
Algorithm Engineering
(aka. How to Write Fast Code)

Case Study:
Matrix Multiplication

CS260 – Lecture 2

Yan Gu

Many slides in this lecture are borrowed from the first lecture in 6.172 Performance Engineering of Software Systems at MIT.

The credit is to Prof. Charles E. Leiserson, and the instructor appreciates the permission to use them in this course. The

numbers of runtime and more details of the experiment can be found in Tao Schardl’s dissertation Performance engineering

of multicore software: Developing a science of fast code for the post-Moore era.

0

1

10

100

1,000

10,000

100,000

1,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Technology Scaling

Processor cores

Normalized
transistor count

Clock speed (MHz)

Stanford’s CPU DB [DKM12]Year

Performance Is No Longer Free

2011 Intel
Skylake

processor

2008
NVIDIA
GT200
GPU

∙Moore’s Law continues to

increase computer performance

∙But now that performance looks

like big multicore processors

with complex cache hierarchies,

wide vector units, GPUs, FPGAs,

etc.

∙Generally, algorithms must be

adapted to utilize this hardware

efficiently!

Square-Matrix Multiplication

c11 c12 ⋯ c1n

c21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮

cn1 cn2 ⋯ cnn

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

b11 b12 ⋯ b1n

b21 b22 ⋯ b2n

⋮ ⋮ ⋱ ⋮
bn1 bn2 ⋯ bnn

= ∙

C A B

cij =
k = 1

n

aik bkj

Assume for simplicity that n = 2k.

AWS c4.8xlarge Machine Specs

Feature Specification

Microarchitecture Haswell (Intel Xeon E5-2666 v3)

Clock frequency 2.9 GHz

Processor chips 2

Processing cores 9 per processor chip

Hyperthreading 2 way

Floating-point unit
8 double-precision operations, including
fused-multiply-add, per core per cycle

Cache-line size 64B

L1-icache 32KB private 8-way set associative

L1-dcache 32KB private 8-way set associative

L2-cache 256 KB private 8-way set associative

L3-cache (LLC) 25MB shared 20-way set associative

DRAM 60GB

Peak = (2.9 × 109) × 2 × 9 × 16 = 836 GFLOPS

Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

B = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

C = [[0 for row in xrange(n)]
for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time = 21042 seconds ≈ 6 hours

Is this fast?

Should we expect more?

Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

B = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

C = [[0 for row in xrange(n)]
for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time = 21042 seconds ≈ 6 hours

Is this fast?

Should we expect more?

Back-of-the-envelope calculation

2n3 = 2(212)3 = 237 floating-point operations
Running time = 21042 seconds
∴ Python gets 237/21042 ≈ 6.25 MFLOPS
Peak ≈ 836 GFLOPS
Python gets ≈ 0.00075% of peak

Version 2: Java
import java.util.Random;

public class mm_java {
static int n = 4096;
static double[][] A = new double[n][n];
static double[][] B = new double[n][n];
static double[][] C = new double[n][n];

public static void main(String[] args) {
Random r = new Random();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
A[i][j] = r.nextDouble();
B[i][j] = r.nextDouble();
C[i][j] = 0;

}
}

long start = System.nanoTime();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

long stop = System.nanoTime();

double tdiff = (stop - start) * 1e-9;
System.out.println(tdiff);

}
}

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Running time = 2,738 seconds ≈ 46 minutes
… about 8.8× faster than Python.

Version 3: C
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

#define n 4096
double A[n][n];
double B[n][n];
double C[n][n];

float tdiff(struct timeval *start,
struct timeval *end) {

return (end->tv_sec-start->tv_sec) +
1e-6*(end->tv_usec-start->tv_usec);

}

int main(int argc, const char *argv[]) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
A[i][j] = (double)rand() / (double)RAND_MAX;
B[i][j] = (double)rand() / (double)RAND_MAX;
C[i][j] = 0;

}
}

struct timeval start, end;
gettimeofday(&start, NULL);

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

gettimeofday(&end, NULL);
printf("%0.6f\n", tdiff(&start, &end));
return 0;

}

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

Using the Clang/LLVM 5.0 compiler
Running time = 1,156 seconds ≈ 19 minutes

About 2× faster than Java and
about 18× faster than Python

Where We Stand So Far

Why is Python so slow and C so fast?

