
Parallel Write-Efficient Algorithms and Data Structures for
Computational Geometry

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Yan Gu
Carnegie Mellon University

yan.gu@cs.cmu.edu

Julian Shun
MIT CSAIL

jshun@mit.edu

Yihan Sun
Carnegie Mellon University

yihans@cs.cmu.edu

ABSTRACT
In this paper, we design parallel write-efficient geometric algorithms
that perform asymptotically fewer writes than standard algorithms
for the same problem. This is motivated by emerging non-volatile
memory technologies with read performance being close to that of
random access memory but writes being significantly more expen-
sive in terms of energy and latency. We design algorithms for planar
Delaunay triangulation, k-d trees, and static and dynamic augmented
trees. Our algorithms are designed in the recently introduced Asym-
metric Nested-Parallel Model, which captures the parallel setting in
which there is a small symmetric memory where reads and writes are
unit cost as well as a large asymmetric memory where writes are ω
times more expensive than reads. In designing these algorithms, we
introduce several techniques for obtaining write-efficiency, including
DAG tracing, prefix doubling, and α -labeling, which we believe will
be useful for designing other parallel write-efficient algorithms.

ACM Reference Format:
Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel Write-
Efficient Algorithms and Data Structures for Computational Geometry. In
SPAA ’18: 30th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, July 16–18, 2018, Vienna, Austria. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3210377.3210380

1 INTRODUCTION
In this paper, we design a set of techniques and parallel algorithms
to reduce the number of writes to memory as compared to tradi-
tional algorithms. This is motivated by the recent trends in computer
memory technologies that promise byte-addressability, good read la-
tencies, significantly lower energy and higher density (bits per area)
compared to DRAM. However, one characteristic of these memories
is that reading from memory is significantly cheaper than writing to
it. Based on projections in the literature, the asymmetry is between
5–40 in terms of latency, bandwidth, or energy. Roughly speaking,
the reason for this asymmetry is that writing to memory requires
a change to the state of the material, while reading only requires
detecting the current state. This trend poses the interesting question
of how to design algorithms that are more efficient than traditional
algorithms in the presence of read-write asymmetry.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00
https://doi.org/10.1145/3210377.3210380

There has been recent research studying models and algorithms
that account for asymmetry in read and write costs [7, 8, 13, 14, 19,
20, 26, 27, 34, 42, 52, 53]. Blelloch et al. [8, 13, 14] propose models
in which writes to the asymmetric memory cost ω ≥ 1 and all other
operations are unit cost. The Asymmetric RAM model [8] has a small
symmetric memory (a cache) that can be used to hold temporary
values and reduce the number of writes to the large asymmetric
memory. The Asymmetric NP (Nested Parallel) model [14] is the
corresponding parallel extension that allows an algorithm to be
scheduled efficiently in parallel, and is the model that we use in this
paper to analyze our algorithms.

Write-efficient parallel algorithms have been studied for many
classes of problems including graphs, linear algebra, and dynamic
programming. However, parallel write-efficient geometric algorithms
have only been developed for the 2D convex hull problem [8].
Achieving parallelism (polylogarithmic depth) and optimal write-
efficiency simultaneously seems generally hard for many algorithms
and data structures in computational geometry. Here, optimal write-
efficiency means that the number of writes that the algorithm or data
structure construction performs is asymptotically equal to the output
size. In this paper, we propose two general frameworks and show
how they can be used to design algorithms and data structures from
geometry with high parallelism as well as optimal write-efficiency.

The first framework is designed for randomized incremental al-
gorithms [21, 39, 45]. Randomized incremental algorithms are rela-
tively easy to implement in practice, and the challenge is in simulta-
neously achieving high parallelism and write-efficiency. Our frame-
work consists of two components: a DAG-tracing algorithm and
a prefix doubling technique. We can obtain parallel write-efficient
randomized incremental algorithms by applying both techniques
together. The write-efficiency is from the DAG-tracing algorithm,
that given a current configuration of a set of objects and a new
object, finds the part of the configuration that “conflicts” with the
new object. Finding n objects in a configuration of size n requires
O(n logn) reads but only O(n) writes. Once the conflicts have been
found, previous parallel incremental algorithms (e.g. [15]) can be
used to resolve the conflicts among objects taking linear reads and
writes. This allows for a prefix doubling approach in which the num-
ber of objects inserted in each round is doubled until all objects are
inserted.

Using this framework, we obtain parallel write-efficient algo-
rithms for comparison sort, planar Delaunay triangulation, and k-d
trees, all requiring optimal work, linear writes, and polylogarith-
mic depth. The most interesting result is for Delaunay triangulation
(DT). Although DT can be solved in optimal time and linear writes
sequentially using the plane sweep method [14], previous parallel
DT algorithms seem hard to make write-efficient. Most are based
on divide-and-conquer, and seem to inherently require Θ(n logn)

https://doi.org/10.1145/3210377.3210380
https://doi.org/10.1145/3210377.3210380

writes. Here we use recent results on parallel randomized incremental
DT [15] and apply the above mentioned approach. For comparison
sort, our new algorithm is stand-alone (i.e., not based on other com-
plicated algorithms like Cole’s mergesort [13, 22]). Due to space
constraints, this algorithm is presented in the full version of this
paper [16]. For k-d trees, we introduce the p-batched incremental
construction technique that maintains the balance of the tree while
asymptotically reducing the number of writes.

The second framework is designed for augmented trees, including
interval trees, range trees, and priority search trees. Our goal is to
achieve write-efficiency for both the initial construction as well as
future dynamic updates. The framework consists of two techniques.
The first technique is to decouple the tree construction from sorting,
and introduce parallel algorithms to construct the trees in linear
reads and writes after the objects are sorted (the sorting can be done
with linear writes [13]). Such algorithms provide write-efficient
constructions of these data structures, but can also be applied in
the rebalancing scheme for dynamic updates—once a subtree is
unbalanced, we reconstruct it. The second technique is α-labeling.
We subselect some tree nodes as critical nodes, and maintain part of
the augmentation only on these nodes. By doing so, we can limit the
number of tree nodes that need to be written on each update, at the
cost of having to read more nodes.1

Using this framework, we obtain efficient augmented trees in
the asymmetric setting. In particular, we can construct the trees in
optimal work and writes, and polylogarithmic depth. For dynamic
updates, we provide a trade-off between performing extra reads in
queries and updates, while doing fewer writes on updates. Standard
algorithms use O(logn) reads and writes per update (O(log2 n) reads
on a 2D range tree). We can reduce the number of writes by a factor
of Θ(logα) for α ≥ 2, at a cost of increasing reads by at most a
factor of O(α) in the worst case. For example, when the number of
queries and updates are about equal, we can improve the work by
a factor of Θ(logω), which is significant given that the update and
query costs are only logarithmic.

The contributions of this paper are new parallel write-efficient
algorithms for comparison sorting, planar Delaunay triangulation,
k-d trees, and static and dynamic augmented trees (including interval
trees, range trees and priority search trees). We introduce two general
frameworks to design such algorithms, which we believe will be
useful for designing other parallel write-efficient algorithms.

2 PRELIMINARIES
2.1 Computation Models
Nested-parallel model. The algorithms in this paper is based on
the nested-parallel model where a computation starts and ends with
a single root task. Each task has a constant number of registers,
and runs a standard instruction set from a random access machine,
except it has one additional instruction called FORK. The FORK
instruction takes an integer n′ and creates n′ child tasks, which can
run in parallel. Child tasks get a copy of the parent’s register values,
with one special register getting an integer from 1 to n′ indicating
which child it is. The parent task suspends until all its children finish

1At a very high level, the α -labeling is similar to the weight-balanced B-tree (WBB
tree) proposed by Arge et al. [4, 5], but there are many differences and we discuss them
in Section 6.

at which point it continues with the registers in the same state as
when it suspended, except the program counter advanced by one.
We say that a computation has binary branching if n′ = 2. In the
model, a computation can be viewed as a (series-parallel) DAG in
the standard way. We assume every instruction has a weight (cost).
The work (W) is the sum of the weights of the instructions, and the
depth (D) is the weight of the heaviest path.

Asymmetric NP (Nested Parallel) model. We use the Asymmetric
NP (Nested Parallel) model [8], which is the asymmetric version of
the nested-parallel model, to measure the cost of an algorithm in this
paper. The memory in the Asymmetric NP model consists of (i) an
infinitely large asymmetric memory (referred to as large-memory)
accessible to all processors and (ii) a small private symmetric mem-
ory (small-memory) accessible only to one processor. The cost of
writing to large memory is ω, and all other operations have unit
cost. The size of the small-memory is measured in words. In this
paper, we assume the small memory can store a logarithmic number
of words, unless specified otherwise. A more precise and detailed
definition of the Asymmetric NP model is given in [8].

