
Algorithm Engineering
(aka. How to Write Fast Code)

What is Parallelism and
Scheduling

CS260 – Lecture 8

Yan Gu

Many slides in this lecture are borrowed from the seventh lecture in 6.172 Performance Engineering of Software Systems at

MIT. The credit is to Prof. Charles E. Leiserson, and the instructor appreciates the permission to use them in this course.

CS260:
Algorithm
Engineering
Lecture 8

2

Fork-Join Parallelism

Greedy Scheduler

Work-Stealing Scheduler

Recall: Basics of Cilk

• Cilk keywords grant permission for parallel execution. They
do not command parallel execution.

3

int fib(int n)
{

if (n < 2) return n;
int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}

The named child function
may execute in parallel with
the parent caller.

Control cannot pass this
point until all spawned
children have returned.

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

Execution Model

Example:

fib(4)

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

Execution Model

The computation dag
unfolds dynamically.

Example:

fib(4)

“Processor
oblivious”

4

3

2

2

1

1 1 0

0

How Much Parallelism?

Loop parallelism (cilk_for) is converted to spawns
and syncs using recursive divide-and-conquer.

Assuming that each node executes in unit time, what
is the parallelism of this computation?

Performance Measures

T = execution time on P processors

W = work

= 18

Performance Measures

= 18 = 9

W = work D = span*

*Also called critical-path length
or computational depth.

T = execution time on P processors

*Also called critical-path length
or computational depth.

WORK LAW

∙ T ≥ W/P

SPAN LAW

∙ T ≥ D

Performance Measures

T = execution time on P processors

= 18 = 9

W = work D = span*

Work: W(A∪B) =Work: W(A∪B) = W(A) + W(B)

Series Composition

A B

Span: D(A∪B) = D(A) + D(B)Span: D(A∪B) =

Work: W(A∪B) =Work: W(A∪B) = W(A) + W(B)

Parallel Composition

A

B

Span: D(A∪B) = max{D(A), D(B)}Span: D(A∪B) =

Definition. W/T = speedup on P processors.

● If W/T < P, we have sublinear speedup.

● If W/T = P, we have (perfect) linear speedup.

● If W/T > P, we have superlinear speedup, which is not possible in this
simple performance model, because of the WORK LAW T ≥ W/P.

Speedup

Parallelism

Because the SPAN LAW dictates that T

≥ D, the maximum possible speedup

given W and D is

W/D = parallelism

= the average amount of

work per step along

the span

= 18/9 = 2

Parallelism: W/D =Parallelism: W/D = 2.125

Work: W = 17Work: W =

Span: D = 8Span: D

Example: fib(4)

Assume for simplicity that
each strand in fib(4) takes
unit time to execute.

4

5

6

1

2 7

8

3

Using many more than 2 processors can yield only
marginal performance gains.

CS260:
Algorithm
Engineering
Lecture 8

16

Fork-Join Parallelism

Greedy Scheduler

Work-Stealing Scheduler

Scheduling

● Fork-Join parallelism allows the
programmer to express potential
parallelism in an application

● The scheduler maps strands onto
processors dynamically at runtime

● Since the theory of distributed
schedulers is complicated, we’ll
first explore the ideas with a
centralized scheduler

…

Memory I/O

$

P

$

P

$

P

Network

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A node is ready if all its
predecessors have executed.

Greedy Scheduling

Complete step

● ≥ P strands ready.
● Run any P.

P = 3
Definition. A node is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

Greedy Scheduling

Complete step

● ≥ P strands ready.
● Run any P.

P = 3

Incomplete step

● < P strands ready.
● Run all of them.

Definition. A node is ready if all its
predecessors have executed.

IDEA: Do as much as possible on every step.

Theorem [G68, B75, EZL89]. Any greedy scheduler achieves
T ≤ W/P + D.

Analysis of Greedy

Proof.

∙ # complete steps ≤ W/P,
since each complete step
performs P work.

∙ # incomplete steps ≤ D, since
each incomplete step reduces
the span of the unexecuted
dag by 1. ■

CS260:
Algorithm
Engineering
Lecture 8

22

Fork-Join Parallelism

Greedy Scheduler

Work-Stealing Scheduler

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

Execution Model

The computation dag
unfolds dynamically.

