
Space and Time Bounded Multiversion Garbage1

Collection2

Naama Ben-David !3

VMware Research, USA4

Guy E. Blelloch !5

Carnegie Mellon University, USA6

Panagiota Fatourou !7

FORTH ICS and University of Crete, Greece8

Eric Ruppert !9

York University, Canada10

Yihan Sun !11

University of California, Riverside, USA12

Yuanhao Wei !13

Carnegie Mellon University, USA14

Abstract15

We present a general technique for garbage collecting old versions for multiversion concurrency16

control that simultaneously achieves good time and space complexity. Our technique takes only O(1)17

time on average to reclaim each version and maintains only a constant factor more versions than18

needed (plus an additive term). It is designed for multiversion schemes using version lists, which are19

the most common.20

Our approach uses two components that are of independent interest. First, we define a novel21

range-tracking data structure which stores a set of old versions and efficiently finds those that are22

no longer needed. We provide a wait-free implementation in which all operations take amortized23

constant time. Second, we represent version lists using a new lock-free doubly-linked list algorithm24

that supports efficient (amortized constant time) removals given a pointer to any node in the list.25

These two components naturally fit together to solve the multiversion garbage collection problem–the26

range-tracker identifies which versions to remove and our list algorithm can then be used to remove27

them from their version lists. We apply our garbage collection technique to generate end-to-end28

time and space bounds for the multiversioning system of Wei et al. (PPoPP 2021).29

2012 ACM Subject Classification Theory of computation → Concurrent algorithms; Theory of30

computation → Data structures design and analysis31

Keywords and phrases Lock-free, data structures, memory management, snapshot, version lists32

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.3933

Related Version Full Version: https://arxiv.org/abs/2108.0277534

Funding Guy E. Blelloch and Yuanhao Wei: NSF CCF-1901381, CCF-1910030, and CCF-1919223.35

Eric Ruppert: NSERC Discovery Grant. Yihan Sun: NSF grant CCF-2103483.36

Panagiota Fatourou: EU Horizon 2020, Marie Sklodowska-Curie GA No 101031688.37

Acknowledgements We thank the anonymous referees for their helpful comments and suggestions.38

1 Introduction39

Supporting multiple “historical” versions of data, often called multiversioning or multiversion40

concurrency control, is a powerful technique widely used in database systems [42, 10, 38, 32,41

36, 51], transactional memory [40, 22, 39, 31, 29], and shared data structures [7, 21, 35, 49].42

© Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, Yihan Sun, Yuanhao Wei;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 39; pp. 39:1–39:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bendavidn@vmware.com
mailto:guyb@cs.cmu.edu
mailto:faturu@csd.uoc.gr
mailto:ruppert@eecs.yorku.ca
mailto:yihans@cs.ucr.edu
mailto:yuanhao1@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.DISC.2021.39
https://arxiv.org/abs/2108.02775
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Space and Time Bounded Multiversion Garbage Collection

This approach allows complex queries (read-only transactions) to proceed concurrently with43

updates while still appearing atomic because they get data views that are consistent with a44

single point in time. If implemented carefully, queries do not interfere with one another or45

with updates. The most common approach for multiversioning uses version lists [42] (also46

called version chains): the system maintains a global timestamp that increases over time,47

and each object maintains a history of its updates as a list of value-timestamp pairs, each48

corresponding to a value written and an update time. Each node in the list has an associated49

interval of time from that node’s timestamp until the next (later) node’s timestamp. A query50

can first read a timestamp value t and then, for each object it wishes to read, traverse the51

object’s version list to find the version whose interval contains t.52

Memory usage is a key concern for multiversioning, since multiple versions can consume53

huge amounts of memory. Thus, most previous work on multiversioning discusses how to54

reclaim the memory of old versions. We refer to this as the multiversion garbage collection55

(MVGC) problem. A widely-used approach is to keep track of the earliest active query and56

reclaim the memory of any versions overwritten before the start of this query [22, 36, 30, 35, 49].57

However, a query that runs for a long time, either because it is complicated or because58

it has been delayed, will force the system to retain many unneeded intermediate versions59

between the oldest required version and the current one. This has been observed to be a60

major bottleneck for database systems with Hybrid Transaction and Analytical Processing61

(HTAP) workloads [14] (i.e., many small updates concurrent with some large analytical62

queries). To address this problem in the context of software transactional memory, Lu63

and Scott [33] proposed a non-blocking algorithm that can reclaim intermediate versions.64

Blocking techniques were later proposed by the database community [14, 32]. However, these65

techniques add significant time overhead in worst-case executions.66

We present a wait-free MVGC scheme that achieves good time and space bounds, using67

O(1) time1 on average per allocated version and maintaining only a constant factor more68

versions than needed (plus an additive term). The scheme is very flexible and it can be69

used in a variety of multiversioning implementations. It uses a three-step approach that70

involves 1) identifying versions that can be reclaimed, including intermediate versions, 2)71

unlinking them from the version lists, and 3) reclaiming their memory. To implement these72

three steps efficiently, we develop two general components—a range-tracking data structure73

and a version-list data structure—that could be of independent interest beyond MVGC.74

The range-tracking data structure is used to identify version list nodes that are no longer75

needed. It supports an announce operation that is used by a query to acquire the current76

timestamp t as well as protect any versions that were current at t from being reclaimed. A77

corresponding unannounce is used to indicate when the query is finished. The data structure78

also supports a deprecate operation that is given a version and its time interval, and79

indicates that the version is no longer the most recent—i.e., is safe to reclaim once its interval80

no longer includes any announced timestamp. When a value is updated with a new version,81

the previous version is deprecated. A call to deprecate also returns a list of versions that82

had previously been deprecated and are no longer cover any announced timestamp—i.e., are83

now safe to reclaim. We provide a novel implementation of the range-tracking data structure84

for which the amortized number of steps per operation is O(1). We also bound the number85

of versions on which deprecate has been called, but have not yet been returned. If H is the86

maximum, over all configurations, of the number of needed deprecated versions, then the87

number of deprecated versions that have not yet been returned is at most 2H + O(P 2 log P),88

1 For time/space complexity, we count both local and shared memory operations/objects.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:3

where P is the number of processes. To achieve these time and space bounds, we borrow some89

ideas from real-time garbage collection [6, 11], and add several new ideas such as batching90

and using a shared queue.91

The second main component of our scheme is a wait-free version-list data structure that92

supports efficient (amortized constant time) removals of nodes from anywhere in the list.93

When the deprecate operation identifies an unneeded version, we must splice it out of its94

version list, without knowing its current predecessor in the list, so we need a doubly-linked95

version list. Our doubly-linked list implementation has certain restrictions that are naturally96

satisfied when maintaining version lists, for example nodes may be appended only at one97

end. The challenge is in achieving constant amortized time per remove, and bounded space.98

Previously known concurrent doubly-linked lists [47, 43] do not meet these requirements,99

requiring at least Ω(P) amortized time per remove. We first describe the implementation100

of our version list assuming a garbage collector and then we show how to manually reclaim101

removed nodes while maintaining our desired overall time and space bounds.102

To delete elements from the list efficiently, we leverage some recent ideas from randomized103

parallel list contraction [12], which asynchronously removes elements from a list. To avoid104

concurrently splicing out adjacent elements in the list, which can cause problems, the approach105

defines an implicit binary tree so that the list is an in-order traversal of the tree. Only nodes106

corresponding to leaves of the tree, which cannot be adjacent in the list, may be spliced out.107

Directly applying this technique, however, is not efficient in our setting. To reduce space108

overhead, we had to develop intricate helping mechanisms for splicing out internal nodes109

rather than just leaves. To achieve wait-freedom, we had to skew the implicit tree so that it110

is right-heavy. The final algorithm ensures that at most 2(L− R) + O(P log Lmax) nodes111

remain reachable in an execution with L appends and R removes across an arbitrary number112

of version lists, and at most Lmax appends on a single version list. This means the version113

lists store at most a constant factor more than the L−R required nodes plus an additive114

term shared across all the version lists. Combining this with the bounds from the range115

tracker, our MVGC scheme ensures that at most O(V + H + P 2 log P + P log Lmax) versions116

are reachable from the V version lists. This includes the current version for each list, H117

needed versions, plus additive terms from the range tracking and list building blocks.118

