
Parallel Algorithms and 
Implementations

CS260 – Algorithmic 
Engineering

Yihan Sun

* Some of the slides are from MIT 6.712, 6.886 and CMU 15-853. 



Last Lecture

• Scheduler:
• Help you map your parallel tasks to 

processors

• Fork-join
• Fork: create several tasks that will be run in 

parallel
• Join: after all forked threads finish, 

synchronize them

• Work-span
• Work: total number of operations, 

sequential complexity
• Span (depth): the longest chain in the 

dependence graph
2

Can be scheduled in 

time: 𝑂
𝑊

𝑝
+ 𝑆

for work 𝑊, span 𝑆 on 𝑝
processors



Last Lecture

• Write C++ code in parallel

3

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

reduce(A, n) {
if (n == 1) return A[0];
In parallel:

L = reduce(A, n/2);
R = reduce(A + n/2, n-n/2);

return L+R;
}

Pseudocode Code using Cilk



Last Lecture

• Reduce/scan algorithms
• Divide-and-conquer or blocking

• Coarsening
• Avoid overhead of fork-join

• Let each subtask large enough

4



Concurrency &
Atomic primitives

5



Concurrency

• When two threads access one 
memory location at the same time

• When it is possible for two threads 
to access the same memory 
location, we need to consider 
concurrency

• Usually we only care when at least 
one of them is a write

• Race – will be introduced later in the 
course

6

• Parallelism ≠ concurrency
• For the reduce/scan algorithm we just saw, no concurrency occurs (even no 

concurrent reads needed)



Concurrency

• The most important principle to deal with concurrency is the 
correctness

• Does it still give expected output even when concurrency occurs?

• The second to consider is the performance
• Usually leads to slowdown for your algorithm

• The system needs to guarantee some correctness – results in much 
overhead 

7



Concurrency
• Correctness is the first consideration!

• Sometimes concurrency is inevitable
• Solution 1: Locks – usually safe, but slow

• Solution 2: Some atomic primitives
• Supported by most systems

• Needs careful design

8

A joke for you to understand this:
Alice: I can compute multiplication very fast.

Bob: Really? What is 843342 × 3424?

Alice: 20.

Bob: What? That’s not correct!

Alice: Wasn’t that fast?



Atomic primitives

• Compare-and-swap (CAS)
• bool CAS(value* p, value vold, value vnew): compare the value stored 

in the pointer 𝑝 with value 𝑣𝑜𝑙𝑑, if they are equal, change 𝑝’s value to 
vnew and return true. Otherwise do nothing and return false.

• Test-and-set (TAS)
• bool TAS(bool* p): determine if the Boolean value stored at 𝑝 is false, 

if so, set it to true and return true. Otherwise, return false.

• Fetch-and-add (FAA)
• integer FAA(integer* p, integer x): add integer 𝑝’s value by 𝑥, and 

return the old value

• Priority-write:
• integer PW(integer* p, integer x): write x to p if and only if x is 

smaller than the current value in 𝑝

9



Use Atomic Primitives

• Fetch-and-add (FAA): 
integer FAA(integer* p, 
integer x): add integer 𝑝’s 
value by 𝑥, and return the 
old value

• Multiple threads want to 
add a value to a shared 
variable

• Multiple threads want to get 
a global sequentialized
order

10

Shared variable sum
void Add(x) {
FAA(&sum, x);

}

Shared variable count
int get_id {
return FAA(&count, 1);

}

Shared variable sum
void Add(x) {
sum = sum + x;

}

void Add(x) {
temp = sum;
sum = temp + x;

}

void Add(x) {
temp = sum;
sum = temp + x;

}

sum = 5

5 5

P2: add(4)P1: add(3)

98

sum = 8  (but should be 12)



Use Atomic Primitives

11

void insert(node* x) {
node* old_head = head;
x->next = old_head;
while (!CAS(&head, old_head, x)) {

node* old_head = head;
x->next = old_head;  }

}

• Compare-and-swap:
• Multiple threads wants to add to the head of a linked-list

X1

X2 head

void insert(node* x) {
x->next = head;
head = x;

}

？

X1

X2

head

struct node {
value_type value;
node* next; };

shared variable node* head;



Use Atomic Primitives

12

void insert(node* x) {
node* old_head = head;
x->next = old_head;
while (!CAS(&head, old_head, x)) {

node* old_head = head;
x->next = old_head;  }

}

• Compare-and-swap:
• Multiple threads wants to add to the head of a linked-list

X1

X2 old_head

void insert(node* x) {
x->next = head;
head = x;

}

X1

X2

head

struct node {
value_type value;
node* next; };

shared variable node* head;

old_head



Concurrency – rule of thumb

• Do not use concurrency, algorithmically

• If you have to (with the guarantee of correctness)
• Do not use concurrent writes