The work W of a computation is the sum of the costs of the
operations in the DAG, which is similar to the symmetric version
but just has extra charges for writes. The depth D is the sum of
the weights on the heaviest path in the DAG. Since the depth can
vary by a logarithmic factor based on specifics of the model (e.g.
allowing binary or multiway branching), in this paper we show
O(ω ·polylog(n)) bounds for the depth of the algorithms, disregarding
the particular power in the logarithm. Under mild assumptions, a
work-stealing scheduler can execute an algorithm with workW and
depth ω · polylog(n) inW /P +O(ω · polylog(n)) expected time on
P processors [8]. We assume concurrent-read, and concurrent-writes
use priority-writes to resolve conflicts. In our algorithm descriptions,
the number of writes refers only to the writes to the large-memory,
and does not include writes to the small-memory. All reads and
writes are to words of size Θ(logn)-bits for an input size of n.

2.2 Write-Efficient Geometric Algorithms
Sorting and searching are widely used in geometry applications. Sort-
ing requires O(ωn + n logn) work and O(ω · polylog(n)) depth [13].
Red-black trees with appropriate rebalancing rules require O(ω +
logn) amortized work per update (insertion or deletion) [51].

These building blocks facilitate many classic geometric algo-
rithms. The planar convex-hull problem can be solved by first sorting
the points by x coordinates and then using Graham’s scan that re-
quires O(ωn) work [24]. This scan step can be parallelized with
O(ω · polylog(n)) depth [28]. The output-sensitive version uses
O(n logh + ωn log logh) work and O(ω polylog(n)) depth where h
is the number of points on the hull [8].

3 GENERAL TECHNIQUES FOR
INCREMENTAL ALGORITHMS

In this section, we first introduce our framework for randomized
incremental algorithms. Our goal is to have a systematic approach
for designing geometric algorithms that are highly parallel and write-
efficient.

Our observation is that it should be possible to make random-
ized incremental algorithms write-efficient since each newly added

object on expectation only conflicts with a small region of the cur-
rent configuration. For instance, in planar Delaunay triangulation,
when a randomly chosen point is inserted, the expected number of
encroached triangles is 6. Therefore, resolving such conflicts only
makes minor modifications to the configuration during the random-
ized incremental constructions, leading to algorithms using fewer
writes. The challenges are in finding the conflicted region of each
newly added object write-efficiently and work-efficiently, and in
adding multiple objects into the configuration in parallel without
affecting write-efficiency. We will discuss the general techniques
to tackle these challenges based on the history graph [18, 31], and
then discuss how to apply them to develop parallel write-efficient
algorithms for planar Delaunay triangulation in Section 4 and k-d
tree construction in Section 5. The application of these techniques
to designing a write-efficient parallel comparison sorting algorithm
is presented in the full version of this paper [16].

3.1 DAG Tracing
We now discuss how to find the conflict set of each newly added
object (i.e., only output the conflict primitives) based on a history
(directed acyclic) graph [18, 31] in a parallel and write-efficient
fashion. Since the history graphs for different randomized incremen-
tal algorithms can vary, we abstract the process as a DAG tracing
problem that finds the conflict primitives in each step by following
the history graph.

Definition 3.1 (DAG tracing problem). The DAG tracing problem
takes an element x , a DAG G = (V ,E), a root vertex r ∈ V with zero
in-degree, and a boolean predicate function f (x ,v). It computes the
vertex set S(G,x) = {v ∈ V | f (x ,v) and out-degree(v) = 0}.

We call a vertex v visible if f (x ,v) is true.

Definition 3.2 (tracable property). We say that the DAG tracing
problem has the tracable property when v ∈ V is visible only if there
exists at least one direct predecessor vertex u of v that is visible.

Variable Description
D(G) the length of the longest path in G
R(G,x) the set of all visible vertices in G
S(G,x) the output set of vertices

THEOREM 3.3. The DAG tracing problem can be solved in
O(|R(G,x)|) work, O(D(G)) depth and O(|S(G,x)|) writes when the
problem has the tracable property, each vertex v ∈ V has a con-
stant degree, f (x ,v) can be evaluated in constant time, and the
small-memory has size O(D(G)). Here R(G,x), D(G), and S(G,x)
are defined in the previous table.

PROOF. We first discuss a sequential algorithm usingO(|R(G,x)|)
work and O(|S(G,x)|) writes. Because of the tracable property, we
can use an arbitrary search algorithm to visit the visible nodes, which
requires O(R(G,x)) writes since we need to mark whether a vertex
is visited or not. However, this approach is not write-efficient when
|S | = o(|R(G,x)|), and we now propose a better solution.

Assume that we give a global ordering ≺v of the vertices in G
(e.g., using the vertex labels) and use the following rule to traverse
the visible nodes based on this ordering: a visible node v ∈ V is
visited during the search of its direct visible predecessor u that has

the highest priority among all visible direct predecessors of v. Based
on this rule, we do not need to store all visited vertices. Instead,
when we visit a vertex v via a directed edge (u,v) from u, we can
check if u has the highest priority among all visible predecessors of
v. This checking has constant cost since v has a constant degree and
we assume the visibility of a vertex can be verified in constant time.
As long as we have a small-memory of size O(D(G)) that keeps the
recursion stack and each vertex inV has a constant in-degree, we can
find the output set S(G,x) using O(|R(G,x)|) work and O(|S(G,x)|)
writes.

We note that the search tree generated under this rule is unique
and deterministic. Therefore, this observation allows us to traverse
the tree in parallel and in a fork-join manner: we can simultaneously
fork off an independent task for each outgoing edges of the current
vertex, and all these tasks can be run independently and in parallel.
The parallel depth, in this case, is upper bounded by O(D(G)), the
depth of the longest path in the graph. �

Here we assume the graph is explicitly stored and accessible,
so we slightly modify the algorithms to generate the history graph,
which is straightforward in all cases in this paper.

3.2 The Prefix-Doubling Approach
The sequential version of randomized incremental algorithms pro-
cess one object (e.g., a point or vertex) in one iteration. The prefix-
doubling approach splits an algorithm into multiple rounds, with
the first round processing one iteration and each subsequent round
doubling the number of iterations processed. This high-level idea is
widely used in parallel algorithm design. We show that the prefix-
doubling approach combined with the DAG tracing algorithm can
reduce the number of writes by a factor of Θ(logn) in a number of al-
gorithms. In particular, our variant of prefix doubling first processes
n/logn iterations using a standard write-inefficient approach (called
as the initial round). Then the algorithm runs O(log logn) incre-
mental rounds, where the i’th round processes the next 2i−1n/logn
iterations.

4 PLANAR DELAUNAY TRIANGULATION
A Delaunay triangulation (DT) in the plane is a triangulation of a
set of points P such that no point in P is inside the circumcircle of
any triangle (the circle defined by the triangle’s three corner points).
We say a point encroaches on a triangle if it is in the triangle’s
circumcircle, so the triangle will be replaced once this point is added
to the triangulation. We assume for simplicity that the points are in
general position (no three points on a line or four points on a circle).

Delaunay triangulation is widely studied due to its importance in
many geometry applications. Without considering the asymmetry
between reads and writes, it can be solved sequentially in opti-
mal Θ(n logn) work. It is relatively easy to generate a sequential
write-efficient version that does Θ(n logn) reads and only requires
Θ(n) writes based on the plane sweep method [14]. There are sev-
eral work-efficient parallel algorithms that run in polylogarithmic
depth [6, 15, 17, 44]. More practical ones (e.g., [18, 31]) have linear
depth. Unfortunately, none of them perform any less than Θ(n logn)
writes. In particular the divide-and-conquer algorithms [6, 17] seem
to inherently require Θ(n logn) writes since the divide or merge
step requires generating an output of size Θ(n), and is applied for

Algorithm 1: PARINCREMENTALDT
Input: A sequence V = {v1, . . . ,vn } of points in the plane.
Output: The Delaunay triangulation of V .
Maintains: E(t), the points that encroach on each triangle t .

1 tb ← a sufficiently large bounding triangle
2 E(tb) ← V

3 M ← {tb }

4 while E(t) , ∅ for any t ∈ M do
5 parallel foreach triangle t ∈ M do
6 Let t1, t2, t3 be the three neighboring triangles
7 if min(E(t)) ≤ min(E(t1) ∪ E(t2) ∪ E(t3)) then
8 REPLACETRIANGLE(M, t ,min(E(t)))
9 return M

10 function REPLACETRIANGLE(M ,t ,v)
11 foreach edge (u,w) ∈ t (three of them) do
12 if (u,w) is a boundary of v’s encroached region then
13 to ← the other triangle sharing (u,w)
14 t ′ ← (u,w,v)

15 E(t ′) ← {v ′ ∈ E(t) ∪ E(to) | INCIRCLE(v ′, t ′)}

16 M ← M ∪ {t ′}

17 M ← M \ {t}

Θ(logn) levels. The randomized incremental approach of Blelloch
et al. (BGSS) [15], which improves the Boissonnat and Teillaud
algorithm [18] to polylogarithmic depth, also requires O(n logn)
writes for reasons described below.

