
Algorithm Engineering 
(aka. How to Write Fast Code)

Case Study: 
Matrix Multiplication

CS260 – Lecture 2

Yan Gu

Many slides in this lecture are borrowed from the first lecture in 6.172 Performance Engineering of Software Systems at MIT. 

The credit is to Prof. Charles E. Leiserson, and the instructor appreciates the permission to use them in this course. The 

numbers of runtime and more details of the experiment can be found in Tao Schardl’s dissertation Performance engineering 

of multicore software: Developing a science of fast code for the post-Moore era. 
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Performance Is No Longer Free

2011 Intel 
Skylake 

processor

2008 
NVIDIA 
GT200 
GPU

∙Moore’s Law continues to 

increase computer performance

∙But now that performance looks 

like big multicore processors 

with complex cache hierarchies, 

wide vector units, GPUs, FPGAs, 

etc.

∙Generally, algorithms must be 

adapted to utilize this hardware 

efficiently!



Square-Matrix Multiplication

c11 c12 ⋯ c1n

c21 c22 ⋯ c2n

⋮ ⋮ ⋱ ⋮

cn1 cn2 ⋯ cnn

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

b11 b12 ⋯ b1n

b21 b22 ⋯ b2n

⋮ ⋮ ⋱ ⋮
bn1 bn2 ⋯ bnn

= ∙

C A B

cij = 
k = 1

n

aik bkj

Assume for simplicity that n = 2k.



AWS c4.8xlarge Machine Specs

Feature Specification

Microarchitecture Haswell (Intel Xeon E5-2666 v3)

Clock frequency 2.9 GHz

Processor chips 2

Processing cores  9 per processor chip

Hyperthreading 2 way

Floating-point unit 
8 double-precision operations, including 
fused-multiply-add, per core per cycle 

Cache-line size 64B

L1-icache 32KB private 8-way set associative

L1-dcache 32KB private 8-way set associative

L2-cache 256 KB private 8-way set associative

L3-cache (LLC) 25MB shared 20-way set associative

DRAM 60GB

Peak = (2.9 × 109) × 2 × 9 × 16 = 836 GFLOPS



Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

B = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

C = [[0 for row in xrange(n)]
for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time = 21042 seconds ≈ 6 hours

Is this fast?

Should we expect more?



Version 1: Nested Loops in Python
import sys, random
from time import *

n = 4096

A = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

B = [[random.random()
for row in xrange(n)]
for col in xrange(n)]

C = [[0 for row in xrange(n)]
for col in xrange(n)]

start = time()
for i in xrange(n):

for j in xrange(n):
for k in xrange(n):

C[i][j] += A[i][k] * B[k][j]
end = time()

print '%0.6f' % (end - start)

Running time = 21042 seconds ≈ 6 hours

Is this fast?

Should we expect more?

Back-of-the-envelope calculation

2n3 = 2(212)3 = 237 floating-point operations
Running time = 21042 seconds
∴ Python gets 237/21042 ≈ 6.25 MFLOPS
Peak ≈ 836 GFLOPS
Python gets ≈ 0.00075% of peak



Version 2: Java
import java.util.Random;

public class mm_java {
static int n = 4096;
static double[][] A = new double[n][n];
static double[][] B = new double[n][n];
static double[][] C = new double[n][n];

public static void main(String[] args) {
Random r = new Random();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
A[i][j] = r.nextDouble();
B[i][j] = r.nextDouble();
C[i][j] = 0;

}
}

long start = System.nanoTime();

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

long stop = System.nanoTime();

double tdiff = (stop - start) * 1e-9;
System.out.println(tdiff);

}
}

for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
for (int k=0; k<n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Running time = 2,738 seconds ≈ 46 minutes
… about 8.8× faster than Python.