After a node has been spliced out of the doubly-linked list, its memory must be reclaimed.119

This step may be handled automatically by the garbage collector in languages such as Java,120

but in non-garbage-collected languages, additional mechanisms are needed to safely reclaim121

memory. The difficulty in this step is that while a node is being spliced out, other processes122

traversing the list might be visiting that node. We use a reference counting reclamation123

scheme and this requires modifying our doubly-linked list algorithm slightly to maintain the124

desired space bounds. We apply an existing concurrent reference counting implementation [2]125

that employs a local hash table per process which causes the time bounds of our reclamation126

to become amortized O(1) in expectation. It also requires an additional fetch-and-add127

instruction, whereas the rest of our algorithms require only read and CAS.128

We apply our MVGC scheme to a specific multiversioning scheme [49] to generate end-129

to-end bounds for a full multiversioning system. This multiversioning scheme takes a given130

CAS-based concurrent data structure and transforms it to support complex queries (e.g.,131

range queries) by replacing each CAS object with one that maintains a version list. Overall,132

we ensure that the memory usage of the multiversion data structure is within a constant133

factor of the needed space, plus O(P 2 log P + P 2 log Lmax). In terms of time complexity, our134

garbage collection scheme takes only O(1) time on average for each allocated version.135

Detailed proofs of correctness and of our complexity bounds appear in the full version [8].136

DISC 2021

39:4 Space and Time Bounded Multiversion Garbage Collection

2 Related Work137

Garbage Collection. One of the simplest, oldest techniques for garbage collection is reference138

counting (RC) [16, 17, 28]. In its basic form, RC attaches to each object a counter of the139

number of references to it. An object is reclaimed when its counter reaches zero. Some140

variants of RC are wait-free [2, 46]. In Section 6, we apply the RC scheme of [2] to manage141

version list nodes as it adds only constant time overhead (in expectation) and it is the only142

concurrent RC scheme that maintains our desired time bounds.143

Epoch-based reclamation (EBR) [23, 15] employs a counter that is incremented periodically144

and is used to divide the execution into epochs. Processes read and announce the counter145

value at the beginning of an operation. An object can be reclaimed only if it was retired146

in an epoch preceding the oldest announced. EBR is often the preferred choice in practice,147

as it is simple and exhibits good performance. However, a slow or crashed process with148

timestamp t can prevent the reclamation of all retired objects with timestamps larger than t.149

EBR, or variants, are used in a variety of MVGC schemes [22, 36, 49] to identify versions150

that are older than any query. An advantage of these schemes is that identified versions can151

be immediately reclaimed without first being unlinked from the version lists because the152

section of the version list they belong to is old enough to never be traversed. However, they153

inherit the same problem as EBR and are not able to reclaim intermediate versions between154

the oldest needed version and the current version when a long-running query holds on to155

an old epoch. This can be serious for multiversioned systems since EBR works best when156

operations are short, but a key motivation for multiversioning is to support lengthy queries.157

Hazard pointers (HP) [28, 34] can be used to track which objects are currently being158

accessed by each process and are therefore more precise. Combinations of HP and EBR have159

been proposed (e.g. [41, 50]) with the goal of preserving the practical efficiency of EBR while160

lowering its memory usage. However, unlike EBR, none of these techniques directly solve161

the MVGC problem. Other memory reclamation schemes have been studied that require162

hardware support [1, 18] or rely on the signaling mechanism of the operating system [15, 45].163

Hyaline [37] implements a similar interface to EBR and can be used for MVGC, but like164

EBR, it cannot reclaim intermediate versions.165

We are aware of three multiversioning systems based on version lists that reclaim inter-166

mediate versions: GMV [33], HANA [32] and Steam [14]. To determine which versions are167

safe to reclaim, all three systems merge the current version list for an object with the list168

of active timestamps to check for overlap. The three schemes differ based on when they169

decide to perform this merging step and how they remove and reclaim version list nodes. In170

GMV, when an update operation sees that memory usage has passed a certain threshold,171

it iterates through all the version lists to reclaim versions. Before reclaiming a version, it172

has to help other processes traverse the version list to ensure traversals remain wait-free.173

HANA uses a background thread to identify and reclaim obsolete versions while Steam scans174

the entire version list whenever a new version is added to it. In HANA and Steam, nodes175

are removed by locking the entire version list, whereas in GMV, nodes are removed in a176

lock-free manner by first logically marking a node for deletion, as in Harris’s linked list [26].177

If a remove operation in GMV experiences contention (i.e., fails a CAS), it restarts from the178

head of the version list. None of these three techniques ensure constant-time removal from a179

version list. Both Steam and GMV ensure O(PM) space where M is the amount of space180

required in an equivalent sequential execution. In comparison, we use a constant factor more181

than the required space plus an additive term of O(P 2 log P + P 2 log Lmax), where Lmax is182

the maximum number of versions added to a single version list. This can be significantly less183

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:5

than O(PM) in many workloads.184

Lock-Free Data Structures and Query Support. We use doubly-linked lists to store185

old versions. Singly-linked lists had lock-free implementations as early as 1995 [48]. Sev-186

eral implementations of doubly-linked lists were developed later from multi-word CAS187

instructions [5, 24], which are not widely available in hardware but can be simulated in188

software [27, 25]. Sundell and Tsigas [47] gave the first implementation from single-word189

CAS, although it lacks a full proof of correctness. Shafiei [43] gave an implementation with190

a proof of correctness and amortized analysis. Existing doubly-linked lists are not efficient191

enough for our application, so we give a new implementation with better time bounds.192

Fatourou, Papavasileiou and Ruppert [21] used multiversioning to add range queries to193

a search tree [19]. Wei et al. [49] generalized this approach (and made it more efficient) to194

support wait-free queries on a large class of lock-free data structures. Nelson, Hassan and195

Palmieri [35] sketched a similar scheme, but it is not non-blocking. In Appendix A, we apply196

our garbage collection scheme to the multiversion system of [49].197

3 Preliminaries198

We use a standard model with asynchronous, crash-prone processes that access shared199

memory using CAS, read and write instructions. For our implementations of data structures,200

we bound the number of steps needed to perform operations, and the number of shared201

objects that are allocated but not yet reclaimed.202

We also use destination objects [13], which are single-writer objects that store a value203

and support swcopy operations in addition to standard reads and writes. A swcopy(ptr)204

atomically reads the value pointed to by ptr, and copies the value into the destination object.205

Only the owner of a destination object can perform swcopy and write; any process may206

read it. Destination objects can be implemented from CAS so that all three operations take207

O(1) steps [13]. They are used to implement our range-tracking objects in Section 4.208

Pseudocode Conventions. We use syntax similar to C++. The type T* is a pointer to an209

object of type T. List<T> is a List of objects of type T. If x stores a pointer to an object,210

then x->f is that object’s member f. If y stores an object, y.f is that object’s member f.211

4 Identifying Which Nodes to Disconnect from the Version List212

We present the range-tracking object, which we use to identify version nodes that are safe213

to disconnect from version lists because they are no longer needed. To answer a query, a214

slow process may have to traverse an entire version list when searching for a very old version.215

However, we need only maintain list nodes that are the potential target nodes of such queries.216

The rest may be spliced out of the list to improve space usage and traversal times.217

We assign to each version node X an interval that represents the period of time when X218

was the current version. When the next version Y is appended to the version list, X ceases to219

be the current version and becomes a potential candidate for removal from the version list220

(if no query needs it). Thus, the left endpoint of X’s interval is the timestamp assigned to X221

by the multiversioning system, and the right endpoint is the timestamp assigned to Y.222

We assume that a query starts by announcing a timestamp t, and then proceeds to access,223

for each relevant object o, its corresponding version at time t, by finding the first node in the224

DISC 2021

39:6 Space and Time Bounded Multiversion Garbage Collection

version list with timestamp at most t (starting from the most recent version). Therefore, an225

announcement of t means it is unsafe to disconnect any nodes whose intervals contain t.226

As many previous multiversioning systems [22, 32, 35, 36, 49] align with the general227

scheme discussed above, we define the range-tracking object to abstract the problem of228

identifying versions that are not needed. We believe this abstraction is of general interest.229

I Definition 1 (Range-Tracking Object). A range-tracking object maintains a multiset A230

of integers, and a set O of triples of the form (o,low,high) where o is an object of some231

type T and low ≤ high are integers. Elements of A are called active announcements.232

