
Fuzzy and Cross-App Replay for Smartphone Apps

Yongjian Hu
University of California, Riverside

yhu009@cs.ucr.edu

Iulian Neamtiu
New Jersey Institute of Technology

ineamtiu@njit.edu

ABSTRACT
The behavior of smartphone apps is driven by input from
sensors such as GPS, microphone, or camera. Hence the
ability to construct test inputs, and send these inputs to
the app is essential for testing. Leveraging our prior results
in recording and replaying sensor inputs in Android apps
we have constructed a new approach that helps automate
smartphone app testing by capturing the input log (sensor
stream) and using this log in two ways. First, we fuzz (al-
ter) the log in a semantically-meaningful way: by applying
principled transformations (e.g., changing GPS coordinates
or navigation speed), a new input log is constructed, which
represents a new test case. Second, we use the log captured
in app A to test an app B which offers similar functionality,
e.g., GPS navigation or image recognition. We have applied
our approach to several widely-used Android apps and found
that the approach is effective: it has revealed new bugs in
four popular apps; has produced new test cases that increase
coverage; and has produced test cases from logs originating
in other apps.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability, Validation; D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools

Keywords
Mobile applications, Google Android, Record-and-replay, App
testing, Physical sensors

1. INTRODUCTION
Smartphones are ubiquitous, with about 2 billion devices

in current use [11, 12]. The success of the smartphone plat-
form is due, in no small part, to the plethora of applications
(“apps”) which leverage sensor-based capabilities. For exam-
ple, GPS allows apps such as Yelp to provide location-aware
services; the camera allows image matching apps like Google

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AST’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4151-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896921.2896925

Goggles to provide search-by-picture features; the Shazam app
can help recognize an ambient song by using the microphone.
Our prior study has quantified this reliance on physical sen-
sors: among the top-11 most popular apps across the 25 app
categories on Google Play, 60% of the apps use the GPS, 34%
use the microphone, and 34% use the camera [18].

Smartphone apps however, pose several testing and veri-
fication challenges. First, smartphone apps take the bulk of
their input from sensors, in contrast to desktop/server pro-
gram which tend to take their input from files. This raises
obstacles for capturing and delivering the input (the app
input cannot be simply redirected to come from a file).

Second, app verification time has to be kept short: to stay
competitive and attract users, app developers must create
new apps and release app updates at high cadence, but cur-
rent app testing tools have very limited support for sensors,
and testers/developers have little time to construct new test
cases. Hence new apps, and new versions of existing apps,
tend to be unreliable as they are released with little scrutiny
and testing [20, 17, 10, 16].

Third, traditional verification techniques such as static
and dynamic analysis are hindered by smartphone apps’ id-
iosyncrasies. Static analysis is hindered by implicit flow,
IPC, and the callback-oriented architecture of apps [8, 26].
Dynamic analysis is hindered by the lack of tools that can
generate high-coverage testing suites [9]. While testing and
test automation tools do exist, they cannot handle sensors
properly—they focus only on GUI events [7, 6, 15, 19, 4] or
only work on the emulator (which has poor sensor support),
not on the phone [23, 3].

The first issue — input capture and replay — has been
addressed by our prior work, where we constructed a record-
and replay system named VALERA [18]. VALERA performs
record and replay by capturing and replaying not only sensor
input, but also network input and scheduling events with
high accuracy and low overhead.

Our approach in this paper aims to address the other
challenges — creating new test cases and running them on
the smartphone in a repeatable fashion. Specifically, we use
VALERA to record the input stream from an execution (this
initial execution can be the result of user interaction or a
test case itself) and then alter the input stream to create
new test cases for the recording app or a different app.

