CS260 - Algorithmic

caneerns | Parallel Algorithms and
T Implementations

* Some of the slides are from MIT 6.712, 6.886 and CMU 15-853.

Last Lecture

* Scheduler:

« Help you map your parallel tasks to
Processors

 Fork-join
e Fork: create several tasks that will be run in
parallel

* Join: after all forked threads finish,
synchronize them

) Work—s.pan . Can be scheduled in
« Work: total number of operations, W
sequential complexity time: O (— + S)
« Span (depth): the longest chain in the for work?/l/ span S on p

dependence graph

Processors 5

Last Lecture

« Write C++ code in parallel

Pseudocode

Code using Cilk

reduce(A, n) {
if (n == 1) return A[O];
In parallel:
L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);
return L+R;

int reduce(int* A, int n) {
if (n == 1) return A[QO];
int L, R;
L = cilk_spawn reduce(A, n/2);
R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

Last Lecture

« Reduce/scan algorithms
« Divide-and-conquer or blocking

« Coarsening
« Avoid overhead of fork-join
 Let each subtask large enough

Concurrency &
Atomic primitives

Concurrency

 When two threads access one
memory location at the same time

 When it is possible for two threads
to access the same memory
location, we need to consider
concurrency

« Usually we only care when at least
one of them is a write

« Race - will be introduced later in the
course

« Parallelism # concurrency
 For the reduce/scan algorithm we just saw, no concurrency occurs (even no
concurrent reads needed)

Concurrency

« The most important principle to deal with concurrency is the
correctness
* Does it still give expected output even when concurrency occurs?

« The second to consider is the performance
« Usually leads to slowdown for your algorithm

« The system needs to guarantee some correctness - results in much
overhead

Concurrency
« Correctness is the first consideration!

A joke for you to understand this:

Alice: | can compute multiplication very fast.
Bob: Really? What is 843342 x 34247

Alice: 20.
Bob: What? That’s not correct!
Alice: Wasn'’t that fast?

« Sometimes concurrency is inevitable

« Solution 1: Locks - usually safe, but slow

« Solution 2: Some atomic primitives

« Supported by most systems
* Needs careful design

Atomic primitives
« Compare-and-swap (CAS)

« bool CAS(value* p, value vold, value vnew): compare the value stored

in the pointer p with value vold, if they are equal, change p’'s value to
vnew and return true. Otherwise do nothing and return false.

e Test—-and-set (TAS)

* bool TAS(bool* p): determine if the Boolean value stored at p is false,
if so, set it to true and return true. Otherwise, return false.

* Fetch-and-add (FAA)

* integer FAA(integer® p, integer x): add integer p’s value by x, and
return the old value

* Priority-write:
* integer PW(integer* p, integer x): write x to p if and only if x is
smaller than the current value in p

sum=5

Use Atomic Primitives P1: add(3) P2: add(4)

void Add(x) { void Add(x) {

* Fetch-and-add (FAA): temp = sum; 5 - temp = sum; 5
integer FAA(integer* p, N B
integer x): add integer p’s —_—
value by x, and return the sum =8 (but should be 12)
old value Shared variable sum Shared variable sum

. id Add id Add
« Multiple threads want to VoiumA= iﬁ% ,{, X VO;AA/?&Sﬁ),ﬁz i);
adc! allglvalue to a shared } }
variable
] Shared variable count
« Multiple threads want to get int get id {
a global sequentialized return FAA(&count, 1);
order Y

10

Use Atomic Primitives

« Compare-and-swap:

struct node {
value type value;
node* next; };
shared variable node* head;

« Multiple threads wants to add to the head of a linked-list

void insert(node* x) {
node* old head = head;
x->next = old head;
while (!CAS(&head, old head, x)) {
node* old head = head;
x->next = old head; }

void insert(node* x) {

x->next = head;
head = x; x
}

head

11

Use Atomic Primitives

« Compare-and-swap:

struct node {
value type value;
node* next; };
shared variable node* head;

« Multiple threads wants to add to the head of a linked-list

void insert(node* x) {
node* old head = head;
x->next = old head;
while (!CAS(&head, old head, x)) {
node* old head = head;
x->next = old head; }

void insert(node* x) {

x->next = head;
head = x; x
}

\
M old_head

\
old_head

12

Concurrency - rule of thumb

* Do not use concurrency, algorithmically

* If you have to (with the guarantee of correctness)
Do not use concurrent writes

