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Why is parallelism “hard”?
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Theory Practice

Non-determinism!!



Why is parallelism “hard”?
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• Scheduling is unknown

• Relative ordering for operations is unknown

• Hard to debug
• Bugs can be non-deterministic!

• Bugs can be different if you rerun the code

• Referred to as race hazard / condition

Non-determinism!!



Race hazard can cause severe consequences
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• Therac-25 radiation therapy 
machine — killed 3 people and 
seriously injured many more 
(between 1985 and 1987). 
https://en.wikipedia.org/wiki/Therac-25

• North American Blackout of 
2003 — left 50 million people 
without power for up to a week. 
https://en.wikipedia.org/wiki/Northeast_blackout_of_2
003

• Race bugs are notoriously difficult to 
discover by conventional testing!

https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003


Determinacy Races

• Definition: a determinacy race occurs when two logically 
parallel instructions access the same memory location and at 
least one of the instructions performs a write.
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direct_reduce(A, n) {
parallel_for (i=0;i<n;i++)

sum = sum + 1;
return sum;

}
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Types of Races 

• Suppose that instruction A and instruction B both access a 
location x, and suppose that A∥B (A is parallel to B).

• Two sections of code are independent if they have no 
determinacy races between them. 
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A B Race Type

Read Read No race

Read Write Read race

Write Read Read race

Write Write Write race



Avoiding races

• Iterations of a parallel_for loop should be independent

• Between two in_parallel tasks, the code of the spawned child 
should be independent of the code of the parent, including 
code executed by additional spawned or called children
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Benefit of being race-free

• Scheduling is still unknown

• Relative ordering for operations is still unknown

• However, the computed value of each instruction is 
deterministic!  This is easy to debug.
• Check the correctness of the sequential execution

• Check if the parallel execution is the same as the sequential one

• Race detection: given a DAG, show all the races

• False sharing: nasty related effect 
• E.g., updating x.a and x.b in parallel is safe                                     

but can be inefficient
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Struct {
char a, b;

} x;


