
Multiversion Concurrency with Bounded Delay
and Precise Garbage Collection

Naama Ben-David
Carnegie Mellon University

nbendavi@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Yihan Sun
Carnegie Mellon University

yihans@cs.cmu.edu

Yuanhao Wei
Carnegie Mellon University

yuanhao1@cs.cmu.edu

ABSTRACT
In this paper we are interested in bounding the number of instruc-
tions taken to process transactions. The main result is a multiversion
transactional system that supports constant delay (extra instructions
beyond running in isolation) for all read-only transactions, delay
equal to the number of processes for writing transactions that are
not concurrent with other writers, and lock-freedom for concurrent
writers. The system supports precise garbage collection in that ver-
sions are identified for collection as soon as the last transaction
releases them. As far as we know these are first results that bound
delays for multiple readers and even a single writer. The approach is
particularly useful in situations where read-transactions dominate
write transactions, or where write transactions come in as streams or
batches and can be processed by a single writer (possibly in parallel).

The approach is based on using functional data structures to
support multiple versions, and an efficient solution to the Version
Maintenance (VM) problem for acquiring, updating and releasing
versions. Our solution to the VM problem is precise, safe and wait
free (PSWF).

We experimentally validate our approach by applying it to bal-
anced tree data structure for maintaining ordered maps. We test the
transactional system using multiple algorithms for the VM prob-
lem, including our PSWF VM algorithm, and implementations with
weaker guarantees based on epochs, hazard pointers, and read-copy-
update. To evaluate the functional data structure for concurrency and
multi-versioning, we implement batched updates for functional tree
structures and compare the performance with state-of-the-art con-
current data structures for balanced trees. The experiments indicate
our approach works well in practice over a broad set of criteria.

ACM Reference Format:
Naama Ben-David, Guy E. Blelloch, Yihan Sun, and Yuanhao Wei. 2019.
Multiversion Concurrency with Bounded Delay and Precise Garbage Collec-
tion . In 31st ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’19), June 22–24, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3323165.3323185

1 INTRODUCTION
Consider a sequential computation that takes τ instructions (time)
to run. If the computation is run by some system atomically as a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6184-2/19/06. . . $15.00
https://doi.org/10.1145/3323165.3323185

transaction1 concurrently with other transactions that share data, we
would expect it would take more time to complete. This can be both
due to the overhead of the transactional system, and due to inherent
dependences among the transactions, forcing the system to wait for
another to complete. In this paper we are interested in bounding the
extra time. We say the sequential computation has O(δ) delay if its
transaction completes in O(τ + δ) time.

In general, it is impossible to bound the delay by better than
O(τ × p), even ignoring overheads, since for a set of p transactions
with equal τ , the dependences between them might require that
they fully sequentialize. For example, consider an integer variable
x stored in a shared location, an arbitrary unknown function f , and
the transaction x = f (x). If the same transaction is applied concur-
rently on p processes, the transactions need to fully sequentialize for
correctness. Hence if f takes τ time on its own, and if all processes
are working at the same rate, one transaction will have to wait for at
least τ × p time to complete.

When most transactions are read-only, however, the prognosis is
significantly better. In particular, read-only transactions (readers) can
in principle proceed with constant delay and without delaying any
writing transactions (writers), since they do not modify any memory,
and hence other transactions do not depend on them. This can be very
useful in workloads dominated by readers. Several approaches try
to take advantage of this. Read-copy-update (RCU) [44] allows for
an arbitrary number of readers to proceed with constant delay, and
has become a core idiom widely used in Linux and other operating
systems [43]. In RCU, however, readers can arbitrarily delay (block)
a writer, since a writer cannot proceed until all readers have exited
their transaction. This is particularly problematic if some readers take
significant time, fault, or sleep [41]. Indeed RCU in Linux is used in
a context in which the readers are short and cannot be interrupted.
With multi-versioning [13, 39, 46, 51, 52, 56], on the other hand,
not only can readers proceed with constant delay, but in principle,
they can avoid delaying any writers—a writer can update a new
version while readers continue working on old versions. Therefore a
single writer and any number of readers should all be able to proceed
without delay (multiple writers can still delay each other).

Multi-versioning, however, has some significant implementation
issues that can make the “in principle” difficult to achieve in “theory”
or “practice”. One is that memory can become an issue due to
maintaining old versions, possibly leading to unbounded memory
usage. Ideally one would like to reclaim the memory used by a
version as soon as the last transaction using it finishes. Some recent
work has studied such bounds in memory usage [52]. Although

1Throughout we use “transaction” to mean the traditional sense of a sequence of
instructions that appear to take place atomically at some point during their execution
(strictly serializable) [50], and not to mean a specific implementation technique such as
transactional memory.

https://doi.org/10.1145/3323165.3323185
https://doi.org/10.1145/3323165.3323185

their results ensure readers are not blocked and do not block writers,
they do not bound delay. Another problem arises in the most widely
used implementation of multi-versioning, which involves keeping
a version list for every object [13, 39, 51, 56]. The problem is that
these lists need to be traversed to find the relevant version, which
causes extra delay for reads. The delay is not just a constant, but
can be asymptotic in the number of versions. We know of no multi-
versioned system that can both bound the delay and ensure memory
usage bounds, even when only a single writer is allowed at any time.

In this paper, we develop strong asymptotic bounds on the delay
for transactions while also ensuring bounded memory. We show
what we believe are the first non-trivial cost bounds for transactions
with multi-versioning. In particular, for p processes we describe a
system with the following properties:

• Read transaction are delay-free—i.e., if they take τ time (in-
structions) in the original code, they take O(τ) time in the
transactional version, from invocation to response.

• A single write transaction (without other concurrent write
transactions) has O(p) delay from invocation to response (i.e.
when the result is visible).

• Multiple concurrent write transactions are lock-free, although
a successful write will abort other active writers.

• The garbage collector is precise in that the memory associated
with any version (except the latest) is collected as soon as the
last transaction that holds it completes. Furthermore, the cost
of the collection is linear in the amount of garbage collected.

• A single writer transaction along with read transactions (not
including the garbage collection) have constant amortized
memory contention.

These properties are true for arbitrarily long transactions that access
an arbitrary memory footprint for read-only transactions, and update
an arbitrary number of locations for writing transactions.

Our approach is particularly useful in read-dominated workloads
in which a single (or very few) writer does updates, or in workloads
in which concurrent writes can be batched into single transactions in
the style of flat-combining [30], and then applied by a single writer.
As with flat-combining, batching gives up on the wait-freedom of
writes, however it allows the writes to run in parallel potentially
getting high throughput. We study this in our experiments.

To achieve these bounds we require that programs are imple-
mented using purely functional data structures [8, 38, 47, 53]. Such
data structures are widely used in languages such as F#, Scala,
OCaml, Haskell, JavaScript, Julia, and Clojure, and date back to
the 1950s with Lisp [42]. They are also used in various database
systems [1, 4, 14, 28], and sometimes referred to as copy-on-write [7,
58]. On updates, the path to the update is copied. Most standard data
types can be implemented efficiently (asymptotically) in the func-
tional setting, including balanced trees, queues, stacks and priority
queues. Since functional data structures are persistent (immutable),
they are naturally multi-versioned. Applying an update leaves the old
version while creating a new version. The version can be accessed
via a pointer to the root, and hence each version is simply a pointer
to a data structure. The cost of traversing the structures is unaffected
by the versions (unlike version lists). However, the problem remains
of how to ensure precise garbage collection.

Read Transaction

1 v = acquire(k);
2 user_code(v);
3 // response
4 versions = release(k);
5 for (v in versions) collect(v);

Write Transaction

1 v = acquire(k);
2 newv = user_code(v);
3 flag = set(newv);
4 // response if successful--- update visible here
5 versions = release(k);
6 for (v in versions) collect(v);
7 if (!flag) collect(newv) and retry or abort

Figure 1: Read and Write transactions with acquire, set,
and release. k is the process ID.

Time Bound Properties
Thm. 3.4 and 3.5 Thm. 3.3

Time Contention No abort and wait-free
VM acquire O (1) O (1) for readers and one writer,

release O (P) O (P) linearizable
set O (P) O (P)

Thm. 5.4, 5.5 and 4.2 Thm. 5.1 and 5.3
In Reader delay-free No abort and wait-free
All Writer O (P)-delay for readers and one writer,

GC O (S + 1) time serializable, safe and precise GC

Table 1: The time bounds and properties guaranteed by our algo-
rithms and the corresponding theorems in this paper. “VM” means the
Version Maintenance problem. P is the number of processes. The con-
tention bounds are amortized. In GC, S is the number of tuples that
were freed. “Delay” is defined in Section 2. Safe and precise GC are
defined in Section 4.

