
Parallel Algorithms:
Theory and Practice

Race

CS260 – Lecture 9*

Yan Gu

Why is parallelism “hard”?

2

Theory Practice

Non-determinism!!

Why is parallelism “hard”?

3

• Scheduling is unknown

• Relative ordering for operations is unknown

• Hard to debug
• Bugs can be non-deterministic!

• Bugs can be different if you rerun the code

• Referred to as race hazard / condition

Non-determinism!!

Race hazard can cause severe consequences

4

• Therac-25 radiation therapy
machine — killed 3 people and
seriously injured many more
(between 1985 and 1987).
https://en.wikipedia.org/wiki/Therac-25

• North American Blackout of
2003 — left 50 million people
without power for up to a week.
https://en.wikipedia.org/wiki/Northeast_blackout_of_2
003

• Race bugs are notoriously difficult to
discover by conventional testing!

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

5

direct_reduce(A, n) {
parallel_for (i=0;i<n;i++)

sum = sum + 1;
return sum;

}

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

6

sum = 0

r0 = sum

r0 += 1

sum = r0

r1 = sum

r1 += 1

sum = r1

Return sum

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + 1;
return sum;

}

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

7

sum = 0

r0 = sum

r0 += 1

sum = r0

r1 = sum

r1 += 1

sum = r1

return sum

1

2

3

4

5

6

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + 1;
return sum;

}

Determinacy Races

• Definition: a determinacy race occurs when two logically
parallel instructions access the same memory location and at
least one of the instructions performs a write.

8

direct_reduce(A, n) {
parallel_for (i=0;i<2;i++)

sum = sum + 1;
return sum;

}

sum = 0

r0 = sum

r0 += 1

sum = r0

r1 = sum

r1 += 1

sum = r1

return sum

1

2

5

3

4

6

Types of Races

• Suppose that instruction A and instruction B both access a
location x, and suppose that A∥B (A is parallel to B).

• Two sections of code are independent if they have no
determinacy races between them.

9

A B Race Type

Read Read No race

Read Write Read race

Write Read Read race

Write Write Write race

Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the spawned child
should be independent of the code of the parent, including
code executed by additional spawned or called children

10

Benefit of being race-free

• Scheduling is still unknown

• Relative ordering for operations is still unknown

• However, the computed value of each instruction is
deterministic! This is easy to debug.
• Check the correctness of the sequential execution

• Check if the parallel execution is the same as the sequential one

• Race detection: given a DAG, show all the races

• False sharing: nasty related effect
• E.g., updating x.a and x.b in parallel is safe

but can be inefficient

11

Struct {
char a, b;

} x;