If (o,low,high) ∈ O then o is a deprecated object with associated half-open interval233

[low, high). The range-tracking object supports the following operations.234

announce(int* ptr) atomically reads the integer pointed to by ptr, adds the value read235

to A, and returns the value read.236

unannounce(int i) removes one copy of i from A, rendering the announcement inactive.237

deprecate(T* o, int low, int high), where low ≤ high, adds the triple (o,low,high)238

to O and returns a set S, which contains the deprecated objects of a set O′ ⊆ O such that239

for any o ∈ O′, the interval of o does not intersect A, and removes O′ from O.240

The specification of Definition 1 should be paired with a progress property that rules out241

the trivial implementation in which deprecate always returns an empty set. We do this by242

bounding the number of deprecated objects that have not been returned by deprecate.243

I Assumption 2. To implement the range-tracking object, we assume the following.244

1. A process’s calls to deprecate have non-decreasing values of parameter high.245

2. If, in some configuration G, there is a pending announce whose argument is a pointer246

to an integer variable x, then the value of x at G is greater than or equal to the high247

argument of every deprecate that has been invoked before G.248

3. For every process p, the sequence of invocations to announce and unannounce performed249

by p should have the following properties: a) it should start with announce; b) it250

should alternate between invocations of announce and invocations of unannounce; c) each251

unannounce should have as its argument the integer returned by the preceding announce.252

4. Objects passed as the first parameter to deprecate operations are distinct.253

In the context we are working on, we have a non-decreasing integer variable that works as254

a global timestamp, and is passed as the argument to every announce operation. Moreover,255

the high value passed to each deprecate operation is a value that has been read from this256

variable. This ensures that parts 1 and 2 of Assumption 2 are satisfied. The other parts of257

the assumption are also satisfied quite naturally for our use of the range-tracking object, and258

we believe that the assumption is reasonably general. Under this assumption, we present259

and analyze a linearizable implementation of the range-tracking object in Section 4.1.260

4.1 A Linearizable Implementation of the Range-Tracking Object261

Our implementation, RangeTracker, is shown in Figure 1. Assumption 2.3 means that262

each process can have at most one active announcement at a time. So, RangeTracker263

maintains a shared array Ann of length P to store active announcements. Ann[p] is a264

destination object (defined in Section 3) that is owned by process p. Initially, Ann[p] stores265

a special value ⊥. To announce a value, a process p calls swcopy (line 28) to copy the current266

timestamp into Ann[p] and returns the announced value (line 29). To deactivate an active267

announcement, p writes ⊥ into Ann[p] (line 31). Under Assumption 2.3, the argument to268

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:7

1 class Range { T* t, int low, int high; };
2 class RangeTracker {
3 // global variables
4 Destination Ann[P];
5 Queue<List<Range>> Q; //initially empty
6 // thread local variables
7 List<Range> LDPool; // initially empty
8 Array<int> sortAnnouncements() {
9 List<int> result;

10 for(int i = 0; i < P; i++) {
11 int num = Ann[i].read();
12 if(num != ⊥) result.append(num); }
13 return sort(toArray(result)); }

15 List<T*>, List<Range> intersect(
16 List<Range> MQ, Array<int> ar) {
17 Range r; int i = 0;
18 List<T*> Redundant;
19 List<Range> Needed;
20 for(r in MQ) {
21 while(i < ar.size() &&
22 ar[i] < r.high) i++;
23 if(i == 0 || ar[i-1] < r.low)
24 Redundant.append(r.t);
25 else Needed.append(r); }
26 return <Redundant, Needed>; }

27 int Announce(int* ptr) {
28 Ann[p].swcopy(ptr);
29 return Ann[p].read(); }

31 void unannounce() { Ann[p].write(⊥); }

33 List<T*> deprecate(T* o, int low, int high) {
34 List<T*> Redundant;
35 List<Range> Needed, Needed1, Needed2;
36 // local lists are initially empty
37 LDPool.append(Range(o, low, high));
38 if(LDPool.size() == B) {
39 List<Range> MQ = merge(Q.deq(),Q.deq());
40 Array<int> ar = sortAnnouncements();
41 Redundant, Needed = intersect(MQ, ar);
42 if(Needed.size() > 2*B) {
43 Needed1, Needed2 = split(Needed);
44 Q.enq(Needed1);
45 Q.enq(Needed2); }
46 else if(Needed.size() > B) {
47 Q.enq(Needed); }
48 else {
49 LDPool = merge(LDPool,Needed); }
50 Q.enq(LDPool);
51 LDPool = empty list; }
52 return Redundant; } };

Figure 1 Code for process p for our linearizable implementation of a range-tracking object.

unannounce must match the argument of the process’s previous announce, so we suppress269

unannounce’s argument in our code. An announce or unannounce performs O(1) steps.270

A Range object (line 1) stores the triple (o,low,high) for a deprecated object o. It is271

created (at line 37) during a deprecate of o. RangeTracker maintains the deprecated272

objects as pools of Range objects. Each pool is sorted by its elements’ high values. Each273

process maintains a local pool of deprecated objects, called LDPool. To deprecate an object,274

a process simply appends its Range to the process’s local LDPool (line 37). Assumption 2.1275

implies that objects are appended to LDPool in non-decreasing order of their high values.276

We wish to ensure that most deprecated objects are eventually returned by a deprecate277

operation so that they can be freed. If a process p with a large LDPool ceases to take steps,278

it can cause all of those objects to remain unreturned. Thus, when the size of p’s LDPool hits279

a threshold B, they are flushed to a shared queue, Q, so that other processes can also return280

them. The elements of Q are pools that each contain B to 2B deprecated objects. For the281

sake of our analysis, we choose B = P log P . When a flush is triggered, p dequeues two pools282

from Q and processes them as a batch to identify the deprecated objects whose intervals do283

not intersect with the values in Ann, and return them. The rest of the dequeued objects,284

together with those in LDPool, are stored back into Q. We call these actions (lines 38–51),285

the flush phase of deprecate. A deprecate without a flush phase returns an empty set.286

During a flush phase, a process p dequeues two pools from Q and merges them (line 39)287

into a new pool, MQ. Next, p makes a local copy of Ann and sorts it (line 40). It then uses288

the intersect function (line 41) to partition MQ into two sorted lists: Redundant contains289

objects whose intervals do not intersect the local copy of Ann, and Needed contains the rest.290

Intuitively, a deprecated object in MQ is put in Redundant if the low value of its interval is291

larger than the announcement value immediately before its high value. Finally, p enqueues292

the Needed pool with its LDPool into Q (lines 44–47 and line 50). To ensure that the size of293

each pool in Q is between B and 2B, the Needed pool is split into two halves if it is too large294

DISC 2021

39:8 Space and Time Bounded Multiversion Garbage Collection

(line 43), or is merged with LDPool if it is too small (line 49). A flush phase is performed295

once every P log P calls to deprecate, and the phase executes O(P log P) steps. Therefore,296

the amortized number of steps for deprecate is O(1).297

The implementation of the concurrent queue Q should ensure that an element can be298

enqueued or dequeued in O(P log P) steps. The concurrent queue presented in [20] has step299

complexity O(P) and thus ensures these bounds. To maintain our space bounds, the queue300

nodes must be reclaimed. This can be achieved if we apply hazard-pointers on top of the301

implementation in [20]. If Q is empty, then Q.deq() returns an empty list.302

We sketch the proofs of the following three theorems. For detailed proofs, see [8].303

I Theorem 3. If Assumption 2 holds, then RangeTracker is a linearizable implementation304

of a range-tracking object.305

The linearization points used in the proof of Theorem 3 are defined as follows. An306

announce is linearized at its swcopy on line 28. An unannounce is linearized at its write on307

line 31. A deprecate is linearized at line 50 if it executes that line, or at line 37 otherwise.308

The most interesting part of the proof concerns a deprecate operation I with a flush309

phase. I dequeues two pools from Q as MQ and decides which objects in MQ to return based on310

the local copy of Ann array. To show linearizability, we must also show that intervals of the311

objects returned by I do not intersect the Ann array at the linearization point of I. Because312

of Assumption 2.2, values written into Ann after the pools are dequeued cannot be contained313

in the intervals in MQ. Thus, if an object’s interval does not contain the value I read from314