In this section, we show how to modify the BGSS algorithm to
use only a linear number of writes, while maintaining the expected
Θ(n logn) bound on work, and polylogarithmic depth. Algorithm 1
shows the pseudocode for the BGSS algorithm. In the algorithm, the
vertices are labeled from 1 to n and when taking a min over vertices
(Lines 7–8) it is with respect to these labels. The algorithm proceeds
in rounds the algorithm adds some triangles (Line 16) and removes
others (Line 17) in each round.

In the algorithm, there are dependences between triangles so that
some of them need to be processed before the other triangles can
proceed. For a sequence of points V , BGSS define the dependence
graph GT (V) = (T ,E) for the algorithm in the following way. The
vertices T correspond to triangles created by the algorithm, and for
each call to REPLACETRIANGLE(M, t ,vi), we place an arc from tri-
angle t and its three neighbors (t1, t2, and t3) to each of the one, two,
or three triangles created by REPLACETRIANGLE. Every triangle T
with depth d(T) in GT (V) is created by the algorithm in round d(T).
BGSS show that for a randomly ordered set of input points of size
n, the depth of the dependence graph is O(logn) whp2, and hence
the algorithm runs in O(logn) rounds whp. Each round can be done
in O(logn) depth giving an overall depth of O(log2 n) whp on the
nested-parallel model.

The algorithm, however, is not write-efficient. In particular, every
point moves down the DAG through the rounds (on line 15), and
therefore can be moved O(logn) times, each requiring a write.

2We say O (f (n)) with high probability (whp) to indicate O (c · f (n)) with probability
to be at least 1 − 1/nc for any constant c > 0.

𝑣

𝐴

𝐷

𝐵

𝐶

𝑣

𝐴

𝐷

𝐵

𝐶

𝑣

𝐴

𝐷

𝐵

𝐶

𝐸

𝐹

𝐴 𝐵𝐶𝐷 𝐸𝐹

𝐴

𝐵𝐶

𝐷

(a) (b) (c) (d)

Figure 1: An example of the tracing structure. Here a point v
is added and the encroaching region contains triangles E and F
(subfigure (a)). Four new triangles will be generated and replace
the two previous triangles. They may or may not be created in
the same round, and in this example this is done in two substeps
(subfigures (b) and (c)). Part of the tracing structure is shown in
subfigure (d). Four neighbor triangles A, B,C, and D are copied,
and four new triangles are created. An arrow indicates that a
point is encroached by the head triangle only if it is encroached
by the tail triangle.

A Linear-Write Version. We now discuss a write-efficient version
of the BGSS algorithm. We use the DAG tracing and prefix-doubling
techniques introduced in Section 3. The algorithm first computes
the DT of the n/log2 n earliest points in the randomized order, using
the non-write-efficient version. This step requires linear writes. It
then runs O(log logn) incremental rounds and in each round adds a
number of points equal to the number of points already inserted.

To insert points, we need to construct a search structure in the
DAG tracing problem. We can modify the BGSS algorithm to build
such a structure. In fact, the structure is effectively a subset of the
edges of the dependence graphGT (V). In particular, in the algorithm
the only INCIRCLE test is on Line 15. In this test, to determine if
a point encroaches t ′, we need only check its two ancestors t and
to (we need not also check the two other triangles neighboring t , as
needed inGT (V)). This leads to a DAG with depth at most as large as
GT (V), and for which every vertex has in-degree 2. The out-degree
is not necessarily constant. However, by noting that there can be at
most a constant number of outgoing edges to each level of the DAG,
we can easily transform it to a DAG with constant out-degree by
creating a copy of a triangle at each level after it has out-neighbors.
This does not increase the depth, and the number of copies is at most
proportional to the number of initial triangles (O(n) in expectation)
since the in-degrees are constant. We refer to this as the tracing
structure. An example of this structure is shown in Figure 1.

The tracing structure can be used in the DAG tracing problem
(Definition 3.1) using the predicate f (v, t) = INCIRCLE(v, t). This
predicate has the traceable property since a point can only be added
to a triangle t ′ (i.e., encroaches on the triangle) if it encroached one
of the two input edges from t and to . We can therefore use the DAG
tracing algorithm to find all of the triangles encroached on by a given
point v starting at the initial root triangle tb .

We first construct the DT of the first n/log2 n points in the initial
round using Algorithm 1 while building the tracing structure. Then
at the beginning of each incremental round, each point traces down
the structure to find its encroached triangles, and leaves itself in
the encroached set of that triangle. Note that the encroached set for
a given point might be large, but the average size across points is
constant in expectation.

We now analyze the cost of finding all the encroached triangles
when adding a set of new points. As discussed, the depth of G is

upper bounded byO(logn) whp. The number of encroached triangles
of a point x can be analyzed by considering the degree of the point
(number of incident triangles) if added to the DT. By Euler’s formula,
the average degree of a node in a planar graph is at most 6. Since
we add the points in a random order, the expected value of |S(G,x)|
in Theorem 3.3 is constant. Finally, the number of all encroached
(including non-leaf) triangles of this point is upper bounded by the
number of INCIRCLE tests. Then |R(G,x)|, the expected number of
visible vertices of x , is O(logn) (Theorem 4.2 in [15]).

After finding the encroached triangles for each point being added,
we need to collect them together to add them to the triangle. This step
can be done in parallel with a semisort, which takes linear expected
work (writes) and O(ω · polylog(m)) depth whp [30], wherem is the
number of inserted points in this round. Combining these results
leads to the following lemma.

LEMMA 4.1. Given 2m points in the plane and a tracing struc-
ture T generated by Algorithm 1 on a randomly selected subset of m
points, computing for each triangle in T the points that encroach it
among the remainingm points takes O(m logm + ωm) work (O(m)
writes) and O(ω · polylog(m)) depth whp in the Asymmetric NP
model.

The idea of the algorithm is to keep doubling the size of the set
that we add (i.e., prefix doubling). Each round applies Algorithm 1
to insert the points and build a tracing structure, and then the DAG
tracing algorithm to locate the points for the next round. The depth
of each round is upper bounded by the overall depth of the DAG on
all points, which is O(logn) whp, where n is the original size. From
this we get the following result.

THEOREM 4.2. Planar Delaunay triangulation can be computed
using O(n logn + ωn) work (i.e., O(n) writes) in expectation and
O(ω · polylog(n)) depth whp on the Asymmetric NP model with
priority-writes.

PROOF. The original Algorithm 1 in [15] has O(ω · polylog(n))
depth whp. In the prefix-doubling approach, the depth of each round
is no more thanO(ω ·polylog(n)), and the algorithm hasO(log logn)
rounds. The overall depth is hence O(ω · polylog(n)) depth whp.

The work bound consists of the costs from the initial round, and
the incremental rounds. The initial round computes the triangulation
of the first n/log2 n points, using at most O(n) INCIRCLE tests, O(n)
writes and O(ωn) work. For the incremental rounds, we have two
components, one for locating encroached triangles in the tracing
structure, and one for applying Algorithm 1 on those points to build
the next tracing structure. The first part is handled by Lemma 4.1. For
the second part we we can apply a similar analysis to Theorem 4.2
of [15]. In particular, the probability that there is a dependence from
a triangle in the i’th point (in the random order) to a triangle added
by a later point at location j in the ordering is upper bounded by
24/i. Summing across all points in the second half (we have already
resolved the first half) gives:

E[C] ≤
2m∑

i=m+1

2m∑
j=i+1

24/i = O(m) .

This is a bound on both the number of reads and the number of writes.
Since the points added in each round doubles, the cost is dominated

by the last round, which is O(n logn) reads and O(n) writes, both in
expectation. Combined with the cost of the initial round gives the
stated bounds. �

5 SPACE-PARTITIONING DATA
STRUCTURES

Space partitioning divides a space into non-overlapping regions.3

This process is usually applied repeatedly until the number of objects
in a region is small enough, so that we can afford to answer a query
in linear work within the region. We refer to the tree structure used to
represent the partitioning as the space-partitioning tree. Commonly-
used space-partitioning trees include binary space partitioning trees,
quad/oct-trees, k-d trees, and their variants, and are widely used in
computational geometry [24, 33], computer graphics [3], integrated
circuit design, learning theory, etc.

In this section, we propose write-efficient construction and update
algorithms for k-d trees [9]. We discuss how to support dynamic
updates write-efficiently in Section 5.2, and we discuss how to apply
our technique to other space-partitioning trees in the full version of
this paper [16].