Our first contribution is semantic sensor data alteration
(SSDA) in which we manipulate recorded sensor data in a se-
mantically meaningful way, to generate new executions from
existing ones (Section 3). We present a set of semantic alter-
ation strategies for geographical location, images, and audio

Fuzzed
logs

Fuzzed
logs

Fuzzed
logs

Fuzzed
logs

Android app

APK
Log

(sensor
stream)

Record Replay

Fuzzed
logs

Semantic
alteration

Figure 1: Overview of SSDA.

streams. An immediate application of recording and “fuzzy
replaying” app executions is test amplification: generating
new test cases from existing ones, as well as boundary testing
to attempt to crash an app by feeding legal boundary data.
Using SSDA we were able to uncover crash-inducing bugs in
popular apps, each having at least one million downloads,
such as Yelp and ROUTE 66 Maps. In addition, our experi-
ments show that SSDA can increase coverage by exploring
previously-unexplored app methods.

Our second contribution is cross-app testing, i.e., allowing
snippets of executions recorded on one app to be replayed
on other apps, which significantly expands the reach of app
testing, and allowing one record-based test to be executed
on a variety of related apps. We demonstrate this function-
ality on three classes of applications: GPS-based navigation,
barcode scanning, and audio recognition. We present details
in Section 4.

Our approach fulfills several key desiderata: it does not
require access to the app source code, supports popular sen-
sors, creates new test cases without burdening the user, and
works with apps running directly on the phone. These fea-
tures keep the approach flexible, widely applicable, and easy
to use.

2. BACKGROUND

Android platform overview. The Android software stack
consists of apps using the services of Android libraries and an
Android Framework (AF). The AF orchestrates the control
flow by invoking app callback in response to sensor events.
Each app runs in its own address space, on top of the Dalvik
Virtual Machine (on Android versions < 5.0) or ART, the
Android Runtime (on Android versions ≥ 5.0). The VM or
ART in turn run on top of Android Linux. Android apps
are typically written in Java and compiled to bytecode; some
apps also employ native code. Apps are distributed in the
form of APK files, which bundle the bytecode along with
app resources and a manifest file.

Record-and-replay overview. Record-and-replay allows ex-
ecutions to be captured and reproduced. On Android, this
capability is particularly useful because apps are sensor-
driven (so input can’t be fed from a file) which makes test
automation difficult and highly concurrent (which means re-
playing the event schedule is essential). In prior work we
have developed a tool named VALERA that has shown to be
highly effective at recording and reproducing executions on
dozens of popular apps that use a variety of sensors, e.g.,
GPS, camera, microphone. VALERA’s overhead is around
1–2% for either record or replay [18].

VALERA uses two main techniques to achieve record-and-
replay: (1) it employs bytecode rewriting to wrap sensor API
calls hence allow sensor input to be recorded to log files and
then injected back into the app upon replay, and (2) it uses
a modified Android Framework that records and replays the
event schedule as well as network input.

Record-and-replay systems strive to be deterministic, i.e.,
the replayed execution should be indistinguishable from the
recorded execution; a replay execution that is distinguish-
able from a recorded one or other replayed ones is said to“di-
verge”. In this work, however, we specifically undermine the
determinism goal: we deliberately alter (fuzz) the recorded
values to steer the execution away during replay, deliber-
ately causing divergence but in the process creating new
executions. These new executions can be put to multiple
uses, e.g., test amplification or boundary condition testing.

For our purposes, given an app, we record its execution
into a log file on the phone (in practice, a set of log files, one
per sensor) using VALERA, modify the log file off-line, and
then restart the app and feed the input from the log instead
of letting the app read the input from the sensors.

3. SEMANTIC SENSOR DATA ALTERATION
Since mobile app behavior is context-dependent, our idea

is to alter the context to induce a change in app behavior.
Leveraging VALERA, we start with a recorded execution and
then alter sensor readings in a semantically meaningful way
(SSDA) so that during replay the altered sensor readings
drive the app execution to new states.

