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Technology Scaling

Stanford’s CPU DB [DKM12]
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• Nowadays, it’s almost impossible to find a single-core processor



Technology Scaling

• Nowadays, it’s almost impossible to find a single-core processor

• It is of great importance to understand parallelism and teach it 
in our CS curriculum

• The simplest form of parallelism is multicore CPU with shared-
memory

• We should not consider each processor as independent distributed 
node, and program like MPI

• Instead, we should base on a better abstraction that hides low-level 
details to algorithm designers and programmers



Fork-join parallelism

• Toy example: compute the sum (reduce) of all values in an array

•

• Stay algorithmically: identify parallelism, without worrying any system-level 
concerns 
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reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

?

?

? ?

? ?

?



Binary fork-join model

• Computation starts from one thread

• A thread can perform operation in standard RAM (arithmetic operation, 
memory access, …), or
• Fork: start a new thread working on the next statement

• Join: previous forked processors synchronize here

• Parallel for: can be simulated by using 𝑂(log 𝑛) spawns, perform the computation of 
the for loops in parallel, and have a sync at the end

• No concurrent writes to the same memory location or needs to be atomic
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reduce(A, n) {
if (n == 1) return A[0];
L = fork reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
join;
return L+R;

}

Fork

Fork Fork

……𝑛 tasks in parallel

log 𝑛 levels of fork

reduce(A, n) {
if (n == 1) return A[0];
par-do(
[&]() {L = reduce(A, n/2);}
[&]() {R = reduce(A + n/2, n-n/2);})

return L+R;
}



Binary fork-join model

• Simple for theoretical analysis – we’ll 
see in a while

• Simple for programming – almost 
exactly the code!

• Other variants of this version 
available in [BFGS20]
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reduce(A, n) {
if (n == 1) return A[0];
L = fork reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
join;
return L+R;

}



Scheduler: map 
tasks to processors
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Scheduler

Program



A scheduler plays the role of a compiler for the 
sequential code that hides all low-level details for 
algorithm designers

8

Code in high-level language

Complier

Executable machine code

Generate parallel tasks and their 

dependency

Scheduler

Parallel execution order using 𝒑 processors



The scheduling problem
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• Given a DAG that each node (corresponding to an 
instruction) has a constant fan-in and fan-out, the 
scheduler maps each node to one of the 𝑷 
processors, and minimizes the total idle time for all 
processors



The scheduling problem

• Given a DAG that each node (corresponding to an 
instruction) has a constant fan-in and fan-out, the 
scheduler maps each node to one of the 𝑷 processors, 
and minimizes the total idle time for all processors

• The best worst-case total idle time you can hope for: 
𝑷 − 𝟏 𝑫, where 𝑷 is the number of processors, and 𝑫 

is the longest path length in the DAG

• The famous “randomized work-stealing (RWS) scheduler” 
achieves 𝑶 𝑷𝑫  idle time whp [BlumofeLeiserson99], while 
achieve good performance in practice
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What we studied in this paper

• The analysis of the RWS scheduler is quite compilated, and most existing ones 
require mapping a potential function to each node in the DAG (hence most 
existing parallel algorithm courses treat it as a black box)

• In this paper we showed a simplified analysis that (1) requires no potential 
function, (2) applies to a more general asynchronized setting, (3) separate 
math from the main idea, and (4) only uses Chernoff bound in a simple form

• For parallel I/O costs, there exists no tight analysis for many classic 
algorithms using fork-join parallelism and RWS scheduler

• In this paper, we show a framework (based on [BlellochGu20]) to derive    
much tighter bounds for 10 classic problems on algebra and dynamic 
programming
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A very brief proof outline             
for the RWS scheduler
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Proof outline for work-stealing scheduler
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Analysis setup:

What to analysis

A best case:

incur 𝑂 𝑃𝐷 steals whp
Simply use Chernoff bound

A worst case:

incur 𝑂 𝑃𝐷 steals whp
Simply use Chernoff bound

incur 𝑂 𝑃𝐷 steals whp

for all cases

“Sandwiched”
We are happy to share 

our lecture slides that 

has been used in 

several courses



Analyzing parallel I/O complexity
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• Two-level memory hierarchy:

• A small memory (fast memory, cache) of fixed size 𝑀

• A large memory (slow memory) of unbounded size

• Both are partitioned into blocks of size 𝐵

• Instructions can only apply to data in primary memory, and are free

CPU

Slow MemoryFast Memory

𝑀/𝐵

𝐵

The (sequential) I/O Model (External Memory-, Ideal 
Cache-) [AV88], [FLPR12]



• We assume the cache is fully associative, and the it takes unit 
cost to load and evict a pair of blocks

• The complexity of an algorithm on the I/O model (I/O 
complexity) assumes an optimal cache replacement policy

The (sequential) I/O Model (External Memory-, Ideal 
Cache-) [AV88], [FLPR12]