5.1 k-d Tree Construction and Queries
k-d trees have many variants that facilitate different queries. We start
with the most standard applications on range queries and nearest
neighbor queries, and discussions for other queries are in the full
version of this paper. A range query can be answered in O(n(k−1)/k)
worst-case work, and an approximate (1+ϵ)-nearest neighbor (ANN)
query requires logn ·O(1/ϵ)k work assuming bounded aspect ratio,4

both in k-dimensional space. The tree to achieve these bounds can
be constructed by always partitioning by the median of all of the
objects in the current region either on the longest dimension of the
region or cycling among the k dimensions. The tree has linear size
and log2 n depth [24], and can be constructed using O(n logn) reads
and writes. We now discuss how to reduce the number of writes to
O(n).

One solution is to apply the incremental construction by inserting
the objects into a k-d tree one by one. This approach requires linear
writes, O(n logn) reads and polylogarithmic depth. However, the
splitting hyperplane is no longer based on the median, but the object
with the highest priority pre-determined by a random permutation.
The expected tree depth can be c log2 n for c > 1, but to preserve
the range query cost we need the tree depth to be log2 n + O(1)
(see details in Lemma 5.1). Motivated by the incremental construc-
tion, we propose the following variant, called p-batched incremental
construction, which guarantees both write-efficiency and low tree
depth.

The p-batched incremental construction. The p-batched incre-
mental construction is a variant of the classic incremental construc-
tion where the dependence graph is a tree. Unlike the classic version,
where the splitting hyperplane (splitter) of a tree node is immedi-
ately set when inserting the object with the highest priority, in the
p-batched version, each leaf node will buffer at most p objects before

3The other type of partitioning is object partitioning that subdivides the set of objects
directly (e.g., R-tree [32, 36], bounding volume hierarchies [29, 54]).
4The largest aspect ratio of a tree node on any two dimensions is bounded by a constant,
which is satisfied by the input instances in most real-world applications.

(a) (b) (c)

Figure 2: An illustration of one round in the p-batched incre-
mental construction for p = 4. Subfigure (a) shows the initial
state of this round. Then the new objects (shown in orange) are
added to the buffers in the leaves, as shown in subfigure (b).
Two of the buffers overflow, and so we settle these two leaves as
shown in subfigure (c).

it determines the splitter. We say that a leaf node overflows if it holds
more than p objects in its buffer. We say that a node is generated
when created by its parent, and settled after finding the splitters,
creating leaves and pushing the objects to the leaves’ buffers.

The algorithm proceeds in rounds, where in each round it first
finds the corresponding leaf nodes that the inserted objects belong
to, and adds them into the buffers of the leaves. Then it settles all
of the overflowed leaves, and starts a new round. An illustration of
this algorithm is shown in Figure 2. After all objects are inserted,
the algorithm finishes building the subtree of the tree nodes with
non-empty buffers recursively. For write-efficiency, we require the
small-memory size to be Ω(p), and the reason will be shown in the
cost analysis.

We make a partition once we have gathered p objects in the
corresponding subregion based on the median of these p objects.
When p = 1, the algorithm is the incremental algorithm mentioned
above, but the range query cost cannot be preserved. When p = n, the
algorithm constructs the same tree as the classic k-d tree construction
algorithm, but requires more than linear writes unless the small-
memory size is O(n), which is impractical when n is large. We now
try to find the smallest value of p that preserves the query cost, and
we analyze the cost bounds accordingly.

Range query. We use the following lemma to analyze the cost of
a standard k-d range query (on an axis-aligned hypercube for k ≥ 2).

LEMMA 5.1. A k-d range query costs O(2((k−1)/k)h) using our
k-d tree of height h.

PROOF SKETCH. A k-d range query has at most 2k faces that
generate 2k half-spaces, and we analyze the query cost of each half-
space. Since each axis is partitioned once in every k consecutive
levels, one side of the partition hyperplane perpendicular to the
query face will be either entirely in or out of the associated half-
space. We do not need to traverse that subtree (we can either directly
report the answer or ignore it). Therefore every k levels will expand
the search tree by a factor of at most 2k−1. Thus the query cost is
O(2((k−1)/k)h). �

LEMMA 5.2. For our p-batched k-d tree, p = Ω(log3 n) guaran-
tees the tree height to be no more than log2 n +O(1) whp.

PROOF. We now consider the p-batched incremental construction.
Since we are partitioning based on the median of p random objects,
the hyperplane can be different from the actual median. To get the
same cost bound, we want the actual number of objects on the
two sides to differ by no more than a factor of ϵ whp. Since we
pick p random samples, by a Chernoff bound the probability that
more than 1/2p samples are within the first (1/2 − ϵ/4)n objects
is upper bounded by e−pϵ

2/24. Hence, the probability that the two
subtree weights of a tree node differ by more than a factor of ϵ is no
more than 2e−pϵ

2/24. This ϵ controls the tree depth, and based on the
previous analysis we want to haven(12+

ϵ
4)

log2 n/p+O (1) < p. Namely,
we want the tree to have no more than log2 n/p +O(1) levels whp to
reach the subtrees with less than p elements, so the overall tree depth
is bounded by log2 n/p +O(1) + log2 p = log2 n +O(1). Combining
these constraints leads to ϵ = O(1)/log2 n and p = Ω(log3 n). �

Lemma 5.2 indicates that setting p = Ω(log3 n) gives a tree height
of log2 n +O(1) whp, and Lemma 5.1 shows that the corresponding
range query cost is O(2((k−1)/k)(O (1)+log2 n)) = O(n(k−1)/k), match-
ing the standard range query cost.

ANN query. If we assume that the input objects are well-distributed
and the k-d tree satisfies the bounded aspect ratio, then the cost of
a (1 + ϵ)-ANN query is proportional to the tree height. As a result,
p = Ω(logn) leads to a query cost of logn ·O(1/ϵ)k whp.5

Parallel construction and cost analysis. To get parallelism, we
use the prefix-doubling approach, starting with n/logn objects in the
first round. The number of reads of the algorithm is still Θ(n logn),
since it is lower bounded by the cost of sorting when k = 1, and
upper bounded by O(n logn) since the modified algorithm makes
asymptotically no more comparisons than the classic implementation.
We first present the following lemma.

LEMMA 5.3. When a leaf overflows at the end of a round, the
number of objects in its buffer is O(p) whp when p = Ω(logn).

PROOF SKETCH. In the previous round, assume n′ objects were
in the tree. At that time no more than p−1 objects are buffered in this
leaf node. Then in the current round another n′ objects are inserted,
and by a Chernoff bound, the probability that the number of objects
falling into this leaf node is more than (c + 1)p is at most e−c

2p/2.
Plugging in p = Ω(logn) proves the lemma. �

We now bound the parallel depth of this construction. The initial
round runs the standard construction algorithm on the first n/log2 n
objects, which requires O(ω · polylog(n)) depth. Then in each of the
next O(log logn) incremental rounds, we need to locate leaf nodes
and a parallel semisort to put the objects into their buffers. Both
steps can be done in O(ω · polylog(n)) depth whp [30]. Then we
also need to account for the depth of settling the leaves after the
incremental rounds. When a leaf overflows, by Lemma 5.3 we need
to split a set of O(p) objects for each leaf, which has a depth of
O(ω · polylog(n)) using the classic approach, and is applied for no
more than a constant number of times whp by Lemma 5.3.

We now analyze the number of writes this algorithm requires. The
initial round requires O(n) writes as it uses a standard construction
5Actually the tree depth is O (logn) even when p = 1. However, for write-efficiency,
we need p = Ω(logn) to support efficient updates as discussed in Section 5.2 that
requires the two subtree sizes to be balanced at every node.

algorithm on n/log2 n objects. In the incremental rounds,O(1)writes
whp are required for each object to find the leaf node it belongs to
and add itself to the buffer using semisorting [30]. From Lemma 5.3,
when finding the splitting hyperplane and splitting the object for a
tree node, the number of writes required is O(p) whp. Note that after
a new leaf node is generated from a split, it contains at least p/2
objects. Therefore, after all incremental rounds, the tree contains at
most O(n/p) tree nodes, and the overall writes to generate them is
O((n/p) · p) = O(n). After the incremental rounds finish, we need
O(n) writes to settle the leaves with non-empty buffers, assuming
O(p) cache size. In total, the algorithm uses O(n) writes whp.

THEOREM 5.4. A k-d tree that supports range and ANN queries
efficiently can be computed usingO(n logn+ωn) expected work (i.e.,
O(n) writes) and O(ω · polylog(n)) depth whp in the Asymmetric NP
model. For range query the small-memory size required is Ω(log3 n).