An overview of SSDA is provided in Figure 1. We first
record the execution of the app; the app is exercised in this
phase via manual input, e.g., navigating to record a GPS
trace, using the camera to record a set of camera inputs,
or running an app such as Shazam to record microphone in-
put. The result of the record phase is a log, i.e., a stream
of sensor inputs. Given the recorded log, we use semantic
alteration to modify the recorded sensor inputs; this phase
is performed off-line, on a desktop/laptop computer. SSDA
provides a set of systematic altering methods for each sensor,
described later. The result of SSDA is a set of fuzzed logs –
streams of sensor inputs. We emphasize that the log alter-
ation process is completely automated, avoiding the user the
burden of manually creating new logs. Finally, we replay the
altered logs back into the app, observe the execution, and
note differences from the original recorded execution. We
now proceed to defining the semantic transformations spe-
cific to each sensor.

3.1 Location
As mentioned previously, the location (GPS) sensor is

used to provide location-sensitive services, and detect changes
in the phone’s geographical location. We have identified
three semantic alterations for the location:

1. Null location: we inject a null location reference into
the logs to simulate scenarios when the underlying
GPS module has trouble acquiring a location. Note
that null is a valid location reply in the GPS API,
and it is good programming practice to check the lo-
cation parameter before using it.

2. Map shift : this involves taking the series of coordi-
nates 〈(x1, y1), . . . , (xn, yn)〉 from the recorded execu-
tion and changing them by “shifting the map” by a
(∆x,∆y) factor so that during replay the set of coor-
dinates fed to the app is 〈(x1 +∆x, y1 +∆y), . . . , (xn +
∆x, yn + ∆y)〉. The parameters (∆x,∆y) can be in-
puted manually by the developer or generated ran-
domly by SSDA.

3. Speed change: we replay a route at different speeds,
e.g., to simulate driving vs. driving faster (where speed
limit alarms can go off). This is achieved by altering
the GPS coordinates according to the interval between
two consecutive location API upcalls. Note that dur-
ing replay we cannot alter timing — the app expects
the sensor input at the same time as during record.
Hence we alter the coordinates to simulate a change
in speed: we compute the first derivative of position
and then during replay alter the coordinates so that
the coordinates change faster/slower.

To create valid routes for our SSDA experiments we have
downloaded predefined routes from Google Earth [14], used
the route’s locations as waypoints, then modified the route
according to a given speed to simulate the required activity,
e.g., driving.

3.2 Camera
In Android, the camera can take pictures one-by-one or

continuously, using the frame buffer. We implement several
image transformations.

1. Exposure: we alter the exposure (i.e., darken or lighten
the image) to simulate a day/night swap. Similarly, we
alter the color balance to simulate different lighting
conditions, e.g., moving from sun to shade.

2. Size/blur : we alter image size and blur the image to
simulate a poor-quality picture or holding the phone
incorrectly w.r.t. the object of the picture.

3. Rotation: we rotate the image at various angles; this
transformation tests the ability of image recognition
algorithms to handle different orientations of objects
in the picture.

In all cases, we have performed the semantic picture al-
teration by using the ImageMagick [1] image manipulation
toolkit to alter the recorded picture, e.g., blur, rotate, darken.

3.3 Audio
Android apps use two API classes, MediaRecorder and

AudioRecord, to process audio. For SSDA we mainly focus
on AudioRecord as it receives the raw audio stream from the

Table 1: Test apps.

App Sensor # Downloads
(millions)

GasBuddy GPS 10–50
Sygic GPS GPS 10–50
Waze Social GPS GPS 10–50
Yelp GPS 10–50
Scout GPS Navig. GPS 1–5
Route 66 Maps GPS 1–5
GPSNavig.&Maps GPS 0.5–1
NavFreeUSA GPS 0.1–0.5

Barcode Scanner Camera 50–100
Google Goggles Camera 10–50
Amazon Mobile Camera 10–50
QR Droid Camera 10–50
CamScanner Camera 10–50
CamCard HD Free Camera 1–5
RedLaser Barcode Camera 1–5
Walmart Camera 1–5
CardToContact Camera 0.1–0.5
Business Card Rdr Free Camera 0.5–1
ScanBizCards Lt Camera 0.5–1

Shazam Microphone 50–100
Tune Wiki Microphone 10–50
PCM Recorder Microphone 1–5

microphone and is the preferred way of performing on-the-
fly audio processing. We have applied several audio altering
techniques:

1. Sample rate: we increase and decrease the sample rate
(the sample rate determines the quality of the audio
stream as it defines the number of sound samples per
unit of time).

