendencies of the computation (the algorithm’s span) do not

show up in the analysis and the solution, which is different

from the previous analyses [2, 39, 40, 50].

In the rest of this section, we will first use Kleene’s algo-

rithm as an example to show how to use our approach to

derive tighter parallel cache bound. Then we show a list of

cache-oblivious algorithms that we can apply Theorem 4.2

to and get improved bounds.

It is worth mentioning that the cache bound contains the

term for the call stack of the (recursive) subproblems. This

term is a constant in the sequential bound, and in many cases

the parallel term is the same as the number of steals (e.g.,

for matrix multiplication and Kleene’s algorithm). In other

cases, directly applying Theorem 4.2 leads to a 𝑂 (𝑃𝑛log𝛽 𝛼)

term, which is suboptimal since Cole and Ramanchadran [39]

showed that this term can be 𝑂 (𝑃𝐷). Hence, when 𝑛log𝛽 𝛼 >

𝐷 , instead of using 𝑛
log𝛽 𝛼 > 𝐷 from Theorem 4.2, we plug

in the 𝑂 (𝑃𝐷) term from [39], which gives a tighter result.

4.3 Kleene’s Algorithm as an Example
To start with, we use Kleene’s algorithm for all-pair shortest-

paths (APSP) as an example to explain the analysis. Kleene’s

algorithm solves the all-pair shortest-paths (APSP) problem

that takes a graph 𝐺 = (𝑉 , 𝐸) (with no negative cycles) as

input. The Kleene’s algorithm was first mentioned in [47,

51, 59, 64], and later discussed in full details in [8]. It is

a divide-and-conquer algorithm that is I/O-efficient, cache-

oblivious and highly parallelized. The pseudocode of Kleene’s

algorithm is in Algorithm 1.

Algorithm 1: Kleene(𝐴)
Input: Distance matrix 𝐴 initialized based on the input

graph 𝐺 = (𝑉 , 𝐸)
Output: Computed Distance matrix 𝐴

1 if |𝐴| = 1 then return 𝐴

2 𝐴00 ← Kleene(𝐴00)
3 𝐴01 ← 𝐴01 +𝐴00𝐴01

4 𝐴10 ← 𝐴10 +𝐴10𝐴00

5 𝐴11 ← 𝐴11 +𝐴10𝐴01

6 𝐴11 ← Kleene(𝐴11)
7 𝐴01 ← 𝐴01 +𝐴01𝐴11

8 𝐴10 ← 𝐴10 +𝐴11𝐴10

9 𝐴00 ← 𝐴00 +𝐴10𝐴01

10 return 𝐴

In Kleene’s algorithm, the graph 𝐺 is represented as the

matrix 𝐴, where 𝐴[𝑖] [𝑗] is the weight of the edge between
vertices 𝑖 and 𝑗 (the weight is +∞ if the edge does not exist).

𝐴 is partitioned into 4 submatrices indexed as

[
𝐴00 𝐴01

𝐴10 𝐴11

]
.

The matrix multiplication is defined in a closed semi-ring

with (+,min). The high-level idea is first to compute the

APSP between the first half of the vertices only using the

paths between these vertices. Then by applying some matrix

multiplication, we update the shortest paths between the

second half of the vertices using the computed distances

from the first half. We then apply another recursive subtask

on the second half vertices. The computed distances are

finalized, and then we use them to update the shortest paths

from the first-half vertices.

8

The cache complexity 𝑄 (𝑛) and span 𝐷 (𝑛) of this algo-
rithm follow the recurrence relations:

𝑄 (𝑛) = 2𝑄 (𝑛/2) + 6𝑄MM (𝑛/2) (1)

𝐷 (𝑛) = 2𝐷 (𝑛/2) + 2𝐷MM (𝑛/2) (2)

where 𝑄MM (𝑛) is the I/O cost of a matrix multiplication of

input size 𝑛. Note that the recurrence relation for the cache

complexity is true no matter if we are considering the se-

quential case (e.g., 𝑄1 and 𝑄MM,1) or the parallel case (e.g.,

𝑄𝑃 and 𝑄MM,𝑃). For the parallel matrix multiplication algo-

rithm from [26], we have 𝐷MM (𝑛) = 𝑂 (log2 𝑛), 𝐷 (𝑛) = 𝑂 (𝑛),

𝑄MM,1 = Θ

(
𝑛3

𝐵
√
𝑀
+ 𝑛

2

𝐵
+ 1

)
, and 𝑄1 = Θ

(
𝑛3

𝐵
√
𝑀
+ 𝑛

2

𝐵
+ 𝑛

)
.

