CS260 – Lecture 2 Yan Gu

Algorithm Engineering (aka. How to Write Fast Code)

Case Study: Matrix Multiplication

Many slides in this lecture are borrowed from the first lecture in 6.172 Performance Engineering of Software Systems at MIT. The credit is to Prof. Charles E. Leiserson, and the instructor appreciates the permission to use them in this course. The numbers of runtime and more details of the experiment can be found in Tao Schardl's dissertation *Performance engineering of multicore software: Developing a science of fast code for the post-Moore era*.

Technology Scaling

Stanford's CPU DB [DKM12]

Performance Is No Longer Free

2008

NVIDIA

GT200

GPU

2011 Intel Skylake processor

 ROP
 Texture
 Processor

 Cores
 Texture
 Texture

 Frame
 Frame

 Buffer
 Frame

 Processor
 Texture

 Processor
 Texture

 Processor
 Texture

 Processor
 Texture

 Moore's Law continues to increase computer performance

• But now that performance looks like big multicore processors with complex cache hierarchies, wide vector units, GPUs, FPGAs, etc.

•Generally, algorithms must be adapted to utilize this hardware efficiently!

Square-Matrix Multiplication

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$
$$C \qquad A \qquad B$$
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Assume for simplicity that $n = 2^k$.

AWS c4.8xlarge Machine Specs

Feature	Specification						
Microarchitecture	Haswe	Haswell (Intel Xeon E5-2666 v3)					
Clock frequency	2.9 CL					+050 pc	+0.2. pc
Processor chips	2 c4	1.8xlarge				\$1.591 per Hour	\$0.27 per Hour
Processing cores	9 pe, ₇	ภามนะรรมา เ	лир				
Hyperthreading	2 waʻ						
	8 do 6	c5.18xlarge				\$3.06 per Hour	\$0.27 per Hour
Floating-point unit	fuse	c5.24xlarge				\$4.08 per Hour	\$0.27 per Hour
Cache-line size	64 B						
L1-icache	32 KB p	orivate 8-v	vay set	associative			
L1-dcache	32 KB	Model	vCPU	Memory (GiB)			
L2-cache	256	c5.18xlarge	72	144			
L3-cache (LLC)	25 M	c5.24xlarge	96	192			
DRAM	60 G				_		

 $Peak = (2.9 \times 10^9) \times 2 \times 9 \times 16 = 836 \text{ GFLOPS}$

Version 1: Nested Loops in Python

Running time = 21042 seconds \approx 6 hours

Is this fast?

Should we expect more?

Version 1: Nested Loops in Python

Running time = 21042 seconds \approx 6 hours

Is this fast?

Should we expect more?

Back-of-the-envelope calculation

 $2n^3 = 2(2^{12})^3 = 2^{37}$ floating-point operations Running time = 21042 seconds \therefore Python gets $2^{37}/21042 \approx 6.25$ MFLOPS Peak ≈ 836 GFLOPS Python gets $\approx 0.00075\%$ of peak

Version 2: Java

 \cdots about 8.8× faster than Python. for (int i=0; i<n; i++) {</pre> for (int j=0; j<n; j++) {</pre> for (int k=0; k<n; k++) {</pre> C[i][j] += A[i][k] * B[k][j];

Version 3: C

#include <stdlib.h> #include <stdio.h> #include <sys/time.h> #define n 4096 double A[n][n]; double B[n][n]; double C[n][n]; float tdiff(struct timeval *start, struct timeval *end) { return (end->tv sec-start->tv sec) + 1e-6*(end->tv usec-start->tv usec); int main(int argc, const char *argv[]) { for (int i = 0; i < n; ++i) {</pre> for (int j = 0; j < n; ++j) { A[i][j] = (double)rand() / (double)RAND MAX; B[i][j] = (double)rand() / (double)RAND MAX; C[i][j] = 0;struct timeval start. end, gettimeofday(&start, NULL); for (int i = 0; i < n; ++i) {</pre> for (int j = 0; j < n; ++j) {</pre> for (int k = 0; k < n; ++k) { C[i][j] += A[i][k] * B[k][j];gettimeofday(&end, NoLL): printf("%0.6f\n", tdiff(&start, &enu)); return 0;

Using the Clang/LLVM 5.0 compiler Running time = 1,156 seconds \approx 19 minutes

About 2× faster than Java and about 18× faster than Python

```
for (int i = 0; i < n; ++i) {
    for (int j = 0; j < n; ++j) {
        for (int k = 0; k < n; ++k) {
            C[i][j] += A[i][k] * B[k][j];
        }
      }
    }
}</pre>
```

Where We Stand So Far

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.007	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.119	0.014

Why is Python so slow and C so fast?