For the purpose of garbage collection, we introduce the version
maintenance (VM) problem. The problem is to implement a lin-
earizable object with three operations: acquire, release and
set. The acquire operation returns a handle to the most recent
version, in a way that ensures it cannot be collected. The set opera-
tion updates the current version to a new pointer, returning whether
it succeeded or failed. The release operation indicates that the
currently acquired version is no longer needed by the process, poten-
tially making it available to be collected. It returns a list of versions
that can be collected—i.e., for which no other process has acquired
it and not released it. Only one version can be acquired on any pro-
cess at any time, i.e. the current version must be released before a
new one is acquired. In the precise VM problem, the release will
return a singleton list precisely when the process is the last to release
its version, and an empty list otherwise. We give a solution to the
precise version.

The VM object can be used to implement read-only and writing
transactions as shown in Figure 1. The read transaction is effectively
done after step 2 (response could be sent to a client), and the rest is a
cleanup phase for the purpose of GC. Similarly, writing transactions
are done after step 3, at which point the result is visible to other
transactions. After the release, any garbage can be traced from the
released pointers and collected in work linear in the amount of
garbage collected using a standard reference counting collector.

We describe a wait-free algorithm for the precise VM problem,
which we refer to as the PSWF algorithm. It supports the acquire

with O(1) delay, and set and release with O(p) delay. A read-only
transaction only costs the delay of an acquire (constant), followed
by the cost of the transaction itself, which is unaffected by the multi-
versioning (e.g., a search in a balanced tree will take O(logn) time).
In our implementation, the set can only fail if a concurrent writer
has succeeded between its acquire and set. Therefore a non-
conflict writing transaction takes effect in the time of the transaction
itself plus the cost of the acquire and set, which is O(p) time (for
the set). We also consider the memory contention of the three
operations. The costs and properties are summarized in Table 1.

We finish by describing some experiments for both the VM algo-
rithms and the functional data structures. We test the transactional
system using multiple VM algorithms in our framework, including
our PSWF algorithm, and implementations with weaker guarantees
based on epochs and hazard pointers. Experiments show that our
PSWF algorithm on average uses 60%-90% less memory for ver-
sions than the other two implementations because of precise garbage
collection. Our algorithm also achieves comparable throughput to
the other two implementations.

To evaluate the functional data structure for concurrency and
multi-versioning, we implement batched updates for functional trees
and compare the performance with existing concurrent data struc-
tures. Experiments show that in the tested workloads with mixed
reads and updates, using functional data structures with batching can
outperform concurrent data structures by more than 20%.

2 PRELIMINARIES
We consider asynchronous shared memory with P processes. Each
process p follows a deterministic sequential protocol composed of
primitive operations (read, write, or compare-and-swap) to imple-
ment an object. We define objects, operations and histories in the
standard way [34]. We consider linearizability as our correctness
criterion [32, 35]. An adversarial scheduler determines the order of
the invocations and responses in a history. We refer to some point
in a history as a configuration. We define the time complexity of an
operation to be the number of instructions (both local and shared)
that it performs. Note that this is different from the standard notion
of step complexity which only counts access to shared variables.
Transactions. We consider two types of transactions: read-only and
write. Each transaction has an invocation, a response, and a com-
pletion, in that order. A transaction is considered active between its
invocation and response, and live between its invocation and comple-
tion. Intuitively, the transaction is executed between its invocation
and response, and does some extra ‘clean-up’ between its response
and its completion. We require that transactions be strictly serializ-
able, meaning that each transaction appears to take effect at some
point during its active interval. We refer to a write transaction as
single-writer if no other write transaction is live while it is live.
Delay. We say that the time, of a computation (or algorithm) on a
single process is the number of instruction steps that the computation
executes, including all local and shared instructions. We say that
the user instructions of a transaction are the instructions that would
be run in a sequential setting using regular reads and writes. We
want to simulate these instructions in a way that the transaction
appears atomically in the concurrent setting. Consider a transaction
that executes user code that consists of m user instructions. Such

5’

3’

5

3 8

1 9

𝑇1

4

𝑇2

𝑇2 = 𝑇1.insert(4)

Figure 2: An example of the insert
function under PLM using path
copying. The output T2 is repre-
sented by the root pointer at 5′,
while the input T1 can still be repre-
sented by the original root pointer
at 5.

a simulation has delay d if the active interval takes O(d +m) time,
similarly to [9]. A transaction is delay-free if the delay is constant
(or zero). The O(d +m) bound includes all instructions needed to
ensure strict serializability, and the big-O is independent of the
number of processes, the number of versions, or the actions of any
other concurrent processes. In a traditional multiversion system, for
example, the bound needs to included the possibly large number of
instructions needed to traverse a version list.
Contention. We say that the amount of contention experienced by
a single shared-memory operation i in a history H is the number
of responses to modifying operations on the same location that
occur between i’s invocation and response in H . Note that this is
not exactly the definition presented in any previous paper, but it is
strictly stronger (implies more contention) than both the definition
of Ben-David and Blelloch [10] and the definition of Fich et al. [26].
Therefore, the contention results in this paper hold under the other
models as well.
Functional Data Structures. We assume that the memory shared by
transactions is based on purely functional (mutation-free) data struc-
tures. This can be abstracted as the pure LISP machine [8, 47, 53]
(PLM), which, like the random access machine model (RAM), has
some constant number of registers. However, the only instructions
for manipulating memory, are (1) a tuple(v1, . . . ,vl) instruction,
which takes l registers (for some small constant l) and creates a tuple
in memory containing their values, and (2) a nth(t, i) instruction,
which, given a pointer t to a tuple and an integer i (both in registers),
returns the i-th element in this tuple. Values in the registers and
tuples are either primitive, or a pointer to another tuple. There is no
instruction for modifying a tuple. Changing a data structure using
PLM instructions are done via path copying, meaning that to change
a node, its ancestors in the data structure must be copied into new
tuples, but the remainder of the data remains untouched. Using PLM
instructions, one can create a DAG in memory, which we refer to
as the memory graph. A special and commonly-used case for the
memory graph is a tree structure.

We define the version root as a pointer to a tuple, such that the
data reachable from this tuple constitutes the state that is visible to
a transaction. Then each update on version v yields a new version
by path-copying starting from the version root of v, and the new
copied root provides the view to the new version. An example of
using path-copying to insert a value into a binary tree memory graph
is shown in Figure 2. In our framework, every transaction t acquires
exactly one version V (t). If t has not yet determined its version at
configuration C, then VC (t) = null until it does. We use the version
roots as the data pointers in the Version Maintenance problem.
Garbage Collection. We assume all tuples are allocated at their
tuple instruction, and freed by a free instruction in the GC. The

allocated space consists of all tuples that are allocated and not yet
freed. For a set of transactions T , let R(T), or the reachable space
for T in configuration C, be the set of tuples that are reachable in
the memory graph from their corresponding version roots, plus the
current version c, i.e. the tuples reachable from {V (t)|t ∈ T }∪{c}.We
say that a tuple u belongs to a version v if u is reachable from v’s
version root. Note that u can belong to multiple versions. We define
a precise and a safe GC, respectively, as follows.

DEFINITION 2.1. A garbage collection is precise if the allocated
space at any point in the user history is a subset of the reachable
space R(T) from the set of live transactions T .

DEFINITION 2.2. A garbage collection is safe if the allocated
space is always a superset of the reachable space from the active
transactions.

Roughly speaking, precise GC means to free any out-of-date
tuples in time, and safe GC means not to free any tuples that are
currently used by a transaction.

3 THE VERSION MAINTENANCE PROBLEM
In our transaction framework, we abstract what we need for the pur-
pose of maintaining versions as the Version Maintenance problem,
which tackles entering and exiting the transactions (see Figure 1).

The Version Maintenance problem, or Version Maintenance ob-
ject, supports three operations: set, acquire, and release. At
a high level, the acquire operation returns a version for the pro-
cess to use and release is called when the process finishes using
the version. New versions are created by set operations. All three
operations take as input an integer k that represents the id of the
process that calls the operation. The set operation in addition takes
in a pointer to the new version that it should commit, and returns a
flag indicating whether or not it succeeded.

We refer to the pointer to a version as the data pointer. More
formally, if d is a pointer to data, set(d), if successful, creates a
new version with pointer d and sets it as the current version, i.e.,

DEFINITION 3.1. The current version is defined as the version
set by the most recent successful set operation.