If we directly use the result from [2], then we get the par-

allel cache bound 𝑄𝑃 = 𝑄1 + 𝑂
(
𝑃𝑛𝑀

𝐵

)
. As the significant

growth of processor count and cache size, the 𝑂 (𝑃𝑛𝑀/𝐵)
term dominates unless 𝑛 is very large. The tighter bound

from [50] shows𝑄𝑃 = 𝑄1 +𝑂
(
𝑃1/3𝑛7/3

𝐵
+ 𝑃𝑛

)
. This bound is

tighter than the previous one from [2], but the𝑂 (𝑃1/3𝑛7/3/𝐵)
term still dominates unless 𝑛 = 𝜔 (𝑃1/2𝑀3/4), which is un-

likely in practice. The parallel lower bound for this compu-

tation [11, 26] is 𝑄𝑃 = 𝑄1 + Ω
(
𝑃1/3𝑛2

𝐵

)
, so a polynomial gap

remains between the lower and upper cache bounds. Our

analysis significantly closes this gap to polylogarithmic.

Nowwe use Theorem 4.2 to directly solve this (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-
recurrence. Equation (1) includes the cache complexity of

matrix multiplication. The parallel bounds on 𝑃 processors

based on the algorithm from [26] is:

𝑄MM,𝑃 = 𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2 log2/3 𝑛

𝐵
+ 𝑃 log

2 𝑛

)
. (3)

which can be shown by the analysis from [39, 50]. Now

we can plug in Equation (3) to Equation (1), and get an

(𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence for𝑄𝑃 (𝑛). In this case, we have 𝛼 =

𝛽 = 2, and {(𝑘𝑖 , 𝑙𝑖 ,𝑚𝑖)} = {(1/𝐵
√
𝑀, 3, 0), (𝑃1/3/𝐵, 2, 2/3),

(𝑃, 0, 2)}. Plugging in Theorem 4.2 directly gives the solu-

tion of:

𝑄𝑃 (𝑛) = 𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2 log2/3 𝑛

𝐵
+ 𝑃𝑛

)
.

In this case, the input size is 𝑂 (𝑛2) so the corresponding

term 𝑙𝑖 = 2 > log𝛽 𝛼 = 1. Hence, even though Kleene’s

algorithm has linear span as opposed to the polylogarithmic

span for matrix multiplication, the additional steals caused

by the span will not affect the input term (the 𝑙𝑖 = 2 term in

this case for Kleene’s algorithm and matrix multiplication).

In fact, as one can see, either the span bound, or the span

recurrence (Equation (2)), does not show up in the entire

analysis.

Since Kleene’s algorithm is very simple, we can also show

how to directly solve the recurrence by plugging Equation (3)

in Equation (1). We believe this can illustrate a more intuitive

idea of our analysis.

𝑄 (𝑛) =6𝑄MM (𝑛/2) + 12𝑄MM (𝑛/4) + · · · + 3𝑛 ·𝑄MM (1)

=𝑂

(
6𝑛3

8𝐵
√
𝑀
+ 12𝑛3

64𝐵
√
𝑀
+ · · ·

)
+

𝑂

(
6𝑃1/3𝑛2 log2/3 𝑛

4𝐵
+ 12𝑃1/3𝑛2 log2/3 𝑛

16𝐵
+ · · ·

)
+

𝑂
(
𝑃 log

2 𝑛 + 2𝑃 log
2 (𝑛/2) + · · · + 𝑃𝑛

)
=𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2 log2/3 𝑛

𝐵
+ 𝑃𝑛

)
.

Here the terms in the first two big-Os are decreasing geo-

metrically, while the last term increases geometrically. The

main term for parallel overhead is only a polylogarithmic

factor (𝑂 (log2/3 𝑛)) more than the lower bound, as opposed

to a polynomial factor (𝑂 (𝑛1/3)) in the previous terms.

Although Kleene’s algorithm can also be directly analyzed

as shown above, using Theorem 4.2 enables a simpler way

to show a tighter bound of Kleene’s algorithm than previ-

ous analysis. More importantly, for many algorithms that

are more complicated than Kleene’s algorithm, it is nearly

impossible to show new bounds by directly plugging in the

recurrences, in which case using Theorem 4.2 easily enables

simple analysis and tighter bounds. We will then present

these algorithms and our new analysis and bound in Sec-

tion 4.4.