* If you have to (with the guarantee of correctness)
« Do not use locks, use atomic primitives (still, with the guarantee of correctness)

13

Filtering/packing

Parallel filtering / packing

 Given an array 4 of elements and a predicate function f,
output an array B with elements in A that satisfy f

_ | true if xisodd
flx) = {false if xis even

15

Parallel filtering / packing

« How can we know the length of B in parallel?
« Count the number of red elements - parallel reduce
« 0(n) work and O(logn) depth

16

Parallel filtering / packing

« How can we know where should 9 go?
* 9 is the first red element, 3 is the second, .

Filter(A, n, B, f) {

new array flag[n], ps[n];

para_for (i = 1 to n) {
flag[i] = f(A[i]); }

ps = scan(flag, n);

parallel for(i=1 to n) {
if (ps[i]!=ps[i-1])

. B[ps[1]] = A[1];

A= 4 2 9 3 6 5 7/ 11 10 8
V !
Prefix sum of flags 0 0] 2 2 3 4 5 0 0
index 2 4 5
¥ % v
B = 9 5 / 11

17

Application of filter: partition in quicksort

* For an array A, move elements in A smaller than k to the left
and those larger than k to the right

A |6/2|/9/4|1|3|5/8|7|0
Partition by 6
Possible
2(4/1(3]5 ()lllsa 8|7

output:

« The dividing criteria generally can be any predictor

18

Partition(A, n, k, B) {

Using filter for partition new array flag[n], ps[nl;

parallel for (i =1 to n) {

flag[i] = (A[i]<k); }

(Looking at the left part as an example) ps = scan(flag, n);

using 6 as a inOt parallel for(i=1 to n) {
if (ps[i]!=ps[i-1])
A |6 2/9 4|13/ 5/8(7|0 B[ps[i]] = A[i];
b}

flag |0/1/0/1/1/1/1]/0|0]1

A | X X X | X Can we avoid using too much extra space?

1

04—1O

2
Prefix sum |0 |1

of flag 4

pack [2(4(1|3|5|0

19

Implementation trick
delayed sequence

20

Delayed sequence

« A sequence is a function, so it does not need to be stored
It maps an index (subscript) to a value
« Save some space!

21

Delayed sequence

« A sequence is a function, so it does not need to be stored
« Save some space

int reduce(int* A, int n) { inline int get val(int i) {return i;}
if (n == 1) return A[Q]; int reduce(int start, int n, function f)
in | D .
L \\; { if (K/ - o A
Running time: int Running time:
¢/ about 0.19s for n=10A9, L = ¢ about 0.16s for n=10A9, £;
N with coarsening o with coarsening 'f) .
_ / Cilk Syre, /
int main() { return L+R; }
cin >> n;
parallel for (int i = 0; i < n; i++) | |int main() {
Al[i] = 1i; cin >> n;
cout << reduce(A, n) << endl; cout << reduce(@, n, get val) << endl;

22

Partition without the flag array

Old version New version
Partition(A, n, k, B) { Partition(A, n, k, B) {
new array flag[n], ps[n]; new array ps[n];
parallel for (i = 1 to n) { ps = scan(@, n,
flag[i] = (A[i]<k); } [&](int 1) {return (A[i]l<k);});
pPs = scan(flag, n); parallel for(i=1 to n) {
parallel_for(i=1 to n) { if (ps[i]!=ps[i-1])
if (ps[i]!=ps[i-1]) B[ps[i]] = A[i];
Blps[i]] = A[1]; }
}

Equivalent to having an array:
flag[i] = (A[i]<k);
But without explicitly storing it

(We can also get rid of the ps[] array, but it makes the program a bit more complicated)

23

Implementation trick
nested/granular/blocked
parallel for-loops

Nested parallel for-loops

Parallel 1 loop

e k" Forti (i e = Opd S Wni il Running time; 3.18s
° USU&”Y Only for (in’E k = 9; k < n; ++k) : J
heed to for (int j = @; j < n; ++3)
para”ellze the C[i][j] += A[i][k] * B[k]I[J];
outmost one :
Parallel J loop
* Make each for (int i = @; i < n: +ui) Rinnina time: 531,715
parallel task for (int k = o
|arge enough cilk_for (in Rule of Thumb
C[1][]] += -
Parallelize outer loops