Example:

fib(4)

“Processor
oblivious”

4

3

2

2

1

1 1 0

0

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

Execution Model

Example:

fib(4)

4

3

2

1

P1

P1

P1
Available for

execution

Available for
execution

Available for
execution

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

4

3

2

1

Execution Model

Example:

fib(4)

2

1 1

P2

Steal!

P1

P3

Steal!

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

4

3

2

1

Execution Model

Example:

fib(4)

2

1 1P2P1
P3

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

4

3

2

1

Execution Model

Example:

fib(4)

2

1 1P2P1

P3

Can’t
execute!

int fib (int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

4

3

2

1

Execution Model

Example:

fib(4)

2

1 1P2P1

P3

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

P

spawn

spawn

PP

call

spawn

call

spawn

callcall

Call!

Cilk Runtime System

P

spawn

call

call

call

spawn

P

spawn

spawn

PP

call

spawn

call

spawn

callcall

Spawn!

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

spawn

spawn

P

spawn

spawn

PP

call

spawn

call

call

spawn

call

spawn

call

Spawn!Spawn! Call!

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

spawn

call

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Return!

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

spawn

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Return!

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Steal!

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Steal!

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

Spawn!

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

spawn

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

P

spawn

call

call

call

spawn

P

spawn

PP

call

spawn

call

call

spawn

call

spawn

spawn

spawn

Theorem [BL94]: With sufficient parallelism,
workers steal infrequently linear speed-up.

Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it
manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

Link to Cilk

implementation

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-172-performance-engineering-of-software-systems-fall-2018/lecture-slides/MIT6_172F18_lec13.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-172-performance-engineering-of-software-systems-fall-2018/lecture-slides/MIT6_172F18_lec13.pdf

Work-Stealing Bounds

Theorem. The work-stealing scheduler achieves expected running
time

T ≈ W/P + O(D)

on P processors.

Pseudoproof.

A processor is either working or stealing.

The total time all processors spend working is T.

Each steal has a 1/P chance of reducing the span by 1.

Thus, the expected cost of all steals is O(PD).

Since there are P processors, the expected time is

(W + O(PD))/P = W/P + O(D) . ■

Overhead of work-stealing scheduler

Bound the number of steals (whp):

𝑂 𝑝𝐷

Running time (whp):

𝑇 =
𝑊 + 𝑂 𝑝𝐷

𝑝
=
𝑊

𝑝
+ 𝑂 𝐷

Link to a simple proof

https://www.cs.ucr.edu/~yihans/teaching/2020cs260/fullanalysis.pptx

Successful steals can be expensive

• Physical communication between two
processors

• Can lead to considerably more cache
misses

• Coarsening will not increase #SuccSteal

Bound the number of steals (whp):

𝑂 𝑝𝐷

B

A

C

ED

Views of stack

A A

B

A

C

A

C

D

A

C

E

CBA D E

Cilk supports C’s rule for pointers: A pointer to stack space can be passed
from parent to child, but not from child to parent

Cilk’s cactus stack supports
multiple views in parallel.

Cactus Stack

Bound on Stack Space

Theorem. Let S1 be the stack space required by a serial execution of a
Cilk program. Then the stack space required by a P-processor
execution is at most SP ≤ PS 1.

Proof (by induction). The
work-stealing algorithm
maintains the busy-leaves
property: Every extant leaf
activation frame has a worker
executing it. ■ P

P

P

S1

P = 3

CS260:
Algorithm
Engineering
Lecture 8

45

Fork-Join Parallelism

Greedy Scheduler

Work-Stealing Scheduler

Design and Analysis of Parallel Algorithms

46

•Work 𝑾, depth 𝑫, I/O cost 𝑸 (sequential / random)

•Parallelism for work:
𝑾

𝑷

•Time for I/O: max
𝑸

𝑷
,

𝑸

𝑩𝒎𝒂𝒙

•Number of steals: 𝑶(𝑷𝑫)
•Most combinatorial algorithms are I/O bottlenecked