4.4 Other Applications
We have shown the main theorem (Theorem 4.2) and the

intuition why it leads to better parallel cache complexity for

Kleene’s algorithm. We now apply the theorem to a variety

of classic cache-oblivious algorithms, which leads to better

parallel cache bound. The details of the algorithms can be

found in [26, 45]. Some of these algorithms are complicated,

here we only show the recurrences and the parallel cache

bounds since those are all we need.

4.4.1 Building Blocks. Before we go over the applications,

we first show the parallel cache complexity of some basic

primitives (𝑘d-grid and matrix transpose) that the applica-

tions use.

Matrix Multiplication (MM).Matrix multiplication is

modeled as a 3d-grid in [26]. The sequential cache bound

9

𝑄MM,1 is Θ
(

𝑛3

𝐵
√
𝑀
+ 𝑛2

𝐵
+ 1

)
, and the parallel bound on 𝑝 pro-

cessors 𝑄MM,𝑃 is 𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2

log
2/3 𝑛

𝐵
+ 𝑃 log

2 𝑛

)
. Here we

assume the matrix is stored in the bit-interleaved (BI) for-

mat [48], which can be easily converted from other formats

such as the row-major format with the same cost as matrix

transpose.

Matrix Transpose (MT). Matrix transpose is another

widely used primitives in cache-oblivious algorithms. The

sequential cache bound 𝑄MT ,1 is Θ
(
𝑛2

𝐵
+ 1

)
, and the parallel

bound on 𝑝 processors [39, 50] is:

𝑄MT ,𝑃 = 𝑂

(
𝑛2

𝐵
+ 𝑃 log

2 𝑛

)
. (4)

The 2d-grid. The 2d-grid can be viewed as an analog of

matrix multiplication, but is a 2 dimensional computation

instead of 3 dimensional as in MM (𝑂 (𝑛3) arithmetic op-

erations and memory accesses). It can also be viewed as a

matrix-vector multiplication but the matrix is implicit. The

2d-grid is a commonly used primitive in dynamic program-

ming algorithms [26]. The sequential cache bound 𝑄2D,1 is

Θ
(
𝑛2

𝐵𝑀
+ 𝑛

𝐵
+ 1

)
, and the parallel bound on 𝑝 processors [39,

50] is

𝑄2D,𝑃 = 𝑂

(
𝑛2

𝐵𝑀
+ 𝑃1/2𝑛 log𝑛

𝐵
+ 𝑃 log

2 𝑛

)
. (5)

4.4.2 Gaussian Elimination. Here we consider the parallel
divide-and-conquer Gaussian elimination algorithm shown

in [26], with the recurrence of the cache bound as 𝑄 (𝑛) =
2𝑄 (𝑛/2)+4𝑄MM (𝑛/2). Compared to Kleene’s algorithm (Equa-

tion (1)), this recurrence only differs by a constant. Hence, the

parallel cache bound is asymptotically the same as Kleene’s

algorithm.

4.4.3 Triangular System Solver. The triangular system solver

(TRS) solves the linear system that takes the output of Gauss-

ian elimination (i.e., 𝐴𝑥 = 𝑏 where 𝐴 is an upper triangular

matrix). We consider the parallel divide-and-conquer algo-

rithm for a triangular system solver from [26] with cubic

work and linear span. The cache bound is:

𝑄TRS (𝑛) = 4𝑄TRS (𝑛/2) + 2𝑄MM (𝑛/2).

To analyze the parallel cache complexity, we can plug in

Equation (3) and get the (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence with 𝛼 = 4,

𝛽 = 2, and {(𝑘𝑖 , 𝑙𝑖 ,𝑚𝑖)} = { (1/𝐵
√
𝑀, 3, 0), (𝑃1/3/𝐵, 2, 2/3),

(𝑃, 0, 2)}. Applying and Theorem 4.2 leads to the parallel

cache complexity as

𝑄TRS,𝑃 = 𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2 log5/3 𝑛

𝐵
+ 𝑃𝑛

)
. (6)

4.4.4 Cholesky Factorization and LU Decomposition. Both
Cholesky factorization and LU decomposition are widely

used linear algebraic tools to decompose a matrix to the

product of a lower triangular matrix and an upper triangular

matrix. The divide-and-conquer algorithms for Cholesky

factorization and LU decomposition [45] are quite similar in

the way that they are designed on top of triangular system

solver and matrix multiplication. The cache bounds for both

algorithms are:

𝑄 (𝑛) = 2𝑄 (𝑛/2) +𝑄TRS (𝑛/2) +𝑂 (1) ·𝑄MM (𝑛/2).
We can plug in Equation (3) and Equation (6) to get the

(𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrencewith𝛼 = 2, 𝛽 = 2, and {(𝑘𝑖 , 𝑙𝑖 ,𝑚𝑖)} =
{(1/𝐵

√
𝑀, 3, 0), (𝑃1/3/𝐵, 2, 5/3), (𝑃, 0, 2)}. Since log𝛽 𝛼 = 2,

the parallel bound is almost the same as 𝑄TRS , except that

the span for these algorithms is 𝑂 (𝑛 log𝑛), which increases

the last term by a logarithmic factor. Hence for these two

problems, we have:

𝑄𝑝 = 𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2 log5/3 𝑛

𝐵
+ 𝑃𝑛 log𝑛

)
.

4.4.5 LWSRecurrence. The LWS (least-weighted subsequence)

recurrence [56] is one of the most commonly-used DP recur-

rences in practice. Given a real-valued function 𝑤 (𝑖, 𝑗) for
integers 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 𝐷0, for 1 ≤ 𝑗 ≤ 𝑛,

𝐷 𝑗 = min

0≤𝑖< 𝑗
{𝐷𝑖 +𝑤 (𝑖, 𝑗)}.

This recurrence is widely used in real-world applications [4,

53, 54, 60–62]. Here we assume that𝑤 (𝑖, 𝑗) can be computed

in constant work based on a constant size of input associated

to 𝑖 and 𝑗 , which is true for all these applications.

Here we consider the parallel divide-and-conquer algo-

rithm to solve LWS recurrence from [26] with quadratic

work and linear span. This algorithm partitions the prob-

lems into two halves, solves the first one, applies a 2d-grid

computation, and solves the second one. The cache bound is

𝑄 (𝑛) = 2𝑄 (𝑛/2) +𝑄2𝐷 (𝑛/2).
Here, by using Equation (5), the (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence

has𝛼 = 2, 𝛽 = 2, and {(𝑘𝑖 , 𝑙𝑖 ,𝑚𝑖)} = {(1/𝐵𝑀, 2, 0), (𝑃1/2/𝐵, 1, 1),
(𝑃, 0, 2)}. Since, log𝛽 𝛼 = 1, so the parallel cache bound is:

𝑄𝑃 (𝑛) = 𝑂

(
𝑛2

𝐵𝑀
+ 𝑃1/2𝑛 log2 𝑛

𝐵
+ 𝑃𝑛

)
.

4.4.6 GAP Recurrence. The GAP problem [52, 54] is a gener-

alization of the edit distance problem that has many applica-

tions in molecular biology, geology, and speech recognition.

Given a source string𝑋 and a target string𝑌 , an “edit” can be

a sequence of consecutive deletes corresponding to a gap in

𝑋 , and a sequence of consecutive inserts corresponding to a

gap in 𝑌 . Let𝑤 (𝑝, 𝑞) (0 ≤ 𝑝 < 𝑞 ≤ 𝑛) be the cost of deleting
the substring of 𝑋 from (𝑝 + 1)-th to 𝑞-th character,𝑤 ′ (𝑝, 𝑞)

10

be inserting the substring of 𝑌 accordingly, and 𝑟 (𝑖, 𝑗) be the
cost to change the 𝑖-th character in 𝑋 to 𝑗-th character in 𝑌 .

Let𝐷𝑖, 𝑗 be the minimum cost for such transformation from

the prefix of 𝑋 with 𝑖 characters to the prefix of 𝑌 with 𝑗

characters, the recurrence for 𝑖, 𝑗 > 0 is:

𝐷𝑖, 𝑗 = min


min0≤𝑞< 𝑗 {𝐷𝑖,𝑞 +𝑤 ′ (𝑞, 𝑗)}
min0≤𝑝<𝑖 {𝐷𝑝,𝑗 +𝑤 (𝑝, 𝑖)}

𝐷𝑖−1, 𝑗−1 + 𝑟 (𝑖, 𝑗)

corresponding to either replacing a character, inserting or

deleting a substring. The best parallel divide-and-conquer

algorithm to compute the GAP recurrence is proposed by

Blelloch and Gu [26]. The cache bound recurrence of the

algorithm in [26] is 𝑄 (𝑛) = 4𝑄 (𝑛/2) + 4(𝑛/2) ·𝑄2𝐷 (𝑛/2) +
2𝑄MT (𝑛/2), which includes 4 subproblems with half size, a

linear number of 2d-grid (see more details in [26]), and 2

matrix transpose calls.

