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Abstract—Social influence and influence diffusion has been
widely studied in online social networks. However, most existing
works on influence diffusion focus on static networks. In this
paper, we study the problem of maximizing influence diffusion
in a dynamic social network. Specifically, the network changes
over time and the changes can be only observed by periodically
probing some nodes for the update of their connections. Our
goal then is to probe a subset of nodes in a social network so
that the actual influence diffusion process in the network can
be best uncovered with the probing nodes. We propose a novel
algorithm to approximate the optimal solution. The algorithm,
through probing a small portion of the network, minimizes
the possible error between the observed network and the real
network.

We evaluate the proposed algorithm on both synthetic
and real large networks. Experimental results show that our
proposed algorithm achieves a better performance than several
alternative algorithms.

I. INTRODUCTION

Social influence, the phenomenon that the actions of a user
can induce her friends to behave in a similar way, is a subtle
force that governs the dynamics of social networks [5]. For
example, a company wants to market a new product through
the effect of “word of mouth” in the social network. It wishes
to find and convince a small subset of users (seed users) to
adopt the product so as to trigger a large cascade of further
adoptions via social influence. Fundamentally, we need to
understand the influence diffusion by answering questions
such as: how to select the seed users so that the total number
of triggered users to adopt the product can be maximized
(a.k.a. influence maximization).

Recently, with the rapid development of online social
networks such as Facebook, Twitter, and Google Plus, a bulk
of research has been conducted for studying the influence
diffusion in social networks. For example, Richardson [14]
and Kempe et al. [9] formally defined the problem of
influence maximization. Chen et al. [4] presented an efficient
algorithm to solve the problem. Goyal et al. [7] leveraged
real propagation traces to derive more accurate influence
models. However, most existing methods do not consider the
temporal information. In [8], the authors presented the prob-
lem of MINTIME for influence maximization. In MINTIME,
an influence spread threshold η and a budget threshold k
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Figure 1: An example of probing influence diffusion in a
dynamic social network. The left figure presents the given
network at t = 0; the middle figure describes the process of
probing in the network at t = 1; the right figure illustrates
the partially observed network.

are given, and the task is to find a subset of size at most k
such that by activating it, at least η nodes are activated in
expectation in the minimum possible time. Chen et al. [3],
instead, explored time-critical influence maximization in
social networks with a deadline constraint τ . The goal is to
choose a budgeted subset to activate, which could maximize
the influence spread at τ time stamps later. However, their
work assumes that the dynamic network is fully observed.
This is unrealistic in many real situations. For example, there
are more than 3 million following relationships newly added
and 3 million removed from Weibo network every day. It is
difficult to provide a fully observed network at any moment.

In this paper, we study the problem of influence maxi-
mization on dynamic social networks. An example is illus-
trated in Figure 1. Particularly, the scenario setting is that
we are given a network G0 at the first time stamp, but
can only observe the changes of network by periodically
probing a small subset of its nodes for their connections in
the following time stamps. After the probing at time t, we
obtain a partially observed network Ĝt. Different probing
strategies may result in different observed networks. Our
ultimate objective is to study influence maximization [9] on
dynamic social networks. Thus, an ideal solution for probing
is that the influence diffusion in the observed network Ĝt

is exactly the same as that in the fully observed network
Gt. The challenge here is to design a probing strategy to



maintain an observed network on which the solution of
influence maximization is as close to the solution on the
real network as possible.

The problem is different from the settings in existing work
and poses a set of unique challenges. First, as the network
changes can be only detected by probing, it might be neces-
sary to adjust the classical influence diffusion algorithm to
the dynamic settings. Second, it is important to design an
efficient algorithm to select the subset of nodes to probe so
as to benefit the performance of influence diffusion.

To address the above challenges, employing influence
maximization as an example, we propose a novel algorithm
for probing influence diffusion. We propose Maximum Gap
Probing (MaxG) algorithm which aims to maximize the
change of solution achieved by probing. We define the
“maximum possible performance gap” formally, and provide
a method to explicitly estimate its value.