Parallel i and rather than inner loops

ellk forGint-1i "=
o MR CIhE NG =N k e ++k)
el [\ ol e (g T Sle [Sl e ol -l
Clig Ll = A[i][k] * B[k][J1;

time: 10.64s

25

Gl’a nUla r-for #define granular_for(_i, start, end, cond, body){ \

if (_cond) { \

o |f some condition hOldS, {parallel for(size t i=_start; i< _end; i++){ \

: bod \

run the for loop in parallel i \

« Usually determining if the relse{ | | \

size of the for-loop is larger {fort()s'ge—t _I=_start;_I<_end; _I++){ \

than a threshold Wy o t

« Otherwise, run it) \

sequentially }

o Eg, for a for_loop Wlth granular_ for (i, 0, n, (n>2000), {A[i]=i});

size smaller than 2000,
run it sequentially,
otherwise run it in parallel

26

Blocked-for

 For a for-loop, combine
each _bsize of them as one
task, and run them in
parallel

* Also to avoid the case when
each task is too small
* Your scheduler can help do

#define nblocks(_n, bsize) (1 + ((_n)-1)/(_bsize))

#define blocked for(i, _s, e, bsize, body) {
INtT _ss =_s;
INtT _ee = _¢;
INtT _n=_ee-_Ss; # of blocks
INtT _| = nblocks(_n, bsize); f
parallel_for (intT _i=0; i< |, i++){
INtT _s=_ss+ i*(_bsize);
INtT _e =min(_s + (_bsize), ee);
for (intT _j=s; j<e;jt+) {

_body N

} From start of the block to
} the end of the block

}

— T T T

this in some sense, but it

doesn’t know much about

your loop body /

* E.g., put each 500 loop-
body into one task

block for (i, @0, n, 500, {A[i]=1i});

21

Implementation trick
dos and don'ts

28

Allocate large memory

« Don’t (frequently, dynamically) allocate memory in parallel
* This has to go through the OS
 New space cannot be allocated in parallel with other threads running

 Allocate enough memory in advance
« When needed, distribute the memory to the threads

« This means - using std::vector *can* slow down your parallel
code (if you are not careful enough)
 When resizing it needs to allocate new space and delete the old one

* |If you want to use std::vector, reserve enough space before starting
parallel running

29

Generating random numbers

/I a 32-bit hash function

. inline uint32_t random_hash(uint32_t a) {
Do not use the default random A= (A0 a5BA16) T (Aee12)

number generator a = (a"0xc761c23c) * (a>>19);

. : a = (a+0x165667bl) + (a<<b);
Use system time a = (a+0xd3a2646¢) " (a<<9);

* Involve synchronization - slows a = (a+0xfd7046c5) + (a<<3);
down parallel performance a = (a"0xb55a4f09) " (a>>16);
return a,;

L }

« Use a hash function instead
 Just write some random things as
your hash function - it’s a pseudo- Generate n random
random number generator anyway integers in parallel

parallel_for (i = 0 to n) random|i]J=random_hash(i);

30

Parallel merging

Parallel merging

« Given two sorted arrays, merge them into one sorted array
« Sequentially, use two moving pointers

raid
e,

01 23 45 6 7 8 9

32

A parallel merge algorithm

* Find the median m of one
array

 Binary search it in the other
array

 Put m in the correct slot

« Recursively, in parallel do:

« Merge the left two sub-arrays
into the left half of the output

« Merge the right ones into the
right half of the output

Subproblem 1: Subproblem 2:
Merge 2,3 with 0,1 Merge 6,9 with 5,7,8

B %) &

33

A parallel merge algorithm Binary search

Subproblem 2:

//merge array A of length nl and array B of length Subproblem 1;:
" ¢ © Y © g Merge 6,9 with 5,7,8

n2 into array C. Merge 2,3 with 0,1
Merge(A’, nl, B’, n2, C) {
if (A’ is empty or B’ is empty) base case; m
m=nl/2;
m2 = binary search(B’, A’[m]);
C[m+m2+1] = A’[m]; m

in parallel:

merge(A’, m, B’, m2, C);
merge(A’+m+1, nl-m-1, B’+m2+1, n2-m2-1, C+m+m2); ’ ‘
return C;
} 01 2 3 45 6 7 8 9

34