To derive parallel cache complexity, we can apply Equa-

tion (4) and Equation (5) and get the (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence
with𝛼 = 4, 𝛽 = 2, and {(𝑘𝑖 , 𝑙𝑖 ,𝑚𝑖)} = {(1/𝐵𝑀, 3, 0), (𝑃1/2/𝐵, 2, 1),
(𝑃, 0, 2)}. Then using Theorem 4.2 gives log𝛽 𝛼 = 2 and

𝑄𝑃 (𝑛) = 𝑂

(
𝑛3

𝐵𝑀
+ 𝑃1/2𝑛2 log2 𝑛

𝐵
+ 𝑃𝑛log2 3

)
.

4.4.7 RNA recurrence. The RNA problem [54] is a gener-

alization of the GAP problem. In this problem, a weight

function𝑤 (𝑝, 𝑞, 𝑖, 𝑗) is given, which is the cost to delete the

substring of𝑋 from (𝑝 +1)-th to 𝑖-th character and insert the

substring of 𝑌 from (𝑞 + 1)-th to 𝑗-th character. Similar to

GAP, let 𝐷𝑖, 𝑗 be the minimum cost for such transformation

from the prefix of 𝑋 with 𝑖 characters to the prefix of 𝑌 with

𝑗 characters, the recurrence for 𝑖, 𝑗 > 0 is:

𝐷𝑖, 𝑗 = min

0≤𝑝<𝑖,0≤𝑞< 𝑗
{𝐷𝑝,𝑞 +𝑤 (𝑝, 𝑞, 𝑖, 𝑗)}.

This recurrence is widely used in computational biology,

like to compute the secondary structure of RNA [78]. The

RNA recurrence can be viewed as a 2d version of the LWS

recurrence, and the latest algorithm from [26] has the cache

bound of 𝑄 (𝑛) = 4𝑄 (𝑛/2) +𝑄2𝐷 (𝑛2).
For parallel cache complexity, the (𝛼, 𝛽, 𝑘, 𝑙,𝑚)-recurrence

by plugging in Equation (5) is𝛼 = 4, 𝛽 = 2, and {(𝑘𝑖 , 𝑙𝑖 ,𝑚𝑖)} =
{(1/𝐵𝑀, 4, 0), (𝑃1/2/𝐵, 2, 1), (𝑃, 0, 2)}. The parallel cache bound
can be solved as:

𝑄𝑃 (𝑛) = 𝑂

(
𝑛4

𝐵𝑀
+ 𝑃1/2𝑛2 log2 𝑛

𝐵
+ 𝑃𝑛log2 3

)
.

4.4.8 Protein Accordion Folding. The recurrence for protein
accordion folding [77] is:

𝐷𝑖, 𝑗 = max

1≤𝑘< 𝑗−1
{𝐷 𝑗−1,𝑘 +𝑤 (𝑖, 𝑗, 𝑘)}

for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛, with 𝑂 (𝑛2/𝐵) cost to precompute

𝑤 (𝑖, 𝑗, 𝑘). In [26], a parallel divide-and-conquer algorithm

for protein accordion folding is given, with cubic work and

linear span. The recurrence for the cache bound is 𝑄 (𝑛) =
2𝑄 (𝑛/2) + 𝑄𝑀𝑇 (𝑛/2) + (𝑛/2) · 𝑄2𝐷 (𝑛/2), which includes 2

subproblems with half size, a linear number of 2d-grid, and

1 matrix transpose call.

For parallel cache complexity, we can apply Equation (4)

and Equation (5) and get 𝛼 = 2, 𝛽 = 2, and {(𝑘𝑖 , 𝑙𝑖 ,𝑚𝑖)} =
{(1/𝐵𝑀, 3, 0), (𝑃1/2/𝐵, 2, 1), (𝑃, 0, 2)}. Since log𝛽 𝛼 = 1, we

can get:

𝑄𝑃 (𝑛) = 𝑂

(
𝑛3

𝐵𝑀
+ 𝑃1/2𝑛2 log𝑛

𝐵
+ 𝑃𝑛 log2 𝑛

)
.