Ann[i], it will not contain the value in Ann[i] at I’s linearization point.315

I Theorem 4. In the worst case, announce and unannounce take O(1) steps, while deprecate316

takes O(P log P) steps. The amortized number of steps performed by each operation is O(1).317

Let H be the maximum, over all configurations in the execution, of the number of needed318

deprecated objects, i.e., those whose intervals contain an active announcement.319

I Theorem 5. At any configuration, the number of deprecated objects that have not yet been320

returned by any instance of deprecate is at most 2H + 25P 2 log P .321

At any time, each process holds at most P log P deprecated objects in LDPool and at most322

4P log P that have been dequeued from Q as part of a flush phase. We prove by induction323

that the number of deprecated objects in Q at a configuration G is at most 2H + O(P 2 log P).324

Let G′ be the latest configuration before G such that all pools in Q at G′ are dequeued325

between G′ and G. Among the dequeued pools, only the objects that were needed at G′326

are re-enqueued into Q, and there are at most H such objects. Since we dequeue two pools327

(containing at least B elements each) each time we enqueue B new objects between G′ and328

G, this implies that the number of such new objects is at most half the number of objects329

in Q at G′ (plus O(P 2 log P) objects from flushes already in progress at G′). Assuming the330

bound on the size of Q holds at G′, this allows us to prove the bound at G.331

The constant multiplier of H in Theorem 5 can be made arbitrarily close to 1 by dequeuing332

and processing k pools of Q in each flush phase instead of two. The resulting space bound333

would be k
k−1 ·H + (2k+1)(3k−1)

k−1 ·P 2 log P . This would, of course, increase the constant factor334

in the amortized number of steps performed by deprecate (Theorem 4).335

5 Maintaining Version Lists336

We use a restricted version of a doubly-linked list to maintain each version list so that we337

can more easily remove nodes from the list when they are no longer needed. We assume each338

node has a timestamp field. The list is initially empty and provides the following operations.339

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:9

B, C concurrently
A B C D A B C DBefore After removing

Figure 2 An example of incorrect removals.

tryAppend(Node* old, Node* new): Adds new to the head of the list and returns true340

if the current head is old. Otherwise returns false. Assumes new is not null.341

getHead(): Returns a pointer to the Node at the head of the list (or null if list is empty).342

find(Node* start, int ts): Returns a pointer to the first Node, starting from start343

and moving away from the head of the list, whose timestamp is at most ts (or null if no344

such node exists).345

remove(Node* n): Given a previously appended Node, removes it from the list.346

To obtain an efficient implementation, we assume several preconditions, summarized in347

Assumption 6 (and stated more formally in the full version [8]). A version should be removed348

from the object’s version list only if it is not current: either it has been superseded by another349

version (6.1) or, if it is the very last version, the entire list is no longer needed (6.2). Likewise,350

a version should not be removed if a find is looking for it (6.3), which can be guaranteed351

using our range-tracking object. We allow flexibility in the way timestamps are assigned to352

versions. For example, a timestamp can be assigned to a version after appending it to the353

list. However, some assumptions on the behaviour of timestamps are needed to ensure that354

responses to find operations are properly defined (6.4, 6.5).355

I Assumption 6.356

1. Each node (except the very last node) is removed only after the next node is appended.357

2. No tryAppend, getHead or find is called after a remove on the very last node.358

3. After remove(X) is invoked, no pending or future find operation should be seeking a359

timestamp in the interval between X’s timestamp and its successor’s.360

4. Before trying to append a node after a node B or using B as the starting point for a find,361

B has been the head of the list and its timestamp has been set. A node’s timestamp does362

not change after it is set. Timestamps assigned to nodes are non-decreasing.363

5. If a find(X,t) is invoked, any node appended after X has a higher timestamp than t.364

6. Processes never attempt to append the same node to a list twice, or to remove it twice.365

5.1 Version List Implementation366

Pseudocode for our list implementation is in Figure 4. A remove(X) operation first marks367

the node X to be deleted by setting a status field of X to marked. We refer to the subsequent368

physical removal of X as splicing X out of the list.369

Splicing a node B from a doubly-linked list requires finding its left and right neighbours, A370

and C, and then updating the pointers in A and C to point to each other. Figure 2 illustrates371

the problem that could arise if adjacent nodes B and C are spliced out concurrently. The372

structure of the doubly-linked list becomes corrupted: C is still reachable when traversing the373

list towards the left, and B is still reachable when traversing towards the right. The challenge374

of designing our list implementation is to coordinate splices to avoid this situation.375

We begin with an idea that has been used for parallel list contraction [44]. We assign376

each node a priority value and splice a node out only if its priority is greater than both of its377

neighbours’ priorities. This ensures that two adjacent nodes cannot be spliced concurrently.378

Conceptually, we can define a priority tree corresponding to a list of nodes with priorities379

as follows. Choose the node with minimum priority as the root. Then, recursively define380

DISC 2021

39:10 Space and Time Bounded Multiversion Garbage Collection

7

1 3 2 5 4 5 3 7 6 7 5 7 6 7 4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16counter

priority

3

5

priority
tree

16

15

14

13

12

11

10

9

8

7

6

4

2
priority
1

2

3

4

5

6

Figure 3 A list and its priority tree.

the left and right subtrees of the root by applying the same procedure to the sublists to the381

left and right of the root node. The original list is an in-order traversal of the priority tree.382

See Figure 3 for an example. We describe below how we choose priorities to ensure that (1)383

there is always a unique minimum in a sublist corresponding to a subtree (to be chosen as384

the subtree’s root), and (2) if L nodes are appended to the list, the height of the priority385

tree is O(log L). We emphasize that the priority tree is not actually represented in memory;386

it is simply an aid to understanding the design of our implementation.387

The requirement that a node is spliced out of the list only if its priority is greater than388

its neighbours corresponds to requiring that we splice only nodes whose descendants in the389

priority tree have all already been spliced out of the list. To remove a node that still has390

unspliced descendants, we simply mark it as logically deleted and leave it in the list. If X’s391

descendants have all been spliced out, then X’s parent Y in the priority tree is the neighbour of392

X in the list with the larger priority. An operation that splices X from the list then attempts393

to help splice X’s parent Y (if Y is marked for deletion and Y is larger than its two neighbours),394

and this process continues up the tree. Conceptually, this means that if a node Z is marked395

but not spliced, the last descendant of Z to be spliced is also responsible for splicing Z.396

In this scheme, an unmarked node can block its ancestors in the priority tree from being397

spliced out of the list. For example, in Figure 3, if the nodes with counter values 10 to 16 are398

all marked for deletion, nodes 11, 13 and 15 could be spliced out immediately. After 13 and399

15 are spliced, node 14 could be too. The unmarked node 9 prevents the remaining nodes400

10, 12 and 16 from being spliced, since each has a neighbour with higher priority. Thus, an401

unmarked node could prevent up to Θ(log L) marked nodes from being spliced out of the list.402

Improving this space overhead factor to O(1) requires an additional, novel mechanism. If403

an attempt to remove node B observes that B’s left neighbour A is unmarked and B’s priority404

is greater than B’s right neighbour C’s priority, we allow B to be spliced out of the list using405

a special-purpose routine called spliceUnmarkedLeft, even if A’s priority is greater than B’s.406

In the example of the previous paragraph, this would allow node 10 to be spliced out after 11.407

Then, node 12 can be spliced out after 10 and 14, again using spliceUnmarkedLeft, and408

finally node 16 can be spliced out. A symmetric routine spliceUnmarkedRight applies if409

C is unmarked and B’s priority is greater than A’s. This additional mechanism of splicing410

out nodes when one neighbour is unmarked allows us to splice out all nodes in a string411

of consecutive marked nodes, except possibly one of them, which might remain in the412

list if both its neighbours are unmarked and have higher priority. However, during the413

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:11

spliceUnmarkedLeft routine that is splicing out B, A could become marked. If A’s priority414

is greater than its two neighbours’ priorities, there could then be simultaneous splices of A415

and B. To avoid this, instead of splicing out B directly, the spliceUnmarkedLeft installs a416

pointer to a Descriptor object into node A, which describes the splice of B. If A becomes417

marked, the information in the Descriptor is used to help complete the splice of B before A418

itself is spliced. Symmetrically, a spliceUnmarkedRight of B installs a Descriptor in C.419