5.2 k-d Tree Dynamic Updates
Unlike many other tree structures, we cannot rotate the tree nodes in
k-d trees since each tree node represents a subspace instead of just a
set of objects. Deletion is simple for k-d trees, since we can afford
to reconstruct the whole structure from scratch when a constant
fraction of the objects in the k-d tree have been removed, and before
the reconstruction we just mark the deleted node (constant reads and
writes per deletion via an unordered map). In total, the amortized
cost of each deletion is O(ω + logn). For insertions, we discuss two
techniques that optimize either the update cost or the query cost.
Logarithmic reconstruction [41]. We maintain at most log2 n k-d
trees of sizes that are increasing powers of 2. When an object is
inserted, we create a k-d tree of size 1 containing the object. While
there are trees of equal size, we flatten them and replace the two
trees with a tree of twice the size. This process keeps repeating until
there are no trees with the same size. When querying, we search in
all (at most log2 n) trees. Using this approach, the number of reads
and writes on an insertion is O(log2 n), and on a deletion is O(logn).
The costs for range queries and ANN queries are O(n(k−1)/k) and
log2 n ·O(1/ϵ)k respectively, plus the cost for writing the output.

If we apply our write-efficient p-batched version when recon-
structing the k-d trees, we can reduce the writes (but not reads) by a
factor of O(logn) (i.e., O(logn) and O(1) writes per update).

When using logarithmic reconstruction, querying up to O(logn)
trees can be inefficient in some cases, so here we show an alternative
solution that only maintains a single tree.
Single-tree version. As discussed in Section 5.1, only the tree height
affects the costs for range queries and ANN queries. For range
queries, Lemma 5.2 indicates that the tree height should be log2 n +
O(1) to guarantee the optimal query cost. To maintain this, we can
tolerate an imbalance between the weights of two subtrees by a
factor ofO(1/logn), and reconstruct the subtree when the imbalance
is beyond the constraint. In the worst case, a subtree of size n′ is
rebuilt once after O(n′/logn) insertions into the subtree. Since the
reconstructing a subtree of size n′ requires O(n′ logn′ + ωn′) work,
each inserted object contributes O(logn logn′ + ω logn) work to
every node on its tree path, and there areO(logn) such nodes. Hence,
the amortized work for an insertion is O(log3 n + ω log2 n). For
efficient ANN queries, we only need the tree height to be O(logn),
which can be guaranteed if the imbalance between two subtree sizes

is at most a constant multiplicative factor. Using a similar analysis, in
this case the amortized work for an insertion is O(log2 n + ω logn).

6 AUGMENTED TREES
An augmented tree is a tree that keeps extra data on each tree node
other than what is used to maintain the balance of this tree. We
refer to the extra data on each tree node as the augmentation. In
this section, we introduce a framework that gives new algorithms for
constructing both static and dynamic augmented trees including in-
terval trees, 2D range trees, and priority search trees that are parallel
and write-efficient. Using these data structures we can answer 1D
stabbing queries, 2D range queries, and 3-sided queries (defined in
Section 6.1). For all three problems, we assume that the query results
need to be written to the large-memory. Our results are summarized
in Table 1. We improve upon the traditional algorithms in two ways.
First, we show how to construct interval trees and priority search
trees using O(n) instead of O(n logn) writes (since the 2D range
tree requires O(n logn) storage we cannot asymptotically reduce the
number of writes). Second, we provide a tradeoff between update
costs and query costs in the dynamic versions of the data structures.
The cost bounds are parameterized by α . By setting α = O(1) we
achieve the same cost bounds as the traditional algorithms for queries
and updates. α can be chosen optimally if we know the update-to-
query ratio r . For interval and priority trees, the optimal value of α
is min(2 + ω/r ,ω). The overall work without considering writing
the output can be improved by a factor of Θ(logα). For 2D range
trees, the optimal value of α is 2 +min(ω/r ,ω)/log2 n.

We discuss two techniques in this section that we use to achieve
write-efficiency. The first technique is to decouple the tree construc-
tion from sorting, and we introduce efficient algorithms to construct
interval and priority search trees in linear reads and writes after the
input is sorted. Sorting can be done in parallel and write-efficiently
(linear writes).Using this approach, the tree structure that we obtain
is perfectly balanced.

The second technique that we introduce is the α-labeling tech-
nique. We mark a subset of tree nodes as critical nodes by a predi-
cate function parameterized by α , and only maintain augmentations
on these critical nodes. We can then guarantee that every update
only modifies O(logα n) nodes, instead of O(logn) nodes as in the
classic algorithms. At a high level, the α-labeling is similar to the
weight-balanced B-tree (WBB tree) proposed by Arge et al. [4, 5]
for the external-memory (EM) model [1]. However, as we discuss
in Section 6.3, directly applying the EM algorithms [2, 4, 5, 47, 48]
does not give us the desired bounds in our model. Secondly, our
underlying tree is still binary. Hence, we mostly need no changes to
the algorithmic part that dynamically maintains the augmentation
in this trees, but just relax the balancing criteria so the underlying
search trees can be less balanced. An extra benefit of our framework
is that bulk updates can be supported in a straightforward manner.
Such bulk updates seem complicated and less obvious in previous
approaches. We propose algorithms on our trees that can support
bulk updates write-efficiently and in polylogarithmic depth.

The rest of this section is organized as follows. We first provide
the problem definitions and review previous results in Section 6.1.
Then in Section 6.2, we introduce our post-sorted construction tech-
nique for constructing interval and priority search trees using a linear

Construction Query Update

Classic interval tree O(ωn logn) O(ωk + logn) O(ω logn)
Our interval tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic priority search tree O(ωn logn) O(ωk + logn) O(ω logn)
Our priority search tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic range Tree O(ωn logn) O(ωk + log2 n) O((logn + ω) logn)
Our range tree O((α + ω)n logα n) O(ωk + α logα n logn) O((α logn + ω) logα n)

Table 1: A summary of the work cost of the data structures discussed in Section 6. In all cases, we assume that the tree contains n
objects (intervals or points). For interval trees and priority search trees, we can reduce the number of writes in the construction from
O(logn) per element to O(1). For dynamic updates, we can reduce the number of writes per update by a factor of Θ(logα) at the cost
of increasing the number of reads in update and queries by a factor of α for any α ≥ 2.

number of writes. Finally, we introduce the α-labeling technique to
support a tradeoff in query and update cost for interval trees, priority
search trees, and range trees in Section 6.3.

6.1 Preliminaries and Previous Work
We define the weight or size of tree node or a subtree as the number
of nodes in this subtree plus one. The “plus one” guarantees that the
size of a tree node is always the sum of the sizes of its two children,
which simplifies our discussion. This is also the standard balancing
criteria used for weight-balanced trees [40].

Interval trees and the 1D stabbing queries. An interval tree6 [24,
25, 37] organizes a set of n intervals S = {si = (li , ri)} defined by
their left and right endpoints. The key on the root of the interval
tree is the median of the 2n endpoints. This median divides all
intervals into two categories: those completely on its left/right, which
then form the left/right subtrees recursively, and those covering the
median, which are stored in the root. The intervals in the root are
stored in two lists sorted by the left and right endpoints respectively.
In this paper, we use red-black trees to maintain such ordered lists to
support dynamic updates and refer to them as the inner trees. In the
worst case, the previous construction algorithms scan and copy O(n)
intervals in O(logn) levels, leading to O(n logn) reads and writes.

The interval tree can be used to answer a 1D stabbing query: given
a set of intervals, report a list of intervals covering the specific query
point pq . This can be done by searching pq in the tree. Whenever pq
is smaller (larger) than the key of the current node, all intervals in the
current tree node with left (right) endpoints smaller than pq should
be reported. This can be done efficiently by scanning the list sorted
by left (right) endpoints. The overall query cost is O(ωk + logn)
(where k is the output size).

2D Range trees and the 2D range queries. The 2D range tree [10]
organizes a set of n points p = {pi = (xi ,yi)} on the 2D plane. It
is a tree structure augmented with an inner tree, or equivalently, a
two-level tree structure. The outer tree stores every point sorted by
their x-coordinate. Each node in the outer tree is augmented with
an inner tree structure, which contains all the points in its subtree,
sorted by their y-coordinate.

6There exist multiple versions of interval trees. In this paper, we use the version
described in [24].

The 2D range tree can be used to answer the 2D range query:
given n points in the 2D plane, report the list of points with x-
coordinate between xL and xR , and y-coordinate between yB and
yT . Such range queries using range trees can be done by two nested
searches on (xL ,xR) in the outer tree and (yB ,yT) in at mostO(logn)
associated inner trees. Using balanced BSTs for both the inner and
outer trees, a range tree can be constructed with O(n logn) reads and
writes, and each query takes O(log2 n + k) reads and O(k) writes
(where k is the output size). A range tree requires O(n logn) storage
so the number of writes for construction is already optimal.
Priority search trees and 3-sided range queries. The priority
search tree [24, 38] (priority tree for short) contains a set of n points
p = {pi = (xi ,yi)} each with a coordinate (xi) and a priority (yi).
There are two variants of priority trees, one is a search tree on co-
ordinates that keeps a heap order of the priorities as the augmented
values [4, 38]. The other one is a heap of the priorities, where each
node is augmented with a splitter between the left and right sub-
trees on the coordinate dimension [24, 38]. The construction of both
variants uses O(n logn) reads and writes as shown in the original
papers [24, 38]. For example, consider the second variant. The root
of a priority tree stores the point with the highest priority in p. All
the other points are then evenly split into two sets by the median of
their coordinates which recursively form the left and right subtrees.
The construction scans and copies O(n) points in O(logn) levels,
leading to O(n logn) reads and writes for the construction.

