
Analysis of Work-Stealing and

Parallel Cache Complexity

Joint work with Zachary Napier and Yihan Sun

Yan Gu

UC Riverside

Jan 12, 2022

Technology Scaling

Stanford’s CPU DB [DKM12]

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Processor cores

Normalized
transistor count

Clock speed (MHz)

Year

• Nowadays, it’s almost impossible to find a single-core processor

Technology Scaling

• Nowadays, it’s almost impossible to find a single-core processor

• It is of great importance to understand parallelism and teach it
in our CS curriculum

• The simplest form of parallelism is multicore CPU with shared-
memory

• We should not consider each processor as independent distributed
node, and program like MPI

• Instead, we should base on a better abstraction that hides low-level
details to algorithm designers and programmers

Fork-join parallelism

• Toy example: compute the sum (reduce) of all values in an array

•

• Stay algorithmically: identify parallelism, without worrying any system-level
concerns

4

1 32 654 87

3 7 11 15

10 26

36

+ + + +

+ +

+

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

?

?

? ?

? ?

?

Binary fork-join model

• Computation starts from one thread

• A thread can perform operation in standard RAM (arithmetic operation,
memory access, …), or
• Fork: start a new thread working on the next statement

• Join: previous forked processors synchronize here

• Parallel for: can be simulated by using 𝑂(log 𝑛) spawns, perform the computation of
the for loops in parallel, and have a sync at the end

• No concurrent writes to the same memory location or needs to be atomic

5

reduce(A, n) {
if (n == 1) return A[0];
L = fork reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
join;
return L+R;

}

Fork

Fork Fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
par-do(
[&]() {L = reduce(A, n/2);}
[&]() {R = reduce(A + n/2, n-n/2);})

return L+R;
}

Binary fork-join model

• Simple for theoretical analysis – we’ll
see in a while

• Simple for programming – almost
exactly the code!

• Other variants of this version
available in [BFGS20]

6

reduce(A, n) {
if (n == 1) return A[0];
L = fork reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
join;
return L+R;

}

Scheduler: map
tasks to processors

7

Scheduler

Program

A scheduler plays the role of a compiler for the
sequential code that hides all low-level details for
algorithm designers

8

Code in high-level language

Complier

Executable machine code

Generate parallel tasks and their

dependency

Scheduler

Parallel execution order using 𝒑 processors

The scheduling problem

9

• Given a DAG that each node (corresponding to an
instruction) has a constant fan-in and fan-out, the
scheduler maps each node to one of the 𝑷
processors, and minimizes the total idle time for all
processors

The scheduling problem

• Given a DAG that each node (corresponding to an
instruction) has a constant fan-in and fan-out, the
scheduler maps each node to one of the 𝑷 processors,
and minimizes the total idle time for all processors

• The best worst-case total idle time you can hope for:
𝑷 − 𝟏 𝑫, where 𝑷 is the number of processors, and 𝑫

is the longest path length in the DAG

• The famous “randomized work-stealing (RWS) scheduler”
achieves 𝑶 𝑷𝑫 idle time whp [BlumofeLeiserson99], while
achieve good performance in practice

10

What we studied in this paper

• The analysis of the RWS scheduler is quite compilated, and most existing ones
require mapping a potential function to each node in the DAG (hence most
existing parallel algorithm courses treat it as a black box)

• In this paper we showed a simplified analysis that (1) requires no potential
function, (2) applies to a more general asynchronized setting, (3) separate
math from the main idea, and (4) only uses Chernoff bound in a simple form

• For parallel I/O costs, there exists no tight analysis for many classic
algorithms using fork-join parallelism and RWS scheduler

• In this paper, we show a framework (based on [BlellochGu20]) to derive
much tighter bounds for 10 classic problems on algebra and dynamic
programming

11

A very brief proof outline
for the RWS scheduler

12

Proof outline for work-stealing scheduler

13

Analysis setup:

What to analysis

A best case:

incur 𝑂 𝑃𝐷 steals whp
Simply use Chernoff bound

A worst case:

incur 𝑂 𝑃𝐷 steals whp
Simply use Chernoff bound

incur 𝑂 𝑃𝐷 steals whp

for all cases

“Sandwiched”
We are happy to share

our lecture slides that

has been used in

several courses

Analyzing parallel I/O complexity

14

• Two-level memory hierarchy:

• A small memory (fast memory, cache) of fixed size 𝑀

• A large memory (slow memory) of unbounded size

• Both are partitioned into blocks of size 𝐵

• Instructions can only apply to data in primary memory, and are free

CPU

Slow MemoryFast Memory

𝑀/𝐵

𝐵

The (sequential) I/O Model (External Memory-, Ideal
Cache-) [AV88], [FLPR12]

• We assume the cache is fully associative, and the it takes unit
cost to load and evict a pair of blocks

• The complexity of an algorithm on the I/O model (I/O
complexity) assumes an optimal cache replacement policy

The (sequential) I/O Model (External Memory-, Ideal
Cache-) [AV88], [FLPR12]

CPU

Fast Memory

𝑀/𝐵

𝐵

Slow Memory

0 1

1
Chosen by an

optimal offline strategy

• Each of a total of 𝒑 processors owns a private cache of size 𝑴

• Where each operation is executed is decided by the RWS scheduler

The parallel I/O Model (private-cache model) [ABB02],[FS09]

CPU1

Fast Memory

𝑀/𝐵

𝐵

Slow Memory

CPUp

…Decided by

the scheduler

• Each of a total of 𝒑 processors owns a private cache of size 𝑴

• Where each operation is executed is decided by the RWS scheduler

• What are in the caches is decided by optimal replacement policy

• The parallel I/O cost is the total loads/evicts to execute an algorithm

The parallel I/O Model (private-cache model) [ABB02],[FS09]

CPU1

Fast Memory

𝑀/𝐵

𝐵

Slow Memory

CPUp

…

1

1

Chosen by an

optimal offline strategy

• When there is only one processor, the parallel I/O cost is the same
as the sequential I/O cost

• When there are more processors, the parallel I/O cost can either be
lower (since we have larger total cache size) or larger (when a “task”
is scheduled to another processor, we lose all data in the cache)

• Usually we care about the worst-case guarantee, and want to bound
the “parallel overhead”, so:

parallel I/O cost 𝑸𝒑 ≤ sequential I/O cost 𝑸𝟏 + parallel overhead 𝑸𝒑
′

• Trivial upper bound: 𝑸𝒑
′ = 𝑶 𝒑𝑫 ⋅

𝑴

𝑩
, which is #steal multiplied by

cache size [ABB02], but this is bound is very loose

What we should analyze about parallel I/O (cache) bound

• Frigo and Strumpen [2009] gave a general approach to analyze
parallel I/O (cache) bounds for cache-oblivious algorithms
• Gave good bounds on matrix transpose, matrix multiplication, sorting

• But the derived bounds are not optimal for many other algorithms

• Some details are discussed in more details by Cole and Ramachadram [2012]

• The parallel overhead is polynomially proportional to 𝐷, the span of the
algorithm

• For instance, for Gaussian Elimination, using the method in [FS09], we have

𝑄𝑝 = 𝑂
𝑛3

𝐵 𝑀
+ 𝑃

1
3𝑛

1
3 ⋅

𝑛2

𝐵
+ lower_order_terms

Unfortunately, there was not much improvement on this
topic, probably due to the complication

• Using the method in [FS09], we have

𝑄𝑝 = 𝑂
𝑛3

𝐵 𝑀
+ 𝑃

1
3𝑛

1
3 ⋅

𝑛2

𝐵
+ lower_order_terms

where the overhead term dominates when 𝑛 = 𝑂 𝑃
1

2𝑀
3

4 ≈ 107

• Meanwhile, for matrix multiplication, the method in [FS09] gives:

𝑄𝑝 = 𝑂
𝑛3

𝐵 𝑀
+ 𝑃

1
3 log

2
3 𝑛 ⋅

𝑛2

𝐵
+ lower_order_terms

• In practice, we can measure that the cacheline loads/evicts is similar for
the cache-oblivious algorithms for both problems

• Can we show the bound of MM for Gaussian Elimination as well?