The operations are intended to be used in a specific order: an
acquire(k) should be followed by a release(k), with at most
one set(k, d) in between, where d is a pointer to a new version. If
this order is not followed for each k , then the operations may behave
arbitrarily; that is, we do not specify a ‘correct’ behavior for the
operations of a Version Maintenance object O in an execution once
any operations are called out of this order on O .

We define the liveness of a version v as follows.

DEFINITION 3.2. A version v is live at time t if it is the current
version at t , or if ∃k , s.t. an acquire(k) operation A has returned
v but no release(k) has completed after A and before t .

We note that a version is live while a transaction using that version
is active. The transaction itself can remain live after its version is
dead, while it garbage collects.

The following is the sequential specification of these operations
assuming that they are called in the correct order (acquire-release
or acquire-set-release for each id k).

• data* acquire(int k): Returns the current version.
• data** release(int k): Returns a (possibly empty)

list of versions that are no longer live. No version can be
returned by two separate release operations.

• bool set(int k, data* d): Sets the version pointed
to by d as the current version. Returns true if successful. May
also return false if there has been a successful set between
this set and the most recent acquire(k). If the set
returns false, it has no effect on the state of the object.

We say that a process pk has acquired version v if acquire(k)
returns v, and say pk has released v when the next release(k)
operation returns. If a set operation returns true, we say that it
was successful. Otherwise, we say that the set was unsuccessful or
that the set aborted. Note that conditions for correct aborting for
the set are reminiscent of 1-abortability defined by Ben-David et
al. [12], but we relax the requirements to allow a successful set to
cause other sets to abort even if it was not directly concurrent with
them, but happened sometime since that process’s last acquire.

An implementation of a Version Maintenance object is considered
correct if it is linearizable as long as no two operations with the same
input k run concurrently. Furthermore, it is considered precise if
the release operation returns exactly the versions that stop being
live at the moment the release operation returns. Note that this
means that in a precise implementation of the Version Maintenance
problem, each release operation r returns a list containing at
most one version, and this version must be the one that r released.
We show some properties of a correct Version Maintenance in the
full version of this paper.

Where convenient, for a versionv, we use acquirev , releasev
and setv to denote an acquire operation that acquires v, a
release operation that releases v, and a set operation that sets
v as the current version, respectively.

3.1 The PSWF Algorithm
We now present a simple wait-free algorithm that solves the precise
version maintenance problem. That is, the release operation re-
turns either an empty list of versions, or a singleton containing the
version that it is releasing. We show that our wait-free algorithm is
linearizable, and analyze it to obtain strong time complexity bounds;
the acquire operation takes O(1) time, and the release and
set operations each take O(P) time. Furthermore, we show that
in the single-writer setting, where concurrent set operations are
disallowed, the algorithm guarantees amortized constant contention
per shared-memory operation. These properties show that regardless
of adversarial scheduling, version maintenance need not be a bottle-
neck for transactions. The main results are shown in Theorem 3.3,
3.4 and 3.5. All proofs are in the full version. Pseudocode for the
algorithm is given in Algorithm 4, and Figure 3 shows how its data
is organized.

To understand the idea behind our algorithm, consider the follow-
ing simplified (but incorrect) implementation. To set a new version,
a process p simply CASes its data pointer into a global currentVer-
sion location. If its CAS fails then it aborts. To acquire a version,
p reads the currentVersion and copies it over to p’s slot in an An-
nouncementArray, thereby signaling to others that it is using this
version. The acquire operation then returns the version that it read.

Figure 3: The data structures used by Algorithm 4.
Blue slots in the status array represent live versions.
Red slots are versions that a pending set operation
is trying to commit. Each announcement array slot
has a timestamp in addition to the version index, and
each status array slot also has an index, but they are
omitted to avoid clutter.

When releasing a version v, p scans the AnnouncementArray to see
whether anyone else is still using v. If not, p returns v, as it is the
last process that used this version. Otherwise, p’s release returns
an empty list. This simple outline of an algorithm for the precise
Version Maintenance problem satisfies the intuition of what should
happen in a solution to the Version Maintenance problem; processes
always acquire the current version, and return a version from their
release operation only if this version stops being live at the end of the
operation. However, this algorithm does not work in a completely
asynchronous setting.

To see why, first note that a process p that executes an acquire
operation may stall of a long time after reading the currentVersion
but before announcing what it read. This could lead to a situation
in which, by the time p announces the version v that it read, v has
long since stopped being live, and has already been returned by
some release operation. This scenario is not linearizable. We
must also ensure that exactly one releasing process returns each
version, meaning that an order between concurrent releasers must be
established. Finally, we need to ensure that if a set aborts, then it
or its preceding acquire were concurrent with a successful set.

To fix the acquire operation, we assign each process a ‘helping’
flag in its announcement slot, and use that flag to create two stages of
the acquire operation; first a version is read from the current version
field, V, and announced with a ‘helping’ flag set, meaning that this
is the version that the process intends to use, but has not started
accessing yet. To secure this version, the acquiring process, p, must
reread the current version to ensure that it has not changed, and then
set the ‘helping’ flag to false. In the meantime, other processes may
see p’s announcement, and help it complete its acquire. Some set
operations will try to help the acquires, so that no acquire
can repeatedly fail without receiving help. Once the flag is down,
p is said to have committed its announced version. In this way, the
releasing process returning the version v can ensure that no process
can acquire (commit) the same version v after it terminates.

To ensure that each version is only ever return by one release
operation, we assign each version v a “status” (stored in the array S),
which can be in one of three states at any given time: usable, pending,
and frozen. A releasev operation mainly deals with two things:
helping all other processes complete their acquire on version v,
when necessary, and deciding if this is the last usage of version v,
and returning true if so. If v is usable, it means that no release
operation is currently in progress on v, and v may be in use. If a
releasing process p sees this status, it tries to switch its status to
pending, and if it succeeds, it then starts scanning the announcement
array. While v is pending, a single releasing process is scanning the

announcement array, and helping any process that has announced
v to complete its acquire. Any releasing process that observes
that v is already in the pending state can safely return false because
there are currently other processes releasing this version. Once p has
done scanning the array, it sets v’s status to frozen. This indicates
to all other releasing processes that v if no process currently has p
acquired, then v can never again be acquired by any new process.
Thus, if no process currently has v announced, it is safe to return
true on a release of v. To ensure that only one releaser does so,
the releasers of v compete in erasing v from the status array, and
only the winner returns true.

Finally, we allow the set operation by process p to abort only
under two conditions: (1) the current version V is not the same as p’s
acquired version (in this case, it is easy to see that there must have
been a successful set operation since p’s acquire); or (2) the
set operation cannot find a spot in which to place its new version.
That is, we have an array called S of versions that are currently
active, and it is preallocated with a specific number of slots. Each
set operation scans the array of versions to try to find an empty
slot in which it can place its new version. The intuition is that if it
cannot find an empty slot, then there must have been many other
set operations concurrent with it. By setting the size of S to be large
enough (3P + 1 in our case), we can ensure that if a set operation
op does not find any empty slots, there must have been some process
that has executed a successful set during op’s interval.

We now describe the algorithm in more detail. A version v is
represented as a pair of a timestamp and an index. If v is alive, the
status ofv is stored in S[v .index] (the Status array) and its associated
data pointer is stored in D[v .index] (the VersionData array). For the
rest of the paper, when we refer to a version, we mean a timestamp-
index pair. Since there are at most P + 1 live versions, and at most P
active set operations that could occupy another slot with a potential
version, the Status and Data arrays can never have more than 2P + 1
occupied slots. However, for the purpose of guaranteeing that a set
operation will only abort if it was concurrent with a successful set,
we initialize S and D to be of size 3P + 1. Each slot A[k] in the
announcement array belongs to process pk , and stores a help flag
help and a version. A global variable V stores the current version.
Set. To execute a set(d) operation for a data pointer d, a process
p first creates a new version v locally, and then looks for an empty
slot for v in the status array. If it does not find an empty slot, then
it aborts. Intuitively, it is ok to abort at that stage because at any
given moment, S can have at most 2P occupied slots (one version
acquired by each process, and another version that is in the middle of
being set by each process). So, if p finds all 3P + 1 slots occupied,

it means that it was concurrent with 2P + 1 other set operations.
Since there are only P processes, at least one process q executed 3
set operations concurrently with p’s set. If one of q’s sets were
successful, p can safely abort its own operation. Otherwise, all 3
of q’s operations must have been concurrent with a successful set
(for q to legally abort), and therefore, at least one of those successful
sets must have been concurrent with p’s.