4.4.9 Parenthesis Recurrence. The Parenthesis recurrence
solves the following problem in many applications [43, 53,

54, 80]: for a linear sequence of objects, an associative binary

operation, and the cost of performing that operation on any

two objects, the goal is to compute the min-cost way to group

the objects by repeatedly applying the binary operations. Let

𝐷𝑖, 𝑗 be the minimum cost to merge the objects indexed from

𝑖 + 1 to 𝑗 (1-based), the recurrence for 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 is:

𝐷𝑖, 𝑗 = min

𝑖<𝑘< 𝑗
{𝐷𝑖,𝑘 + 𝐷𝑘,𝑗 +𝑤 (𝑖, 𝑘, 𝑗)}

where𝑤 (𝑖, 𝑘, 𝑗) is the cost to merge the two partial results

of objects indexed from 𝑖 + 1 to 𝑘 and those from 𝑘 + 1 to 𝑗 .

The parallel cache-oblivious algorithm for the parenthe-

sis recurrence is introduced in [36]. The original problem

and some subproblems are triangle ones (𝑄△), but when
computing them, we need other square subproblems (𝑄□).

The recurrence relations for the cache bounds are 𝑄△ (𝑛) =
2𝑄△ (𝑛/2) +𝑄□ (𝑛/2), and 𝑄□ (𝑛) = 4𝑄□ (𝑛/2) + 4𝑄MM (𝑛/2).

To compute the parallel cache complexity, we apply Equa-

tion (3) and Theorem 4.2 to𝑄□ first to obtain a parallel cache

complexity of 𝑄□,𝑃 (𝑛) = 𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2

log
5/3 𝑛

𝐵
+ 𝑃𝑛log2 3

)
.

Then we substitute this into 𝑄△ to apply Theorem 4.2 again

and get:

𝑄𝑃 (𝑛) = 𝑄△,𝑃 (𝑛) = 𝑂

(
𝑛3

𝐵
√
𝑀
+ 𝑃1/3𝑛2 log5/3 𝑛

𝐵
+ 𝑃𝑛log2 3

)
.

4.5 Discussions
A common theme in our analysis is to apply the parallel

cache bounds of the basic primitives from [50] in a certain

step, and then use the recursive structure to derive parallel

cache bound for the entire algorithm. We note that in many

cases this is better than directly using the result in [50] for

the entire algorithm. However, we note that this is not always

true, and it relies on the recursive structure. More precisely,

it depends on whether the number of base-case subproblems

11

is asymptotically no more than the input elements (true for

all algorithms discussed above). A counterexample is the edit

distance problem (or longest common subsequence). The

recurrence for the divide-and-conquer algorithm is 𝑄 (𝑛) =
4𝑄 (𝑛/2)+𝑂 (1). In this case, using Theorem 4.2 gives a looser

bound than using the analysis from [50]. Hence, how to

tightly bound the parallel cache complexity for edit distance

remains an open problem.

REFERENCES
[1] U. A. Acar. Parallel computing theory and practice. 2016.
[2] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work

stealing. Theoretical Computer Science (TCS), 35(3), 2002.
[3] U. A. Acar, A. Charguéraud, and M. Rainey. Scheduling parallel pro-

grams by work stealing with private deques. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), 2013.

[4] A. Aggarwal and M. Klawe. Applications of generalized matrix search-

ing to geometric algorithms. Discrete Applied Mathematics, 27(1-2),
1990.

[5] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting

and related problems. Commun. ACM, 31(9), 1988.

[6] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback.

Provably good scheduling for parallel programs that use data struc-

tures through implicit batching. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2014.

[7] K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu. Adaptive work-

stealing with parallelism feedback. ACM Transactions on Computer
Systems (TOCS), 26(3):1–32, 2008.

[8] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[9] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental

parallel algorithms for private-cache chip multiprocessors. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2008.

[10] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling

for multiprogrammed multiprocessors. Theory of computing systems,
34(2):115–144, 2001.

[11] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and

O. Schwartz. Communication lower bounds and optimal algorithms

for numerical linear algebra. Acta Numerica, 23:1–155, 2014.
[12] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu,

C. McGuffey, and J. Shun. Parallel algorithms for asymmetric read-

write costs. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2016.

[13] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu,

C. McGuffey, and J. Shun. Implicit decomposition for write-efficient

connectivity algorithms. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018.

[14] M. A. Bender, E. D. Demaine, R. Ebrahimi, J. T. Fineman, R. Johnson,

A. Lincoln, J. Lynch, and S. McCauley. Cache-adaptive analysis. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2016.

[15] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. John-

son, and S. McCauley. Cache-adaptive algorithms. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 958–971, 2014.

[16] J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving

divide-and-conquer recurrences. ACM SIGACT News, 12(3):36–44,
1980.