- Python is interpreted
- C is compiled directly to machine code
- Java is compiled to byte-code, which is then interpreted and just-in-time (JIT) compiled to machine code

Interpreters are versatile, but slow

- The interpreter reads, interprets, and performs each program statement and updates the machine state
- Interpreters can easily support high-level programming features such as dynamic code alteration — at the cost of performance

JIT Compilation

- JIT compilers can recover some of the performance lost by interpretation
- When code is first executed, it is interpreted
- The runtime system keeps track of how often the various pieces of code are executed
- Whenever some piece of code executes sufficiently frequently, it gets compiled to machine code in real time
- Future executions of that code use the more-efficient compiled version

Loop Order

We can change the order of the loops in this program without affecting its correctness

Loop Order

We can change the order of the loops in this program without affecting its correctness

Does the order of loops matter for performance?

Performance of Different Orders

Loop order (outer	Running
to inner)	time (s)
i, j, k	1155.77
i, k, j	177.68
j, i, k	1080.61
j, k, i	3056.63
k, i, j	179.21
k, j, i	3032.82

•Loop order affects running time by a factor of 18!

•What's going on?!

Hardware Caches

Each processor reads and writes main memory in contiguous blocks, called *cache lines*

- Previously accessed cache lines are stored in a smaller memory, called a *cache*, that sits near the processor
- Cache hits accesses to data in cache are fast
- Cache misses accesses to data not in cache are slow

Memory Layout of Matrices

In this matrix-multiplication code, matrices are laid out in memory in *row-major order*

Matrix

Row	1
Row	2
Row	3
Row	4
Row	5
Row	6
Row	7
Row	8

What does this layout imply about the performance of different loop orders?

Access Pattern for Order i, j, k

Access Pattern for Order i, k, j

for (int i = 0; i < n; ++i)</pre> for (int k = 0; k < n; ++k)</pre> for (int j = 0; j < n; ++j)</pre> C[i][j] += A[i][k] * B[k][j];

Access Pattern for Order j, k, i

Running time: 3056.63s

Performance of Different Orders

We can measure the effect of different access patterns using the Cachegrind cache simulator:

\$ valgrind --tool=cachegrind ./mm

Loop order (outer to inner)	Running time (s)	Last-level-cache miss rate
i, j, k	1155.77	7.7%
i, k, j	177.68	1.0%
j, i, k	1080.61	8.6%
j, k, i	3056.63	15.4%
k, i, j	179.21	1.0%
k, j, i	3032.82	15.4%

Version 4: Interchange Loops

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093

What other simple changes we can try?

Compiler Optimization

Clang provides a collection of optimization switches. You can specify a switch to the compiler to ask it to optimize

Opt. level	Meaning	Time (s)
-00	Do not optimize	177.54
-01	Optimize	66.24
-02	Optimize even more	54.63
-03	Optimize yet more	55.58

Version 5: Optimization Flags

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301

With simple code and compiler technology, we can achieve 0.3% of the peak performance of the machine

What's causing the low performance?

Multicore Parallelism

Intel Haswell E5: 9 cores per chip

The AWS test machine has 2 of these chips

We're running on just 1 of the 18 parallel-processing cores on this system. Let's use them all!

Parallel Loops

The cilk_for loop allows all iterations of the loop to execute in parallel

Which parallel version works best?

Experimenting with Parallel Loops

Parallel i loop

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)
 C[i][j] += A[i][k] * B[k][j];</pre>

Running time: 3.18s

Parallel j loop

Version 6: Parallel Loops

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408

Using parallel loops gets us almost 18× speedup on 18 cores! (Disclaimer: Not all code is so easy to parallelize effectively.)

Why are we still getting just 5% of peak?

