
Algorithm Engineering
(aka. How to Write Fast Code)

I/O Algorithms and
Parallel Samplesort

CS260 – Lecture 6

Yan Gu

CS260:
Algorithm
Engineering
Lecture 6

2

Review of Samplesort

Semisort

Course Policy

Sample-sort outline

Analogous to multiway quicksort

1. Split input array into 𝑁 contiguous
subarrays of size 𝑁. Sort subarrays
recursively

…

𝑁, sorted

𝑁

Sample-sort outline

𝑁, sorted

…

Analogous to multiway quicksort

1. Split input array into 𝑁 contiguous
subarrays of size 𝑁. Sort subarrays
recursively (sequentially)

Sample-sort outline

2. Choose 𝑁 − 1 “good” pivots
𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1

3. Distribute subarrays into
buckets, according to
pivots

𝑁, sorted

…

Bucket 1 Bucket 2 Bucket 𝑁

≤ 𝑝1 ≤ ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1 ≤

Size ≈ 𝑁

4. Recursively sort the buckets

5. Copy concatenated buckets back to input array

Sample-sort outline

Bucket 1 Bucket 2 Bucket 𝑁

≤ 𝑝1 ≤ ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1 ≤

sorted

CS260:
Algorithm
Engineering
Lecture 6

7

Review of Samplesort

Semisort

Course Policy

• Input:
• An array of records with associated keys

• Assume keys can be hashed to the range [𝑛𝑘]

• Goal:
• All records with equal keys should be adjacent

key 45 12 45 61 28 61 61 45 28 45

Value 2 5 3 9 5 9 8 1 7 5

What is semisort?

• Input:
• An array of records with associated keys

• Assume keys can be hashed to the range [𝑛𝑘]

• Goal:
• All records with equal keys should be adjacent

key 12 61 61 61 45 45 45 45 28 28

Value 5 8 9 9 2 5 1 3 7 5

What is semisort?

• Input:
• An array of records with associated keys

• Assume keys can be hashed to the range [𝑛𝑘]

• Goal:
• All records with equal keys should be adjacent

• Different keys are not necessarily sorted

• Records with equal keys do not need to be sorted by their values

key 45 45 45 45 12 61 61 61 28 28

Value 2 5 1 3 5 8 9 9 7 5

What is semisort?

• Input:
• An array of records with associated keys

• Assume keys can be hashed to the range [𝑛𝑘]

• Goal:
• All records with equal keys should be adjacent

• Different keys are not necessarily sorted

• Records with equal keys do not need to be sorted by their values

key 45 45 45 45 12 61 61 61 28 28

Value 1 5 3 2 5 8 9 9 7 5

What is semisort?

Semisort is one of the most useful primitives in parallel
algorithms

Parallel In-Place Algorithms: Theory and Practice

Julienne: A Framework for Parallel Graph Algorithms using Work-
efficient Bucketing

Semi-Asymmetric Parallel Graph Algorithms for NVRAMs

Efficient BVH Construction via Approximate Agglomerative Clustering

Theoretically-Efficient and Practical Parallel DBSCAN

12

https://www.cs.ucr.edu/~ygu/teaching/algeng/reading/PIP.pdf
https://people.csail.mit.edu/jshun/bucketing.pdf
https://arxiv.org/pdf/1910.12310.pdf
https://www.cs.ucr.edu/~ygu/paper/HPG13/HPG13.pdf
https://www.cs.ucr.edu/~ygu/teaching/algeng/reading/DBSCAN.pdf

Why is semisort so useful? (albeit not seen before)

13

• Semisorting can be done by sorting, but faster (less restriction)
• Theoretically can be done in 𝑂 𝑛 work not 𝑂 𝑛 log 𝑛 work

• Can be used to implement counting / integer sort
• Integer sort: given 𝑛 key-value pairs with keys in range [1,… , 𝑛], query the

KV-pairs with a certain key

• Counting sort: given 𝑛 key-value pairs with keys in range [1,… , 𝑛], query the
number of KV-pairs with a certain key

• In database community, this is called the GroupBy operator

Why is semisort so useful? (albeit not seen before)

14

• Semisorting can be done by sorting, but faster (less restriction)
• Theoretically can be done in 𝑂 𝑛 work not 𝑂 𝑛 log 𝑛 work

• Can be used to implement counting / integer sort

keys 37 … 58 … 92 …

12

9

52

92 56

11

19

8

key value

Linked

lists of

values

56

Attempts – Sequentially: Pre-allocated array

12

9

52

92 56

11

19

8

44

31

56

keys 37 … 58 … 92 …

key value
Arrays
of
values

 Problem

 Need to pre-count the number of each key

• Generate adjacency array for a graph

Edge list
Sorted

edge list

(3,5) (3,5)

(1,7) (3,7)

(2,3) (3,6)

(3,6) (5,4)

(5,4) (1,6)

(3,7) (1,7)

(1,6) (2,3)

1

2

3 4

5

6

7

Another use case for semisrot

• Input:
• An array of records with associated keys

• Assume keys can be hashed to the range [𝑛𝑘]

• Goal:
• All records with equal keys should be adjacent

• Different keys are not necessarily sorted

• Records with equal keys do not need to be sorted by their values

key 45 45 45 45 12 61 61 61 28 28

Value 1 5 3 2 5 8 9 9 7 5

What is semisort?