Many previous results on dynamic priority search trees use the
first variant because it allows for rotation-based updates. In this
paper, we discuss how to construct the second variant allowing
reconstruction-based updates, since it is a natural fit for our frame-
work. We also show that bulk updates can be done write-efficiently
in this variant. For the rest of this section, we discuss the second
variant of the priority tree.

The priority tree can be used to answer the 3-sided queries: given
a set of n points, report all points with coordinates in the range
[xL ,xR], and priority higher than yB . This can be done by traversing
the tree, skipping the subtrees whose coordinate range do not overlap
[xL ,xR], or where the priority in the root is lower than yB . The cost
of each query is O(ωk + logn) for an output of size k [24].

6.2 The Post-Sorted Construction
For interval trees and priority search trees, the standard construction
algorithms [23–25, 37, 38] require O(n logn) reads and writes, even

though the output is only of linear size. This section describes algo-
rithms for constructing them in an optimal linear number of writes.
Both algorithms first sort the input elements by their x-coordinate in
O(ωn + n logn) work and O(ω · polylog(n)) depth using the write-
efficient comparison sort described in the full version of this paper.
We now describe how to build the trees in O(n) reads and writes
given the sorted input. For a range tree, since the standard tree has
O(n logn) size, the classic construction algorithm is already optimal.

Interval Tree. After we sort all 2n coordinates of the endpoints,
we can first build a perfectly-balanced binary search tree on the
endpoints using O(n) reads and writes and O(ω · polylog(n)) depth.
We now consider how to construct the inner tree of each tree node.

We create a lowest common ancestor (LCA) data structure on
the keys of the tree nodes that allows for constant time queries.
This can be constructed in O(n) reads/writes and O(ω · polylog(n))
depth [11, 35]. Each interval can then find the tree node that it
belongs to using an LCA query on its two endpoints. We then use a
radix sort on the n intervals. The key of an interval is a pair with the
first value being the index of the tree node that the interval belongs
to, and the second value being the index of the left endpoint in the
pre-sorted order. The sorted result gives the interval list for each tree
node sorted by left endpoints. We do the same for the right endpoints.
This step takes O(n) reads/writes overall. Finally, we can construct
the inner trees from the sorted intervals in O(n) reads/writes across
all tree nodes.

Parallelism is straightforward for all steps except for the radix
sort. The number of possible keys can be O(n2), and it is not known
how to radix sort keys from such a range work-efficiently and in
polylogarithmic depth. However, we can sort a range ofO(n logn) in
O(ωn) expected work and O(ω · polylog(n)) depth whp [43]. Hence
our goal is to limit the first value into a O(logn) range. We note that
given the left endpoint of an interval, there are only log2(2n) possible
locations for the tree node (on the tree path) of this interval. There-
fore instead of using the tree node as the first value of the key, we
use the level of the tree node, which is in the range [1, . . . ,O(logn)].
By radix sorting these pairs, so we have the sorted intervals (based
on left or right endpoint) for each level. We observe that the intervals
of each tree node are consecutive in the sorted interval list per level.
This is because for tree nodes u1 and u2 on the same level where u1
is to the left of u2, the endpoints of u1’s intervals must all be to the
left of u2’s intervals. Therefore, in parallel we can find the first and
the last intervals of each node in the sorted list, and construct the
inner tree of each node. Since the intervals are already sorted based
on the endpoints, we can build inner trees in O(n) reads and writes
and O(ω · polylog(n)) depth [12].

Priority Tree. In the original priority tree construction algorithm,
points are recursively split into sub-problems based on the median at
each node of the tree. This requires O(n) writes at each level of the
tree if we explicitly copy the nodes and pack out the root node that
is removed. To avoid explicit copying, since the points are already
pre-sorted, our write-efficient construction algorithm passes indices
determining the range of points belonging to a sub-problem instead
of actually passing the points themselves. To avoid packing, we
simply mark the position of the removed point in the list as invalid,
leaving a hole, and keep track of the number of valid points in each
sub-problem.

Our recursive construction algorithm works as follows. For a tree
node, we know the range of the points it represents, as well as the
number of valid points nv . We then pick the valid point with the
highest priority as the root, mark the point as invalid, find the median
among the valid points, and pass the ranges based on the median
and number of valid points (either ⌊(nv − 1)/2⌋ or ⌈(nv − 1)/2⌉) to
the left and right sub-trees, which are recursively constructed. The
base case is when there is only one valid point remaining, or when
the number of holes is more than the valid points. Since each node
in the tree can only cause one hole, for every range corresponding
to a node, there are at most O(logn) holes. Since the size of the
small-memory is Ω(logn), when the number of valid points is fewer
than the number of holes, we can simply load all of the valid points
into the small-memory and construct the sub-tree.

To efficiently implement this algorithm, we need to support three
queries on the input list: finding the root, finding the k-th element in
a range (e.g., the median), and deleting an element. All queries and
updates can be supported using a standard tournament tree where
each interior node maintains the minimum element and the number
of valid nodes within the subtree. With a careful analysis, all queries
and updates throughout the construction require linear reads/writes
overall. The details are provided in the full version of this paper.

The parallel depth is O(ω · polylog(n))—the bottleneck lies in
removing the points. There are O(logn) levels in the priority tree
and it costs O(ω logn) for removing elements from the tournament
tree on each level. For the base cases, it takes linear writes overall to
load the points into the small-memory and linear writes to generate
all tree nodes. The depth is O(ω logn).

We summarize our result in this section in Theorem 6.1.

THEOREM 6.1. An interval tree or a priority search tree can
be constructed with pre-sorted input in O(ωn) expected work and
O(ω · polylog(n)) depth whp on the Asymmetric NP model.

6.3 Dynamic Updates on Reconstruction-Based
Rebalancing

Dynamic updates (insertions and deletions) are often supported
on augmented trees [23–25, 37, 38] and the goal of this section
is to support updates write-efficiently, at the cost of performing
extra reads to reduce the overall work. Traditionally, an insertion
or deletion costs O(logn) for interval trees and priority search trees,
and O(log2 n) for range trees. In the asymmetric setting, the work
is multiplied by ω. To reduce the overall work, we we introduce an
approach to select a subset of tree nodes as critical nodes, and only
update the balance information of those nodes (the augmentations
are mostly unaffected). The selection of these critical nodes are done
by the α -labeling introduced in Section 6.3.1. Roughly speaking, for
each tree path from the root to a leaf node, we haveO(logα n) critical
nodes marked such that the subtree weights of two consecutive
marked nodes differ by about a factor of α(≥ 2). By doing so, we
only need to update the balancing information in the critical nodes,
leading to fewer tree nodes modified in an update.

Arge et al. [4, 5] use a similar strategy to support dynamic updates
on augmented trees in the external-memory (EM) model, in which a
block of data can be transferred in unit cost [1]. They use a B-tree
instead of a binary tree, which leads to a shallower tree structure
and fewer memory accesses in the EM model. However, in the

Asymmetric NP model, modifying a block of data requires work
proportional to the block size, and directly using their approach
cannot reduce the overall work. Inspired by their approach, we
propose a simple approach to reduce the work of updates for the
Asymmetric NP model.

The main component of our approach is reconstruction-based
rebalancing using the α-labeling technique. We can always obtain
the sorted order via the tree structure, so when imbalance occurs,
we can afford to reconstruct the whole subtree in reads and writes
proportional to the subtree size and polylogarithmic depth. This
gives a unified approach for different augmented trees: interval trees,
priority search trees, and range trees.

We introduce the α -labeling idea in Section 6.3.1, the rebalancing
algorithm in Section 6.3.2, and its work analysis in Section 6.3.3.
We then discuss the maintenance of augmented values for different
applications in Section 6.3.4. We mention how to parallelize bulk
updates in Section 6.3.5 and in the full version of the paper.

6.3.1 α-Labeling. The goal of the α-labeling is to maintain
the balancing information at only a subset of tree nodes, the critical
nodes, such that the number of writes per update is reduced. Once the
augmented tree is constructed, we label the node as a critical node
if for some integer i ≥ 0, (1) its subtree weight is between 2α i and
4α i −2 (inclusive); or (2) its subtree weight is 2α i −1 and its sibling’s
subtree weight is 2α i . All other nodes are secondary nodes. As a
special case, we always treat the root as a virtual critical node, but it
does not necessary satisfy the invariants of critical nodes. Note that
all leaf nodes are critical nodes in α -labeling since they always have
subtrees of weight 2. When we label a critical node, we refer to its
current subtree weight (which may change after insertions/deletions)
as its initial weight. Note that after the augmented tree is constructed,
we can find and mark the critical nodes in O(n) reads/writes and
O(ω logn) depth. After that, we only maintain the subtree weights
for these critical nodes, and use their weights to balance the tree.