Hardware Caches, Revisited

IDEA: Restructure the computation to reuse data in the cache as much as possible

- Cache misses are slow, and cache hits are fast
- Try to make the most of the cache by reusing the data that's already there

Data Reuse: Loops

How many memory accesses must the looping code perform to fully compute 1 row of C?

- 4096 * 1 = 4096 writes to C,
- 4096 * 1 = 4096 reads from A, and
- 4096 * 4096 = 16,777,216 reads from B, which is
- 16,785,408 memory accesses total

Data Reuse: Blocks

How about to compute a 64 × 64 block of C?

- $64 \cdot 64 = 4096$ writes to C,
- 64 · 4096 = 262,144 reads from A, and
- 4096 · 64 = 262,144 reads from B, or
- 528,384 memory accesses total

Tiled Matrix Multiplication

Tiled Matrix Multiplication

cilk_for (int ih = 0; ih < n; ih += s)
 cilk_for (int jh = 0; jh < n; jh += s)
 for (int kh = 0; kh < n; kh += s)
 for (int il = 0; il < s; ++il)
 for (int kl = 0; kl < s; ++kl)
 for (int jl = 0; jl < s; ++jl)
 C[ih+il][jh+jl] += A[ih+il][kh+kl] * B[Kn+Kl][jn+jl];</pre>

Tile size	Running time (s)
4	6.74
8	2.76
16	2.49
32	1.74
64	2.33
128	2.13

Version 7: Tiling

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.74	1.70	11,772	76.782	9.184

Implementation	Cache references (millions)	L1-d cache misses (millions)	Last-level cache misses (millions)
Parallel loops	104,090	17,220	8,600
+ tiling	64,690	11,777	416

The tiled implementation performs about 62% fewer cache references and incurs 68% fewer cache misses.

Multicore Cache Hierarchy

Tiling for a Two-Level Cache

Tiling for a Two-Level Cache

Recursive Matrix Multiplication

IDEA: Tile for **every** power of 2 simultaneously

$$\begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \cdot \begin{bmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{bmatrix}$$
$$= \begin{bmatrix} A_{00}B_{00} & A_{00}B_{01} \\ A_{10}B_{00} & A_{10}B_{01} \end{bmatrix} + \begin{bmatrix} A_{01}B_{10} & A_{01}B_{11} \\ A_{11}B_{10} & A_{11}B_{11} \end{bmatrix}$$

8 multiplications of $n/2 \times n/2$ matrices 1 addition of $n \times n$ matrices

Recursive Parallel Matrix Multiply

The child function call is spawned, meaning it may execute in parallel with the parent caller

Control may not pass this point until all spawned children have returned.

```
void mm dac(double *restrict C, int n C,
            double *restrict A, int n A,
            double *restrict B, int n B,
            int n)
{ // C += A * B
  assert((n \& (-n)) == n);
  if (n <= 1) {
    *C += *A * *B:
  } else
#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
   cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
   cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
               mm dac(X(C,1,1), n C, X(A,1,0), n A, X(B,0,1), n B, n/2);
   cilk sync;
    cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
               mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
   cilk sync;
```

Recursive Parallel Matrix Multiply

The base case is too small. We must coarsen the recursion to overcome function-call overheads.

Running time: 93.93s... about $50 \times$ **slower** than the last version!

```
void mm dac(double *restrict C, int n C,
            double *restrict A, int n A,
            double *restrict B, int n B,
            int n)
{ // C += A * B
  assert((n \& (-n)) == n);
  if (n <= 1) {
    *C +4 *A * *B:
   Ine X(M,r,c) (M + (r^*(n \# M) + c)^*(n/2))
    cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);
               mm dac(X(C,1,1), n C, X(A,1,0), n A, X(B,0,1), n B, n/2);
    cilk sync;
    cilk spawn mm dac(X(C,0,0), n C, X(A,0,1), n A, X(B,1,0), n B, n/2);
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
               mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
    cilk sync;
```