2. Noise: we add background noise, to simulate the situa-
tion that the audio is recorded in a noisy environment.

We first used the PCM Recorder to record and save a song
in raw audio format. Next, we performed audio transforma-
tions by altering the recorded sound data via the SoX open
source package [2] and finally sent the altered audio to the
app via replay.

3.4 Evaluation
We now discuss how we evaluated the utility of our SSDA

techniques.

Test apps. We chose our test apps directly from Google
Play, the main app store for Android, according to several
criteria: apps had to be popular (a large number of down-
loads) and based around various sensors. Apps, along with
their popularity and main fuzzed sensor, are described in
Table 1.

Platform. The smartphone we used for experiments was a
Samsung Galaxy Nexus with Android version 4.3.0, Linux
kernel version 3.0.31. The phone has a dual core ARM
Cortex-A9 processor running at 1.2GHz. For app rewrit-
ing and semantic alteration we used a MacBook Pro laptop
(2.5GHz Intel Core i7 processor with 16 GB memory) run-
ning Mac OS X 10.10.5.

Table 2: SSDA Evaluation results.

App Sensor SSDA Outcome Time
(sec)

Log
Size
(KB)

Coverage
increase
(%)

Yelp GPS
Null location CRASH 25.42 <1
Map shift Different search result shown 35.67 <1 <1
Speed change Normal execution 36.10 <1 <1

GPS Navig.& Map GPS
Null location CRASH 26.83 31
Map shift Different map route shown 73.14 72 <1
Speed change Different driving speed shown 71.85 70 <1

Route 66 Map GPS
Null location CRASH 21.43 26
Map shift Different map route shown 65.31 64 <1
Speed change Different driving speed shown 67.74 65 <1

NavFree USA GPS
Null location CRASH 32.02 32
Speed change Different driving speed shown 64.13 73 <1
Map shift Altered execution: “unknown coordinates” er-

ror message
15.97 71 3.5

GasBuddy GPS
Null location Altered execution: “Oops! device cannot find

your location” error message
12.73 <1 1.2

Map shift Different search result shown 41.71 <1 1.3
Speed change Normal execution 42.92 <1 <1

CamCard HD Free Camera

Blur Altered execution: fail to recognize picture 36.72 3,576 2
Darken Altered execution: “Low Light” error message 36.14 3,684 2
Lighten Altered execution: “Blurry Image” error mes-

sage
36.86 3,630 2

Rotate Altered execution: fail to recognize picture 36.58 3,593 2

Barcode Scanner Camera

Blur Altered execution: fail to recognize picture 32.76 4,137 <1
Darken Altered execution: fail to recognize picture 32.58 4,186 1
Lighten Altered execution: fail to recognize picture 32.74 4,238 2
Rotate Altered execution: fail to recognize picture 32.87 4,194 5

Google Goggles Camera

Blur Altered execution: fail to recognize picture 36.59 5,186 1
Darken Altered execution: fail to recognize picture 35.78 5,240 1
Lighten Altered execution: fail to recognize picture 36.81 5,159 2
Rotate Normal execution 36.04 5,206 <1

Shazam Audio
Decrease sam-
ple rate

Altered execution: fail to recognize song 45.37 2,745 3

Adding noise Altered execution: fail to recognize song 45.26 2,833 3

Procedure. We first recorded a normal, non-crashing exe-
cution. Then we used SSDA on the recorded logs, replayed
the semantically altered logs via VALERA and noted any
difference in app behavior compared to the behavior dur-
ing record—either crash or increased coverage, as explained
next.