FACT 6.2. For a critical node A, 2α i − 1 ≤ |A| ≤ 4α i − 2 holds
for some integer i.

This fact directly follows the definition of the critical node.
For two critical nodes A and B, if A is B’s ancestor and there is no

other critical node on the tree path between them, we refer to B as
A’s critical child, and A as B’s critical parent. We define a critical
sibling accordingly.

We show the following lemma on the initial weights.

LEMMA 6.3. For any two critical nodes A and B where A is B’s
critical parent, their initial weights satisfy max{(α/2)|B |, 2|B |−1} ≤
|A| ≤ (2α + 1)|B |.

PROOF. Based on Fact 6.2, we assume 2α i − 1 ≤ |A| ≤ 4α i − 2
and 2α j − 1 ≤ |B | ≤ 4α j − 2 for some integers i and j. We first show
that i = j + 1. It is easy to check that j cannot be larger than or equal
to i. Assume by contradiction that j < i − 1. With this assumption,
we will show that there exists an ancestor of B, which we refer to it
as y, which is a critical node. The existence of y contradicts the fact
that A is B’s critical parent. We will use the property that for any tree
node x the weight of its parent p(x) is 2|x | − 1 ≤ |p(x)| ≤ 2|x | + 1.

Assume that B does not have such an ancestor y. Let z be the
ancestor of B with weight closest to but no more than 2α i−1. We

(a) (b) (c)

Figure 3: An illustration of rebalancing based on α-labeling.
The critical nodes are shaded. The case after construction is
shown in (a) with solid borders. After some insertions, the size
of one of the subtrees grows to twice its initial weight (dashed
lines in (a)), so the algorithm reconstructs the subtree, as shown
in (b). As we keep inserting new nodes along the left spine, the
tree will look like what is shown in (c), but Lemma 6.4 guaran-
tees that the subtree of the topmost critical node will be recon-
structed before it gets more than 4α + 2 critical children. The
lemma also guarantees that on the path from a critical node to
any of its critical children, there can be at most 4α −1 secondary
nodes.

consider two cases: (a) |z | ≤ 2α i−1 − 2 and (b) |z | = 2α i−1 − 1. In
case (a) z’s parent p(z) has weight at most 2|z |+1 = 4α i−1−3. |p(z)|
cannot be less than 2α i−1 by definition of z, and so y = p(z), leading
to a contradiction. In case (b), z’s sibling does not have weight 2α i−1,
otherwise y = z. However, then |p(z)| ≤ 2|z | = 4α i−1 − 2, and either
z is not the ancestor with weight closest to 2α i−1 or y = p(z).

Given i = j + 1, we have (α/2)|B | ≤ |A| ≤ (2α + 1)|B | (by
plugging in 2α i − 1 ≤ |A| ≤ 4α i − 2 and 2α i−1 − 1 ≤ |B | ≤ 4α i−1 −
2). Furthermore, since A is B’s ancestor, we have 2|B | − 1 ≤ |A|.
Combining the results proves the lemma. �

6.3.2 Rebalancing Algorithm based on α-Labeling. We
now consider insertions and deletions on an augmented tree. Main-
taining the augmented values on the tree are independent of our
α-labeling technique, and differs slightly for each of the three tree
structures. We will further discuss how to maintain augmented values
in Section 6.3.4.

We note that deletions can be handled by marking the deleted
objects without actually applying the deletion, and reconstructing
the whole subtree once a constant fraction of the objects is deleted.
Therefore in this section, we first focus on the insertions only. We
analyze single insertions here, and discuss bulk insertions in the full
version of the paper. Once the subtree weight of a critical node A
reaches twice the initial weight s, we reconstruct the whole subtree,
label the critical nodes within the subtree, and recalculate the initial
weights of the new critical nodes. An exception here is that, if
s ≤ 4α i − 2 and 2α i+1 − 1 ≤ 2s for a certain i, we do not mark the
new root since otherwise it violates the bound stated in Lemma 6.4
(see more details in Section 6.3.3) with A’s critical parent. After
this reconstruction, A’s original critical parent gets one extra critical
child, and the two affected children now have initial weights the
same as A’s initial weight. If imbalance occurs at multiple levels, we
reconstruct the topmost tree node. An illustration of this process is
shown in Figure 3.

We can directly apply the algorithms in Section 6.2 to reconstruct
a subtree as long as we have the sorted order of the (end)points in this
subtree. For interval and range trees, we can acquire the sorted order
by traversing the subtree. using linear work and O(ω · polylog(n))
depth [8, 46]. For priority trees, since the tree nodes are not stored
in-order, we need to insert all interior nodes into the tree in a bottom-
up order based on their coordinates (without applying rebalancing)
to get the total order on coordinates of all points (the details and
cost analysis can be found in the full version of this paper). After
we have the sorted order, a subtree of weight n can be constructed in
O(ωn) work and O(ω · polylog(n)) depth.

As mentioned, we always treat the root as a virtual critical node,
but it does not necessary satisfy the invariants of critical nodes. By
doing so, once the weight of the whole tree doubles, we reconstruct
the entire tree. We need Ω(n) insertions for one reconstruction on the
root (there can be deletions). The cost for reconstruction is O(ωn)
for interval trees and priority trees, and O(ωn logα n) for range trees
(shown in Section 6.3.4). The amortized cost is of a lower order
compared to the update cost shown in Theorem 6.8.

6.3.3 Cost Analysis of the Rebalancing. To show the re-
balancing cost, we first prove some properties of our dynamic aug-
mented trees.

LEMMA 6.4. In a dynamic augmented tree with α-labeling, we
have max{(α/4)|B |, (3/2)|B | − 1} ≤ |A| ≤ (4α + 2)|B | for any two
critical nodes A and B where A is B’s critical parent.

PROOF. For any critical node A in the tree, the subtree weight
of its critical child B can grow up to a factor of 2 of B’s initial
weight, after which the subtree is reconstructed to two new critical
nodes with the same initial weight of B. A’s weight can grow up
to a factor of 2 of A’s initial weight, without affecting B’s weight
(i.e., all insertions occur in A’s other critical children besides B).
Combining these observations with the result in Lemma 6.3 shows
this lemma except for the (3/2)|B | − 1 ≤ |A| part. Originally we have
2|B | − 1 ≤ |A| after the previous reconstruction. |A| grows together
when |B | grows, and right before the reconstruction of B we have
(3/2)|B | − 1 ≤ |A|. �

Lemma 6.4 shows that each critical node has at most 4α+2 critical
children, and so that there are at most 4n + 1 secondary nodes to
connect them. This leads the following corollary.

COROLLARY 6.5. The length of the path from a critical node to
its critical parent is at most 4α + 1.

Combining Lemma 6.4 and Corollary 6.5 gives the following
result.

COROLLARY 6.6. For a leaf node in a tree with α-labeling,
the tree path to the root contains O(logα n) critical nodes and
O(α logα n) nodes.

Corollary 6.6 shows the number of reads during locating a node
in an augmented tree, and the number of critical nodes on that path.

With these results, we now analyze the cost of rebalancing for
each insertion. For a critical node with initial weight W , we need
to insert at least anotherW new nodes into this subtree before the
next reconstruction of this critical node. Theorem 6.1 shows that
the amortized cost for each insertion in this subtree is therefore

O(ω) on this node. Based on Corollary 6.6, the amortized cost for
each insertion contains O(logα n) writes and O(α logα n) reads. In
total, the work per insertion is O((α + ω) logα n), since we need to
traverse O(α logα n) tree nodes, update O(logα n) subtree weights,
and amortize O(ω logα n) work for reconstructions.

We note that any interleaving insertions can only reduce the
amortized cost for deletions. Therefore, both the algorithm and the
bound can be extended to any interleaving sequence of insertions
and deletions. Altogether, we have the following result, which can
be of independent interest.

THEOREM 6.7. Using reconstruction-based rebalancing based
on the α-labeling technique, the amortized cost for each update
(insertion or deletion) to maintain the balancing information on a
tree of size n is O((ω + α) logα n).

6.3.4 Handling Augmented Values. Since the underlying
tree structure is still binary, minor changes to the trees are required
for different augmentations.

Interval trees. Actually, we do not need any changes for the
interval tree at all. Since we never apply rotations, we directly in-
sert/delete the interval to the associated inner tree, with a cost of
O(logn + ω).

Range trees. For the range tree, we only keep the inner trees
for the critical nodes. As such, the overall augmentation weight
(i.e., overall weights of all inner trees) is O(n logα n). For each
update, we insert/delete this element in O(logα n) inner trees (Corol-
lary 6.6), and the overall cost is O((logn + ω) logα n). Then each
query may looks into no more than O(α logα n) inner trees each
requiring O(logn) work for a 1D range query. The overall cost for a
query is therefore O(ωk + α logα n logn).