Coarsening The Recursion

Just one tuning parameter, for the size of the base case.

```
void mm dac(double *restrict C, int n C,
            double *restrict A, int n A,
            double *restrict B, int n B,
            int n)
{ // C += A * B
  assert(n \& (-n)) == n);
 if (n <= THRESHOLD) {</pre>
   mm base(C, n C, A, n A, B, n B, n);
 } else {
#define X(M,r,c) (M + (r^{*}(n \# M) + c)^{*}(n/2))
    cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
    cilk spawn mm dac(X(C,1,0), n C, X(A,1,0), n A, X(B,0,0), n B, n/2);
               mm dac(X(C,1,1), n C, X(A,1,0), n A, X(B,0,1), n B, n/2);
    cilk sync;
    cilk spawn mm dac(X(C,0,0), n C, X(A,0,1), n A, X(B,1,0), n B, n/2);
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
    cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
               mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
    cilk sync;
```

Coarsening The Recursion

	<pre>void mm_dac(double *restrict C, int n_C,</pre>
	double *restrict A, int n_A,
	double *restrict B, int n_B,
	int n)
	{ // C += A * B
	assert((n & (-n)) == n);
	<pre>if (n <= THRESHOLD) {</pre>
	<pre>mm_base(C, n_C, A, n_A, B, n_B, n);</pre>
	<pre>} else {</pre>
	#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
	<pre>cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);</pre>
	<pre>cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);</pre>
	<pre>cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);</pre>
void mm baco(doublo *postpict (in	dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
void mm_base(double restrict C, in	
double *restrict A, in	dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
double *restrict B, in	t n_B, dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
int n)	dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);
$\{ // C = A * B \}$	_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
<pre>for (int i = 0; i < n; ++i)</pre>	
for (int $k = 0$: $k < n$: ++k)	
for (int $i = 0$ $i < n$ $++i$)	
C[i*n C+i] + A[i*n A+k] *	S[k*n B+i].
$C[I \cap I] C+J] + A[I \cap I] A+K]$	
}	

Coarsening The Recursion

Base- case size	Running time (s)
4	3.00
8	1.34
16	1.34
32	1.30
64	1.95
128	2.08

```
void mm dac(double *restrict C, int n C,
            double *restrict A, int n A,
            double *restrict B, int n B,
            int n)
{ // C += A * B
  assert((n & (-n)) == n);
 if (n <= THRESHOLD) {</pre>
   mm base(C, n C, A, n A, B, n B, n);
 } else {
#define X(M,r,c) (M + (r^{*}(n \# M) + c)^{*}(n/2))
    cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
    cilk spawn mm dac(X(C,1,0), n C, X(A,1,0), n A, X(B,0,0), n B, n/2);
               mm dac(X(C,1,1), n C, X(A,1,0), n A, X(B,0,1), n B, n/2);
    cilk sync;
    cilk spawn mm dac(X(C,0,0), n C, X(A,0,1), n A, X(B,1,0), n B, n/2);
    cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
    cilk spawn mm dac(X(C,1,0), n C, X(A,1,1), n A, X(B,1,0), n B, n/2);
               mm dac(X(C,1,1), n C, X(A,1,1), n A, X(B,1,1), n B, n/2);
    cilk sync;
```

8. Divide-and-Conquer

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646

Implementation	Cache references (millions)	L1-d cache misses (millions)	Last-level cache misses (millions)
Parallel loops	104,090	17,220	8,600
+ tiling	64,690	11,777	416
Parallel divide-and-conquer	58,230	9,407	64

Vector Hardware

Modern microprocessors incorporate vector hardware to process data in single-instruction stream, multiple-data stream (SIMD) fashion

Compiler Vectorization

Clang/LLVM uses vector instructions automatically when compiling at optimization level -02 or higher

Can be checked in a *vectorization report* as follows:

```
$ clang -03 -std=c99 mm.c -o mm -Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2,
interleaved count: 2) [-Rpass=loop-vectorize]
for (int j = 0; j < n; ++j) {
   ^
```

Many machines don't support the newest set of vector instructions, however, so the compiler uses vector instructions conservatively by default

Vectorization Flags

Programmers can direct the compiler to use modern vector instructions using compiler flags such as the following:

- -mavx: Use Intel AVX vector instructions
- -mavx2: Use Intel AVX2 vector instructions
- -mfma: Use fused multiply-add vector instructions
- -march=<string>: Use whatever instructions are available on the specified architecture
- -march=native: Use whatever instructions are available on the architecture of the machine doing compilation

Due to restrictions on floating-point arithmetic, additional flags, such as -ffast-math, might be needed for these vectorization flags to have an effect

Version 9: Compiler Vectorization

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646
9	+ compiler vectorization	0.70	1.87	30,272	196.341	23.486

Using the flags -march=native -ffast-math nearly doubles the program's performance!