Version 3: C
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>

#define n 4096
double A[n][n];
double B[n][n];
double C[n][n];

float tdiff(struct timeval *start,
struct timeval *end) {

return (end->tv_sec-start->tv_sec) +
1e-6*(end->tv_usec-start->tv_usec);

}

int main(int argc, const char *argv[]) {
for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
A[i][j] = (double)rand() / (double)RAND_MAX;
B[i][j] = (double)rand() / (double)RAND_MAX;
C[i][j] = 0;

}
}

struct timeval start, end;
gettimeofday(&start, NULL);

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {

for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

gettimeofday(&end, NULL);
printf("%0.6f\n", tdiff(&start, &end));
return 0;

}

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {
C[i][j] += A[i][k] * B[k][j];

}
}

}

Using the Clang/LLVM 5.0 compiler
Running time = 1,156 seconds ≈ 19 minutes

About 2× faster than Java and 
about 18× faster than Python



Where We Stand So Far

Why is Python so slow and C so fast?

∙ Python is interpreted

∙ C is compiled directly to machine code

∙ Java is compiled to byte-code, which is then interpreted and 

just-in-time (JIT) compiled to machine code

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup

GFLOPS
Percent of 

peak

1 Python 21041.67 1.00 1 0.007 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.119 0.014



Interpreters are versatile, but slow
• The interpreter reads, interprets, and performs each program statement 

and updates the machine state

• Interpreters can easily support high-level programming features — such 

as dynamic code alteration — at the cost of performance

Read next 
statement

Interpret
statement

Perform
statement

Update 
state

Interpreter 
loop



JIT Compilation

∙JIT compilers can recover some of the performance lost by 

interpretation

∙When code is first executed, it is interpreted

∙The runtime system keeps track of how often the various 

pieces of code are executed

∙Whenever some piece of code executes sufficiently frequently, 

it gets compiled to machine code in real time

∙Future executions of that code use the more-efficient compiled 

version



Loop Order

C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

We can change the order of the loops in this program without 

affecting its correctness



C[i][j] += A[i][k] * B[k][j];
}

}
}

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {
for (int k = 0; k < n; ++k) {

Does the order of loops matter for performance?

Loop Order

We can change the order of the loops in this program without 

affecting its correctness



Performance of Different Orders

•Loop order affects 

running time by a 

factor of 18!

•What’s going on?!

Loop order (outer 
to inner)

Running 
time (s)

i, j, k 1155.77
i, k, j 177.68
j, i, k 1080.61
j, k, i 3056.63
k, i, j 179.21
k, j, i 3032.82



Hardware Caches

P

cache

memory

BM/B
cache lines

processor

Each processor reads and writes main memory in 
contiguous blocks, called cache lines

∙Previously accessed cache lines are stored in a smaller 
memory, called a cache, that sits near the processor

∙Cache hits — accesses to data in cache — are fast

∙Cache misses — accesses to data not in cache — are slow



Memory Layout of Matrices

In this matrix-multiplication code, matrices are laid out in 

memory in row-major order

Memory

Row 1

Row 3

Row 5

Row 7

Row 1 Row 2 Row 3

Matrix

Row 2

Row 4

Row 6

Row 8

What does this layout imply 

about the performance of 

different loop orders?



Access Pattern for Order i, j, k

C

=

x

B

A

for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
for (int k = 0; k < n; ++k)
C[i][j] += A[i][k] * B[k][j];

Good spatial locality

Poor spatial locality

4096 elements apart

Running time: 
1155.77s

In-memory layout Excellent spatial locality



Access Pattern for Order i, k, j

C

=

x

B

A

for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Running time: 
177.68s

In-memory layout



Access Pattern for Order j, k, i

C

=

x

B

A

for (int j = 0; j < n; ++j)
for (int k = 0; k < n; ++k)
for (int i = 0; i < n; ++i)

C[i][j] += A[i][k] * B[k][j];

Running time: 
3056.63s

In-memory layout



Performance of Different Orders

$ valgrind --tool=cachegrind ./mm

We can measure the effect of different access patterns using the 

Cachegrind cache simulator:

Loop order (outer to 
inner)

Running time (s)
Last-level-cache 

miss rate
i, j, k 1155.77 7.7%
i, k, j 177.68 1.0%
j, i, k 1080.61 8.6%
j, k, i 3056.63 15.4%
k, i, j 179.21 1.0%
k, j, i 3032.82 15.4%



Version 4: Interchange Loops

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup

GFLOPS
Percent of 

peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

What other simple changes we can try?