Using Gaussian Elimination as an example

New results shown in this paper

𝜅 = 1.58 The new bounds in this paper is polynomially

better than the best previous bounds

The new bounds in this paper is only

polylogarithmically off the lower bounds

Matrix Multiplication

Gaussian Elimination

Triangular System Solver

LU Decomposition

23

LWS Recurrence

Parenthesis Recurrence

RNA Recurrence

GAP Recurrence

Protein accordion folding

2-Knapsack Recurrence

I/O bound vs. Work

bound

Symmetric vs.

Asymmetric

Lower vs. Upper

bound (algorithms)
Sequential vs.

Parallel

𝑘-d grid [BelllochGu20]

In this paper, we show that we can decouple the span
from the analysis of the parallel I/O (cache) bounds

Using Frigo-Strumpen’s bounds

for basic components:

2D-grid, 3D-grid, matrix transpose

Defining (𝛼, 𝛽, 𝑘, 𝑙, 𝑚)-recurrence

Plugging in base-case bounds for
2D-grid, 3D-grid, matrix transpose

Solve the recurrence and get
tighter parallel cache bounds

The span (parallelism) does not

show up in the analysis, and

only affects the base-case bound

Summary

25

Two main contributions of this paper

• We showed a simplified analysis for the randomized work-stealing
(RWS) scheduler that (1) requires no potential function, (2) applies to
a more general asynchronized setting, (3) separate math from the
main idea, and (4) only uses Chernoff bound in a simple form

• We show a framework (based on [BlellochGu20]) to derive much tighter
parallel I/O (cache) bounds for 10 classic problems on algebra and
dynamic programming

• If you have any questions, please contact me via: ygu@cs.ucr.edu

26

mailto:ygu@cs.ucr.edu

	幻灯片 1
	幻灯片 2: Technology Scaling
	幻灯片 3: Technology Scaling
	幻灯片 4: Fork-join parallelism
	幻灯片 5: Binary fork-join model
	幻灯片 6: Binary fork-join model
	幻灯片 7: Scheduler: map tasks to processors
	幻灯片 8: A scheduler plays the role of a compiler for the sequential code that hides all low-level details for algorithm designers
	幻灯片 9: The scheduling problem
	幻灯片 10: The scheduling problem
	幻灯片 11: What we studied in this paper
	幻灯片 12: A very brief proof outline for the RWS scheduler
	幻灯片 13: Proof outline for work-stealing scheduler
	幻灯片 14: Analyzing parallel I/O complexity
	幻灯片 15
	幻灯片 16: The (sequential) I/O Model (External Memory-, Ideal Cache-) [AV88], [FLPR12]
	幻灯片 17: The parallel I/O Model (private-cache model) [ABB02],[FS09]
	幻灯片 18: The parallel I/O Model (private-cache model) [ABB02],[FS09]
	幻灯片 19: What we should analyze about parallel I/O (cache) bound
	幻灯片 20: Unfortunately, there was not much improvement on this topic, probably due to the complication
	幻灯片 21: Using Gaussian Elimination as an example
	幻灯片 22: New results shown in this paper
	幻灯片 23: Matrix Multiplication Gaussian Elimination Triangular System Solver LU Decomposition
	幻灯片 24: In this paper, we show that we can decouple the span from the analysis of the parallel I/O (cache) bounds
	幻灯片 25: Summary
	幻灯片 26: Two main contributions of this paper