[17] G. E. Blelloch. Nesl: A nested data-parallel language. Technical re-

port, Technical Report CMU-CS-92-103, School of Computer Science,

Carnegie Mellon University, 1992.

[18] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran,

S. Chen, and M. Kozuch. Provably good multicore cache performance

for divide-and-conquer algorithms. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2008.

[19] G. E. Blelloch, L. Dhulipala, and Y. Sun. Introduction to parallel algo-

rithms (draft), 2018.

[20] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Sort-

ing with asymmetric read and write costs. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2015.

[21] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally

deterministic parallel algorithms can be fast. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), 2012.

[22] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Sched-

uling irregular parallel computations on hierarchical caches. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2011.

[23] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algo-

rithms in the binary-forking model. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2020.

[24] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among

threads. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), 2004.

[25] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-

oblivious algorithms. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2010.

[26] G. E. Blelloch and Y. Gu. Improved parallel cache-oblivious algorithms

for dynamic programming. In SIAM Symposium on Algorithmic Princi-
ples of Computer Systems (APOCS), 2020.

[27] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-efficient

algorithms and data structures for computational geometry. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2018.

[28] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental

convex hull is highly parallel. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2020.

[29] G. E. Blelloch and M. Reid-Miller. Fast set operations using treaps. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
1998.

[30] G. E. Blelloch and M. Reid-Miller. Pipelining with futures. Theory of
Computing Systems (TOCS), 32(3), 1999.

[31] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O

efficient set covering algorithms. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2012.

[32] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-

tations by work stealing. J. ACM, 46(5):720–748, 1999.

[33] Z. Budimlić, V. Cavé, R. Raman, J. Shirako, S. Taşırlar, J. Zhao, and

V. Sarkar. The design and implementation of the habanero-java parallel

programming language. In Symposium on Object-oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages 185–186,
2011.

[34] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Von Praun, and V. Sarkar. X10: an object-oriented approach to non-

uniform cluster computing. In ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 519–538, 2005.

[35] R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi. Provably efficient

scheduling of cache-oblivious wavefront algorithms. In ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), pages
339–350, 2017.

[36] R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic

programming algorithms for multicores. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA). ACM, 2008.

12

[37] R. A. Chowdhury and V. Ramachandran. The cache-oblivious gaussian

elimination paradigm: theoretical framework, parallelization and ex-

perimental evaluation. Theory of Computing Systems (TOCS), 47(4):878–
919, 2010.

[38] R. Cole and V. Ramachandran. Resource oblivious sorting on mul-

ticores. In International Colloquium on Automata, Languages, and
Programming, pages 226–237. Springer, 2010.

[39] R. Cole and V. Ramachandran. Revisiting the cache miss analysis of

multithreaded algorithms. In Latin American Symposium on Theoretical
Informatics (LATIN), pages 172–183. Springer, 2012.

[40] R. Cole and V. Ramachandran. Analysis of randomized work steal-

ing with false sharing. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 985–998. IEEE, 2013.

[41] R. Cole and V. Ramachandran. Bounding cache miss costs of multi-

threaded computations under general schedulers. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2017.

[42] R. Cole and V. Ramachandran. Resource oblivious sorting on multi-

cores. ACM Transactions on Parallel Computing (TOPC), 3(4), 2017.
[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms (3rd edition). MIT Press, 2009.

[44] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons,

and J. Shun. Semi-asymmetric parallel graph algorithms for nvrams.

Proceedings of the VLDB Endowment (PVLDB), 13(9), 2020.
[45] D. Dinh, H. V. Simhadri, and Y. Tang. Extending the nested parallel

model to the nested dataflow model with provably efficient schedulers.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2016.

[46] M. Feng and C. E. Leiserson. Efficient detection of determinacy races

in cilk programs. Theory of Computing Systems, 32(3):301–326, 1999.
[47] M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and

transitive closure. In IEEE Symposium on Switching and Automata
Theory, 1971.

[48] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-

oblivious algorithms. In IEEE Symposium on Foundations of Computer
Science (FOCS), 1999.

[49] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation

of the cilk-5 multithreaded language. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 33(5), 1998.

[50] M. Frigo and V. Strumpen. The cache complexity of multithreaded

cache oblivious algorithms. Theory of Computing Systems, 45(2):203–
233, 2009.

[51] M. Furman. Application of a method of fast multiplication of matrices

to problem of finding graph transitive closure. Doklady Akademii Nauk
SSSR, 194(3), 1970.

[52] Z. Galil and R. Giancarlo. Speeding up dynamic programming with

applications to molecular biology. Theoretical Computer Science (TCS),
64(1), 1989.