Compiler Optimization

Clang provides a collection of optimization switches.  You can 
specify a switch to the compiler to ask it to optimize

Opt. level Meaning Time (s)

-O0 Do not optimize 177.54

-O1 Optimize 66.24

-O2 Optimize even more 54.63

-O3 Optimize yet more 55.58



Version 5: Optimization Flags

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup

GFLOPS
Percent of 

peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

With simple code and compiler technology, we can achieve 

0.3% of the peak performance of the machine

What’s causing the low performance?



Multicore Parallelism

We’re running on just 1 of the 18 parallel-processing 

cores on this system.  Let’s use them all!

Intel Haswell E5:

9 cores per chip

The AWS test machine 
has 2 of these chips



for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Parallel Loops

The cilk_for loop allows all iterations of the loop to execute in 

parallel

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

These loops can be 
(easily) parallelized.

Which parallel version works best?



cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

cilk_for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
cilk_for (int j = 0; j < n; ++j)

C[i][j] += A[i][k] * B[k][j];

Experimenting with Parallel Loops

Running time: 3.18s

Running time: 531.71s 

Running time: 10.64s 

Parallel i loop

Parallel i and j loops

Parallel j loop

Rule of Thumb 
Parallelize outer loops 
rather than inner loops



Version 6: Parallel Loops

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

Using parallel loops gets us almost 18× speedup on 18 cores!  

(Disclaimer: Not all code is so easy to parallelize effectively.)

Why are we still getting just 5% of peak?



Hardware Caches, Revisited

P

cache

memory

BM/B
cache lines

processor

IDEA: Restructure the computation to reuse data in the cache as 

much as possible

• Cache misses are slow, and cache hits are fast

• Try to make the most of the cache by reusing the data that’s 

already there



Data Reuse: Loops

C BA= x

How many memory accesses must the looping code perform to 

fully compute 1 row of C?

• 4096 * 1 = 4096 writes to C,

• 4096 * 1 = 4096 reads from A, and

• 4096 * 4096 = 16,777,216 reads from B, which is

• 16,785,408 memory accesses total



Data Reuse: Blocks

C BA= x

How about to compute a 64 × 64 block of C?

• 64 ⋅ 64 = 4096 writes to C,

• 64 ⋅ 4096 = 262,144 reads from A, and

• 4096 ⋅ 64 = 262,144 reads from B, or

• 528,384 memory accesses total



Tiled Matrix Multiplication

s

s

n

n

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)

for (int il = 0; il < s; ++il)
for (int kl = 0; kl < s; ++kl)

for (int jl = 0; jl < s; ++jl)
C[ih+il][jh+jl] += A[ih+il][kh+kl] * B[kh+kl][jh+jl];

s

s

n

n

s

s

n

n



Tiled Matrix Multiplication

s

s

n

n

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)

for (int il = 0; il < s; ++il)
for (int kl = 0; kl < s; ++kl)

for (int jl = 0; jl < s; ++jl)
C[ih+il][jh+jl] += A[ih+il][kh+kl] * B[kh+kl][jh+jl];

Tuning parameter
How do we find the 

right value of s?
Experiment!

Tile size
Running 
time (s)

4 6.74

8 2.76

16 2.49

32 1.74

64 2.33

128 2.13



Version 7: Tiling

Implementation
Cache references 

(millions)
L1-d cache misses 

(millions)
Last-level cache 
misses (millions)

Parallel loops 104,090 17,220 8,600

+ tiling 64,690 11,777 416

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup

GFLOPS
Percent of 

peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.74 1.70 11,772 76.782 9.184

The tiled implementation performs about 62% fewer cache 
references and incurs 68% fewer cache misses.