Now we assume that p did find an empty slot in S . Let i be the
index of this empty slot. p initializes S[i] with the new version,
and writes d into D[i]. Before setting v as the current version and
terminating,p scans the announcement array, and helps every process
that needs help (i.e. A[k] = ⟨true, ∗⟩). To ensure that the helping is
successful, p needs to perform three CAS operations on A[k]. Each
CAS tries to set A[k] to ⟨0,oldVer ⟩, where oldVer is the version that
p currently has acquired (announced in A[p]). To ensure that oldVer
is still valid, p checks whether it is still the current version. If it is not,
p aborts. These CAS operations can be thwarted at most twice by
the acquire(k) that requested help, so that the help is guaranteed
to have succeeded after the third CAS. Finally, p tries to set v as
the current version by CASing it into V. If this CAS succeeds, so
does p’s set operation. If it fails, p aborts, but first clears the slot it
occupied in S to allow others to use it.
Acquire. The acquire(k) operation begins by requesting help,
reading the current version v, and announcing it in A[k]. To ensure
thatv is still the current version at the announcing step, the operation
reads V again. There are two cases. If it finds that V has been updated,
it starts over. It will only ever restart once, because if it finds that
V has been updated once again, it knows that two set operations
have occurred, one of which must have committed a version into
A[k] by performing 3 helping CASes. If v is still the current version,
we use a CAS to set the helping flag in A[k] to 0. Even if this CAS
fails, A[k]’s helping flag must now be 0, since an acquire’s CAS
only fails if it was helped by another process (a set or a release
operation). Once acquire(k) successfully commits a version v, it
reads and returns the corresponding data pointer D[v .index].
Release. To perform a release(k) operation, the process pk first
reads the committed versionv from its announcement slot, and clears
the slot. If v is still current, the release(k) operation returns false
becausev is still live. Otherwise, it must check whether someone else
is still using v. This is done by looking at the status at S[v .index].
S[v .index] might be empty or store a version other than v. In that
case, some other release of v has already returned true, so pk
returns false. Otherwise, if S[v .index] stores a valid status (usable,
pending, or frozen), then pk uses this status to determine what to do,
as described earlier.

This algorithm can be shown to be correct (linearizable) and
efficient. We summarize the results as follows:

THEOREM 3.3 (CORRECTNESS). Algorithm 4 is a linearizable
solution to the Version Maintenance Problem.

THEOREM 3.4 (STEP BOUNDS). Each acquire() operation re-
quires at mostO(1) time and each release() and set() operation
requires O(P) time.

THEOREM 3.5 (AMORTIZED CONTENTION). When concurrent
set operations are disallowed, each acquire() operation experi-
ences O(1) amortized contention and each release() and set()
operation experiences O(P) amortized contention. Furthermore, no

contention experienced by acquire() is amortized to release()
or set().

Due to lack of space, we show the proofs in the full version. We
note that Theorem 3.5 shows a property that is non-trivial to be
achieved in wait-free algorithms, even in the single-writer setting—
regardless of the adversarial scheduler, processes do not often con-
tend on the same operations. Intuitively, our algorithm achieves this
because of the version status: instead of allowing many releasing
processes to traverse and modify the announcement array for every
version, only one process per version (the one that changed the status
from usable to pending) can do this at any given time. Furthermore,
each slot in the announcement array can only have one version asso-
ciated with it at any given time, meaning that only one releaser, one
acquirer, and one setter can contend on any given slot.

4 GARBAGE COLLECTION
In this section, we show how to efficiently collect out-of-date tuples
on functional data structures in the context of transactions and the
VM problem. We first define the desired properties of GC on func-
tional data structures. We then present the collect algorithm for
our transactions (Figure 1) and show that it is fast and correct.

Intuitively, a linearizable precise VM solution provides an inter-
face for safe and precise garbage collection over versions, since
releasev returns true if and only if it is the last usage of v. How-
ever, the precision and safety on the granularity of tuples relies on
a “correct” collect operation, which, intuitively, should free all
tuples that are no longer reachable as soon as possible. We formally
define the desired property of a correct collect operation.

DEFINITION 4.1. Let u be a tuple, and t be any time during an
execution. A collect is correct if the following conditions hold.

• If for each version v that u belongs to, collect(v) has
terminated by time t , then u has been freed by t .

• If there exists a versionv thatu belongs to for which collect(v)
has not been called by time t , then u has not been freed by t .

The collect Algorithm. We now present a collect algorithm
and show its correctness and efficiency. Path-copying causes subsets
of the tuples to be shared among versions. To collect the correct
tuples, we use reference counting (RC) [22, 37] for enabling safe
garbage collection. Each object maintains a count of references to
it, and when it reaches 0, it is safe to collect. Since we use a PLM,
the memory graph is acyclic. This means that RC allows collecting
everything [37]. In our model, we maintain reference counts for each
tuple x , x.ref, which records the number of “parents” of a node
x in the memory graph. Accordingly, a tuple() operation creating
a tuple x increments the reference counters of all children of x . We
note that tuple can be called only by the writers’ user code when
it copies a path. The counts are incremented only by the writers, but
can be decreased by any release operation. A newly-created tuple
u has counter 0. Later, when a transaction (reader or writer) executes
a collect of a version starting from tuple(x), it first decrements
the count of x . Only if the count of x has reached zero, x gets freed,
and all children of x are collected recursively. If x’s counter is more
than one, the collect operation terminates since the counts of its
descendants will not be decreased then.

Algorithm 4: The Precise, Safe and Wait-free Algorithm for the Version Maintenance Problem
1 enum VStatus {usable, pending, frozen};
2 struct Version{
3 int timestamp;
4 int index; };
5 struct VersionStatus {
6 Version v;
7 VStatus status; };
8 struct Announcement {
9 Version v;

10 bool help; };

11 Version V;
12 VersionStatus S[3P+1];
13 Announcement A[P];
14 Data* D[3P+1];
15 Version empty = ⟨⊥, ⊥⟩;
16 Data* getData(Version v) {
17 return D[v.index];}

18 bool set(int k, Data* data) {
19 Version oldVer = A[k].v; //the version you acquired
20 Version newVer;
21 for(int i = 0; i < 3P+1; i++) { //find empty slot
22 if(S[i] == ⟨empty, usable ⟩) {
23 newVer = ⟨V.timestamp+1, i ⟩;
24 if(CAS(S[i], ⟨empty, usable ⟩, ⟨newVer, usable ⟩)){
25 D[i]=data;
26 break; } }
27 if(i == 3P) return false; }
28 for(int i = 0; i < P; i++) { //try to help everyone
29 for(int j = 0; j < 3; j++) { //help 3 times
30 Announcement a = A[i];
31 if(a.help) {
32 if(oldVer != V) return false;
33 CAS(A[i],a, ⟨oldVer, false ⟩); } } }
34 bool result = CAS(V, oldVer, newVer);
35 if (!result){
36 S[i] = ⟨empty, usable ⟩; }
37 return result; }

37 Data* acquire(int k) {
38 Version u = V; //read current version V
39 A[k] = ⟨u, true ⟩; //announce it
40 if(u == V) {
41 CAS(A[k], ⟨u, true ⟩, ⟨u, false ⟩);
42 return getData(A[k].v); }
43 for(int i=0;i<2;i++){ //try again with new version
44 Version v = V;
45 if(!CAS(A[k], ⟨u, true ⟩, ⟨v, true ⟩)) {
46 return getData(A[k].v); }
47 if(v == V) {
48 CAS(A[k], ⟨v, true ⟩, ⟨v, false ⟩);
49 return getData(A[k].v); }
50 u = v; }
51 return getData(A[k].v); }

52 data** release(int k) {
53 Version v = A[k].v;
54 A[k] = ⟨empty, false ⟩;
55 if(v == V) return null;
56 VersionStatus s = S[v.index];
57 if (s.v != v) return null
58 if (s.status == usable) {
59 if(!CAS(S[v.index],s, ⟨s.v,pending ⟩)){
60 return null;}
61 for(int i = 0; i < P; i++) {
62 Announcement a = A[i];
63 if(a == ⟨v, true ⟩) {
64 CAS(A[i], a, ⟨v, false ⟩);} }
65 s = ⟨s.v, frozen ⟩;
66 S[v.index] = s; }
67 if (s.status == frozen) {
68 for(int i = 0; i < P; i++)
69 if(A[i] == ⟨v, false ⟩) {
70 return null;}
71 if (CAS(S[v.index],s, ⟨empty,usable ⟩)) {
72 return [v]; }
73 else return null; } }
74 return null; }

Pseudocode for nth(), tuple() for a PLM, and the collect()
operation is given in Algorithm 5. We use an array of length l in
each tuple x to store the l elements in this tuple (x.ch[]). inc
and dec denote atomic increment and decrement operations. We
leave this general on purpose. The simplest way of implementing
the counters is via a fetch-and-add object. However, we note that
this could introduce unnecessary contention. To mitigate that effect,
other options, like dynamic non-zero indicators [2], can be used.