• If you have to (with the guarantee of correctness)
• Do not use locks, use atomic primitives (still, with the guarantee of correctness)

13



Filtering/packing

14



Parallel filtering / packing

• Given an array 𝑨 of elements and a predicate function 𝒇, 
output an array 𝑩 with elements in 𝑨 that satisfy 𝒇

15

4 2 9 3 6 5 7 11 10 8

9 3 5 7 11

𝑓 𝑥 = ቊ
𝑡𝑟𝑢𝑒 𝑖𝑓 𝑥 𝑖𝑠 𝑜𝑑𝑑
𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐴 =

𝐵 =



Parallel filtering / packing

• How can we know the length of 𝑩 in parallel?
• Count the number of red elements – parallel reduce
• 𝑂(𝑛) work and 𝑂(log 𝑛) depth

16

4 2 9 3 6 5 7 11 10 8𝐴 =

0 0 1 1 0 1 1 1 0 0



Parallel filtering / packing

• How can we know where should 9 go?
• 9 is the first red element, 3 is the second, …

17

4 2 9 3 6 5 7 11 10 8𝑨 =

0 0 1 1 0 1 1 1 0 0

0 0 1 2 2 3 4 5 0 0

9 3 5 7 11𝐵 =

1 2 3 4 5index

Prefix sum of flags

Flags of A

Filter(A, n, B, f) {
new array flag[n], ps[n];
para_for (i = 1 to n) {
flag[i] = f(A[i]); }

ps = scan(flag, n);
parallel_for(i=1 to n) {
if (ps[i]!=ps[i-1])

B[ps[i]] = A[i];
} }



Application of filter: partition in quicksort

• For an array A, move elements in A smaller than 𝒌 to the left 
and those larger than 𝒌 to the right

• The dividing criteria generally can be any predictor

18

6 2 9 4 1 3 5 8 7 0A

2 4 1 3 5 0 6 9 8 7
Possible 

output:

Partition by 6



Using filter for partition

19

6 2 9 4 1 3 5 8 7 0

0 1 0 1 1 1 1 0 0 1

Partition(A, n, k, B) {
new array flag[n], ps[n];
parallel_for (i = 1 to n) {
flag[i] = (A[i]<k); }

ps = scan(flag, n);
parallel_for(i=1 to n) {
if (ps[i]!=ps[i-1])

B[ps[i]] = A[i];
} }

A

flag

X 2 X 4 1 3 5 X X 0A

0 1 1 2 3 4 5 5 5 6Prefix sum 

of flag

using 6 as a pivot

2 4 1 3 5 0pack

Can we avoid using too much extra space?

(Looking at the left part as an example)



Implementation trick:
delayed sequence

20



Delayed sequence

• A sequence is a function, so it does not need to be stored
• It maps an index (subscript) to a value

• Save some space!

21



Delayed sequence

• A sequence is a function, so it does not need to be stored
• Save some space

22

int reduce(int* A, int n) {
if (n == 1) return A[0];
int L, R;
L = cilk_spawn reduce(A, n/2);

R = reduce(A+n/2, n-n/2);
cilk_sync;
return L+R; }

int main() {
cin >> n;
parallel_for (int i = 0; i < n; i++) 
A[i] = i;

cout << reduce(A, n) << endl;

inline int get_val(int i) {return i;}
int reduce(int start, int n, function f) 
{

if (n == 1) return f(start);
int L, R;
L = cilk_spawn reduce(start, n/2, f);

R = reduce(start+n/2, n-n/2, f);
cilk_sync;
return L+R; }

int main() {
cin >> n;
cout << reduce(0, n, get_val) << endl;

Running time:
about 0.19s for n=10^9, 

with coarsening

Running time:
about 0.16s for n=10^9, 

with coarsening



Partition without the flag array

23

Partition(A, n, k, B) {
new array flag[n], ps[n];
parallel_for (i = 1 to n) {
flag[i] = (A[i]<k); }

ps = scan(flag, n);
parallel_for(i=1 to n) {
if (ps[i]!=ps[i-1])

B[ps[i]] = A[i];
}

Partition(A, n, k, B) {
new array ps[n];
ps = scan(0, n, 

[&](int i) {return (A[i]<k);});
parallel_for(i=1 to n) {
if (ps[i]!=ps[i-1])

B[ps[i]] = A[i];
}

Old version New version

(We can also get rid of the ps[] array, but it makes the program a bit more complicated)