Multiple processes may attempt to splice the same node B, either because of the helping420

coordinated by Descriptor objects or because the process that spliced B’s last descendant in421

the priority tree will also try to splice B itself. To avoid unnecessary work, processes use a422

CAS to change the status of B from marked to finalized. Only the process that succeeds423

in this CAS has the responsibility to recursively splice B’s ancestors. (In the case of the424

spliceUnmarkedLeft and spliceUnmarkedRight routines, only the process that successfully425

installs the Descriptor recurses.) If one process responsible for removing a node (and its426

ancestors) stalls, it could leave O(log L) marked nodes in the list; this is the source of an427

additive P log L term in the bound we prove on the number of unnecessary nodes in the list.428

We now look at the code in more detail. Each node X in the doubly-linked list has right429

and left pointers that point toward the list’s head and away from it, respectively. X also has430

a status field that is initially unmarked and leftDesc and rightDesc fields to hold pointers431

to Descriptors for splices happening to the left and to the right of X, respectively. X’s counter432

field is filled in when X is appended to the right end of the list with a value that is one greater433

than the preceding node. To ensure that the height of the priority tree is O(log L), we use the434

counter value c to define the priority of X as p(c), where p(c) is either k if c is of the form 2k,435

or 2k + 1− (number of consecutive 0’s at the right end of the binary representation of c), if436

2k < c < 2k+1. The resulting priority tree has a sequence of nodes with priorities 1, 2, 3, . . .437

along the rightmost path in the tree, where the left subtree of the ith node along this438

rightmost path is a complete binary tree of height i− 1, as illustrated in Figure 3. (Trees of439

this shape have been used to describe search trees [9] and in concurrent data structures [3, 4].)440

This assignment of priorities ensures that between any two nodes with the same priority,441

there is another node with lower priority. Moreover, the depth of a node with counter value442

c is O(log L). This construction also ensures that remove operations are wait-free, since the443

priority of a node is a bound on the number of recursive calls that a remove performs.444

A Descriptor of a splice of node B out from between A and C is an object that stores445

pointers to the three nodes A, B and C. After B is marked, we set its Descriptor pointers to a446

special Descriptor frozen to indicate that no further updates should occur on them.447

To append a new node C after the head node B, the tryAppend(B,C) operation simply448

fills in the fields of C, and then attempts to swing the Head pointer to C at line 36. B’s right449

pointer is then updated at line 37. If the tryAppend stalls before executing line 37, any450

attempt to append another node after C will first help complete the append of C (line 32).451

The boolean value returned by tryAppend indicates whether the append was successful.452

A remove(B) first sets B’s status to marked at line 44. It then stores the frozen453

Descriptor in both B->leftDesc and B->rightDesc. The first attempt to store frozen in454

one of these fields may fail, but we prove that the second will succeed because of some455

handshaking, described below. B is frozen once frozen is stored in both of its Descriptor456

fields. Finally, remove(B) calls removeRec(B) to attempt the real work of splicing B.457

The removeRec(B) routine manages the recursive splicing of nodes. It first calls splice,458

spliceUnmarkedLeft or spliceUnmarkedRight, as appropriate, to splice B. If the splice of459

B was successful, it then recurses (if needed) on the neighbour of B with the larger priority.460

The actual updates to pointers are done inside the splice(A,B,C) routine, which is called461

DISC 2021

39:12 Space and Time Bounded Multiversion Garbage Collection

1 class Node {
2 Node *left, *right; // initially null
3 enum status {unmarked,marked,finalized};
4 // initially unmarked
5 int counter; // used to define priority
6 int priority; // defines implicit tree
7 int ts; // timestamp
8 Descriptor *leftDesc, *rightDesc;
9 // initially null

10 };

12 class Descriptor { Node *A, *B, *C; };
13 Descriptor* frozen = new Descriptor();

15 class VersionList {
16 Node* Head;
17 // public member functions:
18 Node* getHead() {return Head;}

20 Node* find(Node* start, int ts) {
21 VNode* cur = start;
22 while(cur != null && cur->ts > ts)
23 cur = cur->left;
24 return cur; }

26 bool tryAppend(Node* B, Node* C) {
27 // B can be null iff C is the initial node
28 if(B != null) {
29 C->counter = B->counter+1;
30 Node* A = B->left;
31 // Help tryAppend(A, B)
32 if(A != null) CAS(&(A->right), null, B);
33 } else C->counter = 2;
34 C->priority = p(C->counter);
35 C->left = B;
36 if(CAS(&Head, B, C)) {
37 if(B != null) CAS(&(B->right), null, C);
38 return true;
39 } else return false; }

41 // public static functions:
42 void remove(Node* B) {
43 // B cannot be null
44 B->status = marked;
45 for F in [leftDesc, rightDesc] {
46 repeat twice {
47 Descriptor* desc = B->F;
48 help(desc);
49 CAS(&(B->F), desc, frozen); } }
50 removeRec(B); }

52 // private helper functions:
53 bool validAndFrozen(Node* D) {
54 // rightDesc is frozen second
55 return D != null && D->rightDesc == frozen; }

57 void help(Descriptor* desc) {
58 if(desc != null && desc != frozen)
59 splice(desc->A, desc->B, desc->C); }

61 int p(int c) {
62 k = floor(log2(c));
63 if(c == 2^k) return k;
64 else return 2k + 1 - lowestSetBit(c); }

65 // private helper functions continued:
66 void removeRec(Node* B) {
67 // B cannot be null
68 Node* A = B->left;
69 Node* C = B->right;
70 if(B->status == finalized) return;
71 int a, b, c;
72 if(A != null) a = A->priority;
73 else a = 0;
74 if(C != null) c = C->priority;
75 else c = 0;
76 b = B->priority;
77 if(a < b > c) {
78 if(splice(A, B, C)) {
79 if(validAndFrozen(A)) {
80 if(validAndFrozen(C) && c > a) removeRec(C);
81 else removeRec(A); }
82 else if(validAndFrozen(C)) {
83 if(validAndFrozen(A) && a > c) removeRec(A);
84 else removeRec(C); } } }
85 else if(a > b > c) {
86 if(spliceUnmarkedLeft(A, B, C) &&
87 validAndFrozen(C)) {
88 removeRec(C); } }
89 else if(a < b < c) {
90 if(spliceUnmarkedRight(A, B, C) &&
91 validAndFrozen(A)) {
92 removeRec(A); } } } }

94 bool splice(Node* A, Node* B, Node* C) {
95 // B cannot be null
96 if(A != null && A->right != B) return false;
97 bool result = CAS(&(B->status), marked, finalized);
98 if(C != null) CAS(&(C->left), B, A);
99 if(A != null) CAS(&(A->right), B, C);

100 return result; }

102 bool spliceUnmarkedLeft(Node* A, Node* B, Node* C) {
103 // A, B cannot be null
104 Descriptor* oldDesc = A->rightDesc;
105 if(A->status != unmarked) return false;
106 help(oldDesc);
107 if(A->right != B) return false;
108 Descriptor* newDesc = new Descriptor(A, B, C);
109 if(CAS(&(A->rightDesc), oldDesc, newDesc)) {
110 // oldDesc != frozen
111 help(newDesc);
112 return true;
113 } else return false; }

115 bool spliceUnmarkedRight(Node* A, Node* B, Node* C) {
116 // B, C cannot be null
117 Descriptor* oldDesc = C->leftDesc;
118 if(C->status != unmarked) return false;
119 help(oldDesc);
120 if(C->left != B || (A != null && A->right != B))
121 return false;
122 Descriptor* newDesc = new Descriptor(A, B, C);
123 if(CAS(&(C->leftDesc), oldDesc, newDesc)) {
124 // oldDesc != frozen
125 help(newDesc);
126 return true;
127 } else return false; } };

Figure 4 Linearizable implementation of our doubly-linked list.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:13

after reading A in B->left and C in B->right. The routine first tests that A->right = B462

at line 96. This could fail for two reasons: B has already been spliced out, so there is no463

need to proceed, or there is a splice(A,D,B) that has been partially completed; B->left464

has been updated to A, but A->right has not yet been updated to B. In the latter case, the465

remove that is splicing out D will also splice B after D, so again there is no need to proceed466

with the splice of B. If A->right = B, B’s status is updated to finalized at line 97, and467

the pointers in C and A are updated to splice B out of the list at line 98 and 99.468