The result of this section is summarized in Theorem 4.2.

THEOREM 4.2. Our collect algorithm (Algorithm 5) is cor-
rect and takes O(S + 1) time where S is the number of tuples that
were freed.

We show the proof of Theorem 4.2 in the full version of this paper
[11]. Intuitively, this is because tuples have a constant number of
pointers and we only recursively collect any of those pointers if we
free the tuple (the count has gone to zero). We can therefore charge
the cost of visiting the child against the freed parent.

5 IMPLEMENTING TRANSACTIONS
We now present our transaction system, and show that by plugging
in our Version Maintenance algorithm and underlying functional
data structures with correct GC, we can get an effective and efficient
solution. Read and write transactions are implemented as shown in

var = int or Tuple
struct Tuple {
var* ch[l]; int ref;}

Tuple tuple(var* x) {
Tuple y=alloc(Tuple);
y.ref=0;
for (int i=0;i<l;i++){

y.ch[i]=x[i];
if (x[i] is Tuple)
inc(x[i].ref);}}

void nth(Tuple x, int i){
return x.ch[i];}

void collect(var x) {
if (x is int)
return;

int c=dec(x.ref);
int i;
if (c≤1) {
var* tmp[l];
for (i=0;i<l;i++)

tmp[i]=nth(x, i);
free(x);
for (i=0;i<l;i++)

collect(tmp[i]);
}}

Algorithm 5: tuple and collect algorithms

Figure 1. We assume all user code works in the functional setting as
described in Section 2. The user code takes in a pointer to a version
rootv, and may access (but not mutate) any memory that is reachable
from v. The writer uses path-copying, as standard in functional data
structures, to construct a new version. It then can commit the version
with the set operation. Here we assume that the write transaction
retries if the set fails (i.e., another concurrent write transaction
has succeeded). Importantly the user code is unchanged from the
(functional) sequential code. A read transaction is active until the
last instruction of its user code, and a write transaction is active until
the linearization point of its successful set operation. Transactions
are live until the last instruction (after the release and GC).

5.1 Correctness and Preciseness
An instantiation of this framework consists of two important parts:
(1) a linearizable solution, M , to the version maintenance problem
defined in Section 3, and (2) a correct collect function. We show
that combining them together yields strict serializability, and safe
and precise GC.

THEOREM 5.1 (STRICTLY SERIALIZABLE). Given a lineariz-
able solution to the version maintenance problem, our transactional
framework is strictly serializable.

For proving Theorem 5.1, we define a serialization point for each
transaction that is within its execution interval.

DEFINITION 5.2. The serialization point, s, of a transaction t is:
• If t is a read transaction, then s is at the linearization point

of t’s call to M .acquire().
• If t is a write transaction, then s is at the linearization point

of t’s call to its successful M .set().

A proof is given in [11]. Intuitively, we show that if we sequen-
tialize any given history according to these serialization points, it is
equivalent to some sequential transactional history.

THEOREM 5.3 (SAFE AND PRECICE GC). Given a lineariz-
able solution to the version maintenance problem and a correct
collect function, our garbage collection is safe and precise.

A full proof is given in [11]. Intuitively, the garbage collection
is safe because collect(v) is called only when a release re-
turns v, meaning that v is no longer live. It is precise since if the
release is the last one on the transaction’s version, the precise
Version Maintenance solution will return that version, and any tu-
ples in the version that are not shared with other versions will be
collected while the transaction is still live. Therefore no version that
is no longer live will survive past the lifetime of the last transaction
that releases it.

5.2 Delay and Contention
Here we prove bounds on delay and contention experienced by
transactions assuming we use the wait-free algorithm for the version
maintenance problem (Section 3.1), and our collect function
(Section 4). A summary of the results is shown in Table 1.

THEOREM 5.4 (STEP COMPLEXITY). With our transactional
system using the PSWF algorithm for Version Maintenance,

• all read transactions are delay-free,
• all single-writer transactions have O(P) delay, and
• all write transactions are lock-free.

Furthermore, for single-writers, the time complexity of the garbage
collection across a sequence of transactions is bounded by the num-
ber of unique tuples used across all versions.

PROOF. The proof follows almost directly from previous theo-
rems 3.4 and 4.2. In particular, a read-transaction is active during
the acquire and the user code. The acquire takes O(1) time
by Theorem 3.4, and the user code requires no extra time since the
code is not changed from the original sequential code. The trans-
action is therefore delay-free. A write transaction is active during
the acquire, user code and until the end of a successful set.

The cost of acquire is O(1), the cost of set is O(P) and the user
code takes no more time than it would sequentially. If there is no
concurrent writer it will succeed on the first try and hence have delay
O(P). If concurrent with other writers it can only fail and restart if
some other writing transaction succeeds. Hence it is lock-free.

In the single-writer context, all values are successfully written
and hence the number of tuples needed to collect is bounded by the
tuples that appear across all versions. By Theorem 4.2 each takes
constant time to collect. �

THEOREM 5.5. For the single-writer setting, all shared-memory
operations except inside the garbage collector have O(1) amortized
contention.

PROOF. This follows the bounds on contention in Theorem 3.5
for acquire, set, and release. Each has amortized contention
proportional to its time complexity. Furthermore in the single-writer
context, only a single transaction is allocating and incrementing
reference counts at any time. However, in the garbage collection
there can be contention when decrementing reference counts. �

5.3 Discussion about Functional Data Structures
The important features of the functional code for our purposes is
that it is fully persistent and safe for concurrency, both by default.
As previously mentioned, persistence can also be achieved by us-
ing version lists on each object [13, 39, 46, 51, 56]. This requires
modifying every read and write, and can asymptotically increase the
time complexity of user code. There has been theoretical work on
efficiently supporting version-list based persistence based on node
splitting [24]. This approach, however, has several drawbacks in our
context. Firstly it requires at most a constant number of pointers
to all objects. This would disallow, for example, even having the
processes point to a common object. Secondly, it is not safe for
concurrency. Making it safe would be an interesting and non-trivial
research topic on its own. Thirdly, the approach does not address
garbage collection—it assumes all versions are maintained. Again,
adding garbage collection would be an interesting research topic
on its own. Finally, constant time operations are only supported for
what is called partial persistence—i.e. a linear history of changes.
Supporting lock-free writers seems to require that multiple writers
simultaneously update their versions, which requires what is called
full persistence, which allows for branching of the history.

We note that a disadvantage of functional data structures as com-
pared to version lists is that they sequentialize write transactions even
when on different parts of a data structure. With version lists, if two
transactions are race-free (the set of objects that one writes is disjoint
from the set that the other reads and writes), then they can proceed
in parallel and serialize in either order. For this reason, we believe
our approach is best suited either in situations when the transaction
load is dominated by readers, or when the updates can be batched,
as described in our experiments. As mentioned in the introduction,
due to dependences it is impossible to bound the delay for writers
independently of the other concurrent writers. It might be possible,
however, to bound delays relative to inherent dependences—i.e., the
delay is no more than forced by a dependence.

6 OTHER VM ALGORITHMS
In this section, we present three additional solutions to the Version
Maintenance problem. One solution is based on Read-Copy-Update
RCU [44] and the other two are based on widely used memory recla-
mation techniques: Hazard Pointers (HP) [45] and Epoch Based
Reclamation (EP) [27]. These solutions are simple to describe, but
have various drawbacks. The HP and EP based solutions are not
precise. RCU leads to a precise solution, but writers block waiting
for readers. Researchers have proposed numerous extensions to the
original HP and EP techniques [3, 19, 21, 62]. Some of these di-
rectly translate to new ways of solving the VM problem. Our PSWF
algorithm can be understood as a wait-free and precise extension of
the HP based algorithm. We experimentally compare these version
maintenance strategies in Section 7.1.

Read-Copy-Update (RCU). The basic RCU interface provides 3
methods: read_lock, read_unlock, and synchronize.
read_lock and read_unlock mark the beginning and end of
read-side critical sections. synchronize blocks until all the cur-
rently active read-side critical sections have completed. Note that
synchronize only needs to wait for the read-side critical sections
that existed at the start of its execution.