Priority trees. For insertions on priority trees, we search its coor-
dinate in the tree and put it where the current tree node is of lower
priority than the new point. The old subtree root is then recursively
inserted to one of its subtrees. The cost can be as expensive as
O(ωα logα n) when a point with higher priority than all tree nodes is
inserted. To address this, points are only stored in the critical nodes,
and the secondary nodes only partition the range, without holding
points as augmented values. This can be done by slightly modifying
the construction algorithm in Section 6.2. During the construction,
once the current node is a secondary node, we only partition the
range, but do not find the node with the highest priority. Since all
leaf nodes are critical, the tree size is affected by at most a factor of 2.
With this approach, each insertion modifies at most O(logα n) nodes,
and so the extra work per insertion for maintaining augmented data
isO((α +ω) logα n). A deletion on priority trees can be implemented
symmetrically, and can lead to cascading promotions of the points.
Once the promotions occur, we leave a dummy node in the origi-
nal place of the last promoted point, so that all of the subtree sizes
remain unchanged (and the tree is reconstructed once half one the
nodes are dummy). The cost of a deletion is also O((α + ω) logα n).

Combining the results above gives the following theorem.

THEOREM 6.8. Given any integer α ≥ 2, an update on an in-
terval or priority search tree requires O((ω + α) logα n) amortized
work and a query costs O(ωk + α logα n); for a 2D range tree,

the query and amortized update cost is O((α logn + ω) logα n) and
O(ωk + α logα n logn).

6.3.5 Bulk Updates. One of the benefits of the reconstruction-
based approach is that bulk updates on our augmented trees can be
directly supported. In this case we need to change the inner trees to
be treaps to support efficient bulk insertions/deletions [12, 49, 50].
We discuss the details bulk updates in the full version of this paper.
The overall conclusion is that, given a bulk update of size m, we can
process it using the same amount of work as applying the updates
sequentially, but in parallel with a O(ω · polylog(n)) depth.

7 CONCLUSIONS
In this paper, we introduced new algorithms and data structures
for computational geometry problems, including comparison sort,
planar Delaunay triangulation, k-d trees, and static and dynamic
augmented trees. All of our algorithms, except for dynamic updates
for augmented trees, are asymptotically optimal in terms of the
number of arithmetic operations and writes to the large asymmetric
memory, and have polylogarithmic depth.

We introduced two frameworks for designing write-efficient par-
allel algorithms. The first one is for randomized incremental al-
gorithms, and combines DAG tracing and prefix doubling so that
multiple objects can be processed in parallel in a write-efficient
manner. The second one is designed for augmented weight-balanced
binary search trees, where for dynamic insertions and deletions, we
can reduce the amortized number of writes compared to the stan-
dard data structure. We believe that these techniques can be used for
designing other write-efficient algorithms.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-1408940, CCF-
1533858, and CCF-1629444.

REFERENCES
[1] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9), 1988.
[2] D. Ajwani, N. Sitchinava, and N. Zeh. Geometric algorithms for private-cache

chip multiprocessors. In ESA, 2010.
[3] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. CRC Press,

2008.
[4] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and

optimal range search indexing. In PODS, 1999.
[5] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM

Journal on Computing, 32(6), 2003.
[6] M. Atallah and M. Goodrich. Deterministic parallel computational geometry. In

Synthesis of Parallel Algorithms, pages 497–536. Morgan Kaufmann, 1993.
[7] A. Ben-Aroya and S. Toledo. Competitive analysis of flash-memory algorithms.

In ESA, 2006.
[8] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,

and J. Shun. Parallel algorithms for asymmetric read-write costs. In SPAA, 2016.
[9] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9), 1975.
[10] J. L. Bentley. Decomposable searching problems. Information Processing Letters,

8(5), 1979.
[11] O. Berkman and U. Vishkin. Recursive *-tree parallel data-structure. In FOCS,

1989.
[12] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In

SPAA, 2016.
[13] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Sorting with

asymmetric read and write costs. In SPAA, 2015.
[14] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Efficient

algorithms with asymmetric read and write costs. In ESA, 2016.
[15] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental

algorithms. In SPAA, 2016.

[16] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-efficient algorithms and
data structures for computational geometry. arXiv preprint:1805.05592, 2018.

[17] G. E. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor. Design and im-
plementation of a practical parallel Delaunay algorithm. Algorithmica, 24(3-4),
1999.

[18] J.-D. Boissonnat and M. Teillaud. On the randomized construction of the delaunay
tree. Theoretical Computer Science, 112(2), 1993.

[19] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and
H. V. Simhadri. Write-avoiding algorithms. In IPDPS, 2016.

[20] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms for phase
change memory. In CIDR, 2011.

[21] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry, II. Discrete & Computational Geometry, 4(5), 1989.

[22] R. Cole. Parallel merge sort. SIAM J. Comput., 17(4), 1988.
[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms (3rd edition). MIT Press, 2009.
[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag, 2008.
[25] H. Edelsbrunner. Dynamic data structures for orthogonal intersection queries.

Technische Universität Graz/Forschungszentrum Graz. Institut für Informa-
tionsverarbeitung, 1980.

[26] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and P. Pszona. Wear minimization
for cuckoo hashing: How not to throw a lot of eggs into one basket. In SEA, 2014.

[27] E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM
Computing Surveys, 37(2), 2005.

[28] M. T. Goodrich. Finding the convex hull of a sorted point set in parallel. Informa-
tion Processing Letters, 26(4), 1987.

[29] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via
approximate agglomerative clustering. In High-Performance Graphics Conference,
2013.

[30] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In SPAA,
2015.

[31] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction
of Delaunay and Voronoi diagrams. Algorithmica, 7(4):381–413, 1992.

[32] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD,
1984.

[33] S. Har-Peled. Geometric approximation algorithms, volume 173. American
Mathematical Society, 2011.

[34] R. Jacob and N. Sitchinava. Lower bounds in the asymmetric external memory
model. In SPAA, 2017.

[35] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.
[36] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-

trees: Theory and Applications. Springer Science & Business Media, 2010.
[37] E. M. McCreight. Efficient algorithms for enumerating intersecting intervals and

rectangles. Technical report, 1980.
[38] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2), 1985.
[39] K. Mulmuley. Computational geometry–an introduction through randomized

algorithms. Prentice Hall, 1994.
[40] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM

journal on Computing, 2(1), 1973.
[41] M. H. Overmars. The design of dynamic data structures, volume 156. Springer

Science & Business Media, 1983.
[42] H. Park and K. Shim. FAST: Flash-aware external sorting for mobile database

systems. Journal of Systems and Software, 82(8), 2009.
[43] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized

parallel sorting algorithms. SIAM J. Comput., 18(3), 1989.
[44] J. H. Reif and S. Sen. Optimal randomized parallel algorithms for computational

geometry. Algorithmica, 7(1-6):91–117, 1992.
[45] R. Seidel. Backwards analysis of randomized geometric algorithms. In New

Trends in Discrete and Computational Geometry. 1993.
[46] J. Shun, Y. Gu, G. Blelloch, J. Fineman, and P. Gibbons. Sequential random

permutation, list contraction and tree contraction are highly parallel. In SODA,
2015.

[47] N. Sitchinava. Computational geometry in the parallel external memory model.
SIGSPATIAL Special, 4(2), 2012.

[48] N. Sitchinava and N. Zeh. A parallel buffer tree. In SPAA, 2012.
[49] Y. Sun and G. E. Blelloch. Parallel range and segment queries with augmented

maps. arXiv preprint:1803.08621, 2018.
[50] Y. Sun, D. Ferizovic, and G. E. Blelloch. PAM: Parallel augmented maps. In

PPoPP, 2018.
[51] R. E. Tarjan. Updating a balanced search tree in O (1) rotations. Information

Processing Letters, 16(5), 1983.
[52] S. D. Viglas. Adapting the B+-tree for asymmetric I/O. In ADBIS, 2012.
[53] S. D. Viglas. Write-limited sorts and joins for persistent memory. PVLDB, 7(5),

2014.
[54] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic

bounding volume hierarchies. ACM Transactions on Graphics (TOG), 26(1),
2007.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Computation Models
	2.2 Write-Efficient Geometric Algorithms

	3 General Techniques for Incremental Algorithms
	3.1 DAG Tracing
	3.2 The Prefix-Doubling Approach

	4 Planar Delaunay Triangulation
	5 Space-Partitioning Data Structures
	5.1 k-d Tree Construction and Queries
	5.2 k-d Tree Dynamic Updates

	6 Augmented Trees
	6.1 Preliminaries and Previous Work
	6.2 The Post-Sorted Construction
	6.3 Dynamic Updates on Reconstruction-Based Rebalancing

	7 Conclusions
	References