∙ Python is interpreted

∙ C is compiled directly to machine code

∙ Java is compiled to byte-code, which is then interpreted and

just-in-time (JIT) compiled to machine code

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup

GFLOPS
Percent of

peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014

Interpreters are versatile, but slow
• The interpreter reads, interprets, and performs each program statement

and updates the machine state

• Interpreters can easily support high-level programming features — such

as dynamic code alteration — at the cost of performance

Read next
statement

Interpret
statement

Perform
statement

Update
state

Interpreter
loop

JIT Compilation

∙JIT compilers can recover some of the performance lost by

interpretation

∙When code is first executed, it is interpreted

∙The runtime system keeps track of how often the various

pieces of code are executed

∙Whenever some piece of code executes sufficiently frequently,

it gets compiled to machine code in real time

∙Future executions of that code use the more-efficient compiled

version

Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

We can change the order of the loops in this program without

affecting its correctness

C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

Does the order of loops matter for performance?

Loop Order

We can change the order of the loops in this program without

affecting its correctness

Performance of Different Orders

•Loop order affects

running time by a

factor of 18!

•What’s going on?!

Loop order (outer
to inner)

Running
time (s)

i, j, k 1155.77
i, k, j 177.68
j, i, k 1080.61
j, k, i 3056.63
k, i, j 179.21
k, j, i 3032.82

Hardware Caches

P

cache

memory

BM/B
cache lines

processor

Each processor reads and writes main memory in
contiguous blocks, called cache lines

∙Previously accessed cache lines are stored in a smaller
memory, called a cache, that sits near the processor

∙Cache hits — accesses to data in cache — are fast

∙Cache misses — accesses to data not in cache — are slow

Memory Layout of Matrices

In this matrix-multiplication code, matrices are laid out in

memory in row-major order

Memory

Row 1

Row 3

Row 5

Row 7

Row 1 Row 2 Row 3

Matrix

Row 2

Row 4

Row 6

Row 8

What does this layout imply

about the performance of

different loop orders?

Access Pattern for Order i, j, k

C

=

x

B

A

for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
for (int k = 0; k < n; ++k)
C[i][j] += A[i][k] * B[k][j];

Good spatial locality

Poor spatial locality

4096 elements apart

Running time:
1155.77s

In-memory layout Excellent spatial locality

Access Pattern for Order i, k, j

C

=

x

B

A

for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Running time:
177.68s

In-memory layout

Access Pattern for Order j, k, i

C

=

x

B

A

for (int j = 0; j < n; ++j)
for (int k = 0; k < n; ++k)
for (int i = 0; i < n; ++i)

C[i][j] += A[i][k] * B[k][j];

Running time:
3056.63s

In-memory layout

Performance of Different Orders

$ valgrind --tool=cachegrind ./mm

We can measure the effect of different access patterns using the

Cachegrind cache simulator:

Loop order (outer to
inner)

Running time (s)
Last-level-cache

miss rate
i, j, k 1155.77 7.7%
i, k, j 177.68 1.0%
j, i, k 1080.61 8.6%
j, k, i 3056.63 15.4%
k, i, j 179.21 1.0%
k, j, i 3032.82 15.4%

Version 4: Interchange Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup

GFLOPS
Percent of

peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

What other simple changes we can try?

Compiler Optimization

Clang provides a collection of optimization switches. You can
specify a switch to the compiler to ask it to optimize

Opt. level Meaning Time (s)

-O0 Do not optimize 177.54

-O1 Optimize 66.24

-O2 Optimize even more 54.63

-O3 Optimize yet more 55.58

Version 5: Optimization Flags

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup

GFLOPS
Percent of

peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, we can achieve

0.3% of the peak performance of the machine

What’s causing the low performance?

Multicore Parallelism

We’re running on just 1 of the 18 parallel-processing

cores on this system. Let’s use them all!

Intel Haswell E5:

9 cores per chip

The AWS test machine
has 2 of these chips

for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Parallel Loops

The cilk_for loop allows all iterations of the loop to execute in

parallel

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

These loops can be
(easily) parallelized.

Which parallel version works best?

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Experimenting with Parallel Loops

Running time: 3.18s

Running time: 531.71s

Running time: 10.64s

Parallel i loop

Parallel i and j loops

Parallel j loop

Rule of Thumb
Parallelize outer loops
rather than inner loops

Version 6: Parallel Loops

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Using parallel loops gets us almost 18× speedup on 18 cores!