The RCU-based acquire method calls read_lock and then
reads and returns the current version. The set method updates the
current version using a CAS (similar to the PSWF algorithm). If
the CAS succeeds, it remembers the old version. If release does
not follow a successful set, it simply calls read_unlock and
returns the empty set. Otherwise, it also has to call synchronize
and return the old version to be garbage collected. The downside
of RCU is that write transactions have to wait for read transactions
which led to slow write throughput in our experiments. We use the
Citrus [5] implementation of RCU for our experiments.

Hazard Pointers (HP). To acquire a version in the HP based
algorithm, a process p first reads the current version and announces
it. This announcement tells other processes that the version is poten-
tially being used. Then p reads the current version again to check
if it has changed. If not, then the announced version was still cur-
rent at the time of the announcement and p can safely return the
version it announced. Otherwise, the acquire has to restart. A
set operation simply updates the current version using a CAS, and
if the CAS succeeds, it adds the old version to its retired list. A
release operation by p first clears its announcement location and
if its retired list reaches size 2P , it scans the announcement array and
it removes and returns all the versions in its retired list that were not
announced. Any version retired by p that is was not announced is
safe to collect because it cannot be returned by a future acquire
operation; it might be announced by a future acquire, but that
operation would detect that the current version has changed and
restart. If the retired list has size 2P , then the release operation
returns at least P versions and can be implemented using O(P) time.
Otherwise, the release operation returns an empty list and takes
O(1) time. There are at least P fast release operations between
each expensive one so its amortized time complexity is O(1). Note
that release always returns an empty list for read-only processes.

Epoch Based Reclamation (EP). In EP, the execution is divided
into epochs and for each epoch, we maintain the set of versions

that were retired during that epoch. An acquire operation simply
reads and announces the current epoch, and then reads and returns
the current version. A release operation reads the current epoch
and scans the announcement array. If everyone has announced this
epoch, it tries to increment the current epoch with a CAS. If the
CAS succeeds, it returns all the versions retired 2 epochs ago. Since
everyone has announced the previous epoch, these versions cannot
be accessed anymore. In all other cases, the release operation
returns an empty list. It is only necessary to maintain a set of retired
versions for the last 3 epochs.

To reduce the number of times we scan the announcement array,
we only do this for release operations that follow a successful
set operation. All other release operations are allowed to return
right away. This optimization increases the number of uncollected
versions by at most 1.

7 EXPERIMENTS
In this section, we study the performance of our approach using or-
dered maps implemented with balanced binary trees. For the ordered
maps we use the C++ PAM library [59] since it already supports
functional tree structures, and has a reference counting collector. For
the experiments, we have implemented five versions of the Version
Maintenance: our PSWF algorithm, our algorithm without helping,
an imprecise version based on epochs, an imprecise version based
on hazard pointers, and a blocking version based on RCU. We do
not compare to general purpose software transactional memory sys-
tems since previous results show they are not competitive to direct
concurrent implementations [29].

We run two types of experiments. The first studies query and up-
date operations under a single-writer multi-reader concurrent setting.
The experiments are designed to understand the overheads of the
different Version Maintenance algorithm and how much garbage
they leave behind. The second type measures the throughput of con-
current operations on functional trees, comparing to five existing
trees (or skiplists). It uses batching for our functional tree structure.
The goal is to understand the overhead of using functional trees.

Due to space limitation, we present more results and analysis in
the full version of this paper [11].
Setup. For all experiments, we use a 72-core Dell R930 with 4
x Intel(R) Xeon(R) E7-8867 v4 (18 cores, 2.4GHz and 45MB L3
cache), and 1Tbyte memory. Each core is 2-way hyperthreaded giv-
ing 144 hyperthreads. Our code was compiled using g++ 5.4.1 with
the Cilk Plus extensions. We compile with -O3. We use numactl
-i all in all experiments, evenly spreading the memory pages
across the processors in a round-robin fashion. All the numbers are
taken by averaging of 3 runs. In experiments, we use “threads” to
refer to “processes” as we use in our theoretical analysis.

7.1 Evaluating the VM Algorithms and GC
In this section, we experiment with five different Version Mainte-
nance algorithms: our precise, safe and wait-free algorithm from
Section 3 (PSWF), our algorithm without helping (which only guar-
antees lock-freedom, referred to as PSLF), a hazard-pointer-based
algorithm (HP), an epoch-based algorithm (EP), and an RCU-based
algorithm (RCU). The implementation of the latter three is discussed
in Section 6. We note that PSWF, PSLF and RCU guarantee precise

Figure 6: Maximum number
of uncollected versions for dif-
ferent VM algorithms. nq is 10,
140 query threads.

 0
 20
 40
 60
 80

 100
 120
 140

A
(50/50)

B
(95/5)

C
(100/0)

Th
ro

ug
hp

ut

(M
 O

pe
ra

tio
ns

/s
)

Workloads (Read/Update)
Ours
Skiplist
OpenBW

Masstree
B+tree
Chromatic

Figure 7: Throughput of
six data structures on YCSB
workloads A (read/update,
50/50), B (read/update, 95/5)
and C (all reads).

garbage collection, while EP and HP do not. RCU guarantees that at
any point there are at most two live versions, but will block writers if
there are readers working on the old version. HP, EP, and our PSWF
algorithm are non-blocking.

We use the functional augmented tree structure in PAM as the
underlying data structure. We use integer keys and values, and con-
duct parallel range-sum queries while updating the tree with inser-
tions. Each query asks for the sum of values in a key range in time
O(logn) with augmentation. The initial tree size is n = 108. We use
P = 141 threads to invoke concurrent transactions, among which
one thread continually commits updates, each containing nu sequen-
tial insertions, and 140 threads conduct queries, each containing nq
range-sum queries. We control the granularity of update and query
transactions by adjusting nu and nq , respectively. We set the total
running time to be 15 seconds, and test different combinations of
update and query granularity. We keep track of the number of live
versions before each update, and report the maximum number of
versions. The results are shown in Table 2 and Figure 6.

The number of live versions. The number of live versions for all
five algorithms in different settings is shown in Table 2. Figure 6
shows the maximum live versions of the five VM algorithms, with
different update granularity when nq = 10. The general trends for all
five algorithms are similar. When nu is large or nq is small, there are
few versions live. This is because when updates are less frequent or
queries finish fast, most queries will catch recent versions. When nu
is small or nq is large, the number of live versions gets larger. This
is because when new versions are generated frequently, or queries
take a long time, it is more likely for queries to be behind the current
version, and keep more old versions live.

We now compare the five VM algorithms. The maximum number
of live versions for HP is always 2P = 282. For EP, when nu is large,
the number of live versions is reasonable and mostly below 100.
However, for frequent updates, the number of versions can reach
up to 1000 (see Figure 6), because queries cannot catch up with
the latest version. Many recent (but not current) versions cannot be
collected, even if no queries are working on them. Theoretically the
epoch-based algorithm can leave an unbounded number of versions
behind. RCU keeps only 1 version before set since the writer
will wait to collect the old version before generating a new version.
Although the amount of garbage is small, the writer is blocked and
update granularity is low as we will show later in this section. For
our PSWF algorithm, the number of total versions is at most 141 for

nq nu Base PSWF PSLF HP EP RCU
Query Throughput (Mop/s)

10 10 44.40 39.79 39.51 39.46 39.07 39.20
10 1000 44.63 39.40 39.51 42.31 39.74 39.55

1000 10 46.24 40.54 40.53 41.16 40.29 47.74
1000 1000 46.22 41.10 40.56 43.76 40.94 41.45

Update Throughput (Mop/s)
10 10 0.133 0.101 0.104 0.053 0.064 0.056
10 1000 0.158 0.133 0.134 0.074 0.071 0.073

1000 10 0.130 0.105 0.107 0.056 0.063 0.003
1000 1000 0.154 0.133 0.134 0.077 0.074 0.060

Max # Versions
10 10 — 3.67 4.00 282.00 304.67 1.00
10 1000 — 2.67 2.33 282.00 4.00 1.00

1000 10 — 36.33 36.33 282.00 324.00 1.00
1000 1000 — 2.33 2.00 282.00 3.33 1.00

Table 2: The query throughput, update throughput, and the number of
live versions in each VM algorithm under various settings. Throughput
numbers are reported as millions of operations per second (Mop/s).

small nu and large nq . This case is possible but rare to occur. In the
settings we shown in this paper, the maximum number of versions is
within 100. In most of the cases, the maximum of living versions is
around 10, which is 1/14 of the total query threads. Because our GC
is precise, all out-of-date versions are collected immediately. The
helping scheme is our PSWF does not affect much of the number
of maximum versions. For all tested setting, the number of versions
kept by our PSWF algorithm is only 1.5-83× less than EP, and about
7-120× less than HP.