Location. The“GPS sensor”rows of Table 2 show the SSDA
results when traces are altered in two ways: injecting a null

location into the trace and map-shifting. We discovered that
four popular apps crash when presented with a null loca-
tion: GPS Navigation & Map, Yelp, Route 66 Map, Navfree USA;
please see Table 1 for the popularity of these apps. GasBuddy

handles this situation more gracefully, though the behavior
is different compared to the original execution. Navfree USA

exhibits a different behavior when presented with a map-
shifted list of locations.

Camera. The middle part of Table 2 shows the result of ap-
plying image SSDA to three popular apps. CamCard HD Free

helps users scan business cards. Barcode Scanner is used to
scan barcodes or QR codes. Google Goggles performs image
search, by taking a picture and searching Google Images for

similar pictures. In all cases we apply the image SSDA tech-
niques (e.g., blur, darken, lighten, rotate). The “Outcome”
column of Table 2 shows the results: the app’s behavior is
different in all cases, compared to the original execution—
displaying an error message or failing to recognize the image
thus ending up in a different state compared to the original
app.

Audio. SSDA was effective at altering executions for Shazam

as shown in the last row of Table 2. The default sample
rate used by Shazam is 44.1KHz, and its buffer size is 4,410
bytes. We changed a song that was successfully recognized
during the record phase by altering the song’s sample rate
to 16KHz, 44.1KHz and 48KHz. The result indicate that
Shazam can recognize the song if the recorded audio stream’s
sample rate is ≥ 44.1KHz, but fails when the sample rate is
below this value. This behavior is expected, because a low
sample rate means low audio quality which hinders Shazam’s
song recognition efforts.

Surprisingly, we found that, when playing two songs si-
multaneously, Shazam can recognize one of the songs.

App1
(source)

APK

Log

Record Replay

Sub-log

App2
(destination)

APK

Figure 2: Overview of cross-app testing.

Performance. The “Time” and “Log Size” columns of Ta-
ble 2 show the running time and log size. Thanks to VALERA’s
low runtime overhead (about 1%) we did not experience any
visible slowdown during execution. In the null location
case, we inject the null object randomly into the middle
of the original trace, and remove the trailing data. The four
crashing apps exit early, thus their running time is short.
The log size is small for GPS: the three navigation apps (GPS
Navigation & Map, Route 66 Map, NavFree USA) log around 70
KB data as they continuously use the GPS sensor. Yelp and
GasBuddy, on the other hand, log very little data because
they use the GPS only when users search by location.

The log sizes of camera apps and audio apps are com-
paratively much larger: on average, the camera apps log 4
MB of data in 35 seconds, while the audio apps log 2.7 MB
in 45 seconds. Though these log sizes are larger compared
to GPS, they are very much manageable: modern smart-
phones’ storage capacity (typically 32GB) is large enough
to hold the log data.

Coverage increase. We measured the increase in coverage
as follows. We leverage Android’s default profiler to collect
the executed method trace. In each entry and exit of the in-
strumented sensor API function, the profiler is opened and
closed. The trace data is saved into SD card. Then we use
Android’s dmtracedump to dump the executed method trace.
Finally, we compare the normal trace and SSDA trace. The
coverage increase shows the newly executed functions that
do not exist in normal trace. The results (method cover-
age increase due to SSDA) are in the last column of Table 2.
Notice that coverage increase depends on the app. For exam-
ple, while a Null location is effective at crashing Yelp, GPS

Navig.& Map, and Route 66 Map the other GPS alterations
do not increase coverage substantially in these apps. For
NavFreeUSA and GasBuddy the cumulative increases are 3.5%
and 2.5% respectively. Camera and audio SSDA, however,
are more effective, yielding between 4% to 9% cumulative
coverage increase. We believe that these coverage gain fig-
ures are acceptable given that the fuzzed logs are created
automatically (no user involvement).