We test the proposed algorithm on both synthetic and real
large networks. In synthetic network, we evaluate how the
proposed algorithm approximates the “true” solution to the
influence maximization. In two real networks, Twitter and
Coauthor, we also compare the proposed algorithm with
several baseline approaches. MaxG achieves a significant
better performance than the baseline algorithms.

II. PRELIMINARIES

We first introduce the concept of probing in dynamic
networks. Specifically, we assume a discrete notion of time
t. The directed social network at time t is denoted by Gt =
(V t, Et), where V t is the set of nodes and Et ⊂ V t × V t

is the set of edges included in the social network at time
t. Notation {Gt}t=0,··· ,T defines the sequence of networks
over time. We suppose that the network at t = 0 is known,
while the change of the network over time can only be
observed by probing. When an algorithm (or a user) probes
a node, it can see the current connections of this node.
The algorithm can keep a partially observed network Ĝ, by
probing a fixed number of b nodes at each time stamp, and
update their connections. If the given b is large (with an
extreme case b = |V |), then the observed network should be
almost the same as the fully observed network. However, if
b is a small number, the design of probing strategy can be
very challenging. First, we need to probe nodes that are most
likely to change so as to keep the observed network as close
to the real network as possible. Second, regarding specific
task that will be implemented on the observed network,
the probing strategy should leverage the importance of each
node in the task as well.

Before we study influence maximization on dynamic
networks, we briefly review the influence maximization
problem on the static networks. Suppose we are given a
social network G = (V,E), where V is the set of nodes
(users) and E ⊂ V ×V is the set of edges. Notation eij ∈ E
represents a directed relationship from node vi to vj . Let

each node have a binary status (active or inactive) and pij
quantify the influence probability of vj on vi. When a node
vj is active, we say that the node has a probability pij to
influence its neighbor vi to be active1. For simplification,
we assign uniform probability p to all the pij . Influence
maximization is to find a small subset of nodes (seed nodes)
in a social network that could maximize the spread of
influence. In particular, it aims to find a subset S of nodes
with size k and activates all nodes in the set. Hopefully these
nodes can spread their influence to activate other inactive
nodes. The influence spread process continues until no more
inactive nodes can be activated. A good solution to influence
maximization is to find the seed set S that can maximize the
number of activated nodes after the influence spread process.
The problem is proved to be NP-hard [9] and a number of
algorithms have been proposed to approximate the optimal
solutions such as [4].

Based on the classical influence maximization problem,
we propose the problem of probing influence diffusion in
dynamic networks. Our goal is to design a probing strategy
so that the solution of influence maximization obtained
based on the observed network at time stamp t can trigger
the maximum influence spread on the real network at t. We
define the problem as follows:

Problem 1. Influence Maximization in Dynamic Social
Networks. Let G0 be a network at time t = 0. Suppose
the network keeps changing over time, and the changes
can be known only by probing. Our problem is to find b
nodes so that if we probe their connection changes at time t
and partially update the observed network, the approximate
solution to the influence maximization problem with the
observed network will be close to the “true” solution on
the fully observed network at time t.

Unlike the traditional influence maximization prob-
lem [14], [9] which aims to find the optimal subset on static
networks, we focus on probing strategies to mostly benefit
the influence maximization algorithm in dynamic networks.

III. PROBING ALGORITHMS

In this section, we introduce an algorithm for probing
influence diffusion in dynamic social networks. For the
algorithm, except the first time stamp, we do not have a full
image of the network at following time stamps. Instead, we
keep an observed network Ĝt at each time stamp t. When
t = 0, the observed network is exactly the same as the
real network, i.e. Ĝ0 = G0. At each time stamp t > 0,
we update the connections of probed nodes based on the
observed network Ĝt−1 from previous time stamp and obtain
Ĝt. Then we perform an influence maximization algorithm
on the observed network and output the approximated seed

1As in a social network, eij usually represent vi follows vj , which means
that vj is possible to influence vi.