The throughput of queries and updates. We report the query
and update throughput (millions of queries/updates per second) for
different settings in Table 2. We compare the throughput numbers for
base cases when no VM (and thus no GC) algorithms are adopted,
noted as “Base” in the Tables.

Generally, from Table 2 we can see that introducing a VM algo-
rithm always lowers the throughput of queries and updates. This is
not only because of the overhead in maintaining versions, but also
from the possible GC cost. For both updates and queries, we do not
see a significant difference between our PSWF algorithm and PSLF
algorithm. Generally this means that in practice, it is very rare that
the writer needs to help the readers a lot. We do see a more notable
difference in extreme cases (e.g., nu = 1) [11].

Queries. For all the five algorithms and all the four settings, the
overhead of introducing GC and VM algorithms is around 10%
for queries. The five VM algorithms have comparable performance.
RCU usually has much better query performance, this is possibly
because all the queries of RCU are working on the same version,
and thus leading to better locality.

Updates. Generally, larger nu results in better update throughput.
There are mainly two reasons. Firstly, batching more updates in
one transaction reduces the overhead in calling acquire, set
and release for version maintenance. Secondly, larger update
transactions allow more query threads to catch more recent versions,
and thus a larger fraction of the current version will appear in cache,
making updates faster. The overhead of introducing GC and VM
algorithms is within 20% for our PSWF algorithm, but can be more
for the other algorithms. Our algorithms are always the best among
all the algorithms in terms of update throughput. It is likely because

for HP, EP and RCU, the writer is responsible to do all GC work,
while in PSWF, queries and updates share the responsibility of GC.
Note that although RCU has the best performance in queries, it has
much lower update performance than the others, because the writer
can be blocked by unfinished queries.

Overall. Generally, our PSWF algorithm is comparable to the EP
and HP, and slightly slower than RCU in queries, but is always much
faster in updates than all the other implementations. As mentioned,
this is mostly due to the difference in GC responsibility. Therefore,
our algorithms have the best overall performance.

7.2 Functional Concurrent Operations
In this section test the throughput of concurrent operations on the
functional tree in PAM.
Concurrent Operations with Batching. We compare the functional
tree to several state-of-the-art concurrent data structures: skiplists [54],
OpenBW trees [60], Masstree [40], B+trees [60] and concurrent
Chromatic trees [17, 18] (all in C++). For all structures we turn
GC off since we are interested in the performance of the trees and
not the GC. We use the Yahoo! Cloud Serving Benchmark (YCSB)
microbenchmarks, which have skewed access patterns (Zipfian dis-
tributions) to mimic real-world access patterns. We test YCSB work-
loads A (read/update, 50/50), B (read/update, 95/5) and C (all read).
The original dataset (before updates) has 5 × 107 elements, and each
workload contains 107 transactions. We use 64-bit integers.

For PAM we use batching to collect concurrent updates so they
can be updated in parallel using single-writer. The batching works
by accumulating update requests in a buffer and when there are a
sufficiently many, applying them using PAM’s multi-insert function,
which is a parallel divide-and-conquer algorithm [15]. The batch
size is controlled so the latency for an update is no more than 50ms.
More details on batching are given in the full version of this paper.
The reads (finds in the tree) do not need to be batched since any
number of readers can run concurrently.

The results on operation throughput are presented in Figure 7. In
all the three workloads, our implementation outperforms the best
of the others by 20%-300%. There are a few factors contribute to
the good performance of our implementation. Firstly, the code for a
query is just a standard tree search with no additional cost for syn-
chronization. Secondly, since the code for the batched updates uses
a parallel divide-and-conquer algorithm for each batch, it generates
no contention between writes.

We note that the comparison is not apples-to-apples. Due to batch-
ing, our updates have higher latency than the others. This will not be
appropriate in some applications. On the other hand, our approach
allows multiple operations to be applied atomically, while the others
only support atomicity at the granularity of individual operations.
Inverted Index Searching. We test the functional tree on search-
ing an inverted index [55, 63] to show the overhead of read/write
transactions on functional data structures. We maintain a tree for the
inverted index. Read-only searching queries come in concurrently,
and a single thread is responsible for adding new documents to the
index. The update can be done in parallel since multiple words are
added simultaneously. Due to page limitation, we omit the details
here. More results are shown in the full version of this paper [11].

8 RELATED WORK
Multiversioning has been studied extensively since the 70s [13, 51,
56]. However, most previous protocols, like multiversion timestamp
ordering (MVTO) [56] and read-only multiversion (ROMV) [49, 61]
are time-stamp based, maintaining version lists for every object,
which are traversed to find the object with the proper timestamp.
This approach inherently delays user code since version lists can be
long. It also complicates garbage collection. Kumar et al. [39] revisit
the MVTO protocol and develop a concrete algorithm with GC that
has similar properties to ours if the GC is applied frequently enough.
However this requires scanning whole version lists for objects and
requires locks. Also in their algorithm the writer can still delay
readers and the readers can abort the writer. As far as we know no
work based on multiversioning with version lists has shown bounds
on time or space.

Perelman, Fan and Keidar [52] showed resource bounds for mul-
tiversion protocols. They define the notion of MV-permissiveness,
which means that only write transactions abort (or restart), and only
if they conflict. They also define useless prefix (UP) GC, which is
similar but slightly weaker than our notion of precise GC (it only
collects proper prefixes of the versions). They describe an algorithm
that is MV-permissive and satisfies UP GC. They do not give any
time bounds—the delay could take time that is a function of data
structure size and number of processes, even when there is a single
writer, since the approach is based on copying an old value to all
previous active versions.

Beyond RCU [44], the read-log-update (RLU) protocol also sup-
ports two versions such that readers can read an old version, while
the writer updates the current version [41]. The RLU allows readers
to see the currently updated version, but still blocks before the next
version can be updated until all processes reach a quiscent period.
Attiya and Hillel [6] suggest a similar idea that allows readers to
proceed while blocking writers (even a single writer).

Path-copying is a default implementation in functional languages,
where data cannot be overwritten [48]. Similar techniques have been
used for maintaining multiversion B-tree or B+tree structures or
their variants [7, 58], and is used in real-world database systems like
LMDB [1], CouchDB [4], Hyder [14] and InnoB [28], as well as
many file-systems [16, 20, 23, 36, 57].

Some techniques in our algorithm can also be found in wait-free
universal construction algorithms [25, 31, 33]. More details can be
found in the full version of this paper.

9 ACKNOWLEDGEMENT
This work was supported in part by NSF grants CCF-1408940, CCF-
1533858, and CCF-1629444.

REFERENCES
[1] 2015. Lightning Memory-Mapped Database Manager (LMDB).

http://www.lmdb.tech/doc/.
[2] Umut A Acar, Naama Ben-David, and Mike Rainey. 2017. Contention in Struc-

tured Concurrency: Provably Efficient Dynamic Non-Zero Indicators for Nested
Parallelism. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM, 75–88.

[3] Zahra Aghazadeh, Wojciech Golab, and Philipp Woelfel. 2014. Making objects
writable. In Proceedings of the 2014 ACM symposium on Principles of distributed
computing. ACM, 385–395.

[4] J Chris Anderson, Jan Lehnardt, and Noah Slater. 2010. CouchDB: The Definitive
Guide: Time to Relax. O’Reilly Media, Inc.

[5] Maya Arbel and Hagit Attiya. 2014. Concurrent updates with RCU: search tree
as an example. In Proceedings of the 2014 ACM symposium on Principles of
distributed computing. ACM, 196–205.

[6] Hagit Attiya and Eshcar Hillel. 2011. Single-Version STMs Can Be Multi-version
Permissive (Extended Abstract). In Distributed Computing and Networking, Mar-
cos K. Aguilera, Haifeng Yu, Nitin H. Vaidya, Vikram Srinivasan, and Romit Roy
Choudhury (Eds.). Springer Berlin Heidelberg, 83–94.

[7] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter
Widmayer. 1996. An asymptotically optimal multiversion B-tree. The VLDB
Journal 5, 4 (1996), 264–275.

[8] Amir M. Ben-Amram. 1995. What is a “Pointer Machine”? SIGACT News 26, 2
(June 1995), 88–95. https://doi.org/10.1145/202840.202846

[9] Naama Ben-David, Guy Blelloch, Michal Friedman, and Yuanhao Wei. 2019.
Delay-Free Concurrency on Faulty Persistent Memory Systems. In ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA).