• There can be many duplicate keys
• Heavy keys

• Or, there can be almost no duplicate keys
• Light keys

key 45 45 45 45 12 61 61 61 28 28

Value 1 5 3 2 5 8 9 9 7 5

Why is semisort hard?

• Input: 𝒏 KV-pairs with key in [𝑛]

• Step 1: hash the keys (i.e., for 𝒌𝒊, 𝒗𝒊 , generate 𝒉𝒊 = 𝐡𝐚𝐬𝐡(𝒌𝒊))

• Step 2: semisort 𝒉𝒊, (𝒌𝒊, 𝒗𝒊) , and resolve conflicts

• Step 3: get the pointer for each key 𝒌𝒊

key 45 45 45 45 12 61 61 61 28 28

Value 1 5 3 2 5 8 9 9 7 5

Implement integer sort using semisort

The Top-Down Parallel Semisort Algorithm

22

• And tell the heavy keys from light ones. By how?

Sampling!

• For a key appear more than 𝐧/𝒕 times, we call it a heavy key

• Otherwise, we call it a light key

• We can treat them separately

The main goal estimate key counts

• Take 𝒕 log 𝒏 samples and sort them

• For those keys with more than log 𝒏 appearances, we mark them
as heavy keys, others are light keys

• We give each heavy key a bucket, and the another 𝒕 buckets for
light keys each corresponds to a range of 𝒏𝒌/𝒕
• The input keys are hashed into 𝒏𝒌

• In total we have no more than 2𝑡 buckets

• The rest of the algorithm is pretty similar to samplesort

The algorithm

Phase 1: Sampling and sorting

……

5 5 5 8 8 8 8 8 17 17 ……11 17

1. Select a sample set 𝑆 with 𝑡 log 𝑛 of keys

2. Sort 𝑆

……S

Sampling

(Counting)

Sorting

Phase 2: Bucket Construction

5 5 5 8 8 8 8 8 17 17 ……11 17

Counting

&

Filtering

keys 8 20 65 …

Range 0-15 16-31

keys 5 11 17 21 26 31 ...

Heavy keys
Light keys

Sorted samples:

• In total we have no more than 2𝑡 buckets
• 𝑡 of them are for light keys

• Then we construct a hash table for the heavy keys

• Now we know which bucket each KV-pair (𝒌𝒊, 𝒗𝒊) goes to:
• If 𝑘𝑖 is found in the hash table, assign it to the associated heavy bucket

• Otherwise, it goes to the light bucket based on the range of 𝑘𝑖

• The rest of the algorithm is almost identical to samplesort

At the end of Phase 2

Sample-sort outline

Analogous to multiway quicksort

1. Split input array into 𝑁 contiguous

subarrays of size 𝑁

…

𝑁

𝑁

𝑁/𝑡

𝑡

Sample-sort outline

…

Analogous to multiway quicksort

1. Split input array into 𝑁/𝑡 contiguous
subarrays of size 𝑡. Sort subarrays
recursively (sequentially)

Size ≈ 𝑡

Sample-sort outline

2. Distribute subarrays into
buckets

…

Bucket 1 Bucket 2 Bucket 𝑁

≤ 𝑝1 ≤ ≤ 𝑝2 ≤ ⋯ ≤ 𝑝 𝑁−1 ≤

…

3. Recursively sort the buckets

4. Copy concatenated buckets back to input array

Sample-sort outline

Bucket 1 Bucket 2 Bucket 𝑁

…

sorted

Only for the light buckets

Difference 2: subarrays are not sorted

• For simplicity, assume 𝒏 = 𝟏𝟔, and the input is
[𝟏, 𝟐, 𝟑, 𝟒, 𝟏, 𝟏, 𝟑, 𝟑, 𝟏, 𝟐, 𝟐, 𝟒, 𝟏, 𝟐, 𝟒, 𝟒]

• First, get the count for each subarray in each bucket
[𝟏, 𝟏, 𝟏, 𝟏, 𝟐, 𝟎, 𝟐, 𝟎, 𝟏, 𝟐, 𝟎, 𝟏, 𝟏, 𝟏, 𝟎, 𝟐]

• Then, transpose the array and scan to compute the offsets
[𝟏, 𝟐, 𝟏, 𝟏, 𝟏, 𝟎, 𝟐, 𝟏, 𝟏, 𝟐, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟐]

[𝟎, 𝟏, 𝟑, 𝟒, 𝟓, 𝟔, 𝟔, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟐, 𝟏𝟐, 𝟏𝟐, 𝟏𝟑, 𝟏𝟑, 𝟏𝟒]

• Lastly, move each element to the corresponding bucket
[∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅]