set St. We utilize the degree discount heuristics algorithm
proposed in [4] for influence maximization, i.e. to greedily
choose the node with the maximum improvement to the
influence spread and add it to the seed set, until the seed
set reaches the given size k. A simple heuristic function
hΓ(u) is defined to estimate the marginal improvement of
each node u:

hΓ(u) = 1 + p · [din(u)− rin(u)− rout(u)

− p · rout(u) (din(u)− rin (u))] (1)

where Γ denotes the set of nodes that have been chosen
as seeds so far; din(u) is the in-degree of node u; rin(u)
and rout(u) are the number of nodes that have already been
chosen as seeds in Γ among the predecessors and successors
of u respectively. We calculate the heuristic function on
ĥΓ(v) on the observed network Ĝ.

A straightforward strategy for probing is to randomly
choose nodes with equal probability and probe their con-
nection changes. However, as it treats all nodes equally,
it is unlikely to minimize the loss to the performance of
influence maximization. An alternative algorithm is Degree
Weighted Round-Robin Probing (DegRR). It probes each
node with frequency proportional to their observed degrees,
e.g. the sum of their in-degrees and out-degrees. Although it
considers the different importance of each node in influence
maximization tasks, neighborhood of nodes with high degree
does not necessarily change frequently.

Our proposed idea is to detect the maximum possible
change to the solution of influence maximization so as to
minimize the loss between the observed network and the real
network. We formulate an objective function and propose the
Maximum Gap Probing (MaxG) to optimize it.

Maximum Gap Probing (MaxG) Our intuition is to probe
the nodes which are expected to bring the most change of
the approximated solution on the observed network, so as
to approach the performance of real solution. We define
function Q̂v(S) to evaluate the influence spread of seed
set S on the observed network Ĝ after probing node v.
We use So and S′

o to represent the optimal seed set for
influence maximization obtained before and after probing v
respectively. Note that S′

o is dependent on the probed node
v and thus can also be written as a function of v, i.e. S′

o(v).
Then the difference of solution with and without probing v

could be measured by
(
Q̂v (S

′
o(v))− Q̂v (So)

)
. We refer to

the difference as “performance gap”.
We need to estimate the “maximum possible performance

gap” for each node. More precisely, for a given probabil-
ity ϵ as “tolerance”, indicating that we only consider the
performance gap with the occurrence probability not lower
than ϵ, we accordingly define β(v), the maximum possible
performance gap discovered (corrected) by probing v, as the
maximum real value satisfying

Input: G0, T , ϵ, b
Output: Seed set St at t = 1, 2, · · · , T

1 Ĝ← G0; ∀v ∈ V, cv ← 0;
2 for t = 1 to T do
3 ∀v ∈ V, cv ← cv + 1;
4 for b times do
5 So ← k nodes with maximum d̂in(v);
6 d̂max = maxu/∈So d̂in(u) ;
7 d̂min = minw∈So d̂in(w);
8 foreach v ∈ V do
9 zv ←

√
−2cv ln ϵ;

10 if v ∈ S then
βv ← max

{
0, d̂max − d̂in(v) + zv

}
else

βv ← max
{
0, d̂in(v) + zv − d̂min

}
11 v∗ ← argmaxv∈V βv , cv∗ ← 0;
12 Probe v∗ in Gt and update Ĝ;

// Degree discount heuristics
13 St ← ∅;
14 for k times do
15 v∗ ← argmaxv∈V \St ĥSt(v);
16 St ← St ∪ {v∗};
17 foreach neighbor u of v∗ do
18 Update ĥSt(u) ;
19 Output St;

Algorithm 1: Maximum Gap Probing

P
[
Q̂v (S

′
o(v))− Q̂v (So) ≥ β(v)

]
≤ ϵ

And the objective of our algorithm is to maximize the
possible correction by probing v which maximizes β(v).

There are several optional instantiations for Q̂v(S). Since
it is intractable to compute the expected influence spread for
a given seed set, we instead sum up the in-degree of nodes
in seed set S on the observed network Ĝ. Without specifying
the in-degree distribution of each node v, the precise value
of β(v) is still hard to calculate. However, we can employ
Azuma-Hoeffding inequality to provide an estimate of β(v),
as shown in the following part. The pseudo-code of MaxG
algorithm is presented in Algorithm 1, where the estimation
of β(v) is shown in Line 8-10.