The spliceUnmarkedLeft(A,B,C) handles the splicing of a node B when B’s left neighbour469

A has higher priority but is unmarked, and B’s right neighbour C has lower priority. The470

operation attempts to CAS a Descriptor of the splice into A->rightDesc at line 109. If there471

was already an old Descriptor there, it is first helped to complete at line 106. If the new472

Descriptor is successfully installed, the help routine is called at line 111, which in turn calls473

splice to complete the splicing out of B. The spliceUnmarkedLeft operation can fail in474

several ways. First, it can observe that A has become marked, in which case A should be475

spliced out before B since A has higher priority. (This test is also a kind of handshaking: once476

a node is marked, at most one more Descriptor can be installed in it, and this ensures that477

one of the two attempts to install frozen in a node’s Descriptor field during the remove478

routine succeeds.) Second, it can observe at line 107 that A->right 6= B. As described above479

for the splice routine, it is safe to abort the splice in this case. Finally, the CAS at line 109480

can fail, either because A->rightDesc has been changed to frozen (indicating that A should481

be spliced before B) or another process has already stored a new Descriptor in A->rightDesc482

(indicating either that B has already been spliced or will be by another process).483

The spliceUnmarkedRight routine is symmetric to spliceUnmarkedLeft, aside from a484

slight difference in line 120 because splice changes the left pointer before the right pointer.485

The return values of splice, spliceUnmarkedLeft and spliceUnmarkedRight say whether486

the calling process should continue recursing up the priority tree to splice out more nodes.487

5.2 Properties of the Implementation488

Detailed proofs of the following results appear in the full version [8]. We sketch them here.489

I Theorem 7. Under Assumption 6, the implementation in Figure 4 is linearizable.490

Since the implementation is fairly complex, the correctness proof is necessarily quite491

intricate. We say that X <c Y if node X is appended to the list before node Y. We prove492

that left and right pointers in the list always respect this ordering. Removing a node has493

several key steps: marking it (line 44), freezing it (second iteration of line 49), finalizing494

it (successful CAS at line 97) and then making it unreachable (successful CAS at line 99).495

We prove several lemmas showing that these steps take place in an orderly way. We also496

show that the steps make progress. Finally, we show that the coordination between remove497

operations guarantees that the structure of the list remains a doubly-linked list in which498

nodes are ordered by <c, except for a temporary situation while a node is being spliced499

out, during which its left neighbour may still point to it after its right neighbour’s pointer500

has been updated to skip past it. To facilitate the inductive proof of this invariant, it is501

wrapped up with several others, including an assertion that overlapping calls to splice of502

the form splice(W,X,Y) and splice(X,Y,Z) never occur. The invariant also asserts that503

unmarked nodes remain in the doubly-linked list; no left or right pointer can jump past a504

node that has not been finalized. Together with Assumption 6.3, this ensures a find cannot505

miss the node that it is supposed to return, regardless of how find and remove operations506

are linearized. We linearize getHead and tryAppend when they access the Head pointer.507

DISC 2021

39:14 Space and Time Bounded Multiversion Garbage Collection

I Theorem 8. The number of steps a remove(X) operation performs is O(X->priority)508

and the remove operation is therefore wait-free.509

Proof. Aside from the call to removeRec(X), remove(X) performs O(1) steps. Aside from510

doing at most one recursive call to removeRec, a removeRec operation performs O(1) steps.511

Each time removeRec is called recursively, the node on which it is called has a smaller priority.512

Since priorities are non-negative integers, the claim follows. J513

I Theorem 9. The tryAppend and getHead operations take O(1) steps. The amortized514

number of steps for remove is O(1).515

Consider an execution with R remove operations. Using the argument for Theorem 8, it516

suffices to bound the number of calls to removeRec. There are at most R calls to removeRec517

directly from remove. For each of the R nodes X that are removed, we show that at most518

one call to removeRec(X) succeeds either in finalizing X or installing a Descriptor to remove519

X, and only this removeRec(X) can call removeRec recursively.520

We say a node is lr-reachable if it is reachable from the head of the list by following left521

or right pointers. A node is lr-unreachable if it is not lr-reachable.522

I Theorem 10. At the end of any execution by P processes that contains L successful523

tryAppend operations and R remove operations on a set of version lists, and a maximum of524

Lmax successful tryAppends on a single version list, the total number of lr-reachable nodes525

across all the version lists in the set is at most 2(L−R) + O(P log Lmax).526

Theorem 10 considers a set of version lists to indicate that the O(P log Lmax) additive527

space overhead is shared across all the version lists in the system. A node X is removable if528

remove(X) has been invoked. We must show at most (L−R) + O(P log Lmax) removable529

nodes are still lr-reachable. We count the number of nodes that are in each of the various530

phases (freezing, finalizing, making unreachable) of the removal. There are at most P531

removable nodes that are not yet frozen, since each has a pending remove operation on it.532

There are at most P finalized nodes that are still lr-reachable, since each has a pending533

splice operation on it. To bound the number of nodes that are frozen but not finalized, we534

classify an unfinalized node as Type 0, 1, or 2, depending on the number of its subtrees that535

contain an unfinalized node. We show that each frozen, unfinalized node X of type 0 or 1536

has a pending remove or removeRec at one of its descendants. So, there are O(P log Lmax)537

such nodes. We show that at most half of the unfinalized nodes are of type 2, so there are at538

most L−R + O(P log Lmax) type-2 nodes. Summing up yields the bound.539

6 Memory Reclamation for Version Lists540

We now describe how to safely reclaim the nodes spliced out of version lists and the Descriptor541

objects that are no longer needed. We apply an implementation of Reference Counting542

(RC) [2] with amortized expected O(1) time overhead to a slightly modified version of our543

list. To apply RC in Figure 4, we add a reference count field to each Node or Descriptor and544

replace raw pointers to Nodes or Descriptors with reference-counted pointers. Reclaiming an545

object clears all its reference-counted pointers, which may lead to recursive reclamations if546

any reference count hits zero. This reclamation scheme is simple, but not sufficient by itself547

because a single pointer to a spliced out node may prevent a long chain of spliced out nodes548

from being reclaimed (see Figure 5, discussed later). To avoid this, we modify the splice549

routine so that whenever the left or right pointer of an node Y points to a descendant in550

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:15

10

15

16 head

p1

11

12

13
14

Figure 5 A portion of a version list where shaded nodes 15, 14, ..., 11 have been removed, in that
order. Dotted pointers represent left and right pointers set to > by our modified splice routine.
Node labels are counter values and vertical positioning represents nodes’ priorities (cf. Figure 3).

the implicit tree, we set the pointer to > after Y is spliced out. Thus, only left and right551

pointers from spliced out nodes to their ancestors in the implicit tree remain valid. This552

ensures that there are only O(log L) spliced out nodes reachable from any spliced out node.553

This modification requires some changes to find. When a find reaches a node whose554

left pointer is >, the traversal moves right instead; this results in following a valid pointer555

because whenever splice(A, B, C) is called, it is guaranteed that either A or C is an ancestor556

of B. For example in Figure 5, a process p1, paused on node 15, will next traverse nodes 14,557

16, and 10. Breaking up chains of removed nodes (e.g., from node 15 to 11 in Figure 5) by558

setting some pointers to > is important because otherwise, such chains can become arbitrarily559

long and a process paused at the head of a chain can prevent all of its nodes from being560

reclaimed. In the full version of the paper, we prove that traversing backwards does not have561

any significant impact on the time complexity of find. Intuitively, this is because backwards562

traversals only happen when the find is poised to read a node that has already been spliced563

out and each backwards traversal brings it closer to a non-removed node.564

Using the memory reclamation scheme described above, we prove Theorems 11 and 12565

that provide bounds similar to Theorems 9 and 10 in [8]. Both theorems include the resources566

needed by the RC algorithm, such as incrementing reference counts, maintaining retired lists,567

etc. Since the RC algorithm uses process-local hash tables, the amortized time bounds in568