4. CROSS-APP TESTING
Cross-app testing involves collecting a trace in one app

(source) and replaying snippets of it in another app (des-
tination). For example, one trace snippet can be a route
recorded with the navigation app Navfree USA and then re-
played on other navigation apps such as GPS Navigation &

Maps and Waze Social GPS Maps; the latter apps will behave

as if the phone follows the recorded route.
This is somewhat akin to test amplification, though it

involves taking a test constructed for one app and using
it construct a test for another app. Figure 2 provides an
overview of this process: given a log (collected with VALERA)
from a“source”app App1, we extract a sub-log (e.g., only the
GPS waypoints) and then replay that log into a“destination”
app App2. The success of cross-app testing relies on two
main prerequisites. First, App1 and App2 must share the
same functionality (e.g., navigation or barcode scanning).
Second, the state where record starts for App1 should be
equivalent, at high level, with the replay start state for App2

so that App2 can accept the input events in the sub-log.
We believe that cross-app replay has the potential to sig-

nificantly improve the state-of-the-practice in Android app
testing: by collecting a library of sub-logs (trace snippets)
specific to each sensor, mobile app researchers and develop-
ers can replay the sub-logs from the library on their own
apps to augment their testing suites. We now proceed to
evaluate the applicability of cross-app testing.

4.1 Evaluation
For evaluation, we used the same platform and apps as

those discussed in Section 3.4.

Category 1: Navigation Apps. Navigation is a widely-
used application of smartphones, hence app marketplaces
contain numerous navigation apps. Although each naviga-
tion app has its own feature such as voice command, turn-by-
turn directions and social connection, their common func-
tionality is to provide routes and guide users. Without our
approach it would be tedious to generate location traces for
each navigation app. With our API interception support,
we can collect a location trace from one app and reuse it for
others. Since apps receive location updates via the standard
Location API, we could easily port the trace from one app to
many others without any modification. As Table 3 indicates
(the GPS row), in our experiments, we collected a routing
trace from Navfree USA and have successfully replayed it on
five other popular navigation apps.

Category 2: Barcode Scanning Apps. Barcode and QR
code scanner apps are another popular application of smart-
phones, e.g., when users are shopping, as the app can rec-
ognize the item by its barcode and compare its price on
different online shops. QR codes are widely used to entice
users to scan the code and visit a certain URL. Table 3 (row
“Camera (Frame buffer)”) shows the result of cross-app test-
ing for apps in this category. We collect the camera’s frame
buffer trace from the Barcode Scanner app, and successfully
replay it back to other five apps that are also able to read
barcodes.

However, unlike for the navigation apps above, we had
to modify the trace data before cross-app replay because
different apps set different camera parameters. For instance,
Barcode Scanner sets the camera preview size to 1280x720
pixels while QR Droid sets it to 864x480. While we could not
reuse the trace “verbatim”, we found out that modifying the
trace data to fit the current app could be automated and
performed on-the-fly during replay by simply examining the
parameters with which the app has invoked the API, in this
case the preview size. By modifying the preview size, we
could successfully replay the Barcode Scanner trace on the
other five apps.

Table 3: Source and destination apps for cross-app replay.

Sensor Recording app Recording Time
(seconds)

Log Size
(KB)

Replaying app Replaying Time
(seconds)

GPS NavFreeUSA 72.13 68 GPS Navigation & Maps 68.72
Sygic GPS 75.48
Waze Social GPS Maps 83.17
Scout GPS Navigation 69.44
Route 66 Maps 78.69

Camera Barcode Scanner 32.55 4,168 QR Droid 38.50
(Frame buffer) RedLaser Barcode 41.72

Goggle Goggles 37.25
Amazon Mobile 43.52
Walmart 39.69

Camera CamCard HD Free 45.81 3,610 CardToContact 41.02
(Take picture) Business Card Reader Lite 48.60

ScanBizCards Lite 41.77
Google Goggles 38.96

Audio PCM Recorder 52.65 2,395 Shazam 34.28

Category 3: Business Card Recognition Apps. These
apps use pattern recognition to extract contact informa-
tion after taking a picture of the card. Unlike the barcode
scanning apps studied above, business card recognition apps
mainly use the camera’s picture taking feature instead of
frame buffers. We found that pictures are saved in a com-
mon format (JPEG) that makes it easy to reuse trace snip-
pets from one app to another. As showed in Table 3 (row
“Camera (Take picture)”) we take pictures of business cards
from CamCard HD Free and can successfully replay the trace
in four other apps.