Can we be smarter than the compiler?

AVX Intrinsic Instructions

•Intel provides C-style functions, called *intrinsic instructions*, that provide direct access to hardware vector operations:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

(intel) Intrinsics Guide	The Intel Intrinsics Guide is an interactive reference tool for Intel intrinsic instr style functions that provide access to many Intel instructions - including Intel®	uctions, which are C* SSE, AVX, AVX-
Technologies	512, and more - without the need to write assembly code.	
		?
SSE2		
SSE3		vpabsw
	= m256i mm256 abs epi32 (m256i a)	vpabsd
SSE4.1	- m256i mm256 abs epi8 (m256i a)	vpabsb
SSE4.2	- m256i mm256 add opi16 (m256i a m256i b)	vpaddw
AVX	- m256i mm256 add epii0 (m256i a,m256i b)	bbbcqv
VX2	m2501 _mm256_add_ep132 (m2501 a,m2501 b)	vpaudu
🗹 FMA	m256i _mm256_add_epi64 (m256i a,m256i b)	vpaddq
🗆 AVX-512	m256i _mm256_add_epi8 (m256i a,m256i b)	vpaddb
	m256d _mm256_add_pd (m256d a,m256d b)	vaddpd
	m256 _mm256_add_ps (m256 a,m256 b)	vaddps
Other	m256i _mm256_adds_epi16 (m256i a,m256i b)	vpaddsw
	m256i _mm256_adds_epi8 (m256i a,m256i b)	vpaddsb
Categories	m256i _mm256_adds_epu16 (m256i a,m256i b)	vpaddusw
Application-Targeted	m256i _mm256_adds_epu8 (m256i a,m256i b)	vpaddusb
□ Bit Manipulation	m256d _mm256_addsub_pd (m256d a,m256d b)	vaddsubpd
	m2E4 mm2E4 addsub ns (m2E4 a m2E4 b)	vaddsubps

Plus More Optimizations

We can apply several more insights and performanceengineering tricks to make this code run faster, including:

- Preprocessing
- Matrix transposition
- Data alignment
- Memory-management optimizations
- A clever algorithm for the base case that uses AVX intrinsic instructions explicitly

Plus Performance Engineering

...to test and measure many different implementations

Version 10: AVX Intrinsics

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646
9	+ compiler vectorization	0.70	1.87	30,272	196.341	23.486
10	+ AVX intrinsics	0.39	1.76	53,292	352.408	41.677

Version 11: Final Reckoning

Version	Implementation	Running time (s)	Relative speedup	Absolute Speedup	GFLOPS	Percent of peak
1	Python	21041.67	1.00	1	0.006	0.001
2	Java	2387.32	8.81	9	0.058	0.007
3	С	1155.77	2.07	18	0.118	0.014
4	+ interchange loops	177.68	6.50	118	0.774	0.093
5	+ optimization flags	54.63	3.25	385	2.516	0.301
6	Parallel loops	3.04	17.97	6,921	45.211	5.408
7	+ tiling	1.79	1.70	11,772	76.782	9.184
8	Parallel divide-and-conquer	1.30	1.38	16,197	105.722	12.646
9	+ compiler vectorization	0.70	1.87	30,272	196.341	23.486
10	+ AVX intrinsics	0.39	1.76	53,292	352.408	41.677
11	Intel MKL	0.41	0.97	51,497	335.217	40.098

Version 10 is competitive with Intel's professionally engineered Math Kernel Library!

Engineering the Performance of your Algorithms

- You won't generally see the magnitude of performance improvement we obtained for matrix multiplication
- But in this course, you will learn how to print the currency of performance all by yourself

Overall Structure in this Course

Performance Engineering

Parallelism I/O efficiency New Bentley rules Brief overview of architecture

Algorithm Engineering

Sorting / Semisorting Matrix multiplication Graph algorithms Geometry Algorithms

EE/CS217 GPU Architecture and Parallel Programming

- CS211 High Performance Computing
- CS213 Multiprocessor Architecture and Programming (<u>Stanford CS149</u>)
- CS247 Principles of Distributed Computing