Estimation of β(v) We derive the estimation of “maximum
possible performance gap” β(v) below. Note that we omit
the superscript t for simplicity.
Q̂v(S) indicates the sum of in-degree of nodes in S on

the observed network Ĝ after probing v. Thus So and S′
o are

the k nodes with maximum in-degrees on network Ĝ before
and after probing v respectively. Note that the performance
gap

(
Q̂v(S

′
o(v))− Q̂v(So)

)
is non-zero only when So is

different from S′
o(v). We consider two situations when the

probed node v is in or not in So.
If we probe v ∈ So, and find that d̂in(v) is still

higher than maxu/∈So
d̂in(u), then the performance gap



will be 0; otherwise v will not appear in S′
o(v). Instead,

u∗ = argmaxu/∈So
d̂in(u) will be included in S′

o(v).
Thus, the performance gap before and after probing v

would be max
{
0, d̂in(u

∗)− din(v)
}

. Similarly, if we probe
v /∈ So, the performance gap before and after probing
v would be max

{
0, din(v)− d̂in(w

∗)
}

, where w∗ =

argminw∈So d̂in(w).
We do not specify how the network evolves over time.

However, two conditions below are usually satisfied on most
dynamic social networks. First, the difference of in-degree
of a node v between two consecutive time stamps is no
larger than 1. With sufficiently fine granularity of time, this
condition can be satisfied. Second, each node v’s in-degree is
relatively stable so that E

[
dt+1
in (v)|dtin(v)

]
= dtin(v). Thus

the in-degree of each node v is a martingale.
Suppose (t−cv) is the latest time stamp when v is probed.

We apply Azuma-Hoeffding inequality for martingale:

P
(
dtin(v)− dt−cv

in (v) ≤ −z
)
≤ exp

(
−z2

2cv

)
(2)

Note that according to the definition of cv, v is probed
at time stamp t − cv , and thus we have d̂t−cv

in (v) =

dt−cv
in (v). Notice that P

(
dtin(v)− d̂tin(v) ≤ −z

)
≤

P
(
dtin(v)− d̂t−cv

in (v) ≤ −z
)

. Let the probability in Equa-
tion 2 be bounded by ϵ. Then with a probability greater than
(1− ϵ) we have dtin(v) > d̂tin(v)− zv, where

zv =
√

−2cv ln ϵ

Similarly, an upper bound of dtin(v) can be obtained. We
again omit the superscript t. The value of β(v) at t can then
be written as

β(v) =

 max
{
0, d̂in(v) + zv −minw∈S d̂in(w)

}
, v /∈ So;

max
{
0,maxu/∈S d̂in(u)− d̂in(v) + zv

}
, v ∈ So.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the data sets we used in
our experiments, then describe the experiment setup. Finally
we present the experimental results and several analysis.

A. Data Sets

We utilize a synthetic dynamic network and two real
dynamic networks to verify the effect of our proposed
algorithms. See Table I for statistics of the data sets.

Synthetic. We generate the synthetic dynamic networks
similar to a dynamic graph model borrowing the idea of
preferential attachment [2]. We first establish a random
network as the network G0 at time stamp t = 0. It is
generated according to Erdös-Rényi model with the number
of nodes as 500 and the probability to construct an edge for
each pair of nodes as 0.05. Then for each of the following
time stamp, we uniformly choose 100 edges and change their

Table I: Details of data sets
Data #(Nodes that have #(Edges that have Time
set ever appeared) ever appeared)4 stamps

Synthetic 500 12,475 200
Twitter 18,089,810 21,097,569 10

Coauthor 1,629,217 2,623,832 27

heads respectively to 100 nodes stochastically chosen with
probability proportional to their in-degree. We generate 200
time stamps for a synthetic dynamic network.