Category 4: Audio Apps. The cross-app testing for audio-
related apps is interesting: we chose two apps, PCM Recorder

and Shazam, which on the surface are not in the same cat-
egory as the former allows users to record an audio stream
while the latter recognizes songs. Since both use the AudioRecord
API, it is possible to replay the audio data trace from one
app to the other. In our experiment, as illustrated in the
last row of Table 3, we collect a song’s audio stream in PCM

Recorder and can successfully play it back on Shazam.

Cross-app testing time. The “Recording Time” and “Re-
playing Time” columns of Table 3 show the time it took
to record the log in App1 and replay the sub-log in App2,
respectively; note that these times are low (less than 80 sec-
onds in all cases).

5. RELATED WORK
Android test automation. Recent works on Android test
automation mainly focus on the GUI part. Tools like An-
droid Guitar [22, 4], Robotium [15], Troyd [19] require de-
velopers to extract a GUI model from the app and manually
write test scripts to emulate user gestures. In addition to
the manual effort required to write scripts, these tools do not
supporting complex gestures (e.g., swipe, zoom, and pinch)
or sensors. We eliminate this manual effort by recording ac-
tual executions, and supporting sensors. However we do not
offer scripting facilities as other tools do, since we assume
there is a record phase.

Other tools [23, 9, 3] automatically explore GUI events
to generate high-coverage testing suites. Our focus is differ-

ent: we require a base execution and aim to alter behavior
slightly via SSDA; our approach cannot construct executions
and inputs from scratch as the aforementioned approaches
do. Also, these tools do not support sensors (GPS, camera,
audio) as we do, but sensors play a crucial role in app ex-
ecution. Finally, our approach can help developers expand
their testing suites by generating test cases via cross-app
testing, i.e., collecting a trace of sensor data from one app
and playing it back on another app if the target app uses
the same API.

Test amplification. Test amplification is a useful testing
strategy as it generates new test suites by systematically
amplifying existing cases. Recent works on concolic test-
ing [24, 13, 21, 5] are examples of amplification. These tech-
niques obtain program execution traces from concrete test
cases, then apply symbolic execution to steer the program to
visit new paths, thus maximizing code coverage. Test am-
plification has also been applied on Android testing. Yang
et al. [25] test the responsiveness of Android apps by ran-
domly injecting time delays in time-consuming calls such as
file I/O, network operations and database operations. Their
goal is to check whether developers employ such heavyweight
operations in the main (UI) thread which may cause poor
responsiveness. Zhang and Elbaum [27] use test amplifica-
tion to validate exception handling code. Their approach
exhaustively explores the space of exceptional behavior of
an external resource that is exercised by a test suite, then
apply these amplified test cases to check whether the app
handles exceptions correctly. We achieve test amplification
in another direction: alter the sensor input data, then ob-
serve differences in execution. Our cross-app testing is an-
other kind of test amplification as it collects input from one
app and applies it to another app which uses the same API.
Unlike [25] and [27] which require access to the source code
hence have only been applied to open-source apps, we di-
rectly instrument code at the bytecode level, which allows
the approach to be used on a much wider set of apps.

6. CONCLUSIONS
We have presented two approaches for constructing new

test cases for Android apps, based on the observation that

sensor input plays a fundamental role in the construction
and execution of smartphone apps. First, new test cases are
constructed by taking existing, recorded sensor streams and
altering sensor data in a semantically meaningful way; this
can outright crash the app or increase coverage. Second, in
a cross-app testing approach, one app’s execution becomes
a test case for many other apps.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1064646.