Theorem 9 become amortized in expectation in Theorem 11. Using this scheme requires569

that getHead and find return reference counted pointers rather than raw pointers. Holding570

on to these reference counted pointers prevents the nodes that they point to from being571

reclaimed. For the space bounds in Theorem 12, we consider the number of reference counted572

pointers K, returned by version list operations that are still used by the application code. In573

most multiversioning systems (including the one in Appendix A), each process holds on to a574

constant number of such pointers, so K ∈ O(P).575

I Theorem 11. The amortized expected time complexity of tryAppend, getHead, remove, and576

creating a new version list is O(1). The amortized expected time complexity of find(V, ts)577

is O(n + min(d, log c)), where n is the number of version nodes with timestamp greater than578

ts that are reachable from V by following left pointers (measured at the start of the find), d579

is the depth of the VNode V in the implicit tree and c is the number of successful tryAppend580

from the time V was the list head until the end of the find. All operations are wait-free.581

I Theorem 12. Assuming there are at most K reference-counted pointers to VNodes from the582

application code, at the end of any execution that contains L successful tryAppend operations,583

R remove operations and a maximum of Lmax successful tryAppends on a single version584

list, the number of VNodes and Descriptors that have been allocated but not reclaimed is585

O((L−R) + (P 2 + K) log Lmax).586

In RC, cycles must be broken before a node can be reclaimed. While there are cycles in587

our version lists, we show that VNodes that have been spliced out are not part of any cycle.588

DISC 2021

39:16 Space and Time Bounded Multiversion Garbage Collection

A Application to Snapshottable Data Structures589

We present a summary of the multiversioning scheme of Wei et al. [49], and describe how the590

techniques in this paper can be applied to achieve good complexity bounds.591

The Multiversioning Scheme. Wei et al. [49] apply multiversioning to a concurrent data592

structure (DS) implemented from CAS objects to make it snapshottable. It does so by593

replacing each CAS object by a VersionedCAS object which stores a version list of all earlier594

values of the object. VersionedCAS objects support vRead and vCAS operations, which behave595

like ordinary read and CAS. They also support a readVersion operation which can be used596

to read earlier values of the object. Wei et al. present an optimization for avoiding the level597

of indirection introduced by version lists. For simplicity, we apply our MVGC technique to598

the version without this optimization.599

Wei et al. also introduce a Camera object which is associated with these VersionedCAS600

objects. The Camera object simply stores a timestamp. A takeSnapshot operation applied601

to the Camera object attempts to increment the timestamp and returns the old value of the602

timestamp as a snapshot handle. To support read-only query operations on the concurrent603

DS (such as range-query, successor, filter, etc.), it suffices to obtain a snapshot handle s, and604

then read the relevant objects in the DS using readVersion(s) to get their values at the605

linearization point of the takeSnapshot that returned s. This approach can be used to add606

arbitrary queries to many standard data structures.607

For multiversion garbage collection, Wei et al. [49] uses a variation of EBR [23], inheriting608

its drawbacks. Applying our range-tracking and version-list data structures significantly609

reduces space usage, resulting in bounded space without sacrificing time complexity.610

Applying Our MVGC Scheme. Operations on snapshottable data structures (obtained611

by applying the technique in [49]) are divided into snapshot queries, which use a snapshot612

handle to answer queries, and frontier operations, which are inherited from the original613

non-snapshottable DS. We use our doubly-linked list algorithm (with the memory reclamation614

scheme from Section 6) for each VersionedCAS object’s version list, and a range-tracking615

object rt to announce timestamps and keep track of required versions by ongoing snapshot616

queries. We distinguish between objects inherited from the original DS (DNodes) and version617

list nodes (VNodes). For example, if the original DS is a search tree, the DNodes would be618

the nodes of the search tree. See [8] for the enhanced code of [49] with our MVGC scheme.619

At the beginning of each snapshot query, the taken snapshot is announced using620

rt.announce(). At the end of the query, rt.unannounce() is called to indicate that621

the snapshot that it reserved is no longer needed. Whenever a vCAS operation adds a new622

VNode C to the head of a version list, we deprecate the previous head VNode B by call-623

ing rt.deprecate(B, B.timestamp, C.timestamp). Our announcement scheme prevents624

VNodes that are part of any ongoing snapshot from being returned by deprecate.625

Once a VNode is returned by a deprecate, it is removed from its version list and the626

reclamation of this VNode and the Descriptors that it points to is handled automatically627

by the reference-counting scheme of Section 6. Thus, we turn our attention to DNodes. A628

DNode can be reclaimed when neither frontier operations nor snapshot queries can access it.629

We assume that the original, non-snapshottable DS comes with a memory reclamation630

scheme, MRS, which we use to determine if a DNode is needed by any frontier operation.631

We assume that this scheme calls retire on a node X when it becomes unreachable from632

the roots of the DS, and free on X when no frontier operations need it any longer. This633

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:17

assumption is naturally satisfied by many well-known reclamation schemes (e.g., [28, 41, 23]).634

Even when MRS frees a DNode, it may not be safe to reclaim it, as it may still be needed635

by ongoing snapshot queries. To solve this problem, we tag each DNode with a birth timestamp636

and a retire timestamp. A DNode’s birth timestamp is set after a DNode is allocated but637

before it is attached to the data structure. Similarly, a DNode’s retire timestamp is set when638

MRS calls retire on it. We say that a DNode is necessary if it is not yet freed by MRS, or if639

there exists an announced timestamp in between its birth and retire timestamp. We track this640

using the same range-tracking data structure rt that was used for VNodes. Whenever MRS641

frees a DNode N, we instead call rt.deprecate(N, N.birthTS, N.retireTS). When a642

DNode gets returned by a deprecate, it is no longer needed so we reclaim its storage space.643

We say that a VNode is necessary if it is pointed to by a DNode that has not yet been644

deprecated (i.e. freed by MRS) or if its interval contains an announced timestamp. Let D645

and V be the maximum, over all configurations in the execution, of the number of necessary646

DNodes and VNodes, respectively. Theorem 13 bounds the overall memory usage of our647

memory-managed snapshottable data structure. Theorem 14 is an amortized version of the648

time bounds proven in [49].649

I Theorem 13. Assuming each VNode and DNode takes O(1) space, the overall space usage650

of our memory-managed snapshottable data structure is O(D + V + P 2 log P + P 2 log Lmax),651

where Lmax is the maximum number of successful vCAS operations on a single VCAS object.652

I Theorem 14. A snapshot query takes amortized expected time proportional to its sequential653

complexity plus the number of vCAS instructions concurrent with it. The amortized expected654

time complexity of frontier operations is the same as in the non-snapshottable DS.655

References656

1 D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit. StackTrack: An automated657

transactional approach to concurrent memory reclamation. In Proc. 9th European Conference658

on Computer Systems, pages 25:1–25:14, 2014.659

2 D. Anderson, G. E. Blelloch, and Y. Wei. Concurrent deferred reference counting with constant-660

time overhead. In Proc. 42nd ACM SIGPLAN International Conference on Programming661

Language Design and Implementation, pages 526–541, 2021.662

3 J. Aspnes, H. Attiya, and K. Censor. Max registers, counters, and monotone circuits. In663

Proc. 28th ACM Symposium on Principles of Distributed Computing, pages 36–45, 2009.664

4 H. Attiya and A. Fouren. Adaptive and efficient algorithms for lattice agreement and renaming.665

SIAM J. Comput., 31(2):642–664, 2001.666

5 H. Attiya and E. Hillel. Built-in coloring for highly-concurrent doubly-linked lists. Theory of667

Computing Systems, 52(4):729–762, 2013.668

6 H. G. Baker. List processing in real time on a serial computer. Commun. ACM, 21(4):280–294,669

Apr. 1978.670

7 D. Basin, E. Bortnikov, A. Braginsky, G. Golan-Gueta, E. Hillel, I. Keidar, and M. Sulamy.671

KiWi: A key-value map for scalable real-time analytics. ACM Trans. Parallel Comput.,672

7(3):16:1–16:28, June 2020.673

8 N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei.674

Space and time bounded multiversion garbage collection, 2021. Available from675

https://arxiv.org/abs/2108.02775.676

9 J. L. Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded searching. Inf.677

Process. Lett., 5(3):82–86, 1976.678

10 P. A. Bernstein and N. Goodman. Multiversion concurrency control–theory and algorithms.679

ACM Trans. Database Syst., 8(4):465–483, Dec. 1983.680

DISC 2021

39:18 Space and Time Bounded Multiversion Garbage Collection

11 G. E. Blelloch and P. Cheng. On bounding time and space for multiprocessor garbage collection.681

In Proc. ACM Conf. on Programming Language Design and Implementation, pages 104–117,682