Twitter. We crawled the follow links between 18,089,810
users from Twitter2 at 10 different time stamps during Oc-
tober to December 2010. The average time interval between
two consecutive time stamps is about one week. There are
21,097,569 directed edges that once appeared in any of all
the 10 network snapshots. We treat the network at the first
time stamp as known, and regard the following 9 as unknown
snapshots of the dynamic network.

Coauthor. We construct a dynamic coauthor network from
ArnetMiner3. We collected 1,768,776 publications published
during 1986 to 2011 by 1,629,217 authors. We regard each
year as a time stamp and there are 27 time stamps in total.
At each time stamp, we create an edge between two authors
if they have coauthored at least one paper in the most recent
3 years (current year included). We convert the undirected
coauthor network into directed by regarding each undirected
edge as two symmetric directed edges.

B. Experiment Setup

Comparison methods. We conduct a comparison between
the following algorithms.

• Random Probing (Rand). Randomly choose b nodes to
probe with uniform probability at each time stamp.

• Enumerating Probing (Enum). Probe each node one by
one in a circular order with equal frequency.

• Degree Weighted Probing (Deg). Randomly chooses b
nodes independently with probability proportional to
their observed degree d̂t(v) at time stamp t.

• Degree Weighted Round-Robin Probing (DegRR). De-
terministic version of Deg strategy.

• Maximum Gap Probing (MaxG). The algorithm pro-
posed in Section III.

Besides, we also perform influence maximization on fully
observed network Gt to provide an estimation of the upper
bound of the performance achieved by each probing algo-
rithm. We denote it as “BEST”.

Evaluation measures. To evaluate the performance of
probing algorithms, we employ the seed set St output by

2https://twitter.com
3http://arnetminer.org
4Since we have multiple synthetic networks in the experiments, we give

the expected number of edge in a synthetic dynamic network instead.



Table II: Average expected number of activated nodes
Data Set b Rand Enum Deg DegRR MaxG BEST

Synthetic 1 13.83 13.55 13.78 14.30 14.79 15.955 15.07 15.33 15.09 15.40 15.60

Twitter 100 987.74 987.62 988.41 1001.47 1005.12 1011.15500 987.45 987.67 988.36 1006.38 1010.61

Coauthor 100 20.34 20.82 28.67 38.94 45.51 91.51500 20.35 22.93 44.27 56.68 61.74

the influence maximization algorithm obtained from the ob-
served network Ĝt after probing, and calculate the expected
number of nodes activated by the seed set on the real
network Gt. We then measure the algorithm’s performance
by the average expected number of activated nodes over all
the time stamps. In our experiments, the expected number of
activated nodes at each time stamp is approximated by 2000
rounds of simulations. For Synthetic data set, we repeat all
the experiments on 5 different synthetic dynamic networks
and take the average value to obtain a more accurate result.

Experiment setup. We use Independent Cascading Mod-
el [9] with uniform probabilities p = 0.01 in our ex-
periments. In Synthetic data set, we set the size of seed
set k = 30. In Twitter and Coauthor data set we set
k = 100. At each time stamp, we allow the algorithm
to probe b nodes. For Synthetic data set, we set b = 1
and b = 5 respectively, while in the other two data sets
we set b = 100 and b = 500. For MaxG algorithm, we
set the tolerance probability ϵ = 0.01. We will show in
our following experiments that the performance of MaxG
algorithm remains unsensitive to ϵ in a very wide range.

C. Performance and Analysis

Performance Comparison. We test Rand, Enum, Deg,
DegRR, and MaxG algorithms on all the three data sets.
Table II illustrates the average expected number of activated
nodes of different algorithms on all the data sets.