7. REFERENCES
[1] ImageMagick.

http://www.imagemagick.org/script/index.php.

[2] SoX - Sound eXchange.
http://sox.sourceforge.net/Main/HomePage.

[3] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An
input generation system for android apps. In FSE ’13.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and A. M. Memon. Using gui ripping
for automated testing of android applications. In
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2012, pages 258–261, 2012.

[5] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, FSE ’12, pages 59:1–59:11, 2012.

[6] Android Developers. MonkeyRunner, August 2012.
http://developer.android.com/guide/developing/
tools/monkeyrunner concepts.html.

[7] Android Developers. UI/Application Exerciser
Monkey, August 2012. http:
//developer.android.com/tools/help/monkey.html.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’14, pages 259–269, 2014.

[9] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps. In
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’13, pages
641–660, 2013.

[10] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C.
Koduru. An empirical analysis of bug reports and bug
fixing in open source android apps. In Proceedings of
the 2013 17th European Conference on Software
Maintenance and Reengineering, CSMR ’13, pages
133–143, 2013.

[11] J. Callaham. Google says there are now 1.4 billion
active Android devices worldwide, September 2015.
http://techcrunch.com/2015/09/29/
android-now-has-1-4bn-30-day-active-devices-globally/.

[12] H. Dediu. When will there be one billion iOS devices
in use?, November 2013. http://www.asymco.com/
2013/11/25/one-billion-ios-devices/.

[13] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05,
pages 213–223, 2005.

[14] Google. Google Earth. http://earth.google.com.

[15] Google Code. Robotium, August 2012.
http://code.google.com/p/robotium/.

[16] J. Guyn. Facebook users give iPhone app thumbs
down. Los Angeles Times, Jul 21 2011.
http://latimesblogs.latimes.com/technology/2011/07/
facebook-users-give-iphone-app-thumbs-down.html.

[17] C. Hu and I. Neamtiu. Automating gui testing for
android applications. In Proceedings of the 6th
International Workshop on Automation of Software
Test, AST ’11, pages 77–83, 2011.

[18] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet
lightweight record-and-replay for android. In
Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015,
pages 349–366, 2015.

[19] Jinseong Jeon and Jeffrey S. Foster. Troyd, January
2013. https://github.com/plum-umd/troyd.

[20] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi.
Characterizing failures in mobile oses: A case study
with android and symbian. In Proceedings of the 2010
IEEE 21st International Symposium on Software
Reliability Engineering, ISSRE ’10, pages 249–258,
2010.

[21] R. Majumdar and K. Sen. Hybrid concolic testing. In
Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 416–426, 2007.

[22] B. N. Nguyen, B. Robbins, I. Banerjee, and
A. Memon. Guitar: An innovative tool for automated
testing of gui-driven software. Automated Software
Engg., 21(1):65–105, Mar. 2014.

[23] V. Rastogi, Y. Chen, and W. Enck. Appsplayground:
Automatic security analysis of smartphone
applications. In Proceedings of the Third ACM
Conference on Data and Application Security and
Privacy, CODASPY ’13, pages 209–220, 2013.

[24] K. Sen, D. Marinov, and G. Agha. Cute: A concolic
unit testing engine for c. In Proceedings of the 10th
European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, 2005.

[25] S. Yang, D. Yan, and A. Rountev. Testing for poor
responsiveness in android applications. In Engineering
of Mobile-Enabled Systems (MOBS), 2013 1st
International Workshop on the, pages 1–6, May 2013.

[26] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev.
Static control-flow analysis of user-driven callbacks in
android applications. In Proceedings of the 37th
International Conference on Software Engineering -
Volume 1, ICSE ’15, pages 89–99, 2015.

[27] P. Zhang and S. Elbaum. Amplifying tests to validate
exception handling code. In Proceedings of the 34th
International Conference on Software Engineering,
ICSE ’12, pages 595–605, 2012.