32

[𝟏, ∅, ∅, ∅, ∅, 𝟐, ∅, ∅, ∅, 𝟑, ∅, ∅, 𝟒, ∅, ∅, ∅][𝟏, 𝟏, 𝟏, ∅, ∅, 𝟐, ∅, ∅, ∅, 𝟑, 𝟑, 𝟑, 𝟒, ∅, ∅, ∅]

Difference 2: subarrays are not sorted, but doesn’t matter

• For simplicity, assume 𝒏 = 𝟏𝟔, and the input is
[𝟏, 𝟑, 𝟐, 𝟒, 𝟏, 𝟑, 𝟏, 𝟑, 𝟏, 𝟐, 𝟐, 𝟒, 𝟏, 𝟐, 𝟒, 𝟒]

• First, get the count for each subarray in each bucket
[𝟏, 𝟏, 𝟏, 𝟏, 𝟐, 𝟎, 𝟐, 𝟎, 𝟏, 𝟐, 𝟎, 𝟏, 𝟏, 𝟏, 𝟎, 𝟐]

• Then, transpose the array and scan to compute the offsets
[𝟏, 𝟐, 𝟏, 𝟏, 𝟏, 𝟎, 𝟐, 𝟏, 𝟏, 𝟐, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟐]

[𝟎, 𝟏, 𝟑, 𝟒, 𝟓, 𝟔, 𝟔, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟐, 𝟏𝟐, 𝟏𝟐, 𝟏𝟑, 𝟏𝟑, 𝟏𝟒]

• Lastly, move each element to the corresponding bucket
[∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅]

33

[𝟏, ∅, ∅, ∅, ∅, 𝟐, ∅, ∅, ∅, 𝟑, ∅, ∅, 𝟒, ∅, ∅, ∅][𝟏, 𝟏, 𝟏, ∅, ∅, 𝟐, ∅, ∅, ∅, 𝟑, 𝟑, 𝟑, 𝟒, ∅, ∅, ∅]

Take away for semisort

• Semisort is very useful
• Implements bucket and integer sort, and can apply on even large key range

• Theoretically takes linear work and 𝑂 log 𝑛 depth, although in this lecture I
talked about a simpler version that does not have either bound

• The key insight is the partition of heavy and light keys
• Heavy keys have own buckets, which can be large but need no further sort

• Light keys are grouped based on ranges. Since the keys are hashed, the
light buckets are small (contains 𝑂 𝑛/𝑡 elements, analysis in [GSSB15])

34

CS260:
Algorithm
Engineering
Lecture 6

35

Review of Samplesort

Semisort

Course Policy

Paper Reading and Course Presentation

36

Paper Reading and Course Presentation

• 10 students have reserved the papers for reading and
presenting

• If Paper 8 is not reserved, Yunshu will present it on 4/27

• Deadlines, instructions and schedules are on course webpage
and ilearn

37

Course Presentation

• Each of you will give a 22-minute talk and have a 5-
minute Q&A. Time management is crucial.

• Tomorrow, I will upload Prof. Sun’s lecture on how to
give a clear talk. It is mandatory to study it before
your presentation.

• Meanwhile, I will also attach a speaking skill
evaluation form that is used to evaluate your talk.
• You should check it before you give the presentation

38

Preparation for Course Presentation

• It’s highly recommended to give 2-3 practice talks to your
friends and/or classmates before your presentation, in order
to guarantee that everything you say makes sense and is
understandable.

• Otherwise you are just wasting everyone’s time. Let’s don’t
do it since it’s embarrassing.

• You’re obliged to submit mostly-done slides to Yan 48h
ahead, as well as the corresponding paper reading.

39

Quiz

40

Quiz

• Quiz is on 4/24. I will send each of you a google doc, and
you should answer in it.

• Don’t write in other apps and copy and paste to that. Google
doc keeps track of all your edits (so please don’t cheat).
• Cheating the quiz/exam is fatal. Please don’t let me handle that.

• Only for 10% score. Don’t panic.

• It is open-book, but you should still review the lectures since
the length is for 1 hour and you might not have time to search
for each problem.

41

Midterm and Final Project

42

Midterm Project

• Due on April 29, so you still have more than 2 weeks.

• It’s a hard deadline, if you feel short of time, submit what you
have at that time
• Pre-proposal meeting is on May 1, and final proposal is due on May 4

• You should start now, and meanwhile, You should expect at
least two days in writing the report
• Writing a good report can largely increase your score

43

Final Project

• Pre-proposal meeting: 5/1

• Proposal: 5/4

• Weekly progress report 1: 5/13

• Milestone: 5/22

• Weekly progress report 2: 5/29

• Final project presentation: 6/1-5

• Final report due: 6/8

44

Final Project: Score Breakdown

• Proposal: 10%

• Weekly progress report 1: 5%

• Milestone: 10%

• Weekly progress report 2: 5%

• Final project presentation: 20%

• Final report: 50%

45

Milestone and Final project

• Milestone: 5-minute talk for each student, discuss the
progress and if you meet the goals in the proposal

• Final project presentation: 20+5(Q&A) minutes for each
student, talk about your work like the paper presentation

46