As shown in Figure 2(a), on Synthetic data set, our pro-
posed algorithm MaxG significantly outperforms baselines
algorithms (z-test, α = 0.05) when the probing budget b
is limited to be 1. The error rate of Rand algorithm is
13%, while our MaxG algorithm can achieve error rate of
7%. We also verify the effect of our algorithms on two
large real data sets, Twitter and Coauthor (Cf. Figure 3
and 4). It is clear that our proposed algorithm MaxG still
significantly outperforms other baseline algorithms such as
Rand (sign-test, α = 0.05). In Twitter data set, the error
rate achieved by MaxG algorithm is only 1

50 with respect to
the error rate achieved by Rand. In Coauthor data set, our
MaxG algorithm improves the expected influence spread by
203% compared to Rand baseline with b = 500. Note that
on Figure 3(b), on some time stamps the performance of
MaxG and DegRR algorithms is even better than “BEST”.
It is because the degree discount heuristics we employ

50 100 150

13

14

15

16

17

18

Time stamp

N
um

be
r 

of
 a

ct
iv

e 
no

de
s

 

 
Rand
Enum
Deg
DegRR
MaxG
BEST

50 100 150

13

14

15

16

17

18

Time stamp

N
um

be
r 

of
 a

ct
iv

e 
no

de
s

 

 
Rand
Enum
Deg
DegRR
MaxG
BEST

(a) b = 1 (b) b = 5

Figure 2: Results of Synthetic data set
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Figure 3: Results of Twitter data set
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Figure 4: Results of Coauthor data set

for influence maximization on real network provides an
estimation of the optimal solution.

Accuracy of observed networks. We also conduct a study
on how similar the observed network is to the real network.
More precisely, we use the Jaccard similarity between the
edge sets of the observed network and the real network
as the metric to measure the accuracy of the observed
network. We plot the Jaccard similarity on Synthetic data
set (b = 5) in Figure 5. It can be observed that DegRR
and MaxG are capable of constructing an observed network
which is more close to the real network than Rand and Deg.
This result to some extent explains why they can achieve
better performance. However, Enum also achieves similar
accuracy, which implies that our task is more challenging
than simply recovering the real network.

In-depth analysis of MaxG algorithm. We conduct an
experiment to explore the correlation between the perfor-
mance of MaxG and the tolerance probability ϵ. We set
ϵ = e−0.5, e−1, . . . , e−8 respectively and perform MaxG
algorithm on the synthetic data set, with b = 1. We plot
the curve of performance on Figure 6. It can be observed
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that when ϵ is between [e−7, e−1], the performance of MaxG
algorithm is very stable. When the tolerance probability is
set to a value smaller than e−8 or larger than e−0.5, the
performance drops slightly, but is still better than other
baselines. Thus we can choose an ϵ between [e−7, e−1] to
guarantee the performance of MaxG algorithm.

V. RELATED WORK

There has been a number of pieces of research on social
influence analysis. Tang et al. [16] investigated how to
measure the topic-level social influence and Tang et al. [17]
studied the problem of conformity influence. [10] studied
how to learn the influence probability parameters in social
networks. Myers et al. [12] modeled external influence into
the information diffusion process. However, few of them
addressed the problem that social networks were actual-
ly varying. Prakash et al. [13] extended the Susceptible-
Infected-Susceptible (SIS) model to dynamic networks and
derived the epidemic threshold. But they did not provide an
algorithm to maximize the influence.

There was extensive research on influence maximization.
[9], [4] studied algorithms for influence maximization prob-
lem. Few of them focused on dynamic networks. [15], [6]
studied several variations to optimize submodular functions,
which are related to influence maximization on dynamic net-
works, but they did not consider to probe the real network.

Dynamic graph analysis is also another related work.
Leskovec et al. [11] studied the microscopic evolution of
social networks. Bahmani et al. [1] studied the computation
of PageRank on evolving graphs.

VI. CONCLUSION

In this paper, we study the novel problem of influence
maximization in dynamic social networks. We formally
define the problem as probing nodes in an unobserved
network and propose the Maximum Gap Probing (MaxG)
algorithm. We use one synthetic network and two real net-
works to validate the effectiveness of the proposed method.
This research has several interesting implications. First, the
proposed probing algorithm can be directly used to guide
online marketing decisions in the social networks. Second,
the proposed probing algorithm is general and can be applied

to other applications on streaming graphs, e.g., calculation
of the PageRank scores on evolving graphs.
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