1999.683

12 G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in the684

binary-forking model. In Proc. ACM Symp. on Parallelism in Algorithms and Architectures,685

pages 89–102, 2020.686

13 G. E. Blelloch and Y. Wei. LL/SC and atomic copy: Constant time, space efficient implemen-687

tations using only pointer-width CAS. In Proc. 34th International Symposium on Distributed688

Computing, volume 179 of LIPICS, pages 5:1–5:17, 2020.689

14 J. Böttcher, V. Leis, T. Neumann, and A. Kemper. Scalable garbage collection for in-memory690

MVCC systems. Proceedings of the VLDB Endowment, 13(2):128–141, 2019.691

15 T. A. Brown. Reclaiming memory for lock-free data structures: There has to be a better way.692

In Proc. ACM Symposium on Principles of Distributed Computing, pages 261–270, 2015.693

16 A. Correia, P. Ramalhete, and P. Felber. Orcgc: automatic lock-free memory reclamation.694

In Proc. of the 26th ACM Symp. on Principles and Practice of Parallel Programming, pages695

205–218, 2021.696

17 D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele. Lock-free reference counting. In Proc.697

20th ACM Symposium on Principles of Distributed Computing, pages 190–199, 2001.698

18 A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On the power of hardware transactional699

memory to simplify memory management. In Proc. 30th ACM Symposium on Principles of700

Distributed Computing, pages 99–108, 2011.701

19 F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search trees. In702

Proc. 29th ACM Symposium on Principles of Distributed Computing, pages 131–140, 2010.703

20 P. Fatourou and N. D. Kallimanis. Highly-efficient wait-free synchronization. Theory of704

Computing Systems, 55(3):475–520, 2014.705

21 P. Fatourou, E. Papavasileiou, and E. Ruppert. Persistent non-blocking binary search trees706

supporting wait-free range queries. In Proc. 31st ACM Symposium on Parallelism in Algorithms707

and Architectures, pages 275–286, 2019.708

22 S. M. Fernandes and J. Cachopo. Lock-free and scalable multi-version software transactional709

memory. In Proc. 16th ACM Symposium on Principles and Practice of Parallel Programming,710

pages 179–188, 2011.711

23 K. Fraser. Practical lock-freedom. Technical report, University of Cambridge, Computer712

Laboratory, 2004.713

24 M. Greenwald. Two-handed emulation: how to build non-blocking implementations of complex714

data-structures using DCAS. In Proc. 21st ACM Symposium on Principles of Distributed715

Computing, pages 260–269, 2002.716

25 R. Guerraoui, A. Kogan, V. J. Marathe, and I. Zablotchi. Efficient multi-word compare and717

swap. In 34th International Symposium on Distributed Computing. Schloss Dagstuhl-Leibniz-718

Zentrum für Informatik, 2020.719

26 T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proc. International720

Symposium on Distributed Computing, pages 300–314. Springer, 2001.721

27 T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap operation.722

In International Symposium on Distributed Computing, pages 265–279. Springer, 2002.723

28 M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory management support724

for dynamic-sized data structures. ACM Trans. Comput. Syst., 23(2):146–196, May 2005.725

29 I. Keidar and D. Perelman. Multi-versioning in transactional memory. In Transactional726

Memory. Foundations, Algorithms, Tools, and Applications, volume 8913 of LNCS, pages727

150–165. Springer, 2015.728

30 J. Kim, A. Mathew, S. Kashyap, M. K. Ramanathan, and C. Min. MV-RLU: Scaling read-log-729

update with multi-versioning. In Proc. 24th International Conference on Architectural Support730

for Programming Languages and Operating Systems, pages 779–792, 2019.731

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 39:19

31 P. Kumar, S. Peri, and K. Vidyasankar. A timestamp based multi-version STM algorithm. In732

Proc. Int. Conference on Distributed Computing and Networking, pages 212–226, 2014.733

32 J. Lee, H. Shin, C. G. Park, S. Ko, J. Noh, Y. Chuh, W. Stephan, and W.-S. Han. Hybrid734

garbage collection for multi-version concurrency control in SAP HANA. In Proc. International735

Conference on Management of Data, page 1307–1318, 2016.736

33 L. Lu and M. L. Scott. Generic multiversion STM. In Proc. International Symposium on737

Distributed Computing, pages 134–148. Springer, 2013.738

34 M. Michael. Hazard pointers: safe memory reclamation for lock-free objects. IEEE Transactions739

on Parallel and Distributed Systems, 15(6):491–504, 2004.740

35 J. Nelson, A. Hassan, and R. Palmieri. Poster: Bundled references: An abstraction for741

highly-concurrent linearizable range queries. In Proc. ACM Symposium on Principles and742

Practice of Parallel Programming, pages 448–450, 2021.743

36 T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable multi-version concurrency744

control for main-memory database systems. In Proc. ACM SIGMOD International Conference745

on Management of Data, pages 677–689, 2015.746

37 R. Nikolaev and B. Ravindran. Snapshot-free, transparent, and robust memory reclamation747

for lock-free data structures. In Proceedings of the 42nd ACM International Conference on748

Programming Language Design and Implementation, pages 987–1002, 2021.749

38 C. H. Papadimitriou and P. C. Kanellakis. On concurrency control by multiple versions. ACM750

Transactions on Database Systems, 9(1):89–99, 1984.751

39 D. Perelman, A. Byshevsky, O. Litmanovich, and I. Keidar. SMV: Selective multi-versioning752

STM. In Proc. International Symposium on Distributed Computing, pages 125–140, 2011.753

40 D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In Proc. ACM754

Symposium on Principles of Distributed Computing, pages 16–25, 2010.755

41 P. Ramalhete and A. Correia. Brief announcement: Hazard eras–non-blocking memory756

reclamation. In Proc. 29th ACM Symp. on Parallelism in Algorithms and Architectures, pages757

367–369, 2017.758

42 D. Reed. Naming and synchronization in a decentralized computer system. Technical Report759

LCS/TR-205, EECS Dept., MIT, Sept. 1978.760

43 N. Shafiei. Non-blocking doubly-linked lists with good amortized complexity. In Proc. 19th Int.761

Conference on Principles of Distributed Systems, volume 46 of LIPIcs, pages 35:1–35:17, 2015.762

44 J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Sequential random763

permutation, list contraction and tree contraction are highly parallel. In Proc. 26th ACM-764

SIAM Symposium on Discrete Algorithms, pages 431–448, 2015.765

45 A. Singh, T. Brown, and A. Mashtizadeh. NBR: Neutralization based reclamation. In Proc.766

26th ACM Symp. on Principles and Practice of Parallel Programming, pages 175–190, 2021.767

46 H. Sundell. Wait-free reference counting and memory management. In Proc. 19th IEEE768

Symposium Parallel and Distributed Processing, 2005.769

47 H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists. J. Parallel and Distributed770

Computing, 68(7):1008–1020, 2008.771

48 J. D. Valois. Lock-free linked lists using compare-and-swap. In Proc. 14th ACM Symposium772

on Principles of Distributed Computing, pages 214–222, 1995.773

49 Y. Wei, N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, and Y. Sun. Constant-time774

snapshots with applications to concurrent data structures. In Proc. ACM Symposium on775

Principles and Practice of Parallel Programming, pages 31–46, 2021. A full version is available776

from https://arxiv.org/abs/2007.02372.777

50 H. Wen, J. Izraelevitz, W. Cai, H. A. Beadle, and M. L. Scott. Interval-based memory778

reclamation. In Proc. 23rd ACM Symp. on Principles and Practice of Parallel Programming,779

pages 1–13, 2018.780

51 Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An empirical evaluation of in-memory781

multi-version concurrency control. Proc. of the VLDB Endowment, 10(7):781–792, Mar. 2017.782

DISC 2021

https://arxiv.org/abs/2007.02372

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Identifying Which Nodes to Disconnect from the Version List
	4.1 A Linearizable Implementation of the Range-Tracking Object

	5 Maintaining Version Lists
	5.1 Version List Implementation
	5.2 Properties of the Implementation

	6 Memory Reclamation for Version Lists
	A Application to Snapshottable Data Structures