CPU

Fast Memory

𝑀/𝐵

𝐵

Slow Memory

0 1

1
Chosen by an       

optimal offline strategy



• Each of a total of 𝒑 processors owns a private cache of size 𝑴

• Where each operation is executed is decided by the RWS scheduler

The parallel I/O Model (private-cache model) [ABB02],[FS09]

CPU1

Fast Memory

𝑀/𝐵

𝐵

Slow Memory

CPUp

…Decided by 

the scheduler



• Each of a total of 𝒑 processors owns a private cache of size 𝑴

• Where each operation is executed is decided by the RWS scheduler

• What are in the caches is decided by optimal replacement policy

• The parallel I/O cost is the total loads/evicts to execute an algorithm

The parallel I/O Model (private-cache model) [ABB02],[FS09]

CPU1

Fast Memory

𝑀/𝐵

𝐵

Slow Memory

CPUp

…

1

1

Chosen by an       

optimal offline strategy



• When there is only one processor, the parallel I/O cost is the same 
as the sequential I/O cost

• When there are more processors, the parallel I/O cost can either be 
lower (since we have larger total cache size) or larger (when a “task” 
is scheduled to another processor, we lose all data in the cache)

• Usually we care about the worst-case guarantee, and want to bound 
the “parallel overhead”, so:

parallel I/O cost 𝑸𝒑 ≤ sequential I/O cost 𝑸𝟏 + parallel overhead 𝑸𝒑
′

• Trivial upper bound: 𝑸𝒑
′ = 𝑶 𝒑𝑫 ⋅

𝑴

𝑩
, which is #steal multiplied by 

cache size [ABB02], but this is bound is very loose

What we should analyze about parallel I/O (cache) bound



• Frigo and Strumpen [2009] gave a general approach to analyze 
parallel I/O (cache) bounds for cache-oblivious algorithms
• Gave good bounds on matrix transpose, matrix multiplication, sorting

• But the derived bounds are not optimal for many other algorithms

• Some details are discussed in more details by Cole and Ramachadram [2012]

• The parallel overhead is polynomially proportional to 𝐷, the span of the 
algorithm

• For instance, for Gaussian Elimination, using the method in [FS09], we have

𝑄𝑝 = 𝑂
𝑛3

𝐵 𝑀
+ 𝑃

1
3𝑛

1
3 ⋅

𝑛2

𝐵
+ lower_order_terms

Unfortunately, there was not much improvement on this 
topic, probably due to the complication



• Using the method in [FS09], we have

𝑄𝑝 = 𝑂
𝑛3

𝐵 𝑀
+ 𝑃

1
3𝑛

1
3 ⋅

𝑛2

𝐵
+ lower_order_terms

where the overhead term dominates when 𝑛 = 𝑂 𝑃
1

2𝑀
3

4 ≈ 107

• Meanwhile, for matrix multiplication, the method in [FS09] gives:

𝑄𝑝 = 𝑂
𝑛3

𝐵 𝑀
+ 𝑃

1
3 log

2
3 𝑛 ⋅

𝑛2

𝐵
+ lower_order_terms

• In practice, we can measure that the cacheline loads/evicts is similar for 
the cache-oblivious algorithms for both problems

• Can we show the bound of MM for Gaussian Elimination as well?

Using Gaussian Elimination as an example



New results shown in this paper

𝜅 = 1.58 The new bounds in this paper is polynomially

better than the best previous bounds

The new bounds in this paper is only 

polylogarithmically off the lower bounds



Matrix Multiplication

Gaussian Elimination

Triangular System Solver

LU Decomposition 
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LWS Recurrence 

Parenthesis Recurrence

RNA Recurrence

GAP Recurrence

Protein accordion folding

2-Knapsack Recurrence

I/O bound vs. Work 

bound

Symmetric vs. 

Asymmetric

Lower vs. Upper 

bound (algorithms) 
Sequential vs. 

Parallel

𝑘-d grid [BelllochGu20]



In this paper, we show that we can decouple the span 
from the analysis of the parallel I/O (cache) bounds

Using Frigo-Strumpen’s bounds   

for basic components:

2D-grid, 3D-grid, matrix transpose

Defining (𝛼, 𝛽, 𝑘, 𝑙, 𝑚)-recurrence

Plugging in base-case bounds for 
2D-grid, 3D-grid, matrix transpose

Solve the recurrence and get 
tighter parallel cache bounds

The span (parallelism) does not 

show up in the analysis, and 

only affects the base-case bound



Summary
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Two main contributions of this paper

• We showed a simplified analysis for the randomized work-stealing 
(RWS) scheduler that (1) requires no potential function, (2) applies to 
a more general asynchronized setting, (3) separate math from the 
main idea, and (4) only uses Chernoff bound in a simple form

• We show a framework (based on [BlellochGu20]) to derive much tighter 
parallel I/O (cache) bounds for 10 classic problems on algebra and 
dynamic programming

• If you have any questions, please contact me via: ygu@cs.ucr.edu
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