(Disclaimer: Not all code is so easy to parallelize effectively.)

Why are we still getting just 5% of peak?

Hardware Caches, Revisited

P

cache

memory

BM/B
cache lines

processor

IDEA: Restructure the computation to reuse data in the cache as

much as possible

• Cache misses are slow, and cache hits are fast

• Try to make the most of the cache by reusing the data that’s

already there

Data Reuse: Loops

C BA= x

How many memory accesses must the looping code perform to

fully compute 1 row of C?

• 4096 * 1 = 4096 writes to C,

• 4096 * 1 = 4096 reads from A, and

• 4096 * 4096 = 16,777,216 reads from B, which is

• 16,785,408 memory accesses total

Data Reuse: Blocks

C BA= x

How about to compute a 64 × 64 block of C?

• 64 ⋅ 64 = 4096 writes to C,

• 64 ⋅ 4096 = 262,144 reads from A, and

• 4096 ⋅ 64 = 262,144 reads from B, or

• 528,384 memory accesses total

Tiled Matrix Multiplication

s

s

n

n

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)

for (int il = 0; il < s; ++il)
for (int kl = 0; kl < s; ++kl)

for (int jl = 0; jl < s; ++jl)
C[ih+il][jh+jl] += A[ih+il][kh+kl] * B[kh+kl][jh+jl];

s

s

n

n

s

s

n

n

Tiled Matrix Multiplication

s

s

n

n

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)

for (int il = 0; il < s; ++il)
for (int kl = 0; kl < s; ++kl)

for (int jl = 0; jl < s; ++jl)
C[ih+il][jh+jl] += A[ih+il][kh+kl] * B[kh+kl][jh+jl];

Tuning parameter
How do we find the

right value of s?
Experiment!

Tile size
Running
time (s)

4 6.74

8 2.76

16 2.49

32 1.74

64 2.33

128 2.13

Version 7: Tiling

Implementation
Cache references

(millions)
L1-d cache misses

(millions)
Last-level cache
misses (millions)

Parallel loops 104,090 17,220 8,600

+ tiling 64,690 11,777 416

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup

GFLOPS
Percent of

peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.74 1.70 11,772 76.782 9.184

The tiled implementation performs about 62% fewer cache
references and incurs 68% fewer cache misses.

Multicore Cache Hierarchy

Level Size Assoc. Latency
(ns)

Main 60GB 50

LLC 25MB 20 12

L2 256KB 8 4

L1-d 32KB 8 2

L1-i 32KB 8 2

64-byte cache lines

DRAM

Processor chip

L1
data

L1
inst

L1
data

L1
inst

L1
data

L1
inst

L2 L2 L2

LLC (L3)

P P

⋯

P

Memory
Controller

Net-
work

DRAM DRAM

⋯ ⋯ ⋯

Tiling for a Two-Level Cache

t

s

n

s

n

∙Two tuning parameters,
s and t

∙Multidimensional tuning
optimization cannot be
done with binary search

t

Tiling for a Two-Level Cache

t

s

n

s

n

∙ Two tuning parameters,
s and t.

∙ Multidimensional
tuning optimization
cannot be done with
binary search.

t

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)

for (int im = 0; im < s; im += t)
for (int jm = 0; jm < s; jm += t)

for (int km = 0; km < s; km += t)
for (int il = 0; il < t; ++il)
for (int kl = 0; kl < t; ++kl)
for (int jl = 0; jl < t; ++jl)

C[ih+im+il][jh+jm+jl] +=
A[ih+im+il][kh+km+kl] * B[kh+km+kl][jh+jm+jl];

Recursive Matrix Multiplication

8 multiplications of n/2 × n/2 matrices
1 addition of n × n matrices

IDEA: Tile for every power of 2 simultaneously

C00 C01

C10 C11

= ·
A00 A01

A10 A11

B00 B01

B10 B11

= +
A00B00 A00B01

A10B00 A10B01

A01B10 A01B11

A11B10 A11B11

Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B
assert((n & (-n)) == n);
if (n <= 1) {

*C += *A * *B;
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

The child function call is
spawned, meaning it may
execute in parallel with the

parent caller

Control may not pass this
point until all spawned
children have returned.

Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B
assert((n & (-n)) == n);
if (n <= 1) {

*C += *A * *B;
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

Running time: 93.93s

… about 50× slower
than the last version!

The base case is too small.
We must coarsen the

recursion to overcome
function-call overheads.

Coarsening The Recursion
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

Just one tuning
parameter, for the size

of the base case.

Coarsening The Recursion
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

void mm_base(double *restrict C, int n_C,
double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C = A * B
for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)
C[i*n_C+j] += A[i*n_A+k] * B[k*n_B+j];

}

Coarsening The Recursion

Base-
case size

Running
time (s)

4 3.00

8 1.34

16 1.34

32 1.30

64 1.95

128 2.08

void mm_dac(double *restrict C, int n_C,
double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

8. Divide-and-Conquer

Implementation
Cache references

(millions)
L1-d cache misses

(millions)
Last-level cache
misses (millions)

Parallel loops 104,090 17,220 8,600

+ tiling 64,690 11,777 416

Parallel divide-and-conquer 58,230 9,407 64

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

Lane 0 Lane 1 Lane 2 Lane 3

Word 0 Word 1 Word 2 Word 3

Vector Hardware

Vector Load/Store Unit

ALU

Vector Registers

In
st

ru
ct

io
n

 d
ec

o
d

e
an

d
 s

eq
u

en
ci

n
g

Memory and caches

ALU ALU ALU

Modern microprocessors incorporate vector hardware to process data in
single-instruction stream, multiple-data stream (SIMD) fashion

Each vector register
holds multiple words

of data.

Parallel vector lanes operate
synchronously on the words in

a vector register.

Compiler Vectorization

Clang/LLVM uses vector instructions automatically when compiling
at optimization level -O2 or higher

Can be checked in a vectorization report as follows:

$ clang -O3 -std=c99 mm.c -o mm –Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2,
interleaved count: 2) [-Rpass=loop-vectorize]

for (int j = 0; j < n; ++j) {
^

Many machines don’t support the newest set of vector instructions,
however, so the compiler uses vector instructions conservatively by
default

Vectorization Flags

Programmers can direct the compiler to use modern vector

instructions using compiler flags such as the following:

• -mavx: Use Intel AVX vector instructions

• -mavx2: Use Intel AVX2 vector instructions

• -mfma: Use fused multiply-add vector instructions

• -march=<string>: Use whatever instructions are available on

the specified architecture

• -march=native: Use whatever instructions are available on the

architecture of the machine doing compilation

Due to restrictions on floating-point arithmetic, additional flags,

such as -ffast-math, might be needed for these vectorization

flags to have an effect

Version 9: Compiler Vectorization

Using the flags –march=native –ffast-math nearly doubles the
program’s performance!

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

Can we be smarter than the compiler?

AVX Intrinsic Instructions

•Intel provides C-style functions, called intrinsic instructions, that provide

direct access to hardware vector operations:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Plus More Optimizations

We can apply several more insights and performance-

engineering tricks to make this code run faster, including:

• Preprocessing

• Matrix transposition

• Data alignment

• Memory-management optimizations

• A clever algorithm for the base case that uses AVX intrinsic

instructions explicitly

Plus Performance Engineering

Think, code,

run, run, run…

…to test and measure many
different implementations

Version 10: AVX Intrinsics

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

10 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

Version 11: Final Reckoning

Version Implementation
Running
time (s)

Relative
speedup

Absolute
Speedup GFLOPS

Percent of
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

10 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

11 Intel MKL 0.41 0.97 51,497 335.217 40.098

Version 10 is competitive with Intel’s professionally engineered
Math Kernel Library!

Engineering the Performance of your Algorithms

53,292×

Gas economy MPG

∙ You won’t generally see the magnitude of

performance improvement we obtained for

matrix multiplication

∙ But in this course, you will learn how to print

the currency of performance all by yourself

Overall Structure in this Course

Performance Engineering

Parallelism

I/O efficiency

New Bentley rules

Brief overview of architecture

Algorithm Engineering

Sorting / Semisorting

Matrix multiplication

Graph algorithms

Geometry Algorithms

EE/CS217 GPU Architecture and Parallel Programming

CS211 High Performance Computing

CS213 Multiprocessor Architecture and Programming (Stanford CS149)

CS247 Principles of Distributed Computing

http://cs149.stanford.edu/fall19/