[10] Naama Ben-David and Guy E Blelloch. 2017. Analyzing Contention and Backoff
in Asynchronous Shared Memory. In ACM Symposium on Principles of Distributed
Computing (PODC). ACM, 53–62.

[11] Naama Ben-David, Guy E Blelloch, Yihan Sun, and Yuanhao Wei. 2018. Multi-
version Concurrency with Bounded Delay and Precise Garbage Collection. arXiv
preprint arXiv:1803.08617 (2018).

[12] Naama Ben-David, David Yu Cheng Chan, Vassos Hadzilacos, and Sam Toueg.
2016. k-Abortable objects: progress under high contention. In International
Symposium on Distributed Computing. Springer, 298–312.

[13] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency
Control - Theory and Algorithms. ACM Trans. Database Syst. 8, 4 (Dec. 1983),
465–483. https://doi.org/10.1145/319996.319998

[14] Philip A Bernstein, Colin W Reid, and Sudipto Das. 2011. Hyder-A Transactional
Record Manager for Shared Flash.. In Innovative Data Systems Research (CIDR).

[15] Guy E Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just join for paral-
lel ordered sets. In Proc. ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 253–264.

[16] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum.
2003. The zettabyte file system. In Usenix Conference on File and Storage
Technologies, Vol. 215.

[17] Trevor Brown. 2016. Lock-free Chromatic Trees in C++. https://bitbucket.org/
trbot86/implementations/src/.

[18] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A General Technique for Non-
blocking Trees. In Proc. ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP).

[19] Trevor Alexander Brown. 2015. Reclaiming memory for lock-free data structures:
There has to be a better way. In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing. ACM, 261–270.

[20] Sailesh Chutani, Owen T Anderson, Michael L Kazar, Bruce W Leverett, W An-
thony Mason, Robert N Sidebotham, et al. 1992. The Episode file system. In
USENIX Winter 1992 Technical Conference. 43–60.

[21] Nachshon Cohen and Erez Petrank. 2015. Efficient memory management for
lock-free data structures with optimistic access. In Proceedings of the 27th ACM
symposium on Parallelism in Algorithms and Architectures. ACM, 254–263.

[22] George E. Collins. 1960. A Method for Overlapping and Erasure of Lists. Commun.
ACM 3, 12 (Dec. 1960), 655–657.

[23] AN Craig, GR Soules, JD Goodson, and GR Strunk. 2003. Metadata efficiency in
versioning file systems. In USENIX Conference on File and Storage Technologies.

[24] James Driscoll, Neil Sarnak, Daniel Sleator, and Robert Tarjan. 1989. Making
data structures persistent. Journal of computer and system sciences (1989).

[25] Panagiota Fatourou and Nikolaos D Kallimanis. 2011. A highly-efficient wait-free
universal construction. In Proc. ACM symposium on Parallelism in Algorithms
and Architectures (SPAA). ACM, 325–334.

[26] Faith Ellen Fich, Danny Hendler, and Nir Shavit. 2005. Linear lower bounds on
real-world implementations of concurrent objects. In Foundations of Computer
Science (FOCS). IEEE, 165–173.

[27] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of
Cambridge, Computer Laboratory.

[28] Peter Frühwirt, Marcus Huber, Martin Mulazzani, and Edgar R Weippl. 2010.
InnoDB database forensics. In 2010 24th IEEE International Conference on
Advanced Information Networking and Applications. IEEE, 1028–1036.

[29] Vincent Gramoli. 2015. More Than You Ever Wanted to Know About Synchroniza-
tion: Synchrobench, Measuring the Impact of the Synchronization on Concurrent
Algorithms. In Proc. ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP).

[30] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat combin-
ing and the synchronization-parallelism tradeoff. In Proc. ACM symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, 355–364.

[31] Maurice Herlihy. 1990. A methodology for implementing highly concurrent data
structures. In ACM SIGPLAN Notices, Vol. 25. ACM, 197–206.

[32] Maurice Herlihy. 1991. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 13, 1 (1991), 124–149.

[33] Maurice Herlihy. 1993. A methodology for implementing highly concurrent data
objects. ACM Transactions on Programming Languages and Systems (TOPLAS)
(1993).

[34] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[35] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) 12, 3 (1990), 463–492.

[36] Dave Hitz, James Lau, and Michael A Malcolm. 1994. File System Design for an
NFS File Server Appliance.. In USENIX winter, Vol. 94.

[37] Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage Collection
Handbook: The Art of Automatic Memory Management (1st ed.). Chapman &
Hall/CRC.

[38] Haim Kaplan and Robert Endre Tarjan. 1996. Purely Functional Representations
of Catenable Sorted Lists. In Proc. ACM Symposium on the Theory of Computing
(STOC). 202–211.

[39] Priyanka Kumar, Sathya Peri, and K. Vidyasankar. 2014. A TimeStamp Based
Multi-version STM Algorithm. In Proc. International Conference on Distributed
Computing and Networking (ICDN). 212–226.

[40] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In ACM European Conference on Computer
Systems.

[41] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. 2015. Read-log-
update: A Lightweight Synchronization Mechanism for Concurrent Programming.
In Proc. Symposium on Operating Systems Principles (SOSP).

[42] John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. Commun. ACM 3, 4 (April 1960), 184–195.

[43] Paul E. McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty Russell,
Dipankar Sarma, and Maneesh Soni. 2001. Read-Copy Update. In Ottawa Linux
Symposium.

[44] Paul E. McKenney and John D. Slingwine. 1998. Read-Copy Update: Using
Execution History to Solve Concurrency Problems. In Parallel and Distributed
Computing and Systems. 509–518.

[45] Maged M Michael. 2004. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Transactions on Parallel & Distributed Systems 6 (2004), 491–504.

[46] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast serializable
multi-version concurrency control for main-memory database systems. In Proc.
ACM SIGMOD International Conference on Management of Data (SIGMOD).

[47] Chris Okasaki. 1998. Purely Functional Data Structures. Cambridge University
Press, New York, NY, USA.

[48] Chris Okasaki. 1999. Purely functional data structures. Cambridge University
Press.

[49] Christos Papadimitriou. 1986. The Theory of Database Concurrency Control.
Computer Science Press, Inc., New York, NY, USA.

[50] Christos H Papadimitriou. 1979. The serializability of concurrent database updates.
Journal of the ACM (JACM) 26, 4 (1979), 631–653.

[51] Christos H Papadimitriou and Paris C Kanellakis. 1984. On concurrency control
by multiple versions. ACM Transactions on Database Systems (TODS) (1984).

[52] Dmitri Perelman, Rui Fan, and Idit Keidar. 2010. On maintaining multiple ver-
sions in STM. In ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC). ACM, 16–25.

[53] Nicholas Pippenger. 1997. Pure Versus Impure Lisp. ACM Trans. Program. Lang.
Syst. 19, 2 (March 1997), 223–238.

[54] William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (1990), 668–676.

[55] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of Massive Datasets:.
Cambridge University Press.

[56] D. Reed. 1978. Naming and synchronization in a decentralized computer system.
Technical Report. MIT, Dept. Electrical Engineering and Computer Science.

[57] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-Tree
Filesystem. TOS (2013).

[58] Benjamin Sowell, Wojciech Golab, and Mehul A Shah. 2012. Minuet: A scalable
distributed multiversion B-tree. VLDB Endowment 5, 9 (2012), 884–895.

[59] Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. 2018. PAM: Parallel Aug-
mented Maps. In Proc. ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming (PPoPP).

[60] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael
Kaminsky, and David G Andersen. 2018. Building a Bw-tree takes more than
just buzz words. In Proc. ACM International Conference on Management of Data
(SIGMOD). ACM, 473–488.

[61] Gerhard Weikum and Gottfried Vossen. 2001. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[62] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H Alan Beadle, and Michael L
Scott. 2018. Interval-based memory reclamation. In Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming.

[63] Justin Zobel and Alistair Moffat. 2006. Inverted Files for Text Search Engines.
ACM Comput. Surv. 38, 2, Article 6 (July 2006).

https://doi.org/10.1145/202840.202846
https://doi.org/10.1145/319996.319998
https://bitbucket.org/trbot86/implementations/src/
https://bitbucket.org/trbot86/implementations/src/

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Version Maintenance Problem
	3.1 The PSWF Algorithm

	4 Garbage Collection
	5 Implementing Transactions
	5.1 Correctness and Preciseness
	5.2 Delay and Contention
	5.3 Discussion about Functional Data Structures

	6 Other VM Algorithms
	7 Experiments
	7.1 Evaluating the VM Algorithms and GC
	7.2 Functional Concurrent Operations

	8 Related Work
	9 Acknowledgement
	References