Multicore Cache Hierarchy

Level Size Assoc. Latency 
(ns)

Main 60GB 50

LLC 25MB 20 12

L2 256KB 8 4

L1-d 32KB 8 2

L1-i 32KB 8 2

64-byte cache lines

DRAM

Processor chip

L1
data

L1
inst

L1
data

L1
inst

L1
data

L1
inst

L2 L2 L2

LLC (L3)

P P

⋯

P

Memory
Controller

Net-
work

DRAM DRAM

⋯ ⋯ ⋯



Tiling for a Two-Level Cache

t

s

n

s

n

∙Two tuning parameters, 
s and t

∙Multidimensional tuning 
optimization cannot be 
done with binary search

t



Tiling for a Two-Level Cache

t

s

n

s

n

∙ Two tuning parameters, 
s and t.

∙ Multidimensional 
tuning optimization 
cannot be done with 
binary search.

t

cilk_for (int ih = 0; ih < n; ih += s)
cilk_for (int jh = 0; jh < n; jh += s)
for (int kh = 0; kh < n; kh += s)

for (int im = 0; im < s; im += t)
for (int jm = 0; jm < s; jm += t)

for (int km = 0; km < s; km += t)
for (int il = 0; il < t; ++il)
for (int kl = 0; kl < t; ++kl)
for (int jl = 0; jl < t; ++jl)

C[ih+im+il][jh+jm+jl] +=
A[ih+im+il][kh+km+kl] * B[kh+km+kl][jh+jm+jl];



Recursive Matrix Multiplication

8 multiplications of n/2 × n/2 matrices
1 addition of n × n matrices

IDEA: Tile for every power of 2 simultaneously

C00 C01

C10 C11

= ·
A00 A01

A10 A11

B00 B01

B10 B11

= +
A00B00 A00B01

A10B00 A10B01

A01B10 A01B11

A11B10 A11B11



Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B  
assert((n & (-n)) == n);
if (n <= 1) {

*C += *A * *B;
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

The child function call is 
spawned, meaning it may 
execute in parallel with the 

parent caller

Control may not pass this 
point until all spawned 
children have returned.



Recursive Parallel Matrix Multiply
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B  
assert((n & (-n)) == n);
if (n <= 1) {

*C += *A * *B;
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

Running time: 93.93s

… about 50× slower
than the last version!

The base case is too small.  
We must coarsen the 

recursion to overcome 
function-call overheads.



Coarsening The Recursion
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B  
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

Just one tuning 
parameter, for the size 

of the base case.



Coarsening The Recursion
void mm_dac(double *restrict C, int n_C,

double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B  
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}

void mm_base(double *restrict C, int n_C,
double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C = A * B
for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k)
for (int j = 0; j < n; ++j)
C[i*n_C+j] += A[i*n_A+k] * B[k*n_B+j];

}



Coarsening The Recursion

Base-
case size

Running 
time (s)

4 3.00

8 1.34

16 1.34

32 1.30

64 1.95

128 2.08

void mm_dac(double *restrict C, int n_C,
double *restrict A, int n_A,
double *restrict B, int n_B,
int n)

{ // C += A * B  
assert((n & (-n)) == n);
if (n <= THRESHOLD) {

mm_base(C, n_C, A, n_A, B, n_B, n);
} else {

#define X(M,r,c) (M + (r*(n_ ## M) + c)*(n/2))
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,0), n_A, X(B,0,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,0), n_A, X(B,0,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,0), n_A, X(B,0,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,0), n_A, X(B,0,1), n_B, n/2);
cilk_sync;
cilk_spawn mm_dac(X(C,0,0), n_C, X(A,0,1), n_A, X(B,1,0), n_B, n/2);
cilk_spawn mm_dac(X(C,0,1), n_C, X(A,0,1), n_A, X(B,1,1), n_B, n/2);
cilk_spawn mm_dac(X(C,1,0), n_C, X(A,1,1), n_A, X(B,1,0), n_B, n/2);

mm_dac(X(C,1,1), n_C, X(A,1,1), n_A, X(B,1,1), n_B, n/2);
cilk_sync;

}
}



8. Divide-and-Conquer

Implementation
Cache references 

(millions)
L1-d cache misses 

(millions)
Last-level cache 
misses (millions)

Parallel loops 104,090 17,220 8,600

+ tiling 64,690 11,777 416

Parallel divide-and-conquer 58,230 9,407 64

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646
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Memory and caches
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Modern microprocessors incorporate vector hardware to process data in 
single-instruction stream, multiple-data stream (SIMD) fashion

Each vector register 
holds multiple words 

of data.