[53] Z. Galil and K. Park. Dynamic programming with convexity, concavity

and sparsity. Theoretical Computer Science (TCS), 92(1), 1992.
[54] Z. Galil and K. Park. Parallel algorithms for dynamic programming re-

currences with more than O(1) dependency. J. Parallel Distrib. Comput.,
21(2), 1994.

[55] Y. Gu, O. Obeya, and J. Shun. Parallel in-place algorithms: Theory and

practice. In SIAM Symposium on Algorithmic Principles of Computer
Systems (APOCS), pages 114–128, 2021.

[56] D. S. Hirschberg and L. L. Larmore. The least weight subsequence

problem. SIAM J. on Computing, 16(4), 1987.
[57] https://www.threadingbuildingblocks.org.

[58] http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html.

[59] S. C. Kleene. Representation of events in nerve nets and finite automata.

Technical report, RAND PROJECT AIR FORCE SANTA MONICA CA,

1951.

[60] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education India,

2006.

[61] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines. Software:
Practice and Experience, 11(11), 1981.

[62] M. Künnemann, R. Paturi, and S. Schneider. On the fine-grained

complexity of one-dimensional dynamic programming. arXiv preprint
arXiv:1703.00941, 2017.

[63] S. K. Muller and U. A. Acar. Latency-hiding work stealing: Sched-

uling interacting parallel computations with work stealing. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

[64] I. Munro. Efficient determination of the transitive closure of a directed

graph. Information Processing Letters, 1(2), 1971.
[65] http://www.openmp.org.

[66] T. Schardl. Performance engineering of multicore software: Developing a
science of fast code for the post-Moore era. PhD thesis, 2016.

[67] Y. Shiloach and U. Vishkin. Finding the maximum, merging, and

sorting in a parallel computation model. J. Algorithms, 2(1):88–102,
1981.

[68] H. V. Simhadri, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and A. Ky-

rola. Experimental analysis of space-bounded schedulers. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 30–41, 2014.

[69] K. Singer, K. Agrawal, and I.-T. A. Lee. Scheduling i/o latency-hiding

futures in task-parallel platforms. In SIAM Symposium on Algorithmic
Principles of Computer Systems (APOCS), pages 147–161. SIAM, 2020.

[70] K. Singer, Y. Xu, and I.-T. A. Lee. Proactive work stealing for futures.

In ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 257–271, 2019.

[71] W. Suksompong. Bounds on multithreaded computations by work

stealing. Master’s thesis, Massachusetts Institute of Technology, 2014.

[72] Y. Sun and G. E. Blelloch. Parallel range, segment and rectangle queries

with augmented maps. In SIAM Symposium on Algorithm Engineering
and Experiments (ALENEX), pages 159–173, 2019.

[73] Y. Sun, G. E. Blelloch, W. S. Lim, and A. Pavlo. On supporting efficient

snapshot isolation for hybrid workloads with multi-versioned indexes.

Proceedings of the VLDB Endowment (PVLDB), 13(2):211–225, 2019.
[74] Y. Sun, D. Ferizovic, and G. E. Blelloch. Pam: Parallel augmented maps.

In ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP), 2018.

[75] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiser-

son. The pochoir stencil compiler. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2011.

[76] https://msdn.microsoft.com/en-us/library/dd460717%28v=vs.110%29.aspx.

[77] J. J. Tithi, P. Ganapathi, A. Talati, S. Aggarwal, and R. Chowdhury.

High-performance energy-efficient recursive dynamic programming

with matrix-multiplication-like flexible kernels. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2015.

[78] M. S. Waterman and T. F. Smith. Rna secondary structure: A complete

mathematical analysis. Mathematical Biosciences, 42(3-4), 1978.
[79] J. Yang and Q. He. Scheduling parallel computations by work stealing:

A survey. International Journal of Parallel Programming, 46(2):173–197,
2018.

[80] F. F. Yao. Efficient dynamic programming using quadrangle inequalities.

In ACM Symposium on Theory of Computing (STOC), 1980.

13

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Nested Parallelism
	2.2 Work-Span Measure
	2.3 Randomized Work-Stealing (RWS) Scheduler
	2.4 Cache Complexity

	3 Simplified RWS Analysis
	4 Analysis for Parallel Cache Complexity
	4.1 Related Work
	4.2 Our Approach
	4.3 Kleene's Algorithm as an Example
	4.4 Other Applications
	4.5 Discussions

	References