Equivalent to having an array:

flag[i] = (A[i]<k); 
But without explicitly storing it



Implementation trick:
nested/granular/blocked 

parallel for-loops

24



Nested parallel for-loops

• Usually only 
need to 
parallelize the 
outmost one

• Make each 
parallel task 
large enough

25

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Running time: 3.18s

Running time: 531.71s 

Running time: 10.64s 

Parallel i loop

Parallel i and j loops

Parallel j loop

Rule of Thumb 
Parallelize outer loops 
rather than inner loops



Granular-for

• If some condition holds, 
run the for loop in parallel

• Usually determining if the 
size of the for-loop is larger 
than a threshold

• Otherwise, run it 
sequentially

• E.g., for a for-loop with 
size smaller than 2000, 
run it sequentially, 
otherwise run it in parallel

26

#define granular_for(_i, _start, _end, _cond, _body) { \

if (_cond) { \

{parallel_for(size_t _i=_start; _i < _end; _i++) { \

_body \

}} \

} else { \

{for (size_t _i=_start; _i < _end; _i++) { \

_body \

}} \

} \

}

granular_for (i, 0, n, (n>2000), {A[i]=i});



Blocked-for

• For a for-loop, combine 
each _bsize of them as one 
task, and run them in 
parallel

• Also to avoid the case when 
each task is too small

• Your scheduler can help do 
this in some sense, but it 
doesn’t know much about 
your loop body

• E.g., put each 500 loop-
body into one task

27

#define nblocks(_n,_bsize) (1 + ((_n)-1)/(_bsize))

#define blocked_for(_i, _s, _e, _bsize, _body)  { \

intT _ss = _s; \

intT _ee = _e; \

intT _n = _ee-_ss; \

intT _l = nblocks(_n,_bsize); \

parallel_for (intT _i = 0; _i < _l; _i++) { \

intT _s = _ss + _i * (_bsize); \

intT _e = min(_s + (_bsize), _ee); \

for (intT _j = s; _j < e; j++)  { \

_body \

} \

} \

}

block_for (i, 0, n, 500, {A[i]=i});

# of blocks

From start of the block to 

the end of the block



Implementation trick:
dos and don’ts 

28



Allocate large memory

• Don’t (frequently, dynamically) allocate memory in parallel
• This has to go through the OS

• New space cannot be allocated in parallel with other threads running

• Allocate enough memory in advance
• When needed, distribute the memory to the threads 

• This means – using std::vector *can* slow down your parallel 
code (if you are not careful enough)

• When resizing it needs to allocate new space and delete the old one

• If you want to use std::vector, reserve enough space before starting 
parallel running

29



Generating random numbers

• Do not use the default random 
number generator

• Use system time

• Involve synchronization – slows 
down parallel performance

• Use a hash function instead
• Just write some random things as 

your hash function – it’s a pseudo-
random number generator anyway

30

// a 32-bit hash function

inline uint32_t random_hash(uint32_t a) {

a = (a+0x7ed55d16) + (a<<12);

a = (a^0xc761c23c) ^ (a>>19);

a = (a+0x165667b1) + (a<<5);

a = (a+0xd3a2646c) ^ (a<<9);

a = (a+0xfd7046c5) + (a<<3);

a = (a^0xb55a4f09) ^ (a>>16);

return a;

}

parallel_for (i = 0 to n) random[i]=random_hash(i);

Generate n random 

integers in parallel



Parallel merging

31



Parallel merging

• Given two sorted arrays, merge them into one sorted array

• Sequentially, use two moving pointers

32

0 4 7 8

1 2 3 5 6 9

0 1 2 3 4 5 6 7 8 9



A parallel merge algorithm

• Find the median 𝒎 of one 
array

• Binary search it in the other 
array

• Put 𝒎 in the correct slot

• Recursively, in parallel do:
• Merge the left two sub-arrays 

into the left half of the output

• Merge the right ones into the 
right half of the output

33

93 4 62

0 1 5 7 8

41 2 30 96 7 85

Binary search

32

0 1

96

5 7 8

Subproblem 1:

Merge 2,3 with 0,1

Subproblem 2:

Merge 6,9 with 5,7,8



A parallel merge algorithm

34

93 4 62

0 1 5 7 8

41 2 30 96 7 85

Binary search

32

0 1

96

5 7 8

Subproblem 1:

Merge 2,3 with 0,1

Subproblem 2:

Merge 6,9 with 5,7,8
//merge array A of length n1 and array B of length 
n2 into array C. 
Merge(A’, n1, B’, n2, C) {
if (A’ is empty or B’ is empty) base_case;
m = n1/2;
m2 = binary_search(B’, A’[m]);
C[m+m2+1] = A’[m];
in parallel:
merge(A’, m, B’, m2, C);
merge(A’+m+1, n1-m-1, B’+m2+1, n2-m2-1, C+m+m2);

return C;
}