Parallel vector lanes operate 
synchronously on the words in 

a vector register.



Compiler Vectorization

Clang/LLVM uses vector instructions automatically when compiling 
at optimization level -O2 or higher

Can be checked in a vectorization report as follows:

$ clang -O3 -std=c99 mm.c -o mm –Rpass=vector
mm.c:42:7: remark: vectorized loop (vectorization width: 2, 
interleaved count: 2) [-Rpass=loop-vectorize]

for (int j = 0; j < n; ++j) {
^

Many machines don’t support the newest set of vector instructions, 
however, so the compiler uses vector instructions conservatively by 
default



Vectorization Flags

Programmers can direct the compiler to use modern vector 

instructions using compiler flags such as the following:

• -mavx: Use Intel AVX vector instructions

• -mavx2: Use Intel AVX2 vector instructions

• -mfma: Use fused multiply-add vector instructions

• -march=<string>: Use whatever instructions are available on 

the specified architecture

• -march=native: Use whatever instructions are available on the 

architecture of the machine doing compilation

Due to restrictions on floating-point arithmetic, additional flags, 

such as -ffast-math, might be needed for these vectorization 

flags to have an effect



Version 9: Compiler Vectorization

Using the flags –march=native –ffast-math nearly doubles the 
program’s performance!

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

Can we be smarter than the compiler?



AVX Intrinsic Instructions

•Intel provides C-style functions, called intrinsic instructions, that provide 

direct access to hardware vector operations:

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Plus More Optimizations

We can apply several more insights and performance-

engineering tricks to make this code run faster, including:

• Preprocessing

• Matrix transposition

• Data alignment

• Memory-management optimizations

• A clever algorithm for the base case that uses AVX intrinsic 

instructions explicitly



Plus Performance Engineering

Think, code,

run, run, run…

…to test and measure many 
different implementations



Version 10: AVX Intrinsics

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

10 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677



Version 11: Final Reckoning

Version Implementation
Running 
time (s)

Relative 
speedup

Absolute 
Speedup GFLOPS

Percent of 
peak

1 Python 21041.67 1.00 1 0.006 0.001

2 Java 2387.32 8.81 9 0.058 0.007

3 C 1155.77 2.07 18 0.118 0.014

4 + interchange loops 177.68 6.50 118 0.774 0.093

5 + optimization flags 54.63 3.25 385 2.516 0.301

6 Parallel loops 3.04 17.97 6,921 45.211 5.408

7 + tiling 1.79 1.70 11,772 76.782 9.184

8 Parallel divide-and-conquer 1.30 1.38 16,197 105.722 12.646

9 + compiler vectorization 0.70 1.87 30,272 196.341 23.486

10 + AVX intrinsics 0.39 1.76 53,292 352.408 41.677

11 Intel MKL 0.41 0.97 51,497 335.217 40.098

Version 10 is competitive with Intel’s professionally engineered 
Math Kernel Library!



Engineering the Performance of your Algorithms

53,292×

Gas economy MPG

∙ You won’t generally see the magnitude of 

performance improvement we obtained for 

matrix multiplication

∙ But in this course, you will learn how to print 

the currency of performance all by yourself



Overall Structure in this Course

Performance Engineering

Parallelism

I/O efficiency

New Bentley rules

Brief overview of architecture

Algorithm Engineering

Sorting / Semisorting

Matrix multiplication

Graph algorithms

Geometry Algorithms

EE/CS217 GPU Architecture and Parallel Programming

CS211 High Performance Computing

CS213 Multiprocessor Architecture and Programming (Stanford CS149)

CS247 Principles of Distributed Computing

http://cs149.stanford.edu/fall19/

